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1. Introduction and preliminaries

Finding explicit minimal free resolutions for classes of graded ideals, or at least bounding their Betti numbers, is one of
the central problems in combinatorial algebra. In general, the problem is hard and far from being solved, even in the cases of
monomial ideals or quadratic monomial ideals (for some results and conjectures, see e.g. [1,2], and the survey paper [3]). In
this paper we prove a conjecture raised by Nagel and Reiner [4], establishing a lower bound on the Betti numbers of certain
quadratic ideals.
We start by reviewing necessary background and introducing notation. Throughout this paper k is an arbitrary field,

and S is the polynomial ring over k in variables X t Y , where X = {x1, . . . , xn} and Y = {y1, . . . , ym}. We consider ideals
generated by some monomials of the form xiyj. Define a Zn-grading on S as follows. Let Zn be generated by the standard
basis e1, . . . , en, and set deg xi = ei for 1 ≤ i ≤ n. Also set deg yi = 0 for 1 ≤ i ≤ m.
For a Zn-graded ideal I ⊂ S, we consider the minimal free Zn-graded resolution:

0→
⊕
a∈Zn
S(−a)βl,a → · · · →

⊕
a∈Zn
S(−a)β0,a → I → 0.

In the above expression, S(−a) denotes S with grading shifted by a, and l denotes the length of the resolution. In particular,
l ≥ codim (S/I). It follows from, for instance, the Taylor resolution that if I is a squarefree monomial ideal, then βi,a = 0
unless a is a {0, 1}-vector. Hence the nonzero Betti numbers of such an ideal can be indexed by subsets of X . For X ′ ⊆ X , we
define βi,X ′,•(I) = βi,a(I) for a =

∑
xi∈X ′

ei. We may also consider the more common Zn+m-grading on S by giving yj degree
en+j. Then the Zn-graded Betti numbers of I relate to the Zn+m-graded Betti numbers by

βi,X ′,•(I) =
∑
Y ′⊆Y

βi,X ′tY ′(I). (1)

In Section 2, we prove Conjecture 1.2 of [4], establishing a lower bound on βi,X ′,•(I) in the case that I is generated by some
monomials of the form xiyj. Associated with I is a bipartite graph G(X t Y , E)with vertex set X t Y and an edge {xi, yj} ∈ E
whenever xiyj ∈ I . We say that I is the edge ideal of G. Edge ideals were first introduced in [5]; results related to edge ideals
can be found in [6–9,5]. For each vertex v ∈ G, the set of vertices that share an edge with v is called the neighborhood of v
and is denoted N(v), while the degree of v is deg v = degG v := |N(v)|.
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For each bipartite graph G on X t Y , we associate a bipartite graph H on X t Y with edge set

E(H) = {{xi, yj} : 1 ≤ i ≤ n, 1 ≤ j ≤ degGxi}.

Wemay think of H as a ‘‘shifted’’ version of G. A bipartite graph constructed in this manner is known as a Ferrers graph. Let
J be the edge ideal of H; J is known as a Ferrers ideal. For more on Ferrers ideals, see [10,11]. The following is Conjecture 1.2
of [4].

Theorem 1.1. For all X ′ ⊂ X, βi,X ′,•(I) ≥ βi,X ′,•(J).

Our proof relies heavily on techniques relating to simplicial complexes. A simplicial complex Γ with the vertex set
V = X t Y is a collection of subsets of 2V called faces such that if F ∈ Γ and G ⊆ F , then G ∈ Γ . With every simplicial
complex Γ we associate its Stanley-Reisner ideal IΓ ⊂ S generated by non-faces of Γ : IΓ := (

∏
v∈L v : L ⊆ V , L 6∈ Γ )

(see [12]). Likewise, given a squarefree monomial ideal I ⊂ S, we denote by ∆(I) the simplicial complex ∆ on X t Y such
that I∆ = I . IfW ⊂ V , then the induced subcomplex of Γ onW , denoted Γ [W ] has vertex setW and faces {F ∈ Γ : F ⊆ W }.
If v ∈ V , thenwe abbreviateΓ [V−{v}] byΓ −v. Let β̃p(Γ ) := dimk(H̃p(Γ )) be the dimension of the pth reduced simplicial
homology of Γ with coefficients in k. We make frequent use of Hochster’s formula (see [12, Theorem II.4.8]), which states
that forW ⊂ V ,

βi,W (IΓ ) = β̃|W |−i−2(Γ [W ]).

