On Inverses of Hessenberg Matrices*

Yasuhiko Ikebe

Department of Computer Sciences Northwestern University Evanston, Illinois 60201

Submitted by Alston Householder

ABSTRACT

The lower half of the inverse of a lower Hessenberg matrix is shown to have a simple structure. The result is applied to find an algorithm for finding the inverse of a tridiagonal matrix. With minor modifications, the technique applies to block Hessenberg matrices.

1. INTRODUCTION

A square matrix $A = (a_{ij})$, i, j = 1, ..., n, is called a *lower(upper)* Hessenberg matrix if $a_{ij} = 0$ for all pairs (i, j) such that i + 1 < j (j + 1 < i). We shall prove the following theorem on the structure of the inverse of a lower Hessenberg matrix:

THEOREM 1. Let $A = (a_{ij})$ be a lower Hessenberg matrix of order n and let $a_{i,i+1} \neq 0$, i = 1, ..., n-1. Let $A^{-1} = (\alpha_{ij})$ exist. Then two column vectors $x = (x_1, ..., x_n)^T$ and $y = (y_1, ..., y_n)^T$ exist such that the upper half of A^{-1} equals the upper half of xy^T , i.e., $\alpha_{ij} = x_i y_j$ for $i \leq j$.

By taking the transpose, we see that a similar theorem holds for an upper Hessenberg matrix.

By the symbol $A = \{a_i, b_i, c_i\}_{1}^{n}$, we denote the tridiagonal matrix

$$A = \begin{bmatrix} b_1 & c_1 & & \mathbf{0} \\ a_2 & b_2 & c_2 & & \\ & \ddots & \ddots & \ddots & \\ & & a_{n-1} & b_{n-1} & c_{n-1} \\ \mathbf{0} & & & a_n & b_n \end{bmatrix}$$

*This work was supported in part by Air Force grant AFOSR 77-3183. LINEAR ALGEBRA AND ITS APPLICATIONS 24:93-97 (1979)

© Elsevier North Holland, Inc., 1979

93

A tridiagonal matrix is a square matrix which is both a lower and an upper Hessenberg matrix. As a direct consequence of Theorem 1 and of the remark that follows, we obtain the following theorem on the structure of the inverse of a tridiagonal matrix.

THEOREM 2. Let a tridiagonal matrix $A = \{a_i, b_i, c_i, \}_1^n$ be given such that none of the a_i 's and c_i 's vanish. Let $A^{-1} = (\alpha_{ij})$ exist. Then four column vectors $u = (u_i)$, $v = (v_i)$, $x = (x_i)$ and $y = (y_i)$, i = 1, ..., n, exist such that

$$\alpha_{ij} = \begin{cases} u_i v_j, & i \ge j, \\ x_i y_j, & i \le j. \end{cases}$$

Examination of the proof (see the next section) reveals that Theorems 1 and 2 may be extended to the case where the matrix elements are themselves square matrices of the same order:

THEOREM 3. Let $A = (A_{ij})$, i, j = 1, ..., n, be a block lower Hessenberg matrix $(A_{ij} = 0 \text{ for } i+1 < j)$, where the A_{ij} are square matrices of a fixed order, say m. Let the superdiagonal blocks $A_{i,i+1}$, i=1,...,n-1, have inverses. Let A^{-1} exist, and write $A^{-1} = B = (B_{ij})$, where B_{ij} is $m \times m$, i, j = 1, ..., n. Then

$$B_{ii} = X_i Y_i, \qquad i \leq j,$$

for a set of $m \times m$ matrices $X_1, \ldots, X_n, Y_1, \ldots, Y_n$.

THEOREM 4. Let $A = \{A_i, B_i, C_i\}_{i=1}^n$ be a block tridiagonal matrix where the A_i , B_i and C_i are $m \times m$ matrices. Let $A_i^{-1}(i=2,...,n)$ and C_i^{-1} (i=1,...,n-1) exist. Let A^{-1} exist, and write $A^{-1} = B = (B_{ij})$, where B_{ij} is $m \times m$, i, j = 1,...,n. Then

$$B_{ij} = \begin{cases} U_i V_j, & i \ge j, \\ X_i Y_j, & i \le j, \end{cases}$$

for a set of $m \times m$ matrices $U_1, \ldots, V_1, \ldots, X_1, \ldots, Y_1, \ldots, Y_n$.

Theorem 2 was proved by Bukhberger and Emel'yanenko [1] under the further assumption that A is symmetric. If A is symmetric, so is A^{-1} . In this case A depends only on 2n-1 numbers and Theorem 2 indicates that A^{-1} is representable in terms of 2n-1 numbers. For $x_i y_j = (kx_i) \cdot (k^{-1}y_j)$, i, j = 1, ..., n, for any fixed nonzero constant k, and hence any one nonzero x_i or y_j

may be assigned an arbitrary nonzero value, say 1 (note that $x_1 \neq 0$). This is interesting in view of the fact that A^{-1} is usually a full matrix (all or almost all elements of A^{-1} are nonzero). Theorem 1 represents a generalization of Bukhberger and Emel'yanenko's result in [1]. Their proof depends on a determinantal identity for the matrix inverse. In this note, we give a determinant-free proof of Theorem 1. (See Sec. 2.) The proof is quite elementary and paves a way for further generalization to block matrices, as indicated by Theorems 3 and 4. A simple recursive algorithm may be developed for computing the x_i and y_j in Theorem 1, as we show in Sec. 3.

