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Abstract-Recently, Yen and Joye showed that Ham and Lin’s authenticated multiple-key agree- 
ment protocol is insecure against forgery and consequently proposed a revised protocol to repair it. 
Later, Wu et al. showed that Yen and Joye’s revision is also insecure and therefore an improved 
protocol was proposed. However, Wu et al.‘s protocol violates the original requirement in which no 
one-way hash function is needed. On the other hand, in order to overcome Yen and Joye’s and Wu et 
al.‘s attacks, Harn and Lin proposed a modified version by modifying the signature signing equation. 
But the modified version increases one exponentiation in the verification equation. In this paper, we 
first show that Wu et al.% protocol still suffers the forgery problem, and then we propose an improved 
scheme that is secure against forgery and does not involve any oneway hash function. Compared 
with Harn and Lin’s modified version, our scheme is efficient in the verification equation. @ 2003 
Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

In 1998, Harn and Lin [l] proposed an authenticated multipl+key agreement protocol that enabled 
two parties to authenticate each other, and share multiple secret keys without using any one-way 
hash function. Recently, Yen and Joye [2] showed that Harn and Lin’s authenticated multiple-key 
agreement protocol is insecure against forgery and consequently proposed a revised.protocol to 
repair it. Later, Wti et al. [3] showed that Yen and Joye’s protocol is also insecure against forgery, 
and therefore, an improved protocol was proposed. However, Wu et al.% protocol violates the 
original requirement in which no one-way hash function is needed. In order to overcome Yen 
and Joye’s and Wu et al.‘s attacks, Harn and Lin [4] proposed a modified version by modifying 
the signature signing equation. But the modified version increases one exponentiation in the 
verification equation. In this paper, we first show that Wu et al.% protocol still suffers the 
forgery problem, and then we propose an improved scheme that is secure against forgery and 
does not involve any one-way hash function. Compared with Harn and Lin’s modified version, 
our scheme is efficient in the verification equation. 
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2. THE FIRST HARN AND LIN PROTOCOL 
We briefly review the first Harn and Lin protocol in the following. Note that Harn and Lin 

focused on how to design a secure authenticated multiple-key agreement protocol without using 
a oneway hash function. 

Let A and B be two users who want to share multiple secret keys. Initially, the system has a 
large prime P and a primitive element o in GE’(P). Users A and B have long-term secret key XA 
and XB and the corresponding public key 2/A = cr5A mod P, YB = oxB mod P, respectively. Here 
we only describe A’s part because B’s part is the same as A’s part. In the authentication phase, 
A randomly selects two short-term secret numbers k& and k& and computes rA, = okAl mod P 
and rAz = crkA2 mod P. A then computes the signature as: sA = zA - rAkA mod(P - l), where 
kA = kA, f kA2 mod(P - 1) and rA = crTAlrA2 mod P. Finally, A sends {r& , r,+ , sA, cert (YA)} 
to B, where cert (&!A) is the certification of A’s public key. 

After receiving {r& , r& , sA, Cert (YA)}, B first computes rA = crYAl PA2 mod P and verifies the 
authenticity of {f&, ?-A,} via the following equation: ?JA? = (rA1 . r,&)TA . oSA (mod P). 

If it holds, B processes the key generation phase and derives the common keys as follows: 

kl = rzl mod P, 

kz = rzl mod P, 

kg = r? mod P, 

kq =- r? mod P. 

Note that only three out of these four keys can be used in order to provide perfect forward 
secrecy [5]. 

3. YEN AND JOYE’S PROTOCOL 
It can be seen that in Harn and Lin’s protocol, given a valid four-tuple {rAl, r&, SA, cert (PA)}, 

if an attacker can find integers rkl, ?-La E Zp satisfying ril .ra, = r& ‘r& , then he can convince B 
that he is A. This is because the verification equation YA? = (ra, . r&)TA . crsA (mod P) still 
holds. so, letting Q be a small factor of rA1, the attacker can set ?-x1 = r,& /q and raz = r& . q. 
For a small factor q (e.g., 2), there is a nonnegligible probability such that r& < P. Thus, the 
Harn and Lin protocol is insecure against forgery. 

In order to overcome this problem, Yen and Joye added a constraint on the computed result 
of rA1 and r&. The short-term secret key kAl and kAa should be chosen such that the result- 
ing rA1 and r& satisfying [P/2] 2 r&, r& s P - 1. Furthermore, the signature generation 
equation is replaced by: sA = zA - (r,& . r&) . kA mod(P - 1). 

