
J. Differential Equations 189 (2003) 538–555

The evolution of invariant manifolds in
Hamiltonian–Hopf bifurcations$

Patrick D. McSwiggen and Kenneth R. Meyer*

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA

Received November 15, 2001; revised July 10, 2002

Abstract

We consider the evolution of the stable and unstable manifolds of an equilibrium point of a

Hamiltonian system of two degrees of freedom which depends on a parameter, n: The
eigenvalues of the linearized system are complex for no0 and pure imaginary for n40: Thus,
for no0 the equilibrium has a two-dimensional stable manifold and a two-dimensional

unstable manifold, but for n40 these stable and unstable manifolds are gone. If the sign of a
certain term in the normal form is positive then for small negative n the stable and unstable
manifolds of the system are either identical or must have transverse intersection. Thus, either

the system is totally degenerate or the system admits a suspended Smale horseshoe as an

invariant set.
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1. Introduction

We consider a 1-parameter family of Hamiltonian systems of two degrees of
freedom for which there is an equilibrium point that changes type from hyperbolic to
elliptic. We can assume this equilibrium point is at the origin for all values of the
parameter, n; and the change in type occurs at n ¼ 0: The linearization of such a
system at the origin has a coefficient matrix AðnÞ which is a 4� 4 Hamiltonian
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matrix, so its eigenvalues are symmetric with respect to both the real and imaginary
axis [24]. Therefore, the eigenvalues change from complex numbers of the form
7a7bi; a; ba0 when no0 to two pairs of pure imaginary eigenvalues of the
form 7o1i; 7o2i; o1; o2a0 when n40: Clearly Að0Þ must have a single pair of
pure imaginary eigenvalues of multiplicity two, i.e. its eigenvalues are of the form
7oi; 7oi: We assume that Að0Þ is nondegenerate in the sense that its Jordan
canonical form has nonzero off-diagonal entries.
Much is known about the local geometry of the flow in the two cases when no0

and n40: When no0 the equilibrium point is a saddle point with two-dimensional
stable and unstable manifolds [12], and when n40 the Liapunov Center Theorem
[21] assures that two families of periodic solutions emanate from the equilibrium
point. How do these structures change as the parameter passes through zero?
In 1971, Meyer and Schmidt [25] stated and proved the theorem that has become

known as the Hamiltonian–Hopf Theorem which tells what happens to the Liapunov
families of periodic solutions provided a certain quantity Z is nonzero. The quantity Z;
defined below, is the coefficient of a particular term in the normal form expansion of
H:When Zo0 the two Liapunov families are globally connected for n40 and shrink
to the equilibrium as n-0þ: When Z40 the two Liapunov families detach from the
equilibrium as a single family as n decrease from zero. Meyer and Schmidt [25] show
the latter case occurs in the restricted three-body problem.
In [23] a similar study was carried out on the evolution of the stable and unstable

manifolds for the truncated normal form. Superficially, the formal story sounds the
same with the sign of Z reversed. When Zo0 the stable and unstable manifolds
detach from the equilibrium as a single invariant manifold as n increases from zero.
When Z40 the stable and unstable manifolds are globally connected for no0 and
shrink to the equilibrium as n-0�:
In this paper, we treat the evolution of the stable and unstable manifolds for the

full system when Z40: We show that in this case, when n is small and negative, the
stable and unstable manifolds must intersect. Moreover, if the invariant manifolds
are not globally identical, then there exists a transverse intersection. Thus, either the
system is totally degenerate, or near the equilibrium there must be the suspension of
a Smale horse shoe with all its dynamic ramifications [27].
Section 6 considers two well known examples to which our theorem applies. The first

is the restricted three-body problem. This was shown in 1968 by Deprit and Henrard [8]
to have Z40 for the Lagrange triangular libration point at the Routh critical value of
the mass ratio parameter. This is related to the Strömgren conjecture [31]. The second
example is the fourth-order equation uiv þ Pü þ u � u2 ¼ 0; which has been studied
extensively in the literature [1,4,17,18]. This equation can be written as a reversible
Hamiltonian system with an equilibrium at the origin. As the parameter P passes
through 2 the exponents change from complex to pure imaginary and a computation of
the normal form shows that the conditions of our theorem are satisfied.
Since 1971 there have been many papers on the 1:1 resonance case, see van Gils

et al. [11] for a discussion of the unfolding of the general nonconservative, non-
symmetric case, Iooss and Peroueme [19] in the time reversing case and the references
therein.
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2. The system of equations

Consider a Hamiltonian system of two degrees of freedom which depends on a
parameter n which has an equilibrium point at the origin for all n: That is, a system of
the form

’z ¼ JrzHðz; nÞ ¼ AðnÞz þ Fðz; nÞ; ð1Þ

where zAR4; t; nAR; H :R4 � R-R is smooth, J is the 4� 4 skew symmetric matrix

J ¼

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

2
6664

3
7775;