2. PROOF OF THEOREM 1

We will prove Theorem 1. Let P_k $(k=1,2,\ldots,n-1)$ denote the square submatrix of A formed from the first k rows and the second through the (k+1)st columns of A. Thus,

$$P_1 = (a_{12}), \qquad P_2 = \begin{pmatrix} a_{12} & 0 \\ a_{22} & a_{23} \end{pmatrix}, \qquad \dots$$

The P_k are lower triangular matrices with nonvanishing diagonal elements. Hence P_k^{-1} exists $(n=1,\ldots,n-1)$. Let $A^{-1}=(\alpha_{ij}), i, j=1,\ldots,n$, and let the first row of A^{-1} be denoted by $(y_1, y_2, \ldots, y_n)^T$, $\alpha_{1j} = y_j$, $j=1,\ldots,n$. Let $c^{(k)}$, $k=1,\ldots,n$, denote the column vector of dimension k composed of the first k components of the first column of A. Thus,

$$c^{(1)} = (a_{11}), \qquad c^{(2)} = (a_{11}, a_{21})^T, \qquad \dots$$

Equating the first j-1 components of the *j*th column (j=2,...,n) in $AA^{-1}=I$, we obtain

$$c^{(j-1)}y_j + P_{j-1}(\alpha_{2j},...,\alpha_{jj})^T = 0$$

or

$$(\alpha_{2j},\ldots,\alpha_{jj})^T = -P_{j-1}^{-1}c^{(j-1)}y_j.$$

Since P_{j-1} is the leading $(j-1) \times (j-1)$ submatrix of P_{n-1} , which is lower triangular, P_{j-1}^{-1} gives the leading $(j-1) \times (j-1)$ submatrix of P_{n-1}^{-1} , which is again lower triangular. It follows that $-P_{j-1}^{-1}c^{(j-1)}$ is identified with the leading j-1 components of $-P_{n-1}^{-1}c^{(n-1)}$. If we denote this vector by

 $(x_2,\ldots,x_n)^T$ and let x_1 denote 1, we find

$$(\alpha_{1j},\ldots,\alpha_{jj})^T = (x_1,\ldots,x_j)^T y_j, \qquad j=1,\ldots,n$$

This completes the proof of Theorem 1.

REMARK. A completely similar proof applies to Theorem 3.

3. ALGORITHM

We will describe a recursive algorithm for computing the x_i and y_i in Theorem 1. Equating the last column in $AA^{-1} = I$, we obtain

$$A \cdot (x_1, \dots, x_n)^T = (0, \dots, 0, y_n^{-1}).$$
(3.1)

Equating the first row in $A^{-1}A = I$, we find

$$(y_1, \dots, y_n) \cdot A = (x_1^{-1}, 0, \dots, 0).$$
 (3.2)

Since $x_1 \neq 0$ and $y_n \neq 0$, we may choose either x_1 or y_n to be an arbitrary nonzero number. Equations (3.1) and (3.2) now give the following algorithm for finding $x_1, \ldots, x_n, y_1, \ldots, y_n$:

(1) Let a nonzero number be given as the value of x_1 (say $x_1 = 1$);

(2)
$$x_2 = -a_{12}^{-1}a_{11}x_1;$$

(3) $x_i = -a_{i-1,i}^{i-1} \sum_{k=1}^{i-1} a_{i-1,k}x_k, i = 3, ..., n;$
(4) $y_n = \left(\sum_{k=1}^n a_{n,k}x_k\right)^{-1};$
(5) $y_{n-1} = -y_n a_{n,n} a_{n-1,n}^{-1};$
(6) $y_i = -\left(\sum_{k=i+1}^n y_k a_{k,i+1}\right) \cdot a_{i,i+1}^{-1}, i = n-2, ..., 2, 1;$
(7) $x_1 \sum_{k=1}^n y_k a_{k,1} = 1$ (for check).

REMARK 1. The above algorithm may be used for computing the x_i and y_i in Theorem 3 if we read a_{ij} as A_{ij} , x_i as X_i and y_j as Y_j and if the order of operations is kept as it is indicated in (1)–(7).

INVERSES OF HESSENBERG MATRICES

REMARK 2. The inverse of a tridiagonal matrix $A = \{a_i, b_i, c_i\}_1^n$, where $a_i \neq 0, i=2,...,n, c_i \neq 0, i=1,...,n-1$, may be computed by applying the above algorithm twice, once for computing the upper half of A^{-1} and once for computing the lower half of A^{-1} .

REFERENCES

1 B. Bukhberger and G. A. Emel'yanenko, Methods of inverting tridiagonal matrices, USSR Computational Math. and Math. Phys. 13:10-20 (1973); MR 48 #2155.

Received 3 October 1977