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Abstract

For a compact Kähler manifold X and a strongly primitive automorphism g of positive entropy, it is
shown that X has at most ρ(X) of g-periodic prime divisors. When X is a projective threefold, every prime
divisor containing infinitely many g-periodic curves, is shown to be g-periodic (a result in the spirit of the
Dynamic Manin–Mumford conjecture as in Zhang (2006) [17]).
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

We work over the field C of complex numbers. Let X be a compact Kähler manifold and
g ∈ Aut(X) an automorphism. The pair (X,g) is strongly primitive if it is not bimeromorphic to
another pair (Y, gY ) (even after replacing g by its power) having an equivariant fibration Y → Z

with dimY > dimZ > 0. g is of positive entropy if its topological entropy

h(g) := max

{
log |λ|; λ is an eigenvalue of g∗

∣∣∣ ⊕
i�0

Hi(X,C)

}
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is positive; see 2.1. We remark that every surface automorphism of positive entropy is automati-
cally strongly primitive (cf. Lemma 2.4).

Theorems 1.1, 3.1 and 3.2 are our main results, where the latter determines the geometrical
structure for those compact Kähler X with a strongly primitive automorphism. A subvariety
B ⊂ X is g-periodic if gs(B) = B for some s > 0. Let ρ(X) be the Picard number of X.

Theorem 1.1. Let X be a compact Kähler manifold, and g ∈ Aut(X) a strongly primitive auto-
morphism of positive entropy. Then we have:

(1) X has at most ρ(X) of g-periodic prime divisors.
(2) If X is a smooth projective threefold, then any prime divisor of X containing infinitely many

g-periodic curves, is itself g-periodic (cf. [17, Conjecture 1.2.1]).

Remark 1.2.

(1) Suppose that the X in Theorem 1.1(1) has ρ(X) of g-periodic prime divisors, then the alge-
braic dimension a(X) = 0 by the proof, Theorem 3.2 and Remark 2.8. Suppose further that
the irregularity q(X) := h1(X, OX) > 0. Then the Albanese map albX : X → Alb(X) =: Y

is surjective and isomorphic outside a few points of Y , and ρ(Y ) = 0. Conversely, we might
realize such maximal situation by taking a complex n-torus T with ρ(T ) = 0 and a matrix
H ∈ SLn(Z) with trace > n so that H induces an automorphism h ∈ Aut(T ) of positive en-
tropy; if H could be so chosen that h has a few finite orbits Oi of a total ρ points Pij ∈ T ,
then the blowup a : X → T along these ρ points lifts h to some g ∈ Aut(X) of positive
entropy with ρ = ρ(X) of g-periodic prime divisors a−1(Pij ).

(2) When dimX = 2, see [8, Proposition 3.1] or [14, Theorem 6.2] for results similar to Theo-
rem 1.1(1). Meromorphic endomorphisms and fibrations are studied in [1].

(3) For a possible generalization of Theorem 1.1 to varieties over other fields, we remark that
the Bertini type theorem is used in the proof, so the ground field might need to be of charac-
teristic zero. Kähler classes are also used in the proof. The proof of Theorem 1.1(2) requires
X to be projective in order to define nef reduction as in [2].

The following consequence of Lemma 2.11 or Theorem 3.2 and Lefschetz’s fixed point for-
mula, shows the practicality of the strong primitivity notion.

Theorem 1.3. Let A be a complex torus of dimA � 2, and g ∈ Autvariety(A) a strongly primitive
automorphism of positive entropy (cf. 2.1). Then A has no g-periodic subvariety D with pt �=
D ⊂ A. In particular, for every s > 0, the number # Per(gs) of gs -fixed points (with multiplicity
counted) satisfies

# Per
(
gs

) =
∑
i�0

Tr
(
gs

)∗|Hi(A,Z).

2. Preliminary results

2.1. Most of the conventions are as in [10] and Hartshorne’s book. Below are some more.
In the following (till Lemma 2.4), X is a compact Kähler manifold of dimension n � 2.
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(1) Denote by NS(X) = Pic(X)/Pic0(X) the Neron–Severi group, and NSB(X) = NS(X)⊗Z

B for B = Q,R, which is a B-vector space of finite dimension ρ(X) (called the Picard number).
By abuse of notation, the cup product L ∪ M for L ∈ Hi,i(X) and M ∈ Hj,j (X) will be de-

noted as L.M or simply LM . Two codimension-r cycles C1, C2 are numerically equivalent if
(C1 − C2)M1 · · ·Mn−r = 0 for all Mi ∈ H 1,1(X). Denote by [C1] the equivalence class contain-
ing C1, and Nr(X) the R-vector space of all equivalence classes [C] of codimension-r cycles.
By abuse of notation, we write C1 ∈ Nr(X) (instead of [C1] ∈ Nr(X)). We remark that if C1
and C2 are cohomologous then C1 and C2 are numerically equivalent, but the converse may not
be true if r � n − 2. Our Nn−1(X) coincides with the usual N1(X).

