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ABSTRACT The observation of membrane domains in vivo and in vitro has triggered a renewed interest in the size-dependent
diffusion of membrane inclusions (e.g., clusters of transmembrane proteins and lipid rafts). Here, we have used coarse-grained
membrane simulations to quantify the influence of a hydrophobic mismatch between the inclusion’s transmembrane portion and
the surrounding lipid bilayer on the diffusive mobility of the inclusion. Our data indicate only slight changes in the mobility (,30%)
when altering the hydrophobic mismatch, and the scaling of the diffusion coefficient D is most consistent with previous
hydrodynamic predictions, i.e., with the Saffman-Delbruck relation and the edgewise motion of a thin disk in the limit of small and
large radii, respectively.
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The long prevailing view on biomembranes as a fluid

mosaic (1) has undergone a major change since a variety of

membrane domains, e.g., clusters of lipids and/or proteins,

have been postulated and, in part, shown to exist in living cells

and artificial bilayers (see, e.g., (2–4) for reviews). The obser-

vation of larger entities on membranes has triggered an

increased interest in the size-dependentmobility ofmembrane

inclusions. Based on the seminal work by Saffman and

Delbruck (5) and its subsequent extension (6), very recently

an approximate analytical expression for the mobility mm of

an incompressible, cylindrical inclusion of radius R in a

membrane has been derived (7):

mm ¼ ð2j � 1ÞlnðjÞ � g1 8j=p

4phmh 11 8j
3
lnðjÞ=p1

a1j
b1

11 a2j
b2

 !: (1)

Here, j ¼ Rhc/(hhm) with h being the bilayer thickness and

hm, hc denoting the viscosities of the membrane and the

adjacent fluid, respectively; g � 0.5772 is Euler’s constant,

b1 ¼ 2.74819, b2 ¼ 0.614465, and a1 ¼ 0.433274, a2 ¼
0.670045. The diffusion coefficient is determined by D ¼
mmkBT.
For small radii (j / 0), Eq. 1 converges toward the fa-

miliar result D; ln(1/j) – g (5), while for j /N the result

for an edgewise motion of a thin disk, D ; 1/j, is recovered
(6). Indeed, both regimes have been supported by a number

of experiments (7–10) and simulations (11).

Owing to the assumptions in themean-field approach (lateral

motion of a cylinder in a two-dimensional fluid; see (5,6)), Eq.

1 does not include any information on how the mobility mm

changes when the inclusion locally perturbs the lipid bilayer,

e.g., due to a hydrophobic mismatch between the inclusion’s

transmembrane portion and the hydrophobic core of the bilayer

(see (12) for a recent review on hydrophobic mismatching).

Recently, a correction to the results of the literature (5,6),which

included local bilayer perturbations by a coupling constant c,
has been derived to explain experimental observations on a

scaling D; 1/R even for j � 1 (13,14):

m ¼ mm=ð11 cjmmÞ: (2)

Yet, as the derivation of Eq. 2 relied on a few ad hoc assump-

tions, it remained somewhat unclear if it indeed reconciles the

conflicting experimental results and if it is capable of properly

describing the diffusion of membrane inclusions with a hydro-

phobic mismatch.

To thoroughly probe the modulation of the mobility of

membrane inclusions via hydrophobic mismatching, we have

employed coarse-grained membrane simulations (dissipative

particle dynamics; see, e.g., (15) for an introduction). Between

any two beads i, j with a distance rij ¼ jrijj ¼ jri – rjj # r0, a
linear repulsive force FC

ij ¼ aijð1� rij=r0Þr̂ij was imposed

(with r̂ij ¼ rij=rij). The hydrophobicity of beads was tuned via
the interaction energies aij while bonds within lipids and

proteins were modeled via a harmonic potential U(ri, ri11) ¼
k(ri,i11 – l0)

2/2 between the respective beads. Lipids and

proteins were given an additional bending stiffness via the

potential V(ri�1, ri, ri11) ¼ k[1 – cos(f)] with cosf ¼
r̂i�1;i � r̂i;i11: For the thermostat, dissipative and random forces

were given by FD
ij ¼ �gijð1� rij=r0Þ2ðr̂ij � vijÞr̂ij and FR

ij ¼
sijð1� rij=r0Þzijr̂ij; respectively, when rij# r0. Here, vij¼ vi –
vj while zij is an independent random variable with zero mean;

gij and sij are related via the fluctuation-dissipation theorem

s2
ij ¼ 2gijkBT (16).

