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A b s t r a c t  

The gradual property of  computer  programs, that their successive operations prefer- 
ably access data from the same memory block, is called locality. The paper deals with 
locality optimization, more specifically with the sequencing aspect that N operations 
are to be brought  into sequence such that locality is maximized. We assume to be given 
a matrix D =[Dii] of  neighbourhood preferences, where entry D,j is the smaller the high- 
er the expected gain in locality when arranging operations o, and o~ closely. The gain is 
supposed to have been estimated from so far accumulated but still incomplete know- 
ledge of  an overall locality optimization process. Our task consists in finding a sequenc- 
ing function T: {o~ . . .  Or} ~ [1 . . .N]  C_ {R that assigns to each operation a real time at 
which it will be approximately carried out. The motivation for T mapping into reals in- 
stead of  integers is to transfer more knowledge on the certainty of  operation ordering 
decisions into the next step of  the overall locality optimization process. The goal for 
T consists in minimizing an objective function that was empirically designed to approx- 
imately quantify the intuitive meaning of  the degree of  locality. In addition, T has to 
spread the values "Y(oi) quite evenly over the interval [1. . .  N]. We suggest a heuristic al- 
gorithm that approximately solves the problem, and report on experiments with the al- 
gori thm and several variants of  it. Briefly, the algorithm starts with a random 
sequencing that is iteratively improved, by alternatingly moving each T(oi) in the direc- 
tion of  the value that minimizes the objective function for fixed r(Oi)(i  ¢ i), and spread- 
ing the ir(o~) over [1 . . .  N]. Experimental results indicate that our algorithm is efficient 
and reasonably accurate. © 1998 Elsevier Science Inc. All rights reserved. 
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1. Introduction 

Computers typically have a memory hierarchy with limited amount of fast 
memory. Programs run faster if operations that access the same datum or 
the same memory block (e.g. cache line) are arranged closely. The reason is that 
only sufficiently close operations can reuse data brought into fast memory, oth- 
erwise the data are overwritten in the meantime. The gradual property of com- 
puter programs, that successive operations preferably access data from the 
same memory block, is called locality. Programs tend to run the faster the high- 
er their degree of locality is. 

In [1], an iterative method to automatic data locality optimization was sug- 
gested that will be summarized in the following. The method combines two 
complementary [2] sources for locality optimization: 
• data assignment, i.e., assigning the data to memory blocks, and 
• sequencing, i.e., ordering the operations of the program. 
The input program is given as a set of statement instances and a set of data el- 
ements. Note that loops are unrolled into statement instances. In the following, 
we will use the notions statement instances, statements and operations inter- 
changeably. The statements are characterized by their access behaviour, i.e., 
we know which statement will access which data, and, for conditional state- 
ments, also with which likelihood. The aim is to find a data assignment and se- 
quencing to maximize the locality of the program. 

The method tackles this complicated optimization problem iteratively, by al- 
ternatingly refining the data assignment and the sequencing, starting with a da- 
ta assignment step. Only the sequencing is dealt with in the present paper. 
Taking a closer look at the iterative process, the first step has to find a data 
assignment without an), knowledge on the operation sequencing. Hence, it assigns 
to a common memory block those data that are accessed together in some 
statement. It cannot, however, take into account that data accessed in succes- 
sive statements should also be assigned to a common memory block, though 
this is of equal importance, i.e., the data assignment step must take a decision 
based on incomplete knowledge. Analogously, the sequencing step that follows 
must decide for a sequencing on the basis of an only preliminary data assign- 
ment, and so on. Thus, each decision is of necessity arbitrary to a certain de- 
gree. If arbitrariness has led to a wrong decision in one step, it will often 
imply a wrong decision in the next step, too. Hence, there is a high danger 
of ending in a local optimum only. 

To weaken this danger, the iterative method permits fuzziness in the decisions 
taken in intermediate steps. The fuzzy decisions convey more information into 
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the next step than crisp decisions and can be more easily corrected in successive 
steps. Hence, they promise a decreasing danger of  ending in a local opt imum 
only. ThroughoUt the iterative process, the degree of fuzziness is decreased, 
since at the very end we need a crisp data assignment and statement ordering. 