Codimension-ri cycles Ci (i = 1,2) are perpendicular to each other if C1.C2 = 0
in Nr1+r2(X).

(2) A class L in the closure of the Kähler cone of X is called nef; this L is big if Ln �= 0.
For g ∈ Aut(X), the i-th dynamical degree is defined as

di(g) := max
{|λ|; λ is an eigenvalue of g∗|Hi,i(X)

}
.

It is known that the topological entropy h(g) equals max1�i�n logdi(g). We say that g is of
positive entropy if h(g) > 0. Note that h(g) > 0 if and only if di(g) > 1 for some i and in fact
for all i ∈ {1, . . . , n − 1}, if and only if h(g−1) > 0. We refer to [5] for more details.

By the generalized Perron–Frobenius theorem in [3], there are non-zero nef classes L±
g such

that g∗L+
g = d1(g)L+

g and (g−1)∗L−
g = d1(g

−1)L−
g in H 1,1(X). When X is a projective mani-

fold, we can choose L±
g to be in NSR(X).

An irreducible subvariety Z of X is g-periodic if gs(Z) = Z for some s � 1.
(3) When a cyclic group 〈g〉 acts on X, we use g|X or gX to denote the image of g in Aut(X).

The pair (X,g|X) is loosely denoted as (X,g).
(4) Suppose that a cyclic group 〈g〉 acts on compact Kähler manifolds X, Xi , Yj . A morphism

σ : X1 → X2 is g-equivariant if σ ◦ g = g ◦ σ . Two pairs (Y1, g) and (Y2, g) are bimeromor-

phically equivariant if there is a decomposition Y1 = Z1
σ1· · ·→ Z2 · · · σr· · ·→ Zr+1 = Y2 into

bimeromorphic maps such that for each i either σi or σ−1
i is a g-equivariant bimeromorphic

morphism.
(X,g) or simply g|X, is non-strongly-primitive (resp. non-weakly-primitive) if (X,gs), for

some s > 0, is bimeromorphically equivariant to some (X′, gs) and there is a gs -equivariant
surjective morphism X′ → Z with Z a compact Kähler manifold of dimX > dimZ > 0 (resp. of
dimX > dimZ > 0 and gs |Z = id). We call (X,g) strongly primitive (resp. weakly primitive) if
(X,g) is not non-strongly-primitive (resp. not non-weakly-primitive).

(5) For a complex torus A, the (variety) automorphism group Autvariety(A) equals TA �

Autgroup(A), with TA the group of translations and Autgroup(A) the group of group-automor-
phisms.

The two results below are crucial and due to Dinh and Sibony [5], but we slightly reformu-
lated. The second result is from [5, Corollaire 3.2], with [12, Appendix A, Lemma A.4] used to
weaken the assumption a bit.

Lemma 2.2. (Cf. [5, Lemme 4.4].) Let X be a compact Kähler manifold of dimension n � 2,
g : X → X a surjective endomorphism, and M1, M2, Li (1 � i � m; m � n − 2) nef
classes. Suppose that in Nm+1(X) we have L1 · · ·LmMi �= 0 (i = 1,2) and g∗(L1 · · ·LmMi) =
λi(L1 · · ·LmMi) for some (positive real) constants λ1 �= λ2. Then L1 · · ·LmM1M2 �= 0 in
Nm+2(X).
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Lemma 2.3. (Cf. [5, Corollaire 3.2] [12, Appendix A, Lemma A.4].) Let X be a compact Kähler
manifold with nef classes L, M . Then L = 0 in Ni(X) if and only if L = 0 in Hi,i(X,R). If
LM = 0 in N2(X), then L and M are parallel in H 1,1(X,R).

We frequently use the (5) below. In particular, bimeromorphically equivariant automorphisms
have the same dynamical degrees (and hence entropy).

Lemma 2.4. Let X be a compact Kähler manifold of dimension n, and g ∈ Aut(X) an automor-
phism of positive entropy. Then the following are true.

(1) We have n � 2. If n = 2, then g is strongly primitive.
(2) All di(g

±) (1 � i � n − 1) are irrational algebraic integers.
(3) Let Li (1 � i � n − 1) be in the closure P i(X) of the Kähler cone P i(X) of degree i

in the sense of [12, Appendix A, Lemma A.9, the definition before Lemma A.3] such that
g∗Li = di(g)Li in Hi,i(X). Then no positive multiple of Li is in H 2i (X,Q).