AðnÞ ¼ J@2H=@z2ð0; nÞ; Fðz; nÞ ¼ JrzHðz; nÞ � AðnÞz; and
’
¼ d=dt: Since the equi-

librium point is at the origin, rzHð0; nÞ ¼ Fð0; nÞ ¼ 0 and since AðnÞ is the linear
part of the equation, @Fð0; nÞ=@z ð0; nÞ ¼ 0:
The basic assumption is that when n ¼ 0 the matrix A has eigenvalues 7oi of

multiplicity two with nonelementary divisors and as n decreases from zero these
eigenvalues move off the imaginary axis. By scaling time we may assume that o ¼ 1:
For this problem Sokol’skii’s normal form is appropriate. It depends on the

quantities

G1 ¼ x2y1 � x1y2; G2 ¼ 1
2
ðx21 þ x22Þ;

G3 ¼ 1
2
ðy21 þ y22Þ; G4 ¼ x1y1 þ x2y2; ð2Þ

where z ¼ ðx1; x2; y1; y2Þ: Hamiltonian (1) is in Sokol’skii’s normal form if
H ¼ G1 þ dG2 þ HwðG1;G3; nÞ; ð3Þ

where Hw is at least quadratic in G1;G3 and n and where d ¼ 71:
To see which terms are the most important near the origin and when n is small we

will use the scaling in [25] which was used to identify the important terms for the
Hamiltonian–Hopf bifurcation. Scale the variables by

x1-e2x1; x2-e2x2;

y1-ey1; y2-ey2;

n-e2n; ð4Þ

which is symplectic with multiplier e�3: The Hamiltonian becomes

H ¼ G1 þ efdG2 þ ndG3 þ ZdG23g þ Oðe2Þ: ð5Þ
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If da0 then by changing the definition of n as necessary we may assume that
d ¼ d ¼ 71:

3. Formal analysis

The scaling above indicates that the most important terms are those explicitly
displayed in (5). A complete analysis of the truncated system

Ĥ ¼ G1 þ dG2 þ ndG3 þ ZdG23 ð6Þ

is given in [23,28], so we will summarize the salient points in the case when Z40: The
unfolding parameter is n; the coefficient of the nonlinearity is Z; and d ¼ 71:
The linearized equations have a coefficient matrix

AðnÞ ¼

0 1 nd 0

�1 0 0 nd

�d 0 0 1

0 �d �1 0

2
6664

3
7775 ð7Þ

with eigenvalues l ¼ 7ið17
ffiffiffi
n

p
Þ: Thus for small n; the eigenvalues are complex when

no0 and pure imaginary when n40:
We shall follow Sokol’skii by using polar coordinates to study this system.

Specifically, make the symplectic change of coordinates

x1 ¼ R cos y�Y
r
sin y; y1 ¼ r cos y;

x2 ¼ R sin yþY
r
cos y; y2 ¼ r sin y: ð8Þ

Hamiltonian (3) becomes

Ĥ ¼ Yþ d
2

R2 þY2

r2

� 	
þ nd
2

r2 þ Zd
4

r4: ð9Þ

Thus, y is an ignorable coordinate and its conjugate momentum Y is an integral. Set
Y ¼ c where c is an arbitrary constant and ignore y at least temporarily. The usual
conventions of polar coordinates hold; in particular, y is arbitrary, so for fixed r;R;
you have a circle if ra0 or a point if r ¼ 0: The problem is reduced to studying the
one-degree-of-freedom problem defined by

Ĥ ¼ c þ d
2

R2 þ c2

r2

� 	
þ nd
2

r2 þ Zd
4

r4: ð10Þ
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Thus, the analysis of the truncated system is reduced to the elementary plotting of
the level curves of (10).
Since the stable and unstable manifolds lie in the H ¼ 0 level set we shall only

consider the flow on this level set. In (10) set Ĥ ¼ 0 and solve for R2 to obtain

R2 ¼ �2cd� c2

r2
� nr2 � 1

2
Zr4: ð11Þ

Fixing n; d and Z fixes the parameters in the equation. r; R; y; and c then sweep out
the level set where H ¼ 0: Since we are only interested in the stable and unstable
manifolds, we need only consider the level set where c ¼ 0:

R2 ¼ �nr2 � 1
2
Zr4: ð12Þ

There are two cases depending on the sign of Z and we are interested in the case when
Z is positive, which is illustrated in Fig. 1 for n-0�:
Recall that these are illustrations of projections of the H ¼ 0 level set onto the

r;R-plane, and that y is arbitrary. Over each point ðr;RÞ with ra0 there is a circle in
H ¼ 0; but these circles tend to zero as r-0þ; and above each point where r ¼ 0
there is just a single point.
In summary: In the case when Z40 the stable and unstable manifolds of the formal

system (6) are globally connected for no0 and shrink to the equilibrium as n-0�:
These statements hold only for the truncated system with Hamiltonian (6), but are

a good first approximation of the local evolution of the stable and unstable
manifolds for the full Hamiltonian.
We want to look at the invariant manifolds of the full system as perturbations of

those of the truncated system. However, this is made difficult by the fact that for the
truncated system they shrink to the equilibrium as n-0�: To keep the invariant
manifolds a fixed size, we renormalize a neighborhood of the equilibrium as n-0�;
using (4), with scaling factor e tied to n: For no0; define e by n ¼ �1

