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Abstract

As incident detection on a typical busy urban road link or intersection still demands more efficient algorithms, this paper
introduces a methodology that can be used to characterize the various traffic patterns (incident or no incident) using typical link
passage detectors. Offline urban incident scenarios are generated using a microscopic simulation model assuming varying traffic
link flows, signal green phase and cycle times, link lengths. Similar scenarios are also generated for non-incident cases. Three
detectors were assumed on each link to extract traffic measures. Comparative numerical statistical analyses were conducted to
identify the traffic measures (such as the average speed and flow) that are likely to be affected by the incidents. And further
analysis was conducted to quantify the most probable thresholds to be used in the proposed urban incident detection model. The
proposed model is validated using simulation data. The performance of the proposed model is assessed using dynamic
performance indicators such as the success rate of detecting an incident at a specific cycle time, and the false alarm rate.
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Transport Research Arena 2012 Open access under CC BY-NC-ND license.
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1. Introduction

Handfuls of research have been developed and incidents detections algorithms for freeways and urban
expressway or tunnels are already there with the commercial traffic control systems. On the other hand, detecting an
incident on an urban road link or intersection is very difficult to estimate. Urban roads and intersections are
interrupted basically by cross-roads, entry-exit to/from the arterial link, pedestrian cross-walk and traffic control
signal systems within very short space and time intervals. The traffic dynamics of the recurrent congested urban link
and intersection is very similar to the sudden incident scenario. This makes it difficult to distinguish between an
incident and non-incident case with the related traffic parameters. Apparently, the developed research in this area is
not that significant and therefore, this paper strives to fill up some of this research gaps.

This paper describes the development of a threshold-based offline urban incident detection model that tries
to detect the incident status of each analysis time-step of the incident(s) occurred on a link of a pre-timed signal
network. Here, the analysis time step is taken as the cycle time of the downstream signalized intersection of the
subject link. The used approach is to develop some simple regression models using the extracted traffic measures
data from the fixed detectors.
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2. Literature Review

Most of the developed freeway incident detection algorithms could be generally categorized into some
typical groups based on the adopted analytical and heuristic techniques. Different algorithms employ different data
requirements, principles, and complexity [Parkany (2005)]. The notable forms of freeway based incident detection
methodologies are (a) comparative algorithms (b) statistical algorithms (c) time series algorithms (d)
filtering/smoothing algorithms (e) traffic modeling algorithms (f) artificial intelligence algorithms and (g) image
processing algorithms. However, to overcome the inherent disadvantage of the point-based detectors, the probe-
vehicle based algorithms [Sermons and Koppelman (1996), Hellinga and Knapp (2000)] emerged to detect incidents
basically on the urban expressway. The probe-vehicle could be equipped with some GPS (Global Positioning
System), AVI (Automatic Vehicle Identification), RFID (Radio Frequency Identification Device), Cellular or other
driver based sensor technologies.

For the urban case, Thomas (1998) reformulated the urban incident detection algorithm as a multiple
attribute decision making problem with Bayesian scores. But, the success of this method depends on the traffic
status dataset from historical traffic pattern for both link and the detector stations. However, this AID algorithm does
not consider the status of the arterial traffic control signal system. Lee et al (1998) developed fuzzy-logic based
incident detection algorithm that operates in a recursive manner with the average of the traffic parameters of the last
5 minutes. It has a scope to be incorporated into a real-time traffic adaptive control system. However, this algorithm
is developed only for a diamond intersection and the applicability of this algorithm is not in general with any traffic
control system and the link type. Zhang and Taylor (2006) presented Bayesian network model that updates the
incident probability at each detection interval through two-way inference for arterials. The detection rate and false
alarm rate are not sensitive to the incident decision thresholds. However, the algorithm is applicable to the
mainstream traffic flow of the signalized intersections with pre-defined signal settings only.