(4) Every g-periodic curve is perpendicular to L1.
(5) We have di(g) = di(g|Y) (1 � i � n) if there is a g-equivariant generically finite surjective

morphism either from X to Y or from Y to X. Here g is not assumed to be of positive entropy.

Proof. For (1), apply Lemma 2.2 or [14, Lemma 2.12] to L+
g and the fiber of an equivariant fi-

bration (cf. also (5)). For the existence of the Li in (3), we used the generalized Perron–Frobenius
theorem in [3] for the closed cone P i(X) ⊂ Hi,i(X,R). Now (3) follows from (2) by considering
the cup product.

(2) Since g−1 is also of positive entropy, we consider only g. Since g∗ acts on Hi(X,Z)

and each di(g) is known to be an eigenvalue of Hi(X,C) = Hi(X,Z) ⊗Z C, all dynamical de-
grees di(g) > 1 are algebraic integers. Suppose that di(g) is rational. Then di(g) ∈ Z�2. Take an
eigenvector Mi in H 2i (X,Z) with g∗Mi = di(g)Mi . Since the cup product is non-degenerate,
we can find Nn−i ∈ H 2n−2i (X,Z) such that Mi.Nn−i = mi ∈ Z \ {0}. Now mi/di(g)s =
(g−s)∗Mi.Nn−i ∈ Z for all s > 0. This is absurd.

(4) Suppose that gs(C) = C for some s > 0 and a curve C. Then L1.C = (gs)∗L1.(g
s)∗C =

d1(g)sL1.C. So L1.C = 0 for d1(g) > 1.
For (5), see [15, Lemma 2.6] and [12, Appendix A, Lemma A.8]. �

Lemma 2.5. Let X and Y be compact Kähler manifolds with n := dimX � 2, and π : (X,g) →
(Y, gY ) an equivariant surjective morphism.

(1) Suppose that a nef and big class M on X satisfies g∗M = M in H 1,1(X). Then a positive
power of g is in Aut0(X) and hence g is of null entropy.

(2) Suppose that g is of positive entropy and dimY = n − 1. Then no nef and big class M on
Y satisfies g∗

Y M = M . In particular, g∗
Y |H 1,1(Y ) is of infinite order and hence no positive

power of gY is in the identity connected component Aut0(Y ) of Aut(Y ).

Proof. (1) is a result of Lieberman [11, Proposition 2.2]; see [15, Lemma 2.23] (by Demailly–
Paun, a nef and big class can be written as the sum of a Kähler class and a closed real positive
current).

(2) If g∗
Y |H 1,1(Y ) is of finite order r , then g∗

Y stabilizes
∑r−1

i=0 (gi
Y )∗H with H a Kähler class.

So we only need to rule out the existence of such M in the first assertion. Set MX := π∗M .
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We apply Lemma 2.2 repeatedly to show the assertion that Mk−1
X .L+

g �= 0 in Nk(X) for all

1 � k � n. Indeed, MX.L+
g is non-zero in N2(X) since g∗MX = MX while g∗L+

g = d1(g)L+
g

with d1(g) > 1; if M
j−1
X .L+

g �= 0 in Nj(X) for j < n, then M
j
X.L+

g �= 0 in Nj+1(X) because

g∗(Mj−1
X .L+

g ) = d1(g)(M
j−1
X .L+

g ) with d1(g) > 1, and g∗Mj
X = M

j
X ( �= 0 in Nj(X)), so the

assertion is true. Now deg(g)(Mn−1
X .L+

g ) = g∗Mn−1
X .g∗L+

g = d1(g)(Mn−1
X .L+

g ) implies a con-
tradiction: 1 = deg(g) = d1(g) > 1. Lemma 2.5 is proved. �
Lemma 2.6. Let X be a compact Kähler manifold of dimension n � 2 and q(X) = 0, and
g ∈ Aut(X) an automorphism of positive entropy. Then X has at most ρ(X) of prime divisors
Dj perpendicular to either one of L+

g and L−
g in N2(X). Further, such Dj are all g-periodic.

Proof. We only need to show the first assertion, since both L±
g are semi g∗-invariant and hence

g permutes these Dj .
Suppose that X has 1 + ρ(X) of distinct prime divisors Di with L+

g .Di = 0 in N2(X).