For the data assignment, fuzziness has the form of fuzzy membership values 
of  data in blocks. They are conceptually fuzzy, since, for different data, the im- 
portance for being stored in a particular set is different: Those data that are fre- 
quently used with other data from the set have a high membership value, those 
that are rarely used with other data from the set have a low membership value. 
On the other hand, ultimately we need a crisp data assignment that respects the 
requirement of  a fixed block size but comes close to the fuzzy membership val- 
ues. Hence, the membership values can also be understood as preliminary ap- 
proximations of  the probabili ty that the datum will finally be assigned to the 
corresponding memory  block. 

Prior to the sequencing phase, the membership values are transformed into a 
neighbourhood preference matrix D that reflects the degree of preference of 
statement pairs for being placed close together. D is obtained via 
D SD o (DB o' DB i ) o SD i where SD and DB are matrices with SD[s, d] be- 
ing an estimation of the likelihood that statement s accesses datum d, and 
DB[d, b] being the membership value of datum d in block b. The composition 
operators o and o' are probabilistic, justified by the probabilistic view of the 
membership values and the fact that the entries of  SD are probabilities, o' is 
chosen such that (DB o' DB L ) [d, d'] is an approximation of the probability that 
d and d' will be finally assigned to the same memory block (taking the member-  
ship values as probabilities), o is matrix multiplication with subsequent scaling 
into [0, 1] such that D[o~,oi] reflects the expected number of  reuses between 
statements oi and OJ- 

In the output of  the sequencing, fuzziness is expressed via the concept of  a 
real-valued sequencing function introduced in the following: Usually, in se- 
quencing, the task is to bring N operations Ol . . .  o,~, into sequence such that 
the result is a one-to-one function S : { o l . . . o N } - - - ~ { 1 . . . N }  with 
{ I . . . N }  C_ 2. S(o,) t denotes that operation oi will be executed at time t. 
Note that we assume all operations to have equal lengths. The concept of  a 
real-valued sequencing Junction, in contrast, consists in that the result is a func- 
tion T:{o~. . .ON} ~ [ I . . . N ] C _  ~. The meaning of T is twofold: First, T rep -  
resents a sequencing, namely the same sequencing as the integer-valued 
function S that is obtained from T by ordering T's values (i.e., S(oi) = k iff 
T(o,) is the kth largest value in the range of T). S will also be referred to as 
the sequencing corresponding to T. Second, T indicates how certain the decision 
for the relative ordering of operations in the sequencing is. If  it is a clear ad- 
vantage to place some operation oi before some other operation 0/, then the 
distance between oi and 0 / i s  large, on the real scale. I f  it is only a minor ad- 
vantage, then the distance is smaller. 



76 (~ Leopoht / hTternat. J. Approx. ReasoH. 19 (1998) 73 90 

Consider as an example the matrix 

D = 

0 0.5 0.1 0 .9)  

0.5 0 0.7 0.3 

0.1 0.7 0 ~8 ' 

o 0.9 0.3 0.8 

which represents the following graph: 

A good sequencing function, i.e., a function that places operations with high 
neighbourhood preference closely and spreads its values over the whole inter- 
val [1.. .N] would e.g.be 

T(Ol) 1 .04 ,  T ( o e )  - -  3.85, T(o3) 1.0. T ( o 4 )  - -  4.0, 

The corresponding integer-valued sequencing is 

3 ( O l )  = 2 ,  S ( o 2 )  - -  3,  3 ( 0 3 )  = 1, S(o4) = 4 

or, represented graphically, 

T' 'IITI°" ' TI"I iT'°" 
1 2 3 4 time 

S(o~) s(o,) S(o~) s(o,) 

I I I I 
1 2 3 4 tim~ 

It is to be seen that T does not only represent the order of operations, but it 
also reflects that the order of e.g. operations o~ and 02 is much more certain 
than that of operations Ol and 03. Hence, minor modifications of D may change 
the optimal order of operations o~ and o3, but they will not change the optimal 
order of operations o~ and 0:. 

