On Inverses of Hessenberg Matrices*

Yasuhiko Ikebe
Department of Computer Sciences
Northwestern University
Evanston, Illinois 60201

Submitted by Alston Householder

Abstract

The lower half of the inverse of a lower Hessenberg matrix is shown to have a simple structure. The result is applied to find an algorithm for finding the inverse of a tridiagonal matrix. With minor modifications, the technique applies to block Hessenberg matrices.

1. INTRODUCTION

A square matrix $A=\left(a_{i j}\right), i, j=1, \ldots, n$, is called a lower(upper) Hessenberg matrix if $a_{i j}=0$ for all pairs (i, j) such that $i+1<j(j+1<i)$. We shall prove the following theorem on the structure of the inverse of a lower Hessenberg matrix:

Theorem 1. Let $A=\left(a_{i j}\right)$ be a lower Hessenberg matrix of order n and let $a_{i, i+1} \neq 0, i=1, \ldots, n-1$. Let $A^{-1}=\left(\alpha_{i j}\right)$ exist. Then two column vectors $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$ and $y=\left(y_{1}, \ldots, y_{n}\right)^{T}$ exist such that the upper half of A^{-1} equals the upper half of $x y^{T}$, i.e., $\alpha_{i j}=x_{i} y_{i}$ for $i \leqslant j$.

By taking the transpose, we see that a similar theorem holds for an upper Hessenberg matrix.

By the symbol $A=\left\{a_{i}, b_{i}, c_{i}\right\}_{1}^{n}$, we denote the tridiagonal matrix

$$
A=\left(\begin{array}{ccccc}
b_{1} & c_{1} & & & 0 \\
a_{2} & b_{2} & c_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & a_{n-1} & b_{n-1} & c_{n-1} \\
0 & & & a_{n} & b_{n}
\end{array}\right)
$$

[^0]A tridiagonal matrix is a square matrix which is both a lower and an upper Hessenberg matrix. As a direct consequence of Theorem 1 and of the remark that follows, we obtain the following theorem on the structure of the inverse of a tridiagonal matrix.

Theorem 2. Let a tridiagonal matrix $A=\left\{a_{i}, b_{i}, c_{i},\right\}_{1}^{n}$ be given such that none of the a_{i} 's and c_{i} 's vanish. Let $A^{-1}=\left(\alpha_{i j}\right)$ exist. Then four column vectors $u=\left(u_{i}\right), v=\left(v_{i}\right), x=\left(x_{i}\right)$ and $y=\left(y_{i}\right), i=1, \ldots, n$, exist such that

$$
\alpha_{i j}= \begin{cases}u_{i} v_{j}, & i \geqslant j, \\ x_{i} y_{i}, & i \leqslant j\end{cases}
$$

Examination of the proof (see the next section) reveals that Theorems 1 and 2 may be extended to the case where the matrix elements are themselves square matrices of the same order:

Theorem 3. Let $A=\left(A_{i j}\right), i, j=1, \ldots, n$, be a block lower Hessenberg matrix $\left(A_{i j}=0\right.$ for $\left.i+1<j\right)$, where the $A_{i j}$ are square matrices of a fixed order, say m. Let the superdiagonal blocks $A_{i, i+1}, i=1, \ldots, n-1$, have inverses. Let A^{-1} exist, and write $A^{-1}=B=\left(B_{i j}\right)$, where $B_{i j}$ is $m \times m$, $i, j=1, \ldots, n$. Then

$$
B_{i j}=X_{i} Y_{i}, \quad i \leqslant j
$$

for a set of $m \times m$ matrices $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$.

Theorem 4. Let $A=\left\{A_{i}, B_{i}, C_{i}\right\}_{i=1}^{n}$ be a block tridiagonal matrix where the Λ_{i}, B_{i} and C_{i} are $m \times m$ matrices. Let $A_{i}^{-1}(i=2, \ldots, n)$ and $C_{i}^{-1}(i=$ $1, \ldots, n-1)$ exist. Let A^{-1} exist, and write $A^{-1}=B=\left(B_{i j}\right)$, where $B_{i j}$ is $m \times m, i, j=1, \ldots, n$. Then

$$
B_{i j}= \begin{cases}U_{i} V_{j}, & i \geqslant j, \\ X_{i} Y_{j}, & i \leqslant j,\end{cases}
$$

for a set of $m \times m$ matrices $U_{1}, \ldots, V_{1}, \ldots, X_{1}, \ldots, Y_{1}, \ldots, Y_{n}$.
Theorem 2 was proved by Bukhberger and Emel'yanenko [1] under the further assumption that A is symmetric. If A is symmetric, so is A^{-1}. In this case A depends only on $2 n-1$ numbers and Theorem 2 indicates that A^{-1} is representable in terms of $2 n-1$ numbers. For $x_{i} y_{i}=\left(k x_{i}\right) \cdot\left(k^{-1} y_{i}\right), i, j=$ $1, \ldots, n$, for any fixed nonzero constant k, and hence any one nonzero x_{i} or y_{i}
may be assigned an arbitrary nonzero value, say 1 (note that $x_{1} \neq 0$). This is interesting in view of the fact that A^{-1} is usually a full matrix (all or almost all elements of A^{-1} are nonzero). Theorem 1 represents a generalization of Bukhberger and Emel'yanenko's result in [1]. Their proof depends on a determinantal identity for the matrix inverse. In this note, we give a determinant-free proof of Theorem 1. (See Sec. 2.) The proof is quite elementary and paves a way for further generalization to block matrices, as indicated by Theorems 3 and 4. A simple recursive algorithm may be developed for computing the x_{i} and y_{i} in Theorem 1, as we show in Sec. 3.