Liu et al (2007) presented a CUSUM (Cumulative Sum) algorithm based on non-parametric optimization
technique as incident detection algorithm for an urban expressway using the probe vehicle data. However, this
algorithm is applicable only for the urban expressway, not for any typical urban arterials that have interruptions of
the traffic control signals. Hawas (2007) developed also a neuro-fuzzy-logic incident detection algorithm for urban
road network. The algorithm is integrated with an incident management module. The adopted approach is new for
the development of incident detection algorithm that does not rely on ‘‘real data’’, but rather it can be fully
developed using well-validated ‘simulation’” models. However, the success of this method heavily depends on the
extensive dataset for the training of the neuro-fuzzy. Recently, Dia and Thomas (2011) developed neural network
models for automatic incident detection on arterial roads based on a data fusion technique to achieve more
improvement on typical incident detection rate using the simulated loop detector data and probe vehicle data. Here,
the emphases were to evaluate the better performing neural network model type and the loop detector
configurations.

In summary, all the developed freeway or urban incident detection algorithms primarily use simulated
incident data to have some specific threshold values of some traffic variables for incident identification. The
techniques are different in forms of estimation of the relevant parameters. The performance of the algorithm is
compared against each other for the three primary key performance indicators like detection rate, false alarm rate
and mean time to detect. It is to be noted that these algorithms ,except Hawas (2007), just detect some percentage of
the total number of incidents that occurred during the recorded or simulated timeframe and the incident must be
detected within a short time frame (example, 5 minutes) considering the whole individual incident as a single data
only. However, these algorithms typically do not account for the true start time or the terminating time of an
individual incident, nor these do show the incident status of intermediate time-steps of an individual incident. Also,
these algorithms typically do not consider the effects of link-lengths, hourly traffic volume and associated green-
time and cycle time of the approaching pre-timed intersection.

Therefore, this paper presents a new urban incident detection model that detects the incident status of each
single operating time-step (i.e. cycle time of the downstream signal) under a specific signal cycle time, link-length
and traffic volume combination. The presented methodology is built on the conceptual assumption that the average
detectors’ readings in the case of incident may significantly vary from the counter readings in the case of no
incident.
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3. Methodology

The adopted methodology that this study followed could be summarized as (a) development of off-line
incident scenarios accounting for various network configurations, link volumes, signal settings by simulations (b)
carry on detailed data analyses to capture the parameters that are likely to be affected by various incident scenarios
(c) carry on detailed regression models to come up with some incident status predicting models (d) carry on
validation tests of the proposed models.

3.1. Experimental Set Up of the Incident Modeling

An incident is modeled here as any single lane-blocking event that persists at least for 6 minutes on a
typical three-lane urban arterials in the simulation models. Longer time incidents could be detected easily as these
might have some significant impacts on the traffic parameters but the primary challenge is to detect the incidents of
relatively shorter times. Therefore, as a start, this research focuses on a single-lane blocking incidents of 6 minutes,
8 minutes and 10 minutes initially. A typical pre-timed urban intersection network that consists of four links of
similar geometry and traffic conditions (Figure 1) was selected as the scope for initial urban incident detection
model development because it represents the simplest case of a signalized network. However, the incident was
generated only on a single link within some specific time period.
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Fig. 1. A signalized (pre-timed) intersection, representing the simplest urban road network, shows four arterial approach links, all detector
placements and a sample randomly generated incident location on the westbound approach
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3.2 Incident Data Development

In the absence of real field data of incidents, it is a common practice to use simulation data to generate
incident scenarios. Therefore, NETSIM micro simulation was used to generate incident data in this study. NETSIM
has the capability of generating some long-term events on some designated lane at some specific time for certain
durations. NETSIM places the incident randomly on the designated lane. But the limitation is that it has no
capability of producing an incident at a designated place [9]. This benchmark simulation program was adopted as it
is one of the best available microscopic simulation off-self. At least 5 incidents were generated at random locations
of lane 1 of west bound approach (Figure 1) for a specific combination of cycle time, link length and traffic volume.
The difference among the five incidents models i.e. when these are generated, how long these lasted and on which
lane these occurred are all described briefly in Table 1.

3.3 Incident Data Analysis and Regression Models Development

The detector data were extracted for both incident and non-incident cases for a specific operating
configuration. The term ‘operating configuration’ refers the combination of a specific cycle-time, a specific link
length and a specific traffic volume throughout this paper. Some specific traffic measures of importance were
chosen to develop some regression models that give the indication of either an incident or non-incident status of a
single analysis time-step of that operational traffic hour. The ‘Incident Detection Rate” and ‘False Alarm Rate’ were
chosen as the measures of effectiveness (MOESs) of these regression models.