The so far loose requirement of placing operations with high neighbourhood 
preference "closely" is quantified through the following objective function 
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4 /'nil  Io,t-  to,) I +,)) l~m(N~ T~ D ) 
i=l /=,~1~ D(/ 

The function is to be minimized under the constraint that T must spread its val- 
ues quite evenly over [1. . .  N] (see Section 2). 

This objective function approximately reflects the requirements of a good 
schedule: A large distance between operations oi and 0J is penalized the more 
the higher the neighbourhood preference of oi and 0i is. This is reflected by 
having ] T(ol) T(o,) I in the numerator  and Di/in the denominator.  The log- 
arithmic scale causes decreases in distance to pay out more for moderately far 
away operations than for operations that are in any case too far away to permit 
reuse. The exponent 2 improves analytic accessibility. The choice of  function .f 
is still somewhat arbitrary in that other scalings could produce the same qual- 
itative effect like the logarithmic scaling, and in that additional parameters like 
the base of  the logarithm could adapt  .f to concrete values of  the memory size. 
From design, our algorithm should be quite robust towards modifications of  
the objective function. This expectation was also confirmed by initial experi- 
mental results. Hence, the objective function j" considered in this paper should 
be sufficiently representative. 

The meaning of closeness is specified fuzzily, since the question if two state- 
ments are placed closely enough to permit reuse can, at compile time, often not 
be answered affirmatively. Reasons are cache effects (direct mapped or set-as- 
sociative caches), conditional statements with different numbers of  data ac- 
cessed in the branches, and may be machine dependence. 

The sequencing problem considered in the present paper is still simplified in 
that it does not include hard precedence constraints between operations that 
need to be respected when there are data dependencies between the statements 
of the input program. 

In the formulation of the sequencing problem, we have, for simplicity, as- 
sumed the operations to be of  equal length. It should not be a problem to gen- 
eralize our algorithm to operations of  different lengths. A straightforward 
solution could be to represent longer operations by several shorter operations 
with a very high degree of preference for being executed close to each other. 

The paper is organized as follows. Section 2 gives a concise statement of  the 
problem considered. In Section 3, we describe our basic algorithm and moti- 
vate its design. Briefly, the algorithm starts with a random sequencing that is 
iteratively improved, by alternatingly moving each Y(oi) in the direction of 
the value that minimizes.f  for fixed Y(o/) (j ~ i), and spreading the Y(oi) over 
[1 . . .  N]. Implementation details such as the choice of  parameters are discussed 
in Section 4, where also several variants of  the basic algorithm are introduced. 
Particularly interesting is a variant where not only steps that decrease but with 
some probability also steps that increase the objective function value are ac- 
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cepted (similar to simulated annealing). In Section 4, we fur thermore explain 
two reference algori thms we have used in our  experiments: an enumerative al- 
gor i thm and a local search algori thm based on pairwise exchange of  opera-  
tions. Section 5 lists and discusses our  experimental results. Section 6 
overviews related work and Section 7 finishes with conclusions. 

2. Formal statement of the problem 

A set o f  N operat ions  o l . . .ON is to be brought  into sequence. Input  is an 
N x N matrix D = [Di/] with 

0~<D~/~< 1 (l<~i,.j<~N). 

D i i = D / ~  (1 < ~ i , j < ~ N ) ,  

D,:/--O ~ i - - . /  ( l < ~ i , j < ~ N ) .  

D is a dissimilarity matrix, i.e., entry D u is the smaller the higher the preference 
o f  operat ions  o~ and 0/ for being arranged closely. Fur ther  requirements on D 
are not  imposed, in part icular  D need neither fulfill the triangle inequality nor  
be Euclidean (embeddable into Euclidean space with distances D u between 
points i and .j). 