2. Lower bound on bipartite graph ideals

In this section we prove the main result. Let G be a graph on X t Y , all of whose edges are of the form {xi, yj}, and let
I be the edge ideal of G. Let J be the Ferrers ideal associated with I . The Betti numbers of Ferrers ideals can be calculated
explicitly. For X ′ ⊆ X , let mindeg (X ′) = mindeg G(X ′) denote the minimum degree of a vertex in X ′ in G.

Proposition 2.1 ([4, Proposition 2.18]). Let J be the edge ideal of a Ferrers graph H on vertex set X t Y . Then for all X ′ ⊆ X and i,

βi,X ′,•(J) =
(
mindeg H(X ′)
i− |X ′| + 2

)
.

Proof of Theorem 1.1. For a given X ′ ⊆ X , we may restrict our attention to the induced subgraph G[X ′ t Y ], and therefore
we assume without loss of generality that X ′ = X . By Proposition 2.1, βi,X,•(J) =

(
mindeg (X)
i−|X |+2

)
. Let Γ := ∆(I). By (1) and

Hochster’s formula, we also have that

βi,X,•(I) =
∑
Y ′⊆Y

βi,XtY ′(I) =
|X |+|Y |−i−2∑

j=0

∑
|Y ′|=j+i−|X |+2

β̃j(Γ [X ∪ Y ′]).

We assume without loss of generality that N(x1) does not properly contain N(xi) for 1 ≤ i ≤ n. This occurs, for instance,
if x1 has minimal degree among the vertices in X . It suffices to show that

|X |+|Y |−i−2∑
j=0

∑
|Y ′|=j+i−|X |+2

β̃j(Γ [X ∪ Y ′]) ≥
(
deg(x1)
i− |X | + 2

)
.

We do so by showing that for every Y ′1 ⊂ N(x1), there exists Y
′
⊆ Y and j ≥ 0 such that Y ′ ∩ N(x1) = Y ′1, |Y

′
| = |Y ′1| + j,

and β̃j(Γ [X ∪ Y ′]) ≥ 1. If this claim holds, then by taking all Y ′1 with |Y
′

1| = i−|X |+ 2, it follows that βi,|X |,•(I) ≥
(
deg(x1)
i−|X |+2

)
.

Define X1 := {x ∈ X : N(x) = N(x1)}. If x ∈ X − X1, then there exists y ∈ N(x) − N(x1), since by our hypothesis
N(x) 6⊂ N(x1). Let {v1, . . . , vr} ⊂ Y − N(x1) be a set of minimal size such that for each x ∈ X − X1, there exists some
1 ≤ i ≤ r with vi ∈ N(x). We prove the claim by induction on r . In the case r = 0, N(xi) = N(x1) for all i, and so
Γ [X ∪ Y ′1] = Γ [X1 ∪ Y

′

1] is the disjoint union of simplices on X1 and Y
′

1, and the claim holds with j = 0.
Now consider r ≥ 1, and let X ′ = N(vr). On the induced subgraph G[(X − X ′) ∪ Y ′1 ∪ {v1, . . . , vr−1}], N(x1) does not

properly contain N(xi) for any xi ∈ X − X ′, so for this graph the claim holds by the inductive hypothesis. Hence by possibly
rearranging the vi, we can assume that H̃k−1(Γ [(X − X ′)∪ Y ′1 ∪ {v1, . . . , vk−1]}) 6= 0 for some 1 ≤ k ≤ r . Then we consider
two cases.
Case 1: H̃k−1(Γ [X ∪ Y ′1 ∪ {v1, . . . , vk−1}]) 6= 0. Then Y

′
= Y ′1 ∪ {v1, . . . , vk−1} satisfies the claim.