We have set the interaction cutoff r0, the bead mass m, and
the thermostat temperature kBT to unity while gij ¼ 9/2, k ¼
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100 kBT=r
2
0 ; l0 ¼ 0.45r0, k ¼ 20 kBT, aHT ¼ aWT ¼ 100 kBT,

and aWW ¼ aHH ¼ aTT ¼ aWH ¼ 25 kBT (indices W,H,T

denoting water, lipid head, and lipid tail bead, respectively).

Lipids were modeled as linear chains (HT3), while proteins
were modeled as solid hexagons of HTnH chains with a

diameter of 2K 1 1 chains (see also (11) for details). By

changing the number of hydrophobic beads, n, in the protein,
the hydrophobic mismatch could be tuned. Water surrounding

the lipid bilayer was modeled by individual beads (see above

for repulsion parameters), thereby allowing for the simulation

of a fully hydrated membrane. The equations of motion were

integrated with a velocity Verlet scheme (106 time steps with

Dt ¼ 0.01) using periodic boundary conditions (membrane

patch size 40r0 3 40r0). Conversion to SI units may be done

(r0 [ 1 nm, Dt [ 90 ps) by gauging the membrane thickness

and the lipids’ diffusion coefficient (11).

We first checked how inclusions with n hydrophobic

transmembrane layers locally deform the lipid bilayer. In

agreement with previous predictions (17), we observed an

exponential profile for the membrane thickness of

hðrÞ ¼ h0 1Dhe
�r=l

; (3)

with h0 � 3.5r0 and Dh ; n (Fig. 1). Notably, the per-

turbation length l did not vary much with the inclusion’s

radius R but stayed rather constant (l � r0). While n ¼ 3

showed a strong negative hydrophobic mismatch, n ¼ 5, 6

showed an increasing positive mismatch, whereas at n ¼ 4

the mismatch vanished.

We next monitored the inclusions’ diffusion for various

radii and hydrophobic mismatches. In particular, we deter-

mined the diffusion coefficients by fitting the arithmetically

averaged mean-square displacement (based on five indepen-

dent runs). The resulting data D/DL (DL being the diffusion

coefficient of a single lipid) were fittedwith Eq. 1 and Eq. 2. In

particular, we used a global fit approach for both functions:

For Eq. 2, we demanded that the fit parameters Rc ¼ hhm/hc

and hm stay constant for all data sets (n ¼ 3, 4, 5, 6), while c
was allowed to vary with n. The rationale behind this choice

was that all perturbation information is reduced to the

coupling parameter c (see (14)). In contrast, for Eq. 1 we

only required the ratio Rc/hm to stay constant, while hm could

vary with n. The rationale behind that was that lipids near to

the inclusion are more or less confined in their configuration

(depending on the hydrophobic mismatch), thus yielding a

(slightly) varying effective membrane viscosity.

Both Eq. 1 and Eq. 2, fitted the numerical data almost

equally well (as judged via the root-mean-square percent

deviation; see also Fig. 2). As anticipated, the effective

viscosity hm in Eq. 1 and the coupling constant c in Eq. 2

showed a systematic variation with the hydrophobic mis-

match, i.e., both quantities were smallest for n ¼ 4 and

increased for n¼ 3, 5, 6 (Fig. 1, inset). Thus, at this level one
cannot claim one of the fitting functions to perform better than

the other, albeit one might have expected that c shows a more

drastic decrease for a vanishing hydrophobic mismatch (n ¼
4). In fact, another criterion providedmore solid evidence that