The task is to find a sequencing function T: { o l . . . o x }  ~ [1 . . .N]  • ~ that 
minimizes, at least approximately,  the objective function 

¢.+ f, .ll  T o,i- t 
/_..~ /_..~ 
i i ~ i+ i D' i  

Additionally,  f must  spread its values quite evenly over [1 . .. N]. We have ex- 
perimented with several quantifications o f  this constraint,  all requiring 
IT(og) - S (o i ) [  to be less than some bound  which is e.g. a constant.  Here, S de- 
notes the sequencing corresponding to T, see Section I. In addition, there nqust 
be operat ions oi and o i with T(oi) -- 1 and f(oj)  -- N. 

Sometimes, we will also consider an integer-valued version of  the optimiza- 
tion problem. Here, the task is to directly find a function 
S: {Ol. . .o.v} ~ { I . . . N }  C E  that  minimizes the objective function 

+ + ( l n ( I S ( o / ) - S ( o i ) l + l ) )  ~ 

(without constraints).  
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3. Our algorithm 

79 

The algorithm is heuristic and in essence an iterative descent method. It 
starts with a random sequencing function T (°) that, with uniform distribution 
over [1 . . .  N], independently assigns to each operation oi a random initial time 
T(°)(o,). In each step k, the algorithm cycles through the values T (~ ~)(o~), re- 

k) placing each T (k ll(o,) by an intermediate value T~cp(O~ ) such that T~l~l)v(O~) 
comes closer to the value that minimizes the objective function for fixed 
T (~ 1)(o/) (j ¢ i). After each cycle, the ~(~ " ' ~adp~O0 are spread over [1 . . .  N] to avoid 
that the values of  the sequencing function move closer and closer together. The 
spread values are the new T(k)(o~). 

A necessary condition for the objective function to take a minimum at some 

T~elp(Oi) (for fixed (oi) (j • i)) is that its derivative equals zero for this 
(k) 

T~tp(Og ). Unfortunately, equating the derivative to zero leads, for our objective 
function, to an equation that is difficult to solve. Hence, we will use an approx- 
imation. 

Let us first consider a simpler objective function 

2 

g(N, T,D) = Z_,Z_, 
~=1 /= i  ÷ I O ( I  " 

Then, 

/ \  

dT(oi) dT(o,) = 2~-~ T(o,) 2~-~. T(o/) 
~ ~ DU : i Dii.  
/ 0  /¢i 

Hence, g has a local extremum at 

T ( o i ) - -  ,,V I " 

It must be the global minimum, since g(.) obviously takes smaller values for 
arguments from inside the interval 

min {7"(o/)}... max {T(o/)}l 

that for other arguments T(oi). Thus, g must possess a global minimum within 
this interval. The above given local extremum is the only candidate. 

Coming back to the minimization o f f ,  the above calculation is helpful if we 
consider the following scaling of the time scale (scaled values are marked by 
overlining): 

t =  l n ( l t -  T!*-l)(oi) l +l)sign(t--  T(*-I)(o,)) 
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for the currently to be updated T {a t>(o~) and any time t ~ E .  (sign(x) I if 

x > 0 and sign(x) = -1  otherwise). Hence T ik l)(o/) _ 0. With the new scaling, 
.f applied to the values of  step k - 1 appears as 

f ( N ,  T '~ I) D) 
i I / t + I Di: 

which has the same structure as g and hence, under the condition of" fixed 
T(:' I)(oi), takes a global minimum if T(:' l~(o:) is replaced by 

{ t /),, 
~](k] / ~ / / : l  

lelP ~Oi) - - \ '  l 

151 ' 

(J) 

Though ~h~h,~o,), the value corresponding to ~]~h,~oH on the original scale, is in 
genera] not the global minimum o f f ,  it approximates the minimum at least in 
so far as that it indicates in which direction from T (~ I)(o~) the new value 

( k )  Tj~ap(O~ ) should be located and gives a rough estimation on how far away it 
should be located. The approximation seems to be sufficient for the purpose 
of using it in our iterative approximation algorithm, as finally indicated by 
the experimental results. A more exact approximation at this point could be 
a source for further improvement of the algorithm. 