4. Incident Modeling

Table 1 illustrates the overall NETSIM simulation runs with incident and non-incident scenarios employed
in this study. Incidents were introduced at random locations of lane 1 of the west bound arterial (Figure 1) at some
specific time for some specific durations. Each detector covers all the three lane along its length placed
perpendicularly to the direction of traffic flow. When any vehicle hits on any detector of any of the three arterial
lanes, the corresponding detector counts the number of vehicle as one unit and it also calculates the corresponding
speed of that vehicle.

For simplicity and convenience of the data extraction from the detectors, some assumptions were made in
generating incident scenarios in the NETSIM simulation runs. Such as (a) the incident starts exactly when a new
signal cycle begins with the green phase of the subject approach (b) the incident exactly terminates when the last
cycle-time completes after some specific cycle-time durations of the incident. These assumptions of the incident
start and end time match with cycle time enable us to capture the relationship between the traffic measures of
importance of the downstream detector during the green phase and the incident status in the proposed model. In
summary, the factors varied in the simulation runs were (A) downstream signal cycle Length, the traffic volumes
and the approach length to reflect different network configurations. Different incident durations were also
considered: 6, 8 and 10 minutes. For each operating configuration, at least 5 incidents were generated at different
times and random places on the lane 1 of the subject arterial. The minimum duration of a whole incident was taken
as 6 minutes intuitively to reflect the incident as a long-term event in NETSIM. Both incident and non-incident
scenarios were run for the same simulation duration and with the same random seed so that the counts/speeds are
directly comparable. At this stage of the research, for each specific link length, the volumes levels were chosen in
such a manner that no spill-over of the link is happening in the cases of incident-free conditions because of
congestions.

The detector placements are kept fixed; near the stop-line (downstream detector), at mid-block position
(mid-detector) and at end of the link (upstream detector). The vehicle composition is kept fixed; private-cars 90%
and heavy-vehicles 10%. The percentages for left, through and right turns at each approach were fixed as 25%, 50%,
and 25%, respectively. The operating speed limit was fixed at 60 km/hr.
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Table 1. Offline incident scenarios

Input Specifics Incident Modeling Specifics
4-phase Without
Cycle -incident . . Simulation
(Phgse Incident Link Link Rgn Runs (illjlcident . (t.otal
Split = . Length  Volume (simulated . ) incidents
data Duration (m) (veh/hr) cycle (simulated duration, .start durations)
. : cycle and end time) .
f:xtractlon times) times) [in cycle times] [H,l cycle
interval) times]
100 1(30) 6(30)
300 500 1(30) 6(30)
6 min 1000 130) 6(30) Runl: (6,2,7)
(360 sec) 100 130) 6(30) Run2: (6, 6,11)
60 sec ie. 500 500 1(30) 6(30) Run3: (6,
(15 sec) 6 analysis 1000 1(30) 6(30) 11,16) 180 (35)
time steps 1500 1(30) 6(30) Run4: (6,16,21)
(: 6 cycle 100 1(30) 6(30) Run5: (6,21,26)
times) 1000 300 130) 6(30) Runé: (5,26,30)
1000 1(30) 6(30)
1500 1(30) 6(30)
100 1(23) 5(23)
300 500 1(23) 5(23)
8 min 1000 1(23) >(23) Runl: (6, 2,7)
(480 sec) 100 1(23) 523) Run2: (6, 6,11)
e 16 sgp 001023 523) Run3: (6,
(20 sec) a.nalys1s 1000 1(23) 5(23) 11,16) 115 (27)
time steps 1500 1(23) 5(23) Run4: (6,16,21)
(.:6 cycle 100 1(23) 5(23) Run5: (3,21,23)
times) o 3% 123) 5(23)
1000 1(23) 5(23)
1500 1(23) 5(23)
100 1(18) 6(18)
300 500 1(18) 6(18)
. 1000 1(18) 6(18)
(lgofgl‘;;c) 100 1(18) 6(18) Runl: (6,2.7)
100sec o0 500 200 148) 6(18) Eﬁﬁf Eggi%
(25 sec) Z‘I‘iy:t‘:ps 1(5)88 i(ig) 2(12) Rund: (6.11,16) 108 GD
(26 oyclo = 1(18) 6(18) Runs: (5,14,18)
times) (18) (18) Runé6:(2,17,18)
1000 500 1(18) 6(18)
1000 1(18) 6(18)
1500 1(18) 6(18)