2
Ze2: Using this

scaling factor we obtain the new Hamiltonians

Ĥ ¼ G1 þ edðG2 � 1
2
ZG3 þ ZG23Þ;

H ¼ Ĥ þ Oðe2Þ: ð13Þ

R R R

r r r

v<< 0 v < 0 v = 0

Fig. 1. Manifolds when Z40 (orientation for d ¼ þ1).
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We now use e as the parameter, where n-0� as e-0; and will write these as ĤðeÞ
and HðeÞ when we wish to explicitly emphasize the dependence on e:
Scaling (4) in the context of the change to polar coordinates (8) translates to

r-er; y-y;

R-e2R; Y-e3Y:

Therefore, in these scaled coordinates, Eq. (12) becomes

R2 ¼ 1
2
Zðr2 � r4Þ: ð14Þ

This is the equation that dictates the shape of the stable and unstable manifolds for
the truncated system in the scaled coordinates—and does not depend upon e:
Therefore, while the flow on the invariant manifolds changes with e; the stable and
unstable manifolds themselves are now fixed.

4. Convergence

We have shown that for the truncated system, Ĥ; the stable and unstable
manifolds of the origin always agree. We want to show that for the full system, H;
while they may not agree, for e sufficiently small they will still intersect. The first step
will be to show that as e-0 the stable and unstable manifolds of the origin for H

converge to those for Ĥ:

Let Ŵs ¼ Ŵu denote the (e independent) stable and unstable manifolds of the
origin for Ĥ ðea0Þ and let #Ds (respectively, #DuÞ denote a compact stable
(respectively, unstable) disk.

Theorem 4.1. Let #Ds be any local stable manifold of the origin for the Hamiltonian

systems defined by the ĤðeÞ: For each ea0 one can choose a local stable manifold for

HðeÞ; DsðeÞ; such that DsðeÞ- #Ds as e-0 in the following sense. Let D be the unit disk

in R2 and let i :D-R4 be any embedding with iðDÞ ¼ #Ds: We can choose a one

parameter family of embeddings ie :D-R4 such that:

1. for each ea0; ieðDÞ is a local stable manifold for HðeÞ;
2. i0 ¼ i; and

3. for each k; 1pkoN; ie is a continuous function of e in the Ck topology.

The same holds for the local unstable manifolds.

The proof of this theorem consists largely of the application of standard tools in a
slightly nonstandard context—nonstandard because we would like to use the
continuity of the stable and unstable manifolds, but the origin is not hyperbolic when
e ¼ 0: In particular, we will use the following version of the Stable Manifold
Theorem excerpted from one in [15].
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Let E1;E2CRn be complimentary subspaces and EiðrÞ denote the closed ball of
radius r about 0AEi: For 0olo1; define Hl to be the set of all (hyperbolic)

automorphisms T of Rn preserving this splitting for which jjT1jjol and jjT�1
2 jjol;

where Ti ¼ T jEi
:

Theorem 4.2 (Local Stable Manifold Theorem [15, Theorem 2.3]). Let Hl be as

above. There exists an E40; depending only on l; and, for each r40; a d40 such that

for any TAHl; if c : E1ðrÞ � E2ðrÞ-Rn satisfies LipðcÞoE and jjcð0Þjjod; then the

local stable manifold for f :¼ T þ c; Dsð f Þ; is the graph of a unique Lipschitz function

gc : E1ðrÞ-E2ðrÞ with LipðgcÞp1: If c is Ck; then so is gc and the assignment c-gc

is continuous in the Ck-topology. An analogous statement holds for the unstable

manifold.

Let U ¼ fcACkðE1ðrÞ � E2ðrÞ;RnÞ: LipðcÞoEðlÞ; jjcð0Þjjodðl; r; eÞg: Note that
U depends only on l and r; not on a specific TAHl: The above theorem states that
for any TAHl and cAU; DsðT þ cÞ is the graph of some function

gACkðE1ðrÞ;E2ðrÞÞ: Thus, for each T we have a function GT :U-CkðE1ðrÞ;E2ðrÞÞ
defined by GTðcÞ ¼ gc and GT is continuous as a map between Ck function spaces.

We claim that not only is each GT continuous, but as a family fGT : TAHlg is an
equicontinuous family. For this it is important to note thatHl is defined in terms of
a fixed coordinate system (in which the T are already block diagonal) and a fixed,
adapted norm—two things that are readily modified at the beginning of most proofs
of the stable manifold theorem. Here we assume any such necessary modifications
have already been completed. If we were to consider instead all matrices which in
some coordinate system satisfied the conditions definingHl (all matrices of so called
skewness l), then we would not end up with an equicontinuous family.