We still have to invert the scaling, to locate h~tp~O,) on the original scale: 

T]'> (o,) In (  (a, T" ':'(o/) 1)sign(T]~h,(oe)- T '/' "(o,))  ;~],, = T],~,,p (o , )  + ~k 

implies 

T11~,;,(o,~ In(T]i~,;(o,) T 'a ')(oi) + l)  

and 

sign (Th~,p(Oi)) sign 

Hence, 

T,,a, ~ , T(/, I) -- 1 limb ~o,) - (oi) e ~'~'rl'';~ 

and consequently 

Tt,~.b(o,. ) = - s i g n  T~,'p(Oi)/ ( i ) .  (2) 

7:, ~/') . After each cycle of  replacin~ the T (~ ]~(oi) by hdp(O,) according to Eq. (2), 
the values are spread over E1...N], using a simple proportional spreading 
scheme. 
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In the simplest case, we fix the two outermost values at 1 and N, respectively, 
and proportionally adapt  the remaining values. Hence, 

- r~ap(o~ ) - m!n{T~ ] o/) 
r ~ ( o , )  = ' + 1. (3) 

max{ T~If])r (o/) } . ix-) - mm{ T{~Lp(o/) } 
/ l 

Despite the spreading, it may still happen that the values tend to cluster in 
some few points. In this case, we do not only fix the outermost values but also 
some symmetrically chosen values between. Their number  will be denoted by 
Nnx. We have experimented with several variants of  choosing N~, see Section 4. 
If  e.g. Nt~× = 4, then we would fix the smallest, the [N/3~-largest, the 12N/3J- 

T, (~) " T (x~ (o~) 1, largest and the largest h~]p(o,) values at = ~N/3J, L2N/3~ and N, res- 
pectively, and proportionally adapt  the remaining values. 

Simply applying Eqs. (2) and (3) alternatingly leads to a process that typical- 
ly does not converge, but shows an oscillating behaviour similar to that ob- 
served for gradient descent methods when a too large step size has been 
chosen. For  this reason, we introduce an additional parameter  B E [0. . .  1], 
the binding strength of the old values, and replace Eq. (2) by 

T(k) ~ , T,,/k) ho]ptoi) ( I - B )  hdp(2/(o,)+BT (* ]'(oi), (4) 

where Tii~,lv(21(o~ ) is the value calculated according to Eq. (2). g is initialized 
with a small N-dependent value, and slowly increased in the course of  the iter- 
ative process. Details on the increasing scheme will be given in Section 4. The 
effect of  B is that at the beginning of the iterative process, the values of  the se- 
quencing function may vary heavily between iterations. Hence, in a sense, the 
solution space is scanned coarsely and the objective function typically quickly 
approaches a value close to the optimum. This value is later fine-tuned when a 
large B permits only minor adjustments of  the sequencing function. 

In summary,  our algorithm starts with a random function T (°) that is iterat- 
ively improved. Each iteration step carries out one cycle through the values 
T (k I)(o~), replacing them by ~¢k/. . ql~lp(o~) according to Eq. (4). Then the values 
are spread according to Eq. (3) into Tik~(o~). Convergence of  the algorithm is 
enforced via the parameter  B. The algorithm stops when B has reached some 
threshold. There are several variants of  our algorithm that will be detailed in 
the next section. 

4. Implementation and reference algorithms 

4.1. hnplementation details 

Random number generator." To initialitize the function T (°> as well as for ran- 
dom decisions in the increasing scheme for B (see below), and also to generate 
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test graphs for our  experiments, we need a r andom number  generator  with uni- 
form distribution. We used the generator  R A N 2  from [3] for all purposes,  since 
it avoids sequential correlations and is quite fast. 

Sequential rs. parallel update o j  T(oi): In the basic variant  described in Sec- 
tion 3, the updating step Eq. (4) (see Eq. (1)) refers to the old values T !k l!(o/). 
This has the advantage  that potentially all ~hdp~oi) can be evaluated in parallel, 
hence we will refer to this version as parallel update. Alternatively, we could in 

T ( k )  , (k) Eq. (1) replace ir~k II(o/) by hdptO/) for those ir~lp(O/) that  have already been 
evaluated before. This will be referred to as sequential update. 