Total Simulation Runs - 33 198 - -
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5. Data Analysis

The approach used for the data analysis is based on the assumption that it is likely that the traffic measures
(extracted from detectors) of the incident-induced cycle-time will vary from the counter traffic average values
measured in no incident case. The proposed model is supposed to detect the incident status at every cycle time. The
considered traffic measures are the ‘accumulated detector counts’ and the ‘average detector speeds’ for all the three
detectors. It is to be noted that, the smallest data extraction period is equal to the green (or red) split time of that
cycle. So, at every cycle time, there are four data extraction periods. For the upstream detector and mid-detectors,
the traffic measures are estimated for each cycle time (i.e. 4 split phases), by manipulating the corresponding traffic
measures over the four data extraction periods of the detectors (within that cycle). For example, the analysis time
step (i.e. cycle time) vehicle count is estimated by accumulating the vehicular counts reported during the four data
extraction periods (i.e. one green phase and three red split phases) within the same cycle. On the other hand, the
analysis time step (i.e. cycle time) average speed is estimated as the average of the speed values reported during the
four extraction periods i.e. four split phases. But for the downstream detector, the traffic measures of interest during
the green-phase only would be used as the analysis data for that cycle time. It is quite reasonable that during the red
phases, except the front leading vehicles near the STOP line (i.e. near the downstream detector), no other vehicles
would hit the down detector from all 3 lanes during the red phases. Table 2 illustrates the used traffic measures in
analysis and in developing the incident-detection regression models.

Table 2. Traffic measures at every-cycle time used in the incident detection models

Parameters to be used in the

Traffic measures of the no- .
regression models

Traffic measures of the

incident incident (at cach cycle time
scenarios scenarios where ‘n’};s the tofal
Detector [for each analysis [for each analysis . .
time-step] ime-step] simulated cycle times ) for a
specific combination
Vehicle Speed Vehicle count  Speed Vehicle count
count Speed measures
measures measures measures measures measures
. . ati f iati f
Upstream Total vehicle Total vehicle deviation of ~ deviation ©
Average Average upstream upstream
detector count count d . d d:
[data at each  (UC) speed () speed etector count: etector speed:
(US) ! (Sl) ch ZSI
cycle] X, =UC-~=— Y, =US-=—
n n
Midblock  Total vehicle Total vehicle deviation of deviation of
Average Average midblock midblock
detector count count d . d a4
[data at each (MC) speed (C») speed etector count: etector speed:
(MS) ’ (S2) 2. S,
cycle] X,=MC-=— Y, =MS-=—
n n
Total vehicle Average . Average deviation of deviation of
Downstream Total vehicle
count speed . speed downstream downstream
detector . . count [during . . .
[data at each [during [during green green phase] [during detector count:  detector speed:
cycle] green phase] phase] () green phase] Y -pC X Y = DS DS,
Y (DC) (DS) : (S5) T R

6. Development of Incident Detection Models

This section highlights the development of the incident detection models. At this stage of the research, it
was tested that if the simplest form like ‘general linear regression model’ could predict the incident status rather than
using other binary discrete choice regression forms. The calibrated regression models can then be used for
predicting incident status of a single time-step. In developing the regression model, the independent variables (as
indicated above in Table 2) are the traffic measures extracted from the simulation detectors. The dependent variable
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of the regression model is either an incident status (yes) or a normal recurrent traffic condition (no incident) of a
single time-step. To increase the goodness of fit of the devised regression models, the two binary values (0 and 1)
were avoided. The dependent variable of an incident situation is allocated a value of 0.75 (instead of 1), and
allocated a value of 0.25 (instead of 0) for the no incident situation. In applying the regression model to predict the
incident status, a threshold value is utilized. If the estimated dependent variable is higher that the threshold value
(say 0.5) an incident is indicated. A dependent variable of a value lesser than the threshold value is an indication of
no incident. The threshold value is chosen to maximize the incident detection rate and minimize false alarms. It was
determined with iterative analyses. Initially, the simple value of 0.5000 was set as the intuitive separating point
between incident and non-incident status. Then, this value was decreased (or increased) by 0.0001 unit for next
iteration until it improves the incident detection rate and keep the false alarm rate within 20%. If threshold value
were chosen too small, it results in almost 100% incident detections of all incident-induced time-steps along with
excessive high false alarm rate. On the other hand, if the threshold were chosen too high (say, 0.70) there would be
no-incident time step and no false alarm as well. The adopted measures of effectiveness of this model are as
follows:

Incident Detection Rate: The percentage of time-steps that the model predicts as incident-induced time-steps out of
all incident-induced time-steps. The true detection of incident status of a time step is defined as the prediction of an
incident status by the model while the associated time step was truly an incident-induced simulated time-step.

False Alarm Rate: The percentage of time-steps that the model predicts as incident-induced time-steps out of all
normal incident-free time-steps. The false detection of a time step is defined as the prediction of an incident status
by the model while the associated time step was truly incident-free. It is to be noted that the ‘Average Time to
Detect’ the incidents is the time of one analysis time-step as this model detects whether an individual time-step is
incident-induced or incident-free.

The form of linear equation that was tested to fit the predicting equations is:
General Liner Model: y = B, + B, X, + B, X, + B, X, + B,Y, + B.Y, + .Y,

Here, PBs are coefficients of the associated traffic parameter. Some other notable non-linear forms of equations were
also tested. However, it was found that the non-linear regression equations here do not improve the model ‘goodness
of fit’ at all as compared to the general linear additive model. So, the general additive linear regression equation was
adopted as the suitable regression model so far. The R? values of the regression equations range between 0.08 to
0.30. Due to the unacceptable R* values, the goodness of fit is particularly judged by the values of the incident
detection rate and the false alarms.

7. Results

The analysis of variance tests revealed that all the traffic parameters of X;, X,, X3, Y, Y, and Y; were
found significant or slightly significant in predicting the response (incident status).

ONormal Time-Step with False
Incident
Time-Step with Incident
Detected Correctly

B Time-Step with Incident

81111 U S ||| E—

1 35 7 9111315171921232527293133353739414345474951535557596163656769717375777981
Analysis Time Step (=Cycle Time)

Fig. 2. A typical outcome of the incident status

Figure 2 displays a typical outcome of the incident detection model for each-time step for the case of 80 sec cycle
time, 300m link length and 1000 veh/hr. Here, the blank time-step means correctly detected normal incident-free
cycle time duration. Table 3 includes the overall threshold based regression models with associated coefficients of
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each specific operating configuration. It is to be noted that the threshold were found within the range of 0.3564 to
0.5000. The detection rates range from 23% to 87% while the false alarm rates range from 0% to 20%.