Theorem 4.3. For any TAHl; the continuity of GT at cAU depends only on c and l:
Consequently, fGT : TAHlg is an equicontinuous family.

Although perhaps not stated, it is obvious from any of the many proofs of the
stable manifold theorem that the continuous dependence of the invariant manifold
on the perturbation depends only very weakly on T itself, namely only on its
strength of hyperbolicity as measured by l: This is simply because once the
coordinate system and norm have been adapted to T ; the only things left of T that

are actually used in the proof are the two norms jjT1jj and jjT�1
2 jj; both controlled by

l: From this the equicontinuity of the family fGTg would follow immediately. Below
we give a direct a proof based on the same method used to derive the more general
stable manifold theorems for hyperbolic sets and normally hyperbolic submanifolds
from the fixed point case. See [15, pp. 149–151]. A more detailed exposition can be
found in [29, Chapter 6].

Proof. To show equicontinuity of the family fGTg at c0AU ; it would certainly
suffice to show supTAHl

jjGTðcÞ � GTðc0ÞjjCk-0 as jjc� c0jjCk-0:
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Consider p :Hl � Rn-Hl as a vector bundle. Let E be the Banach space of
bounded section with the sup norm. If sAE; then sðTÞ ¼ ðT ; sTÞ; for some sTARn;
and jjsjj :¼ supTAHl

jjsT jj: When convenient, we will freely ignore the distinction
between sAE and the bounded function sT :Hl-Rn:
Let Ei denote the subspaces of E consisting of those section with images in the

subbundles p :Hl � Ei-Hl; i ¼ 1; 2: That is, sAEi if and only if sTAEi for all T :
Clearly E ¼ E1"E2: Define TALðE; EÞ and, for any cAU ; C : E1ðrÞ"E2ðrÞ-E by

½Ts
T ¼ TsT ;

½CðsÞ
T ¼ cðsTÞ:

We make the following observations. T respects the splitting E1"E2 and, due to the

uniform hyperbolicity in Hl; we have jjT1jj; jjT�1
2 jjol: Because E1ðrÞ � E2ðrÞ is

compact, the derivatives of c are uniformly continuous (what Irwin calls uniformly

Ck [20]). As a consequence, C is also uniformly Ck with derivatives given by

½ðDiCÞsðn1;y; niÞ
ðTÞ ¼ ðT ; ðDicÞsT
ð½n1
T ;y; ½ni
TÞÞ:

Moreover, LipðCÞ ¼ LipðcÞoe and jjCð0Þjj ¼ jjcð0Þjjod:
The statement of Theorem 4.2 above is for finite dimensions because that is all we

need for this paper. However, the original statements in [15,16,29] are for Banach
spaces and the constraints on e and d do not depend on the space. Therefore,
F :¼ TþC satisfies the conditions of the theorem for any cAU : Consequently, there

exists a Ck function gC : E1ðrÞ-E2; depending continuously on C; such that the
graph of gC is the local stable manifold of F: We now observe that since
½Fðs; gCðsÞÞ
T depends only on ½ðs; gCðsÞÞ
T ; ðs; gCðsÞÞ is in the stable manifold
for F if and only if individually ½ðs; gCðsÞÞ
T ¼ ðsT ; ½gCðsÞ
TÞ is in the stable
manifold for T þ c for each TAHl: However, the stable manifold of T þ c is
unique and is the graph of GT ðcÞ: Therefore, ½gCðsÞ
T ¼ GTðcÞðsT Þ: From this we
get jjgC � gC0 jjCk ¼ supTAHl

jjGTðcÞ � GTðc0ÞjjCk : Since jjC�C0jjCk ¼
jjc� c0jjCk-0; continuity of gC in C implies jjgC � gC0 jjCk-0; proving equiconti-

nuity of the family fGTg: &

To prove Theorem 4.1 we need to eliminate the problem of the systems becoming
less hyperbolic as e-0:We do this by rescaling time. For the systems determined by
He and Ĥe; reparameterize time by a constant factor of e�1: This is equivalent to
dividing the Hamiltonians by an additional factor of e:

Ĥ ¼ 1
e G1 þ dðG2 � 1

2
ZG3 þ ZG23Þ;

H ¼ Ĥ þ OðeÞ: ð15Þ

Since reparameterizing time will not change the invariant manifolds, it will suffice to
prove Theorem 4.1 for these new systems.
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Dividing the Hamiltonian by e also divides the eigenvalues by e: Therefore, using
that n ¼ �1

2
Ze2; the eigenvalues are now l ¼ 7

ffiffiffiffiffiffiffiffi
Z=2

p
7i=e: Consequently, the

eigenvalues no longer converge to the imaginary axis as e-0; but rather go to
infinity parallel to the imaginary axis. Thus, we have eliminated the problem of the
systems becoming less hyperbolic, by replacing it with the problem that the
rotational component goes to infinity.