2. PROOF OF TIIEOREM 1

We will prove Theorem 1. Let $P_{k}(k=1,2, \ldots, n-1)$ denote the square submatrix of A formed from the first k rows and the second through the $(k+1)$ st columns of A. Thus,

$$
P_{1}=\left(a_{12}\right), \quad P_{2}=\left(\begin{array}{ll}
a_{12} & 0 \\
a_{22} & a_{23}
\end{array}\right)
$$

The P_{k} are lower triangular matrices with nonvanishing diagonal elements. Hence P_{k}^{-1} exists $(n=1, \ldots, n-1)$. Let $A^{-1}=\left(\alpha_{i j}\right), i, j=1, \ldots, n$, and let the first row of A^{-1} be denoted by $\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}, \alpha_{1 i}=y_{i}, j=1, \ldots, n$. Let $c^{(k)}$, $k=1, \ldots, n$, denote the column vector of dimension k composed of the first k components of the first column of A. Thus,

$$
c^{(1)}=\left(a_{11}\right), \quad c^{(2)}=\left(a_{11}, a_{21}\right)^{T}, \quad \ldots
$$

Equating the first $j-1$ components of the j th column $(j=2, \ldots, n)$ in $A A^{-1}=I$, we obtain

$$
c^{(i-1)} y_{i}+P_{i-1}\left(\alpha_{2 i}, \ldots, \alpha_{i j}\right)^{T}=0
$$

or

$$
\left(\alpha_{2 j}, \ldots, \alpha_{i j}\right)^{T}=-P_{i-1}^{-1} c^{(i-1)} y_{i}
$$

Since P_{j-1} is the leading $(j-1) \times(j-1)$ submatrix of P_{n-1}, which is lower triangular, P_{i-1}^{-1} gives the leading $(j-1) \times(j-1)$ submatrix of P_{n-1}^{-1}, which is again lower triangular. It follows that $-P_{j-1}^{-1} c^{(j-1)}$ is identified with the leading $j-1$ components of $-P_{n-1}^{-1} c^{(n-1)}$. If we denote this vector by
$\left(x_{2}, \ldots, x_{n}\right)^{T}$ and let x_{1} denote 1, we find

$$
\left(\alpha_{1 i}, \ldots, \alpha_{i j}\right)^{T}=\left(x_{1}, \ldots, x_{j}\right)^{T} y_{i}, \quad j=1, \ldots, n
$$

This completes the proof of Theorem 1.

Remark. A completely similar proof applies to Theorem 3.

3. ALGORITHM

We will describe a recursive algorithm for computing the x_{i} and y_{i} in Theorem 1. Equating the last column in $A A^{-1}=I$, we obtain

$$
\begin{equation*}
A \cdot\left(x_{1}, \ldots, x_{n}\right)^{T}=\left(0, \ldots, 0, y_{n}^{-1}\right) \tag{3.1}
\end{equation*}
$$

Equating the first row in $A^{-1} A=I$, we find

$$
\begin{equation*}
\left(y_{1}, \ldots, y_{n}\right) \cdot A=\left(x_{1}^{-1}, 0, \ldots, 0\right) \tag{3.2}
\end{equation*}
$$

Since $x_{1} \neq 0$ and $y_{n} \neq 0$, we may choose either x_{1} or y_{n} to be an arbitrary nonzero number. Equations (3.1) and (3.2) now give the following algorithm for finding $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$:
(1) Let a nonzero number be given as the value of x_{1} (say $x_{1}=1$);
(2) $x_{2}=-a_{12}^{-1} a_{11} x_{1}$;
(3) $x_{i}=-a_{i-1, i}^{-1} \sum_{k=1}^{i-1} a_{i-1, k} x_{k}, i=3, \ldots, n$;
(4)

$$
y_{n}=\left(\sum_{k=1}^{n} a_{n, k} x_{k}\right)^{-1}
$$

(5) $y_{n-1}=-y_{n} a_{n, n} a_{n-1, n}^{-1}$;
(6) $y_{i}=-\left(\sum_{k=i+1}^{n} y_{k} a_{k, i+1}\right) \cdot a_{i, i+1}^{-1}, i=n-2, \ldots, 2,1$;
(7) $x_{1} \sum_{k=1}^{n} y_{k} a_{k, 1}=1$ (for check).

Remark 1. The above algorithm may be used for computing the x_{i} and y_{i} in Theorem 3 if we read $a_{i j}$ as $A_{i j}, x_{i}$ as X_{i} and y_{i} as Y_{j} and if the order of operations is kept as it is indicated in (1)-(7).

Remark 2. The inverse of a tridiagonal matrix $A=\left\{a_{i}, b_{i}, c_{i}\right\}_{1}^{n}$, where $a_{i} \neq 0, i=2, \ldots, n, c_{i} \neq 0, i=1, \ldots, n-1$, may be computed by applying the above algorithm twice, once for computing the upper half of A^{-1} and once for computing the lower half of A^{-1}.

REFERENCES

1 B. Bukhberger and G. A. Emel'yanenko, Methods of inverting tridiagonal matrices, USSR Computational Math. and Math. Phys. 13:10-20 (1973); MR 48 \#2155.

[^0]: *This work was supported in part by Air Force grant AFOSR 77-3183.