Table 3. Effectiveness of regression-based incident detection models

Thre Incid-
Cycle Link shol St False
. Veh Coefficients of regression models detec- alarm
time  length h d .
(m) r valu tion rate
rate (%)
D
Bo B, B, B: B4 Bs Be
100 0.336  0.025 0.172 0.022 0.001 -0.017 0.003 0.37 40 17
300 500 0.341 -0.002 -0.012 -0.029 -0.003  -0.020 0.001 0.39 46 13
100 0301 -0.003 -0.026 -0.030 -0.048 -0.013 0.011 042 71 8
100 0.348 -0.008 0.000 -0.006 _ 0.000 0.001 0.000 035 23 19
60 500 500  0.326 0.041 -0.004 -0.002 -0.015 -0.027 - 042 51 10
sec 100 0322 -0.005 -0.011 -0.020 -0.059  0.006 0.009 0.38 66 16
150 0328 0.034 -0.023 -0.009 -0.026  0.001 0.027 0.38 69 17
100 0.335  0.024 0.180 -0.012  -0.003  -0.018 0.000 0.37 40 20
1000 500 0.345 0.022 -0.007  0.003 -0.032  -0.002 0.001 0.37 40 19
100 0.343 0.016 -0.026 -0.018 0.030 -0.010 0.003 0.38 60 19
150 0.331 -0.016 -0.019  0.003 -0.009  -0.014 0.017 039 77 16
100 0.357 0.071 0.182 -0.008  -0.006  -0.016 0.001 0.40 33 18
300 500 0.313 0.022 -0.079 -0.009  0.000 -0.038 0.009 045 67 5
100 0.308 0.024 -0.014 -0.019 -0.059  -0.008 0.025 043 74 8
100 0.360 0.088 0.180 -0.035  -0.009  -0.015 0.001 040 37 20
80 500 500 0.339 -0.031 -0.051 -0.032 -0.058 0.014 - 043 74 9
sec 100 0.311 0.012 -0.012 -0.015 -0.073  0.001 0.015 045 70 5
150 0342 0.008 -0.025 -0.001 -0.039 -0.003 0.035 045 70 1
100 0.340 -0.072 0.310 0.033 0.007 -0.028 - 039 52 20
1000 500 0.356 0.011 -0.006 -0.003 -0.043  0.004 0.016 041 52 20
100 0.338  -0.007 -0.007 -0.024 -0.066 0.019 0.017 0.40 63 16
150 0354 0.029 -0.020  0.000 -0.024  -0.002 0.034 042 41 14
100 0.374 0.018 0.160 -0.043  -0.002  -0.014 0.001 043 32 5
300 500 0.341 0.015 -0.019 -0.011 -0.008 -0.047 0.018 044 71 12
100 0321 0.012 -0.035 -0.018 -0.067 -0.001 0.026 043 8l 0
100 0.389 0.002 0.142 -0.019  0.000 -0.012 0.000 042 32 16
100 500 500 0.369 0.035 0.006 -0.008  -0.029  -0.025 0.027 045 52 17
sec 100 0351 0.043 -0.025 -0.038 -0.060 -0.036 0.032 040 81 16
150 0.355 0.058 -0.026 -0.002 -0.032 -0.014 0.036 045 77 3
100 0382 -0.052 0.119 -0.044  0.004 -0.011 0.001 042 42 16
1000 500  0.373 0.022 -0.025 -0.010 -0.029  -0.026 - 048 39 17
100 0.309 -0.064 -0.014 -0.031 -0.060 0.011 0.009 0.50 87 0
150 0371 0.044 -0.016 -0.014 -0.059 -0.009 0.046 043 71 14

It is apparent that the incident detection rate is lower for the cases of low traffic volumes (100
vehicles/hour). At low traffic volumes, there is no significant impact on the detector readings or the adopted traffic
measures. Even with long incident durations, vehicles could easily bypass the blocked lane through other free lanes.
This relatively lower traffic volume also emerges with high false alarm rates. This limitation (low detection rates at
low traffic volumes) is quite similar to that of the freeway incident detection models. At such low traffic volumes
one may argue that traffic control centre does not necessarily have to respond by control adjustments as the incident
does not impact the traffic flow significantly.
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From the sensitivity analyses of the numerical values of the regression coefficients in Table 3, it was found
that Py is significantly sensitive to both cycle time and volume variations. 3,, B4 and B¢ are significantly sensitive to
volume variations only. B; B; and Bs are not significantly sensitive to the cycle time, link length and traffic volume
variations. This implies a good potential to come up with some general regression models irrespective of any link
length variations. Also, the threshold values are significantly sensitive to both of the cycle time and volume
variations.

8. Validation Tests

Another set of models were developed to validate the developed threshold-based incident detection models as
indicated hereafter.

8.1 Validation

To validate the models, another set of incident scenarios was modeled with NETSIM. These validation scenarios
are different from those used to calibrate the models. In the validation scenarios, the incident duration was kept as 8
time steps for all cycle times. The incidents starting and ending time steps are 9 and 16, respectively. The incident
durations are 480, 640 and 800 seconds for the cycle times of 60, 80 and 100 seconds, respectively. The incidents
were generated not only on lane 1 only, but also on lane 2 (Figure 1) for around half of the scenarios to reflect a
significant change in incident occurrences. Some of the Lane-2 incidents were generated along with hourly traffic
volumes of 500 and 1000 veh/hr for all link lengths and cycle time of 60 seconds. Some other Lane-2 incidents were
generated along with hourly traffic volumes of 100 and 1500 veh/hr for all link lengths and cycle time of 80
seconds. Also, Lane-2 incidents were generated along with hourly traffic volumes of 500 and 1500 veh/hr for all
link lengths and cycle time of 100 seconds. In general, the validation scenarios reflect different settings of incident
starting times, incident durations, locations and incident blocking lanes from the original models that were used to
develop the regression models. These different settings of the inputs also reflect some sort of robustness of these
models.