Define a new Hamiltonian, Ĥ0; to be Ĥ with no rotational component (i.e.,
o ¼ 0),

Ĥ0 ¼ dðG2 � 1
2ZG3 þ ZG23Þ: ð16Þ

We want to express the flow for Ĥ in terms of the flow for Ĥ0: Let Ry denote the
rotation by y in both the x and y planes,

Ry ¼

cos y �sin y 0 0

sin y cos y 0 0

0 0 cos y �sin y
0 0 sin y cos y

2
6664

3
7775: ð17Þ

The Gi are invariant with respect to rotation by y; z-Ryz: Therefore, since Ĥ and

Ĥ0 are expressed only in terms of the Gi; both the vector fields and the invariant

manifolds associated to Ĥ and Ĥ0 are symmetric with respect to rotation by y: Let
jt; #jt; and #j0t be the flows for H; Ĥ; and Ĥ0; respectively. Let #DsðrÞ denote the
stable disk of radius r for Ĥ (which, by the following lemma, will also be the stable

disk of radius r for Ĥ0).

Lemma 4.1. #jt ¼ R�t=e #j0t : Therefore, W sðĤ0Þ ¼ W sðĤÞ; and given any r1; r240;

there is a fixed time t; independent of e; such that #jtð #Dsðr1ÞÞ* #Dsðr2Þ:
The same holds for the unstable manifolds.

Proof. One can check directly that R�t=e #j0t satisfies the same differential equation as
#jt and hence these are equal. Since the two flows only differ by rotation andW sðĤ0Þ
and W sðĤÞ are rotationally symmetric, both are invariant under both flows. They
are tangent since both flows have the same stable subspace. Hence, W sðĤ0Þ ¼
W sðĤÞ: Since #j0t does not depend on e; we can choose t such that #j

0
tð #Dsðr1ÞÞ* #Dsðr2Þ

and by the rotational symmetry this will carry over to #jt: &

Proposition 4.1. Let KCR4 be a compact set. For any fixed tAR and kAN;

jjðjt � #jtÞjK jjCk-0 as e-0:
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Proof. Let X̂ and X denote the vector fields associated to Ĥ and H; respectively.

Write X as X ¼ X̂ þ eX wðz; eÞ; where X w is analytic in e and z: Place these systems in
an e dependent rotating coordinate system, w ¼ Rt=ez: Relative to these coordinates

we obtain two new vector fields, Ŷ and Y : By Lemma 4.1, Ŷðw; eÞ ¼ X̂0ðwÞ:
Therefore,

Y ðt;w; eÞ ¼ X̂0ðwÞ þ eRt=eX
wðR�t=ew; eÞ

¼ X̂0ðwÞ þ eY wðt;w; eÞ ðea0Þ; ð18Þ

where Y wðt;w; eÞ :¼ Rt=eX
wðR�t=ew; eÞ is analytic in ðt;w; eÞ for ea0:

Now extend Y to e ¼ 0 by Y ðt;w; 0Þ :¼ X̂0ðwÞ: We claim Y and its partial

derivatives with respect to w; ðDi
2YÞ; ðipkÞ are continuous in ðt;w; eÞ; including at

e ¼ 0: For ea0; Y is analytic. For e ¼ 0;

Yðt;w; eÞ � Y ðt0;w0; 0Þ ¼ ½X̂0ðwÞ � X̂0ðw0Þ
 þ eY wðt;w; eÞ: ð19Þ

The first term is analytic, so we only need to show that eY w and its partials with
respect to w go to zero as e-0:
Differentiating Y w with respect to w and using that jjRyjj ¼ 1; we have

ðDi
2Y

wÞðt;w;eÞ ¼ Rt=eðDi
1X

wÞðR�t=ew;eÞ½ðR�t=eÞðiÞ


and

jjðDi
2Y

wÞðt;w;eÞjj ¼ jjðDi
1X

wÞðR�t=ew;eÞjj:

Consequently, for any r; e040;

supfjjðDi
2Y

wÞðt;w;eÞjj:tAR; jjwjjpr; 0ojejpe0g

¼ supfjjðDi
1X

wÞðw;eÞjj: jjwjjpr; 0ojejpe0g:

Since X w is analytic, for any r; e040 and kAN; we can choose an M40 such that
jjðDi

1X
wÞðw;eÞjjpM for all jjwjjpr0; jejpe0; and ipk: Therefore,

jjDi
2ðeY wðt;w; eÞÞjjpeM-0 as ðt;w; eÞ-ðt0;w0; 0Þ for 0pipk; which shows the claim.
By Theorem 4.1 of [13, p. 100], ’w ¼ Yðt;w; eÞ has unique solutions cðt;w; eÞ for

each fixed e; and ðDi
2cÞðt;w;eÞ is continuous in ðt;w; eÞ for 0pipk; including at e ¼ 0:

Of course, c is just the flow for X in rotated coordinates

cðt;w; eÞ ¼ Rt=ejtðR�t=ewÞ

or

jtðzÞ ¼ R�t=ecðt;Rt=ez; eÞ:
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Now fix t ¼ t and choose r such that K is contained in the ball of radius r: #jt is the

time t map of the flow for X̂; which in the rotating coordinates is X̂0 ¼ Y ðt;w; 0Þ:
Therefore,

ðjt � #jtÞðzÞ ¼ R�t=e½cðt;Rt=ez; eÞ � cðt;Rt=ez; 0Þ
:

Consequently,

Diðjt � #jtÞz ¼ R�t=eððDi
2cÞðt;Rt=ez;eÞ � ðDi

2cÞðt;Rt=ez;0ÞÞ½ðRt=eÞðiÞ


and

sup
jjzjjpr

jjDiðjt � #jtÞzjj ¼ sup
jjwjjpr

jjðDi
2cÞðt;w;eÞ � ðDi

2cÞðt;w;0Þjj

Since ðDi
2cÞ is continuous and K compact, this completes the proof. &

Proof of Theorem 4.1. Let X and X̂ be, as before, the vector fields associated

with H and Ĥ; so X ¼ X̂ þ OðeÞ: Let AðeÞ denote their common linear part
ðDX Þ0 ¼ ðDX̂Þ0;

AðeÞ ¼

0 e�1 �1
2
dZ 0

�e�1 0 0 �1
2
dZ

�d 0 0 e�1

0 �d �e�1 0

2
66666664

3
77777775
: ð20Þ

The (block) diagonalizing matrix for AðeÞ is

S ¼

0 dk 0 �dk

dk 0 �dk 0

0 1 0 1

1 0 1 0

2
6664

3
7775; ð21Þ

where k ¼
ffiffiffiffiffiffiffiffi
Z=2

p
: Note that S does not depend on e: Consequently, we can

make a linear change of variable (determined by S) such that AðeÞ is block diagonal
for all e:

AðeÞ ¼

�k �e�1 0 0

e�1 �k 0 0

0 0 k �e�1

0 0 e�1 k

2
6664

3
7775: ð22Þ
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Let f ; f̂; f̂0 denote the time-one maps j1; #j1; #j01; respectively. Let

T0 ¼
e�kI2 0

0 ekI2

" #
ð23Þ

and TðeÞ ¼ T be the matrix R1=eT0 ¼ eAðeÞ: We then have ðDf̂0Þ0 ¼ T0; ðDf Þ0 ¼
ðDf̂ Þ0 ¼ T and, for this coordinate system, T0;TAHl for all e; if we choose l with
e�kolo1:
For any function f ; let rð f Þ be the remainder rð f Þ :¼ f � ðDf Þ0 and let c :¼

rð f̂0Þ: Since cð0Þ ¼ 0; ðDcÞ0 ¼ 0; and the e in Theorem 4.2 does not depend upon r;

we can choose r sufficiently small that c is in the set U defined below that theorem.
Therefore, for this r; f̂0 satisfies the hypotheses of Theorem 4.2.

Since f̂ ¼ #j1 ¼ R1=e #j01 ¼ R1=e f̂0; we have Lipðrð f̂ ÞÞ ¼ Lipðrð f̂0ÞÞ; which implies
rð f̂ ÞAU and f̂ also satisfies the hypotheses for all e:
Finally,

Lipðrð f ÞÞpLipð f � f̂ Þ þ Lipðrð f̂ ÞÞ

p jjð f � f̂ ÞjE1ðrÞ�E2ðrÞjjC1 þ Lipðrð f̂ ÞÞ:

By Proposition 4.1 (with t ¼ 1Þ; jjð f � f̂ ÞjE1ðrÞ�E2ðrÞjjC1-0 as e-0: Therefore,

Lipðrð f ÞÞ-Lipðrð f̂ ÞÞ and we can choose e0 sufficiently small that rð f ÞAU for all
epe0; and so f satisfies the hypotheses of Theorem 4.2 for all epe0:
Consequently, we can conclude the local stable manifolds of f and f̂; W s

r ð f Þ and
Ŵs

r; are graphs of functions ge; ĝ : E1ðrÞ-E2ðrÞ: Moreover, even though the linear
part of f and f̂; TðeÞ; has a rotational component of angle 1=e as e-0; since the
difference jjrð f Þ � rð f̂ ÞjjCk ¼ jj f � f̂ jjCk-0 as e-0; the equicontinuity of the
family fGTðeÞg guarantees that jjge � ĝjjCk-0 as e-0 (each k).

