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ABSTRACT

The lower half of the inverse of a lower Hessenberg matrix is shown to have a
simple structure. The result is applied to find an algorithm for finding the inverse of a
tridiagonal matrix. With minor modifications, the technique applies to block Hessen-
berg matrices.

1. INTRODUCTION

A square matrix A =(a,), i,j=1,...,n, is called a lower(upper) Hessenberg
matrix if a;=0 for all pairs (i,7) such that i+1<j (j+1<i). We shall prove
the followmg theorem on the structure of the inverse of a lower Hessenberg
matrix:

TueorEM 1. Let A=(ay) be a lower Hessenberg matrix of order n and
let a ,,,#0,i=1,...,n—1. Let A~ =(a) exist. Then two column vectors
x= (xl, ox) T and y (yl, y,)7 exist such that the upper half of A~
equals the upper half of xy”, i.e., ay=xy; for i <j.

By taking the transpose, we see that a similar theorem holds for an upper
Hessenberg matrix,
By the symbol A = {a,,b,,¢;}}, we denote the tridiagonal matrix

b, ¢ 0
a, b, Co
A= R "
a,_y b,_y ¢,
0 a, )
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A tridiagonal matrix is a square matrix which is both a lower and an
upper Hessenberg matrix. As a direct consequence of Theorem 1 and of the
remark that follows, we obtain the following theorem on the structure of the
inverse of a tridiagonal matrix.

TueoreM 2. Let a tridiagonal matrix A ={a,,b,,c;,}} be given such that

none of the a’s and ¢ s vanish. Let A_1=(a,-7) exist. Then four column
vectors u=(u;), v=(v,), x=(x;) and y=(y,), i=1,...,n, exist such that

[ wy, i2],

o ; ,
oo mY ST

Examination of the proof (see the next section) reveals that Theorems 1
and 2 may be extended to the case where the matrix elements are themselves
square matrices of the same order:

Tueorem 3. Let A=(Ay;), i,j=1,...,n, be a block lower Hessenberg
matrix (A;=0 for i+1<j), where the A; are square matrices of a fixed
order, say m. Let the superdiagonal blocks A, ., i=1,...,n—1, have
inverses. Let A™' exist, and write A™'=B =(By), where B, is mXm,
i,j=1,...,n. Then

B, = X.Y,

b

i<,
for a set of mXm matrices X,,...,X,, Y,..., Y,.

Tueorem 4. Let A= {A,,B;,C;}}_, be a block tridiagonal matrix where
the A,, B, and C; are mXm matrices. Let A7 (i=2,...,n) and C, ' (i=
1,...,n—1) exist. Let A~ exist, and write A~'=B=(B,), where B is
mXm, i,j=1,...,n. Then

XY, i<j,

i

”={qw i >,
Y

for a set of mXm matrices Uy,...,Vy,....,X},...,Yy,.... Y,

n*

Theorem 2 was proved by Bukhberger and Emel’yanenko [1] under the
further assumption that A is symmetric. If A is symmetric, so is A ™' In this
case A depends only on 21— 1 numbers and Theorem 2 indicates that A ™! is
representable in terms of 2n—1 numbers. For xy; = (kx): (k_lyj), i,j=
1,...,n, for any fixed nonzero constant k, and hence any one nonzero x; or y;
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may be assigned an arbitrary nonzero value, say 1 (note that x,50). This is
interesting in view of the fact that A ! is usually a full matrix (all or almost
all elements of A ™! are nonzero). Theorem 1 represents a generalization of
Bukhberger and Emel’yanenko’s result in [1]. Their proof depends on a
determinantal identity for the matrix inverse. In this note, we give a
determinant-free proof of Theorem 1. (See Sec. 2.) The proof is quite
elementary and paves a way for further generalization to block matrices, as
indicated by Theorems 3 and 4. A simple recursive algorithm may be
developed for computing the x; and y; in Theorem 1, as we show in Sec. 3.

2. PROOF OF THEOREM 1

We will prove Theorem 1. Let P, (k=1,2,...,n—1) denote the square
submatrix of A formed from the first k rows and the second through the
(k+1)st columns of A. Thus,

a 0
Py = (012)’ Py = (a;z 023),

The P, are lower triangular matrices with nonvanishing diagonal elements.
Hence P, ! exists (n=1,...,n—1). Let A“1=(a,.i), i,j=1,...,n, and let the
first row of A ™! be denoted by (y1,ys,---,y,)% a=y, j=L...,n Let ™),
k=1,...,n, denote the column vector of dimension k composed of the first k
components of the first column of A. Thus,

¢V = (an), c® = (‘111:“21>T’

Equating the first j—1 components of the jth column (j=2,...,n) in
AA "1=] we obtain

- -
I Vy + P_(agjy..pe) =0

or

i—1

(a2i,...,aﬁ)T= —-P,:ic( )yi.

Since P,_, is the leading (j—1)X(j—1) submatrix of P,_,, which is lower
triangular, P,”; gives the leading (j—1)X(j— 1) submatrix of P,~Y, which is
again lower triangular. It follows that —P~]c'/~" is identified with the
leading j—1 components of —P, ¢ . If we denote this vector by
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(%g,...,%,)" and let x; denote 1, we find
T T .
(ali,...,aﬁ) = (xl,...,x,-) Yis i=1,...,n.
This completes the proof of Theorem 1.

Remark. A completely similar proof applies to Theorem 3.

3. ALGORITHM

We will describe a recursive algorithm for computing the x; and y; in
Theorem 1. Equating the last column in AA ~!=1, we obtain

A (x,..x) = (0,...,0,y,7 1) (3.1)
Equating the first row in A 7'A =1, we find

(Y1 Ya) A = (27 1,0,...,0). (32)

Since x,#0 and y, 70, we may choose either x, or y, to be an arbitrary
nonzero number. Equations (3.1) and (3.2) now give the following algorithm
for finding x,,...,x,,4y,...,4,:

(1) Let a nonzero number be given as the value of x, (say x,=1);

@) x=—aplayx;
i—1

3 xi="‘ai_—11,i 2 G k% 1=3,...,m5
k=1

n -1
(4) yn=( 2 an,kxk) H
k=1
(5) yn—1= - ynan,nan_—ll,n;

n
(6) !I.'="( > ykak,i+1)'az’;-1+-l’i=n—2""’2’ L

k=i+1

(7) x; D yxa =1 (for check).
k=1

Remarxk 1. The above algorithm may be used for computing the x; and
y; in Theorem 3 if we read a; as A;;, x; as X; and y, as Y, and if the order of
operations is kept as it is indicated in (1)—(7).
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Remark 2. The inverse of a tridiagonal matrix A= {a;,b,¢,}}, where
4,70, i=2,...,n, ¢#0, i=1,...,n—1, may be computed by applying the
above algorithm twice, once for computing the upper half of A~" and once
for computing the lower half of A"
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