The developed regression models (listed in Table 3) were used to predict the incident status using the data
of the validation scenarios. The results indicate that all the Lane-2 operating configurations emerged with an average
detection rate of 51% (standard deviation 28%), and an average false alarm rate of 16% (standard deviation 8%).
Lane-1 validation scenarios data resulted in 45% average incident detection rate (standard deviation 28%) and 9%
average false alarm rate (standard deviation 10%). The lower detection rates (of less than 40%) were found with low
traffic hourly volumes (up to 500 vehicles/hour). Except for few cases, the false alarm rates are within acceptable
limits. As the hourly traffic volume is the most significant influencing factors for the coefficients of the regression
models (in Table 3), some volume-wise generalized regression models were further developed. These models can be
used for predicting the incident status irrespective of the cycle-time and the link length. The volume-wise
generalized models were derived by averaging the corresponding coefficients and the thresholds of the models in
Table 3.

100 veh/hr (threshold: 0.3952):

y=0.3579+0.0107.X, +0.1606.X, —0.0124X, — 0.0009Y, — 0.0144Y, +0.0007Y, - -+------- (1)
500 veh/hr (threshold: 0.4271):

y=0.3448+0.015X, —0.0219X, —0.0112.X, —0.0241Y, —0.0186Y, + 0.0064Y, +----+----- (2)
1000 veh/hr (threshold: 0.4217):

y=0.3227+0.0031X, —0.0189.X, —0.0237.X, — 0.0513Y, — 0.0034Y, + 0.0163Y, --+------- (3)
1500 veh/hr (threshold: 0.4207):

y=0.3468+0.0262X, —0.0215X, —0.0038.X, —0.0315¥, — 0.0068Y, +0.0325Y, -+ ++------- (4)
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In applying the generalized models (equations 1 through 4) using the data of the validation scenarios, the
Lane-1 incidents scenarios resulted in 51% average incident detection rate (standard deviation 24%) and 12%
average false alarm rate (standard deviation 8%). Lane-2 incidents scenarios resulted in 42% average incident
detection rate (standard deviation 27%) and 17% of average false alarm rate (standard deviation 9%). To a great
extent, the generalized models conform to similar results as of the original incident prediction models.

9. Conclusions

In brief, this paper presented an attempt to introduce a new form of urban incident detection models to
capture the incident status of each analysis time step. This approach is a combination of simple regression models
and threshold values for each specific combination of cycle time, link length and hourly traffic volume. The
rationale for developing these models is based on the assumption that the no-incident traffic measures extracted
from the detectors’ readings significantly vary from the counter readings in the case of incident. Except the
relatively lower hourly traffic volumes, the incident detection rate and the false alarm rate came quite satisfactory
for all cases. Each operating configuration specific model and also the generalized models were validated. The
models proved to be robust with slightly varied input attributes. Thus, this study tried to address some of the gaps in
the research areas of urban incident detection models.

However, still good potential remains in obtaining more efficient models for improved detection rates while
minimizing false alarm rates. Also, further challenges remain in predicting the incident status with significantly wide
variations of the input attributes from the base cases, with the malfunctioning of the detectors and also with
variations with detector placements. Next stage of research would focus on comparisons of this simple regression
model with binary logit regression models and incorporation of conventional incident and false alarm detection rates
using the number of incidents only, not the incident-induced analysis time-steps. Further research would be
conducted focusing on comprehensive sensitivity analysis of all the input settings and parameters, reduced traffic
parameters with the detectors, testing the impact of the incident placements on a specific lane, varying the incident
locations on other lanes, varying incident duration time-steps, varying detector placements, varying cycle lengths,
varying traffic flows on other links of the downstream intersection. Also, apart from regression type models, other
heuristic methodology like nuero-fuzzy models would be tested to come up with some improved models. Finally,
some field data collections of the model parameters could be conducted to test the proposed model(s) in a real traffic
conditions upon the availability of the associated roadway devices and signal control system in the UAE.
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