Eq. 1 is the better approach to describe the mobility changes

induced by hydrophobic mismatching. The critical radius Rc

beyond which the inclusion’s contact with the adjacent

solvent dominates the friction (6) is very different for the two

fits.WhileRc� 7.1r0 for Eq. 1 ismuch larger than the size of a

single lipid, Eq. 2 yields Rc� 1.6r0 which appears somewhat

small. If Rc ¼ hhm/hc was approximately unity, as predicted

byEq. 2, themembrane viscosityhmwould have to be smaller

than the solvent viscosityhc since h� 3.5r0. This, however, is

FIGURE 1 The bilayer thickness h(r) (symbols) in a distance r

from the inclusion deviates exponentially from the unperturbed

thickness h0 for negative (n 5 3, open circles), vanishing (n 5 4,

crosses), and positive (n 5 6, solid squares) hydrophobic

mismatch. Solid lines are fits according to Eq. 3. (Upper inset)

The relative variation of the thickness, defining the strength of the

hydrophobic mismatch, varies systematically with n and almost

vanishes for n 5 4. (Lower inset) The relative change of the

effective membrane viscosity hm (Eq. 1) and of the coupling

constant c (Eq. 2) both vary with the hydrophobic mismatch

(indicated here via the parameter n). Values h0 and c0 denote the

values obtained for a vanishing hydrophobic mismatch (n 5 4).

FIGURE 2 The size-dependent diffusion coefficient D of trans-

membrane inclusions with varying hydrophobic mismatch (sym-

bols) is equally well fitted by Eq. 1 (solid) and Eq. 2 (dashed).

Pleasenote thatD isnormalizedby thediffusioncoefficientDLof a

single lipid. Since the fitting parameter Rc 5 hhm/hc takes on too-

small values when using Eq. 2 (see also main text), Eq. 1 appears

to be the more appropriate fit function.
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in contradiction to observations in experiments (see, e.g.,

(7,10)). Therefore, we argue that Eq. 1 better captures the

mobility of membrane inclusions that have a hydrophobic

mismatch with their surrounding lipid bilayer. The hydro-

phobic mismatch thus leads to a change in the effective mem-

brane viscosity but does not alter the gross scaling behavior of

the diffusive mobility. Indeed, introducing a hydrophobic

mismatch only slightly alters the inclusion’s mobility (some

30%; see Fig. 1, inset). Still, in a biological problem this

altered diffusion may play an important role, e.g., in the

context of protein sorting (18).

Translating our above results to SI units, one obtains a

typical membrane viscosity� 0.09 Pas that is 10–20% lower

than experimentally found values (8). The viscosity of

the surrounding solvent, hc � 0.04 Pas (extracted from

an independent simulation of a globular object’s three-

dimensional diffusion in pure solvent), at first glance appears

somewhat high. While one could, in principle, aim at

approaching the ideal situation of a pure lipid bilayer in

water (hc � 0.001 Pas) by altering the DPD parameters, the

strongly viscoelastic nature of intracellular fluids like the

cytoplasm (19) suggests that assuming a fairly high solvent

viscosity hc may not be so errant in the biological context.

Thus, a low value of Rc, as depicted above, may indeed be

relevant in vivo. As a consequence, a strong size dependence

D; 1/R of the diffusion of protein clusters and rafts can occur

already for moderate radii, e.g., beyond some 10 nm.

In conclusion, we have tested how hydrophobic mismatch-

ing alters the diffusional mobility of membrane inclusions,

e.g., transmembrane proteins. Our data on the size-dependent

mobility are most consistent with the results derived in the

literature (5–7) when assuming that hydrophobic mismatch-

ing slightly alters the effective membrane viscosity due to

local constraints for the lipids’ configuration in the vicinity of

the inclusion. Corrections to Eq. 1 as derived in Naji et al. (14)

also fit our data well, yet the interpretation of the fitting

parameters appears problematic. This, however, may be

different under the experimental conditions explored in

Gambin et al. (13) where Eq. 2 might be more applicable.
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