Case 2: H̃k−1(Γ [X ∪ Y ′1 ∪ {v1, . . . , vk−1}]) = 0. Note that

H̃k−1(Γ [(X − X ′) ∪ Y ′1 ∪ {v1, . . . , vk−1, vr}]) = 0
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since this complex is a cone over Γ [(X − X ′) ∪ Y ′1 ∪ {v1, . . . , vk−1}] with apex vr . Also, since for all x ∈ X
′, {x, vr} is not an

edge in Γ , it follows that

Γ [X ∪ Y ′1 ∪ {v1, . . . , vk−1, vr}] = Γ [X ∪ Y
′

1 ∪ {v1, . . . , vk−1}] ∪ Γ [(X − X
′) ∪ Y ′1 ∪ {v1, . . . , vk−1, vr}].

Take X∗ := X − X ′. The portion of the Mayer-Vietoris sequence on simplicial homology

H̃k(Γ [X ∪ Y ′1 ∪ {v1, . . . , vk−1, vr}])→ H̃k−1(Γ [X∗ ∪ Y ′1 ∪ {v1, . . . , vk−1}])

→ H̃k−1(Γ [X ∪ Y ′1 ∪ {v1, . . . , vk−1}])⊕ H̃k−1(Γ [X
∗
∪ Y ′1 ∪ {v1, . . . , vk−1, vr}]) = 0

implies that H̃k(Γ [X ∪ Y ′1 ∪ {v1, . . . , vk−1, vr}]) 6= 0. The result follows by taking Y
′
= Y ′1 ∪ {v1, . . . , vk−1, vr}. �

Nagel and Reiner give a full characterization of when equality occurs for all X ′ ⊆ X . We say that G is nearly row-nested if
whenever |N(x1)| < |N(x2)|, N(x1) ⊂ N(x2), and | ∩|N(xi)|=c N(xi)| ≥ c − 1 for all c .

Theorem 2.2 ([4, Proposition 4.18]). For all X ′ ⊂ X, βi,X ′,•(I) = βi,X ′,•(J) if and only if G is nearly row-nested.

3. Remarks and conclusions

Nagel and Reiner also propose a colex lower bound for classes of monomial ideals. The colex order on subsets of size d of
N is a total ordering such that (a1, . . . , ad)<colex(b1, . . . , bd) if and only if for some 1 ≤ k ≤ d, ak < bk and ai = bi for
all k + 1 ≤ i ≤ d. An initial segment K in the colex order is a colexsegment, and the ideal (xi1 . . . xid : {i1, . . . , id} ∈ K) is
a colexsegment-generated ideal. For each squarefree monomial ideal I generated in a constant degree d, let J be the unique
degree d colexsegment-generated ideal with the same number of minimal generators as I . We say that I satisfies the colex
lower bound if for all j, βj(I) ≥ βj(J). Problem 1.1 of [4] is the following.

Problem 3.1. Which monomial ideals in constant degree d satisfy the colex lower bound?

Theorem 1.1 proves the colex lower bound for edge ideals of bipartite graphs.

Theorem 3.2. Let G be a bipartite graph. Then the edge ideal of G satisfies the colex lower bound.

Proof. Let I be the edge ideal of G and J be the associated Ferrers ideal. Nagel and Reiner [4, Proposition 4.2] prove that
J satisfies the colex lower bound. By ignoring the Zn-grading, it follows from Theorem 1.1 that for all j, βj(I) ≥ βj(J). We
conclude that I satisfies the colex lower bound. �
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