The case L−
g is similar by considering g−1. Set L := L+

g . Since these Di are then lin-

early dependent, we may assume that E1 := ∑t1
i=1 aiDi ≡ E2 := ∑t1+t2

j=t1+1 bjDj in NSQ(X)

for some positive integers ai , bj , tk . Since q(X) = 0, we may assume that E1 ∼ E2 (lin-
ear equivalence) after replacing Ei by its multiple. Let σ : X′ → X be a blowup such that
|σ ∗E1| = |M| + F with |M| base point free and F the fixed component. Take a Kähler class
H on X. Then 0 � σ ∗L.M.σ ∗(Hn−2) � σ ∗L.(M + F).σ ∗(Hn−2) = L.E1.H

n−2 = 0. Hence
σ ∗L.M.σ ∗(Hn−2) = 0. Thus, σ ∗L.M = 0 in H 2,2(X′,R) by [12, Appendix A, Lemmas A.4
and A.5]. So, by Lemma 2.3, σ ∗L equals M in NSQ(X′), after replacing L by its multiple. Thus
L ∈ NSQ(X), contradicting Lemma 2.4. This proves Lemma 2.6. �

Theorem 2.7 below effectively bounds the number of g-periodic prime divisors.

Theorem 2.7. Let X be a compact Kähler manifold of dimension n � 2 and q(X) = 0, and
g ∈ Aut(X) a weakly primitive automorphism of positive entropy. Then we have:

(1) X has none or only finitely many g-periodic prime divisors Di (1 � i � r; r � 0).
(2) If r > ρ(X), then n � 3 and (after replacing g by its power and X by its g-equivariant

blowup) there is an equivariant surjective morphism π : (X,g) → (Y, gY ) with connected
fibers, Y rational and almost homogeneous, dimY ∈ {1, . . . , n − 2}, and gY ∈ Aut0(Y ).

(3) If g is strongly primitive, then X has at most ρ(X) of g-periodic prime divisors.

Proof. Let Di (1 � i � r; r > ρ := ρ(X)) be distinct g-periodic prime divisors of X. Then Di ’s
are linearly dependent. Replacing g by its power, we may assume that g(Di) = Di for all i � r .
By the reasoning in Lemma 2.6, the Iitaka D-dimension κ := κ(X,

∑r
i=1 Di) � 1. If κ = n, then

replacing X by its g-equivariant blowup, we may assume that some positive combination M of
Di is nef and big and g∗M = M , contradicting Lemma 2.5. Thus, 1 � κ < n.

Take E1 := ∑t
i=1 aiDi with ai non-negative integers such that Φ|E1| : X · · ·→ PN has the

image Y with dimY = κ , and the induced map π : X · · ·→ Y has connected general fibers.
Since g(E1) = E1, replacing X by its g-equivariant blowup and removing redundant compo-
nents in E1, we may assume that Bs |E1| = ∅, π is holomorphic, Y is smooth projective, and
g descends to an automorphism gY ∈ Aut(Y ); further we can write E1 = π∗A, where gY (A)
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equals A and is a nef and big Cartier divisor with Bs |A| = ∅ (notice that A may not be ample
because we have replaced Y by its blowup). Hence gY ∈ Aut0(Y ) after g is replaced by its power,
so dimY �= n − 1; see Lemma 2.5. Therefore, 1 � κ = dimY ∈ {1, . . . , n − 2}.

By the assumption on g, we have ord(gY ) = ∞. Since q(Y ) � q(X) = 0, our Aut0(Y ) is a
linear algebraic group; see [11, Theorem 3.12] or [7, Corollary 5.8]. Let H be the identity com-
ponent of the closure of 〈gY 〉 in Aut0(X), and we may assume that gY ∈ H after replacing g by
its power. Let τ : Y · · ·→Z = Y/H be the quotient map; see [7, Theorem 4.1]. Replacing Y,Z,X

by their equivariant blowups, we may assume that Y and Z are smooth and τ is holomorphic. By
the construction, g ∈ Aut(X) and gY ∈ Aut(Y ) descend to idZ ∈ Aut(Z). The assumption on g

implies that dimZ = 0. So Y has a Zariski-open dense H -orbit Hy . In other words, Y is almost
homogeneous. Since H is abelian (and a rational variety by a result of Chevalley), Y is bimero-
morphically dominated by H (each stabilizer subgroup Hy being normal in H ), so Y is rational
(and smooth projective). (2) and (3) are proved.