Now let #Ds be any stable disk for the truncated system and i :D-R4 any embedding

with iðDÞ ¼ #Ds: By Lemma 4.1, there is a time t; independent of e; such that
#jtðŴs

rÞ* #Ds for all e: However, #jtðŴs
rÞ is the image of the embedding #jt3grðĝÞ; where

grðĝÞ is the function x/ðx; ĝðxÞÞ: Likewise, Ds :¼ imageðjt3grðgeÞÞ is a stable disk for
H: Therefore, it will be sufficient to show jjjt3grðgeÞ � #jt3grðĝÞjjCk-0 as e-0:
We just showed jjgrðgeÞ � grðĝÞjjCk ¼ jjge � ĝjjCk-0 as e-0; by Proposition 4.1

jjðjt � #jtÞjE1ðrÞ�E2ðrÞjjCk-0; and composition is continuous in the Ck-topology [20,

Theorem 11]. However, this is not enough to conclude jt3grðgeÞ- #jt3grðĝÞ since
both jt and #jt depend on e (whereas ĝ is fixed).
Once again rotate by Rt=e:

jjjt3grðgeÞ � #jt3grðĝÞjjCk ¼ jjRt=eðjt3grðgeÞ � #jt3grðĝÞÞjjCk

¼ jjðRt=ejtÞ3grðgeÞ � #j0t3grðĝÞjjCk :
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Now neither #j0t nor ĝ depend on e and

jjððRt=ejtÞ � #j0tÞjK jjCk ¼ jjRt=eðjt � #jtÞjK jjCk

¼ jjðjt � #jtÞjK jjCk-0:

Consequently, by continuity of the composition map for a compact domain,

jt3grðgeÞ- #jt3grðĝÞ in the Ck-topology, which is what we want and concludes the
proof. &

Now undo the reparametrization of time by e�1 and return to the scaled
Hamiltonians (13). We have shown the following. For the truncated system ĤðeÞ; the
stable and unstable manifolds of the origin agree and, as a set, do not depend upon e:
The flow for the truncated system decomposes as independent angular and radial
components. The angular rotation does not depend upon e; and the radial
component goes to zero and e-0: Consequently, as e-0 the system is progressively
less hyperbolic and at e ¼ 0 the invariant set becomes the union of closed orbits. The
full system, HðeÞ; is converging to the same rotation at e ¼ 0: For ea0 we do not
know the global properties of the stable and unstable manifolds for the full

Hamiltonian, but we know that for any compact local stable or unstable disk, #D; of
the truncated system, we can choose stable or unstable disks DðeÞ for the full system
such that DðeÞ- #D as e-0:

5. Intersection

The stable and unstable manifolds being Lagrangian almost forces their
intersection by the Arnold theory [2] based on the work of Weinstein [32] on the
intersection theory of Lagrangian manifolds. These general theories do not apply
directly to our problem. So, in order to show that the stable and unstable manifolds
must intersect, we first reduce the problem to an area-preserving diffeomorphism of
a planar region. We then note that the original argument of Poincaré [26], as exposed
in [22], shows that the manifolds indeed intersect and, if not identical, must possess a
topologically transverse intersection.
Use the polar coordinates introduced in Section 3 for the scaled Hamiltonian (13).

The equation for y is ’y ¼ �@Ĥ=@Y ¼ �1þ OðeÞ and so y ¼ 0 is a cross section for
the flow for small e: The stable/unstable manifold of the Poincaré map for the
truncated system is a one-dimensional loop. Choose a point P on this invariant

manifold and overlapping, compact local stable and unstable manifolds, Ŵs and Ŵu;

containing P in their interior. Choose a compact 2-disk, S; in y ¼ 0 transverse to Ŵs

and Ŵu at P: See Fig. 2(a). We can then choose neighborhoods U of S andVs; Vu

of Ŵs; Ŵu (as embeddings) such that anything in U would intersect transversally
everything in Vs and Vu:
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Since the flow for the full system is converging to a rotation as e-0; the Poincaré
map is converging to the identity. Consequently, the image of S under the Poincaré
map, S0; is inside U for e sufficiently small. The convergence of the invariant
manifolds to those of the truncated system carries over to the Poincaré maps.
Therefore, we can choose local stable and unstable manifolds, W sðeÞ and WuðeÞ; of
the Poincaré map for the full system such that W sðeÞAVs and WuðeÞAVu for all e
sufficiently small. Consequently, for e small both W sðeÞ and WuðeÞ intersect
transversally both S and S0:
Finally, the intersection of H ¼ 0 and y ¼ 0 (excluding the origin) is a two-

dimensional region containing the stable and unstable manifolds of the Poincaré

map. This two-dimensional region is invariant under the Poincaré map. S and S0 are
transverse to the stable and unstable manifolds and so also to H ¼ 0: Therefore, S
and S0 intersect this region in one-dimensional curves transverse to the stable and
unstable manifolds. The flow preserves the symplectic structure which in polar
coordinates is O ¼ dr4dR þ dy4dY: Using r;R as coordinates in the section y ¼ 0;
the Poincaré map preserves dr4dR and so it is area preserving. This is enough to be
able to apply Poincaré’s argument to conclude that W sðeÞ and WuðeÞ must intersect
between S and S0:
Poincaré’s argument is based on the observation that if the stable and unstable

manifolds are initially identical, then a small perturbation which disconnects them,
as in Fig. 2(b), must be area increasing or decreasing. The argument applies equally
well when the perturbed manifolds are not identical and do intersect, but no
intersections are topologically transverse. Poincaré’s argument was criticized by
Cherry and Wintner (see [6] for details). However, Poincaré’s argument was
absolutely sound and a detailed discussion can be found in [22]. Applying these
arguments to our situation in light of the theorems in Section 4 shows that either the

