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ABSTRACT 

The lower half of the inverse of a lower Hessenberg matrix is shown to have a 
simple structure. The result is applied to find an algorithm for finding the inverse of a 
tridiagonal matrix. With minor modifications, the technique applies to block Hessen- 
berg matrices. 

1. INTRODUCTION 

A square matrix A = (aij), i, i = 1,. . . , n, is called a luwer(upper,J Hessenberg 

matrix if aii = 0 for all pairs (i, j) such that i + 1 <j ( j + 1 <i). We shall prove 
the following theorem on the structure of the inverse of a lower Hessenberg 
matrix: 

THEOREM 1. Let A = (aii) be a lower Hessenberg matrix of or& n and 
let ai,i + 1 # 0, i = 1,. . . , n - 1. Let A -’ = (aii) exist. Then two column vectors 
x=(x1,.*., x,,)’ and y=( yl,..., yJT exist such that the upper half of A -’ 
equals the upper half of xy ‘, i.e., q= xiyj for i < i. 

By taking the transpose, we see that a similar theorem holds for an upper 
Hessenberg matrix. 

By the symbol A = { ui, bi, q};, we denote the tridiagonal matrix 

A= 

b, cl 0 

a2 b2 c2 

n-1 a b,_, cn-1 

0 an bn 
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A tridiagonal matrix is a square matrix which is both a lower and an 
upper Hessenberg matrix. As a direct consequence of Theorem 1 and of the 
remark that follows, we obtain the following theorem on the structure of the 
inverse of a tridiagonal matrix. 

THEOREM 2. Let a tridiagonal matrix A = {a,, bi, ci,}; be given such that 
none of the ai’s and ci’s vanish. Let A- ’ = (aii) exist. Then four column 
vectors u = ( ui), v = (vi), x = (xi) and y = ( y,), i = 1, . . . , n, exist such that 

( ujvi> i >j, 
aii = 

%Yi> i<i, 

Examination of the proof (see the next section) reveals that Theorems 1 
and 2 may be extended to the case where the matrix elements are themselves 
square matrices of the same order: 

THEOREM 3. Let A=(Aii), i,j=l,..., n, be a block lower Hessenberg 
matrix (Aii = 0 for i + 1 <I), where the Aii are square matrices of ‘a fixed 
order, say m. Let the superdiagonal blocks Ai,i + 1, i = 1,. . . , n - 1, have 
inverses. Let A-’ exist, and write A -‘=B=(B,J, where Bit is mxm, 
i,j=l ,...,n. Then 

Bii = XiYj, i < j, 

for a set of mXm matrices X,,...,X,, Y, ,..., Y,. 

THEOREM 4. Let A = {A., Bi, Ci}r= 1 be a block tridiagonal matrix where 
the Ai, Bi and Ci are m X m matrices. Let Ai- ‘(i ~2,. . . , n) and Ci-’ (i = 
1 , . . . ,n - 1) exist. Let A-’ exist, and write A-’ = B=(BJ, where Bit is 
mXm, i,j=l,..., n. Then 

Bij = 
ujy, i >i, 

xi yi> i < j, 

for a set of m X m matrices U,, . . . , Vi,. . .,X1, . . . , Y,, . . . , Y,. 

Theorem 2 was proved by Bukhberger and Emel’yanenko [l] under the 
further assumption that A is symmetric. If A is symmetric, so is A-‘. In this 
case A depends only on 2n - 1 numbers and Theorem 2 indicates that A - ’ is 
representable in terms of 2n - 1 numbers. For xi yi = (hi) * (kk’yi), i,i = 
1 , . . . , n, for any fixed nonzero constant k, and hence any one nonzero xi or yi 
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may be assigned an arbitrary nonzero value, say 1 (note that x,#O). This is 
interesting in view of the fact that A - ’ is usually a full matrix (all or almost 
all elements of A - ’ are nonzero). Theorem 1 represents a generalization of 
Bukhberger and Emel’yanenko’s result in [ 11. Their proof depends on a 
determinantal identity for the matrix inverse. In this note, we give a 
determinant-free proof of Theorem 1. (See Sec. 2.) The proof is quite 
elementary and paves a way for further generalization to block matrices, as 
indicated by Theorems 3 and 4. A simple recursive algorithm may be 
developed for computing the xi and gj in Theorem 1, as we show in Sec. 3. 

2. PROOF OF THEOREM 1 

We will prove Theorem 1. Let Pk (k = 1,2,. . . , n - 1) denote the square 
submatrix of A formed from the first k rows and the second through the 
(k + 1)st columns of A. Thus, 

The Pk are lower triangular matrices with nonvanishing diagonal elements. 
Hence Pk-’ exists (n = 1 ,..., n-l). Let A-‘=((u& i,j=l,..., n, and let the 
first row of A - ’ be denoted by ( yl, yz, . . . , y,,)‘, ali = yj, j = 1,. . . , n. Let c@), 
k=l , . . . , n, denote the column vector of dimension k composed of the first k 
components of the first column of A. Thus, 

c(l) = (a,,), c@) = (Ull,U2JT, . . . . 

Equating the first j - 1 components of the jth column (j=2,. . . ,n) in 
AA - ’ = I, we obtain 

c(f-l)yi + q_l(azi,...,ati)T = 0 

or 

(“zi’...,a~)T = -PiI:c(~-14jj. 

Since pi _ 1 is the leading ( j - 1) x ( j - 1) submatrix of P,_ 1, which is lower 
triangular, pi X : gives the leading ( i - 1) X ( i - 1) submatrix of P,-_i, which is 
again lower triangular. It follows that - PiI fc(i- ‘1 is identified with the 
leading j - 1 components of - P,,_id”- ‘). If we denote this vector by 
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(x2, * * *, x,Jr and let xi denote 1, we find 

blj’...“yJ = (Xl >..., xj,=yj, i = l)...) n. 

This completes the proof of Theorem 1. 

REMARK. A completely similar proof applies to Theorem 3. 

3. ALGORITHM 

We will describe a recursive algorithm for computing the xi and yi in 
Theorem 1. Equating the last column in AA _ ’ = I, we obtain 

A* (xi ,..., x,)r = (0 ,..., O,yn-i). (34 

Equating the first row in A -lA = I, we find 

(Y 1 ,..., y,,).A = (xc',0 ,..., 0). (3.2) 

Since x1 #O and y,, #O, we may choose either xi or y,, to be an arbitrary 
nonzero number. Equations (3.1) and (3.2) now give the following algorithm 
for finding xi,. . . ,x,, yi, . . . , yn: 

(1) Let a nonzero number be given as the value of xi (say xi = 1); 

(2) x, = - ul&ilxl; 
i-l 

(3) xi= --~;~,~~~iu-,,~x~, i=3 ,..., n; 

(4) Y”=( &,k%)-‘: 

(5) Y,-1= - Yn%d”-L; 

(6) Yi/i=- ~=~+~Y~s,i+l).Ui;~~, i=n-2,...,% 1; 
( t 

n 

(7) x1 z yka,, r = 1 (for check). 
k=l 

REMARK 1. The above algorithm may be used for computing the xi and 
yi in Theorem 3 if we read uii as A,,, xi as Xi and yi as yi and if the order of 
operations is kept as it is indicated in (l)-(7). 
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REMARK 2. The inverse of a tridiagonal matrix A = { u,,b,,c,};, where 
q#O, i=2 ,..., n, ci#O, i=l,... , n - 1, may be computed by applying the 
above algorithm twice, once for computing the upper half of A - ’ and once 
for computing the lower half of A-l. 
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