To prove (1), suppose that X has infinitely many distinct g-periodic prime divisors Di (i � 1).
We may assume that κ := κ(X,

∑r
i=1 Di) = max{κ(X,

∑s
i=1 Di) | s � 1} � 1 for some r > 0,

and use the notation above. In particular, 1 � κ � n − 2. We assert that (∗) all Dj (j > r) are
mapped to distinct gY -periodic prime divisors D′

j ⊂ Y by the map π : X → Y , after replacing
{Di} by an infinite subsequence. Since π is smooth (and hence flat) outside a codimension one
subset of X and the π -pullback of a prime divisor has only finitely many irreducible components,
we have only to consider the case where Dj1,Dj2, . . . (with jv > r) is an infinite sequence of
divisors each dominating Y , and show that this case is impossible. Replacing g by its power
and X by its g-equivariant blowup, we may assume that |E3| is base point free for some E3 =
bj1Dj1 +· · ·+bjuDju with bjv ∈ Z�1, and Dj1 dominates Y (notice that some components of E3
are in the exceptional locus of the blowup). By the maximality of κ , we have κ(X,E1 + E3) =
κ(X,E1) and hence Φ|E1+E3| is holomorphic onto a variety W of dimension κ with E1 + E3
the pullback of an ample divisor AW ⊂ W . Thus taking a Kähler class M on X, we obtain a
contradiction:

0 = Mn−1−κ (E1 + E3)
κ+1 � Mn−1−κ .Eκ

1 .E3 � Mn−1−κ .Eκ
1 .Dj1 = Mn−1−κ .B > 0

where E1 = π∗A with A nef and big as above, and B = (π∗A|Dj1)
κ is a sum of Ak of

(n − 1 − κ)-dimensional general fibers of the surjective morphism π |Dj1 : Dj1 → Y . The as-
sertion (∗) is proved.

Now the infinitely many distinct gY -periodic prime divisors D′
j ⊂ Y are squeezed in the com-

plement of some Zariski-open dense H -orbit Hy of Y (for some general y ∈ Y , whose existence
was mentioned early on). This is impossible. Thus, we have proved (1). The proof of Theorem 2.7
is completed. �
Remark 2.8. Assume that the algebraic dimension a(X) = dimX in Theorem 2.7. Then X is
projective since X is Kähler. If X has ρ(X) of linearly independent g-periodic divisors, then
(a power of) g∗ stabilizes an ample divisor on X; so g is of null entropy by Lemma 2.5, absurd!
Thus, by the proof, ‘r > ρ(X)’ in Theorem 2.7(2) (resp. ‘ρ(X)’ in Theorem 2.7(3)) can be
replaced by ‘r � ρ(X)’ (resp. ‘ρ(X) − 1’).

Lemma 2.9. Let X be a projective manifold of dimension n � 2, and g ∈ Aut(X) an automor-
phism of positive entropy. Let L = L+ or L−. Then the nef dimension n(L) � 2, and the nef
g g
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reduction map π : X · · ·→Y in [2] can be taken to be holomorphic with Y a projective manifold,
after X is replaced by its g-equivariant blowup.

Proof. Since L �= 0, we have n(L) = dimY � 1. The second assertion is true by the construction
of the nef reduction in [2, Theorem 2.6], using the chain-connectedness equivalence relation
defined by numerically L-trivial curves (and preserved by g). Consider the case n(L) = 1. For
a general fiber F of π , we have L|F = 0 by the definition of the nef reduction. By Lemma 2.3,
a multiple of L is equal to F in NSQ(X), contradicting Lemma 2.4. �

We remark that the hypothesis in Lemma 2.10 below is optimal and the hypothetical situation
may well occur when X → Y is g-equivariant, Y is a surface, and Dj and L±

g are pullbacks
from Y , e.g. when X = Y× (a curve) and g = gY × id.

Lemma 2.10. Let X be a 3-dimensional projective manifold with q(X) = 0, and g ∈ Aut(X)

an automorphism of positive entropy. Let Di (i � 1) be infinitely many pairwise distinct prime
divisors such that L+

g .L−
g .Di = 0. Then for both L = L+

g and L = L−
g , we have L2 = 0 in N2(X)

and the nef dimension n(L) = 2.

Proof. Note that L+
g .L−

g �= 0 in N2(X) by Lemma 2.2 or 2.3. Set L1 := L+
g , L2 := L−

g and

λ1 := d1(g) > 1, λ2 := 1/d1(g
−1) < 1. Then g∗Li = λiLi . If L2

i �= 0 in N2(X) for both i = 1,2,
then Li.Li.Lj �= 0, where {i, j} = {1,2}; see Lemma 2.2; applying g∗, we get λ2

i λj = 1, whence
1 < λ1 = λ2 < 1, absurd.

To finish the proof of the first assertion, we only need to consider the case where L2
1 �= 0

and L2
2 = 0 in N2(X), because we can switch g with g−1. By Lemma 2.2, L2

1.L2 �= 0. Now
L1 + L2 is nef and big because (L1 + L2)

3 � 3L2
1L2 > 0. So we can write L1 + L2 = A + Δ

with an ample R-divisor A and an effective R-divisor Δ; see [15, Lemma 2.23] for the reference
on such decomposition. By Lemma 2.6 and taking an infinite subsequence, we may assume that
Li.Dj �= 0 in N2(X) for i = 1 and 2 and all j � 1, and Dj is not contained in the support of
Δ for all j � 1. Now L2

1.Dj = (L1 + L2)
2.Dj = (L1 + L2).(A + Δ).Dj � (L1 + L2).A.Dj �

A2.Dj > 0. Thus L1|Dj is a nef and big divisor and L2|Dj is a non-zero nef divisor such
that (L1|Dj).(L2|Dj) = L1.L2.Dj = 0. This contradicts the Hodge index theorem applied to a
resolution of Dj . The first assertion is proved.