Σ
Σ

Σ′

P

(a) (b)

Fig. 2. (a) Truncated system and (b) non-area-preserving perturbation.
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stable and unstable manifolds remain identical or they have a topologically
transverse intersection e small.
If stable and unstable manifolds have a transverse intersection, the cross-

section map admits a Smale horseshoe with all the chaos this implies about
the flow. The area-preserving argument of Poincaré only assures a topologically
transverse intersection. By a result of Burns and Weiss [5], this is sufficient for
there to exist a set which is invariant under some iterate of the cross-section
map and on which this iterate is semiconjugate to a Smale horseshoe. Moreover,
Conley [7] proved that, for the case of two dimensions (here a codimension 1
cross-section in a three-dimensional energy surface), in every neighborhood
of a point of nontransverse intersection there exists a point of transverse intersection.
Consequently, there is an even higher iterate of the cross-section map fixing a
set on which it is actually conjugate to the Smale horseshoe. Hence, the cross-section
map is at least as chaotic as a Smale horseshoe. In particular, for the flow,
the homoclinic orbits for the equilibrium point are in the closure of the periodic
orbits.

6. Applications

Strömgren [31] conjectured, based on numerical evidence, that there are orbits
doubly asymptotic to L4; the Lagrange equilateral equilibrium point, in the
restricted three body problem and that these doubly asymptotic orbits are the limit
of periodic orbits with long periods (the blue sky catastrophe). Henrard [14] and
Devaney [9,10] establish general theorems which would verify Strömgren conjecture
provided the stable and unstable manifolds atL4 intersect transversally in the H ¼
constant level set. Buffoni [3] dropped the transversality condition and obtained a
similar result.
The Hamiltonian of the restricted problem at L4 can be considered

as a perturbation of Hamiltonian (3) with n ¼ m1 � m where m1 is Routh’s
critical mass ratio parameter. The normal form for the restricted problem
at L4 at m1 was first discussed and computed by Sokol’skii [30]—also see
[8,24,25]. These computations show that Z40 in the restricted problem and our
theorem applies.
As another example consider the fourth-order equation

u
::::þPü þ u þ f ðuÞ ¼ 0; ð24Þ

where P is a parameter and f is a nonlinearity. In [1,4,17,18] f ðuÞ ¼ �u2 but in some

others f ðuÞ ¼ �u3: Eq. (24) can be written as a Hamiltonian system with
Hamiltonian

H ¼ p22 þ p1p2 �
1

2
q2 �

1

2
ðP þ 2Þq1


 �2
þ1
2

q21 þ Fðq1Þ; ð25Þ
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where F 0ðuÞ ¼ f ðuÞ and u ¼ q1: When P ¼ 2 the exponents are 7i with
multiplicity 2. Let P ¼ 2þ m: The coefficient matrix of the linearized equations at
m ¼ 0 is

A ¼

0 0 0 1

0 0 1 2

3 �2 0 0

�2 1 0 0

2
6664

3
7775:

The symplectic matrix

R ¼ 1
4

�1 �1 2i �2i
�5 �5 2i �2i
5i �5i 2 2

�i i �2 �2

2
6664

3
7775

reduces A to complex normal form

R�1A2R ¼

�i 0 0 0

0 i 0 0

0 1 i 0

1 0 0 �i

2
6664

3
7775:

In the case when f ðuÞ ¼ �u2; FðuÞ ¼ �ð1=3Þu3 the complex normalized system is

H ¼ iðz1z3 � z2z4Þ � z1z2 �
m
4

z3z4 �
5

192
ðz3z4Þ2 þ? ;

changing to real symplectic (multiplier 1/2) coordinates by

z1 ¼ x1 � ix2; z2 ¼ x1 þ ix2;

z3 ¼ y1 þ iy2; z4 ¼ y1 � iy2

the Hamiltonian becomes

H ¼ðx2y1 � x1y2Þ �
1

2
ðx21 þ x22Þ �

m
8
ðy21 þ y22Þ �

5

384
ðy21 þ y22Þ

2 þ?

¼G1 þ dG2 þ ndG3 þ ZdG23 þ?

where d ¼ �1; n ¼ m=4; Z ¼ 5=96: Thus our theory applies to this example as well.
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