Hence, the verification equation becomes: YA? = (f& . r,&)mlrAs . oSA (mod P). 
With the modification, the attacker cannot generate another pair of {ra,, r&} by replacing 

rhl = TA1/q and rkz = r& . q because the constraint: [P/2] 5 rA1, r,+ 5 P - 1 is applied. 

4. WU ET AL.23 PROTOCOL 
Wu et al. showed that in Yen and Joye’s revision, even if both r& and r& are located in the 

range [rP/21, P - 11, an attacker can still find such r& and r& satisfying ra, ’ ra2 = rA, . r& 
with a nonnegligible probability. We refer the reader to [3] for the details. 

To eliminate this weakness, Wu et al. employed a one-way hash function h in the signature 
generation and verification equation. They replaced the signature generation by: $A = %A - 
h(rAl . r&) + kA mod(P - 1), and hence, the verification equation becomes 

y,z,? = (r& . r&)h(rA”rA2) . CtSA (mod P). 
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Although this modification tries to provide higher security strength for mutual authentication, 
it also violates the original requirement that no one-way hash function is needed’for designing an 
authenticated multiple-key agreement protocol as in Harn and Lin’s scheme. 

5. THE SECOND HARN AND LIN PROTOCOL 

In order to overcome Yen and Joye’s and Wu et al.% attacks, Harn and Lin proposed a mod- 
ified version by modifying the signature signing equation. The signature generation equation is 
replaced by 

SA = XA - TANYA, + TA* . k,~~ mod(P - l), 

and the verification equation becomes 

PA? = l-y’ * ry22 . as* (modP). 1 

Although the modified version successfully overcomes Yen and Joye’s and Wu et al.% attacks, 
comparing with the first Harn and Lin protocol, there is one additional exponentiation in the 
verification equation. 

6. CRYPTANALYSIS OF WU ET AL.‘S PROTOCOL 

Although Wu et al.‘s modification employed a one-way hash function to provide higher security 
strength for mutual authentication, their protocol still suffers the forgery problem. The reason is 
that if ?-al .?-a, = fA1 .T,qa, then their hashed values: h(ra, .~a,) and h(r~~ .TA~) are equal. If an 
attacker can find integers ?-al, raz E zp satisfying ral . raz = r& r&, then he can convince B 
that he is A. This is because the verification equation YA? = (rAl . r,&)h(rAl ‘ra2) oS* (mod P) 
still holds. Thus, the forgery still exists. 

7. OUR IMPROVED PROTOCOL 

In Wu et al.% paper, although they have proposed a method to enhance the security of their 
protocol, however, it still suffers the forgery problem and violates the original expectation in Harn 
and Lin’s protocol in which no oneway hash function is needed. In Ham and Lin’s modified 
protocol, although it successfully overcomes Yen and Joye’s and Wu et al.‘s attacks, it increases 
the computations of exponentiation complexity in the verification equation. In the following, we 
try to design a secure and efficient authenticated multiple-key agreement protocol without using 
any one- way hash function. One straightforward modification is to replace rA as rA = TA, + rA2 

(mod P - I). Thus, the signature generation equation is replaced by: sA = XA - (rAl + r&) 
kA mod(P - l), and the verification equation becomes: YA? = (rA1 .~-A~)(~*l+‘~2) . aSA (modP). 

Note that in this case if {r& , r& , sA, cert (9~)) satisfies the verification equation, then so does 
{r&, r& , S-4, cert (YA)}. For avoiding ambiguity, we make the constraint: 0 < r& 5 r& < P - 1. 

After this modification, if an attacker wants to forge a valid four-tuple {~a,, raz, SA, cert (VA)} 
from a past four-tuple {r,+, r&, sA, cert (YA)}, he must make rai . r& = rA1 . r,& (mod P) and 
?-a1 + ?-a, = rA1 + r& (mod P - 1) hold simultaneously. That is, the attacker needs to solve 

T-al . ?-Is, = ?-A, . TA2 (mod P), 

e41 + 42 = ?-A1 + r& (modP - 1). 
(1) 

(2) 

From equation (2), we have rL1 = r& +r& -TL~ + k(P - 1) and substitute it into equation (1). 
We Citn obtain: (?-A1 + rAz - Tkz + k(P - 1)) . Ta, = TA1 . TAz (mod P). 

By selecting a proper k, we can solve rL2 from the above quadratic equation in a finite 
field GF(P), and hence, obtain the corresponding ~a,. We show this as follows. 
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DEFINITION 1. (See is].) If m is a positive integer, we say that the integer a is a quadratic 
residue of m if (a, m) = 1 and the congruence x2 = a (modm) has a solution. If the congruence 
x2 = a (mod m) has no solution, we say that a is a quadratic nonresidue of m. 