Let L be one of L+
g and L−

g . By Lemma 2.9, we only need to show n(L) �= 3. As in
the proof of Theorem 2.7, we may assume that the Iitaka D-dimension κ := κ(X,E1) =
max{κ(X,

∑s
i=1 Di) | s � 1} � 1 for some E1 := ∑t

i=1 aiDi with positive integers ai . If
κ(X,E1) = 3, then E1 is big and hence a sum of an ample divisor and an effective divisor,
whence L+

g .L−
g .E1 > 0, contradicting the choice of Dj . Therefore, κ = 1,2.

Case (1). κ = 2. Let σ : X′ → X be a blowup such that |σ ∗E1| = |M| + F with |M| base
point free and F the fixed component. Since κ(X′,M) = κ(X,E1) = 2, we have M2 �= 0. If
σ ∗L.M2 = 0, then the projection formula implies that L.C = 0 for every curve C = σ∗(M1.M2)

with Mi ∈ |M| general members. So the nef dimension n(L) < 3.
Suppose that σ ∗L.M2 > 0. Then σ ∗L + M is nef and big because (σ ∗L + M)3 �

3σ ∗L.M2 > 0. Since σ ∗(L + E1) is larger than σ ∗L + M , it is also big. So L + E1 is big,
too. Hence 0 < L.L′.(L + E1) = L+

g .L−
g .E1, where {L,L′} = {L±

g }, contradicting the choice of
Dj and E1.

Case (2). κ = 1. We may assume that |E1| has no fixed component and is an irreducible
pencil parametrized by P1 (noting: q(X) = 0), after removing redundant Dj from E1. Since L±
g
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are semi g∗-invariant, every g(Dj ), like Dj , is also perpendicular to L+
g .L−

g . After relabeling and
expanding the sequence, we may assume that g(E1) is also a positive combination of Dj ’s. By
Case (1), we may assume that κ(E1 + g(E1)) = 1. For general (irreducible) members M1 ∈ |E1|
and M2 ∈ |g(E1)|, the two-component divisor M1 + M2 is a reduced member of |E1 + g(E1)|.

Note that N := h0(E1 + g(E1)) � h0(E1) + h0(g(E1)) − 1 � 3. The linear system |E1 +
g(E1)| gives rise to a rational map from X onto a curve B of degree � N − 1 in PN−1. Thus,
each member of |E1 + g(E1)| lying over B \ SingB , is a sum of N − 1 linearly equivalent
non-zero effective divisors, since B is a rational curve; indeed, the genus g(B) of B satisfies
g(B) � q(X) = 0. So E1 ∼ g(E1). Replacing X by its g-equivariant blowup, we may assume
that |E1| is base point free and hence E1 is a nef eigenvector of g∗. Now L+

g .L−
g .E1 = 0 in-

fers a contradiction to Lemma 2.2, since L+
g , L−

g and E1 correspond to distinct eigenvalues

d1(g),1/d1(g
−1),1 of g∗|NSQ(X). This proves Lemma 2.10. �

Lemma 2.11. Let A be a complex torus of dimension n � 2 and f ∈ Autvariety(A) of infinite
order such that f (D) = D for some subvariety pt �= D ⊂ X. Then there is a subtorus B ⊂ A with
dimB ∈ {1, . . . , n − 1} such that f descends, via the quotient map A → A/B , to an automor-
phism h ∈ Autvariety(A/B) having a periodic point in A/B .

Proof. Write f = Ta ◦ g with Ta ∈ TA a translation and g a group automorphism.
Case (1). κ(D) = dimD, i.e., D is of general type. Then Aut(D) is finite, so f s |D = idD for

some s > 0. Since f s fixes D pointwise, the identity component B of the pointwise fixed point set
Ags

(a subtorus) is a positive-dimensional subtorus; see [4, Lemma 13.1.1]. Write f s = Tc ◦ gs

with Tc ∈ TA. If dimB � n, then B = A, gs = idA and f s = Tc, so f s = id for f s |D = idD . This
contradicts the assumption on f . Thus 1 � dimB � n − 1. Our g acts on Ags

, so g(B) ⊂ Ags

is a coset in Ag2
/B � A/B . Thus g(B) = δ + B for some δ. So g(B) = B , because (∗): g is

a group-automorphism and 0 ∈ B � A. Now f (x + B) = a + g(x) + g(B) = f (x) + B . So f

permutes cosets in A/B and f s fixes those cosets d + B with d ∈ D. Lemma 2.11 is true.
Case (2). The Kodaira dimension κ(D) � 0. Then κ(D) = 0 and D = δ + B with a subtorus

B of A; see [13, Lemma 10.1, Theorem 10.3]. Now δ +B = D = f (D) = a +g(δ)+g(B), thus
g(B) equals a coset in A/B and hence g(B) = B by the reasoning (∗) in Case (1). Therefore,
f permutes cosets in A/B as in Case (1), and fixes the coset δ + B . So Lemma 2.11 is true.

Case (3). κ(D) ∈ {1, . . . ,dimD − 1}. By [13, Theorem 10.9], the identity connected com-
ponent B of B ′ := {x ∈ A | x + D ⊆ D} is a subtorus with dimB = dimD − κ(D). We claim
that f permutes cosets in A/B . Indeed, for every b ∈ B , we have D = f (D) = f (b + D) =
a + g(b) + g(D) = g(b) + f (D) = g(b) + D, so g(b) ∈ B ′. Thus g(B) � B ′. Hence g(B) = B

and the claim is true, by the reasoning in Case (1). Further, the map D → D/B is bimeromor-
phic to the Iitaka fibration, and κ(D/B) = dim(D/B) (cf. [13, Theorem 10.9]). f descends to
an automorphism f ′ ∈ Autvariety(A/B) stabilizing D/B ⊂ A/B . Using Case (1), we are done for
some quotient torus (A/B)/(B ′/B) ∼= A/B ′. Lemma 2.11 is proved. �
3. Proof of Theorem 1.1 and Remark 1.2(1)

In this section, we prove Theorem 1.1 in the introduction and the two results below. The-
orem 3.1 treats X with q(X) = 0, while Theorem 3.2 determines the geometrical structure of
those Kähler X with a strongly primitive automorphism.
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Theorem 3.1. Let X be a compact Kähler manifold of dimension n � 2 and irregularity
q(X) = 0, and g ∈ Aut(X) a weakly primitive automorphism of positive entropy. Then:

(1) X has finitely many prime divisors Bi (1 � i � r; r � 0) such that: each Bi is g-periodic,
and

⋃
Bi contains every g-periodic prime divisor and every prime divisor perpendicular to

L+
g or L−

g .
(2) Suppose that g is strongly primitive. Then the r in (1) satisfies r � ρ(X), and r = ρ(X)

holds only when the algebraic dimension a(X) < n.
(3) Suppose that X is a smooth projective threefold, and g is strongly primitive. Then

(L+
g + L−

g )|D is nef and big for every prime divisor D �= Bi (1 � i � r). In particular,
if a prime divisor D ⊂ X contains infinitely many curves each of which is either g-periodic
or perpendicular to L+

g + L−
g , then D itself is g-periodic.

A compact Kähler manifold X is called weak Calabi–Yau if κ(X) = 0 = q(X).

Theorem 3.2. Let X be a compact Kähler manifold of dimension n � 2, and g ∈ Aut(X)

a strongly primitive automorphism of positive entropy. Then the algebraic dimension a(X) ∈
{0, n}. Suppose further that (∗) either κ(X) � 0, or q(X) > 0, or κ(X) = −∞, q(X) = 0 and X

is projective and uniruled. Then (1), (2) or (3) below occurs.

(1) X is a weak Calabi–Yau manifold.
(2) X is rationally connected in the sense of Campana, Kollár–Miyaoka–Mori (so q(X) = 0).
(3) The Albanese map albX : X → Alb(X) is surjective and isomorphic outside a few points of

Alb(X). There is no h-periodic subvariety of dimension in {1, . . . , n − 1} for the (variety)
automorphism h of Alb(X) induced from g.

3.3. Proof of Theorem 3.1

The assertions (1) and (2) follow from Lemma 2.6, Theorem 2.7 and Remark 2.8. For (3), by
Lemmas 2.10 and 2.9, our X has finitely many divisors Dj (1 � j � s) such that L+

g .L−
g .Dj = 0

and L+
g .L−

g .D > 0 for every prime divisor D �= Dj (1 � j � s). Since both L±
g are semi g∗-in-

variant, these Dj ’s are permuted by g and hence are all g-periodic. Thus {Dj } ⊂ {Bi}.
Suppose that D �= Bi (1 � i � r) is a prime divisor of X. Then M := L+

g + L−
g is nef and

(M|D)2 � 2L+
g .L−

g .D > 0, so M|D is nef and big. Thus D has none or only finitely many curves
perpendicular to M , by the Hodge index theorem applied to a resolution of D. So D contains
only finitely many g-periodic curves (cf. Lemma 2.4(4)). This proves (3) and also Theorem 3.1.