THEOREM 1. (See 161.) Let P be an odd prime and a be e integer not divisible by P. Then, 
the congruence x2 z a (mod P) has either no solutions or exactly two incongruent solutions 
modulo P. 

PROOF. This is a well-known theorem. For simplicity, we omit the proof and refer the reader 
to [6]. In addition, in [7] is provided a simple and fast probabilistic algorithm to find adaptive 
solution of x. I 

THEOREM 2. (See [6j.) If p is an odd prime, then there are exactly (p - 1)/2 quadratic residue 
of p and (p - 1)/2 quadratic nonresidue of p among the integers 1,2, . . , p -‘l. 

PROOF. We omit the proof and refer the reader to [6]. I 

LEMMA 1. For an arbitrarily selected a, the probability that the resulting equation has solutions 
for z2 z a(mod P) is l/2. 

LEMMA 2. Consider the quadratic congruence ax2 + bx + c = 0 (mod P), where P is prime 
and a, b, and c are integers with P { a. Letting d = b2 - 4ac, the congruence ax2 + bx + c = 0 
(mod P) is equivalent to the congruence y2 z d (mod P), where y = 2ax + b. If d G 0 (mod P), 
then there is exactly one solution x modulo P; if d is a quadratic residue of P, then there axe 
two incongruent solutions, and if d is a quadratic nonresidue of P, then there are no solutions. 

By Lemmas 1 and 2, we can easily find adaptive solution (T$,, , T-L,) by selecting a proper Ic, 
where (T,J~ + rAz - &, + k(P - 1)) . ?-Is, = T& . r.+ (mod P). The solution (~2,) ~a,) will be 
different from (r,$, r&). Thus, an attacker can forge a valid four-tuple {~a,, r&, sA, cert @A)}. 
In the following example, we demonstrate that the forgery is possible. 

EXAMPLE. Let TAG = 8, r,& = 11, and P = 13. Then an attacker can forge ral = 2 and ~2, = 5 
such that both ~2, . vaz = rA, . r& (mod P) and ral + T& = rA1 + r,Jz (mod P - 1) hold 
simultaneously. This is because 8.11 (mod13) = 2 .5 (mod13) = 10 and 8 + 11 (mod 12) = 
2+5(mod12)=7. 

So we improve it by replacing TA as TA = rA1 @J TAG (mod P - I), where @ denotes the bit- 
wise addition. Thus, the signature generation equation is replaced by: sA = xA - (r,+ @ r&) . 
kmod(P - l), and the verification equation becomes: ye? = (TAG . T~~)(‘~l@~a) aSA (mod P). 

Thus, an attacker must solve 

Tk, ’ Ti2 = TAG . TAz (mod P), 

TX, @Tk, = TAG @r& (mod P - 1). 

(3) 

(4 

From equation (4), we obtain ~2~ = T& $ T,+ @ TL~ + k(P - l), and substituting it into 
equation (3), we can obtain 

(TAl 63 TAz @ & •k k(P - 1)) . TX2 = TAG . T& (mod P). (5) 

Here we remind that the distributive law for the operations (@ and .) does not hold. That is 
(a @ b) . c # (a. c) @ (b * c), where @ denotes the bit-wise addition and . denotes the multiplication 
operation in the congruence class modulo P. As an example, let P = 7, a = 0112, b = 1102, 
c = 0112. It is clear that (a @ b) c = (0112 @ 1102) . 0112 = 1012 .0112 = 5.3 mod 7 = 1 = 0012. 
However, (a.c)@(b.c) = (011~~011~)@(110~~011~) = (3.3mod7)@(6.3mod7) = OlO~@lOO~ = 
1102. Hence, (a @ b) . c # (a. c) @ (b . c). 

This property of the operations suggests that equation (5) is unable to be reduced to a simpler 
form. The only method to find T>, in equation (5) is to do an exhaustive search. When P is 
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small, the attacker is able to find a solution for T>,; however, when P is a large prime number, 
the attacker is unable to find the solution. 

Compared with the first Harn and Lin protocol, our scheme does not increase any computations 
of exponentiation complexity. Comparing with Harn and Lin’s modified protocol, although our 
scheme and Harn and Lin’s modified protocol all can counter the forgery attacks showed in Yen 
and Joye’s and Wu et al.‘s methods, our scheme is more efficient in the verification equation. 

8. CONCLUSIONS 

In this paper, we have shown that Wu et al.‘s protocol still suffers the forgery problem. Then, 
we have proposed an improved authenticated multiple-key agreement protocol that uses a digital 
signature to authenticate Diffie-Hellman public key. The proposed protocol is secure and efficient 
against forgery, and does not involve any one-way hash function. 
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