3.4. Proof of Theorem 3.2

As in the proof of [16, Lemma 2.16], a suitable algebraic reduction X → Y , with dimY =
a(X), is holomorphic and g-equivariant. So a(X) ∈ {0, n}, since g is strongly primitive.

Consider the case κ(X) � 1. Let Φ = Φ|mKX | : X · · ·→ PN be the Iitaka fibration. Replac-
ing X by its g-equivariant blowup, we may assume that Φ is holomorphic and g-equivariant
onto some smooth Z with dimZ = κ(X). Our g descends to an automorphism gZ ∈ Aut(Z).
Now ord(gZ) < ∞ (so dimZ < dimX by Lemma 2.4(5)), by the generalization of [13, Theo-
rem 14.10] to dominant meromorphic selfmaps on Kähler manifolds as in [12, Theorem A or
Corollary 2.4]. This contradicts the strong primitivity of g. Therefore, κ(X) � 0.
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Case (1). q(X) > 0. We will show that Theorem 3.2(3) holds. Consider the Albanese map
albX : X → Alb(X) and let Y = albX(X) be its image. g descends to automorphisms g|Alb(X)

and h ∈ Aut(Y ). Since g is strongly primitive, dimY = n. Thus albX is generically finite onto
Y and hence 0 � κ(X) � κ(Y ) � 0; see [13, Lemma 10.1]. So κ(X) = κ(Y ) = 0. Hence albX is
surjective and bimeromorphic, with E denoting the exceptional divisor; see [9, Theorem 24]. If
albX is not an isomorphism, i.e., E �= ∅, then g(E) = E and h(albX(E)) = albX(E) because g

and h are compatible. By Lemma 2.11 and since g is strongly primitive, dim albX(E) = 0. So
Theorem 3.2(3) holds by Lemma 2.11.

If q(X) = 0 = κ(X), then X is weak Calabi–Yau by the definition. So we have only to con-
sider the case where q(X) = 0 and κ(X) = −∞, or the following case by the assumption.

Case (2). X is projective and uniruled. We will show that X is rationally connected. After g-
equivariant blowups, we may assume that the maximal rationally connected fibration π : X → Y

is holomorphic and g-equivariant, with Y smooth and dimY < n (cf. [12, Theorem C]). Since g

is strongly primitive, we have dimY = 0, so X is rationally connected. Theorem 3.2 is proved.

3.5. Proof of Theorem 1.1 and Remark 1.2(1)

For Theorem 1.1(1), by Theorem 3.1, we may assume that q(X) > 0, so Theorem 3.2(3) oc-
curs. Suppose that X has r � ρ := ρ(X) of g-periodic prime divisors Di . Then each albX(Di) ⊂
Alb(X) =: Y is h-periodic, so it is a point, since we are in Theorem 3.2(3). Thus these Di are irre-
ducible components of the exceptional divisor E of albX : X → Y . We assert that (∗∗): NSQ(X)

has a basis consisting of the irreducible components of E and the pullback of a basis of NSQ(Y ).
This is clear if albX is the blowup along a smooth center. The general case can be reduced to
this special case by the weak factorization theorem of bimeromorphic maps due to Abramovich–
Karu–Matsuki–Wlodarczyk (or by blowing up the indeterminacy of Y · · ·→ X as suggested by
Oguiso). Now the assertion (∗∗) implies that r = ρ, E = ∑ρ

i=1 Di and ρ(Y ) = 0 (so a(X) = 0
by Theorem 3.2). This proves Theorem 1.1(1) and Remark 1.2(1).

For Theorem 1.1(2), let D ⊂ X be a prime divisor containing infinitely many g-periodic
curves Ci (i � 1). We may assume that q(X) > 0 by Theorem 3.1. The assumption (∗) of Theo-
rem 3.2 follows from the successful good minimal model program for projective threefolds. So
Theorem 3.2(3) occurs, and hence albX(Ci) is a point since it is h-periodic, noting that Ci is
g-periodic and g and h are compatible. Thus, these Ci are contained in the exceptional divisor
E of albX , and we may assume that the Zariski closure

⋃
j Cmj

equals E1 for some irreducible
component E1 of E and some infinite subsequence {Cmj

} ⊂ {Ci}. Thus E1 = D, for Cmj
⊂ D.

Since g and h are compatible, we have g(E) = E and hence gs(E1) = E1 for some s > 0. So
D = E1 is g-periodic. This completes the proof of Theorem 1.1.
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