Determh~hzg Nn:,: Except of  some few test runs where we have omitted the 
spreading entirely until some bound  was violated, we have always started with 
Nn~ = 2~ and incremented Nn~ by one if the T~p(oi) values clustered too heavily. 

• . . ~ k )  • ( k ~  • 

Referring to the integer-valued funcnon  Sh~lp corresponding to Th~lp, we consid- 
ered three definitions o f  what  it means to cluster too heavily: 

(/,) o i / , I  ~lidp(O,) > (N /N  nx) for somei .  L d p ( o , )  - e l  

(],) r , i / ,  I 
Jlleip(O,) > _ some Th~lp (o,) -- c~N for i, 

T ( k l  / , h~,pfo,) -- S,l,~Ip(Os)] > c3 for some i, 

Basic increasing seheme jbr B: Here, B is initialized to B (°) -- 1IN. Let B (ti 
denote the value o f  B used for step k o f  our  algorithm. Then we have either 
B(k) B(k 1) or  B (k~ (B!k ~i+ 1)/2. We have B!k~ _ (B(k t! + 1)/2 iff 
J '(N, T (k I),D) > J '(N, T (k 21,D) except if Nn~ was incremented in step k - 1 

and not  in step k -  2. Otherwise B (~ - - B  (k J). The scheme has been derived 
from manual  experience with the algorithm. 

Randomized hwreasing scheme for B: This scheme was inspired by simulated 
annealing (see e.g. [4]). To make the algori thm more flexible, we accept not 
only steps that decrease but with some probabil i ty also steps that increase 
the value o f  the objective function. B is again initialized to B (°) = 1/N. If  

./'(N, r (k 1, D) <~.f(N, T (~ 2)D) 

then we always keep B (k) -- B (~ l) ( independent on Nn~). If  

f ( N , T  'k li.D) > f ( N , r  (k 2),D) 

then we keep with some probabil i ty B/k) =B/k  t)  and otherwise set 
B(/,! _ (B(k l i +  1)/2. In accordance  with simulated annealing, the probabil i ty 
is determined as 

\, m!nl{f(N,T~'~'D)} 
where F/~ ~ is a parameter  called temperature.  We are using the ratio instead 
o f  the difference between f ( N ,  T Ik I!,D) and min { f (N,  TI"I,D)} since objec- 

i = ] . _ k -  I 
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tive function values may vary heavily between different input graphs; the ratio 
gives independence from absolute values without requiring to adapt  the tem- 
perature parameter.  F iki has been determined from manual experience with 
the algorithm as F !k/ -- 1.5(1 - B ! k l )  2, where the squaring has the effect that 
the duration of the steps does not grow too much for large k. We restrict the 
maximum number  of  iterations carried out with the same B/k) to 100, to guar- 
antee termination also in case of  convergence, and to guarantee bounds on the 
running time of the algorithm. 

Last t~alue t,s. best t~alue." The objective function value of the final sequencing 
may be worse than that of  some intermediate sequencing. This is e.g. due to the 
fact that B is updated on the basis of  T, not of  S, in the integer-valued version 
of the optimization problem. We let the algorithm either return the objective 
function value of the final S or the best objective function value encountered 
so far. The former is referred to as last value, the latter as best value. Clearly, 
the best value can never be worse than the last value. Returning the last value 
saves the time to evaluate intermediate S/kl and their objective function values 
f ( N ,  S ik!, D). 

Last-intermediate t's. besl-intermediale: While with the random increasing 
scheme, after increasing B, we always reset 7 "/k 1/ to the best so far sequencing 
function, for the basic increasing scheme we have tried both keeping T/k ~) at 
the function determined in step k 1, and resetting T !k-I) to the best so far 
function. We refer to the former case as last-intermediate and to the latter as 
best-intermediate variant. 

4.2. Re/k, rence algorithms 

As it was only for the integer-valued version of the optimization problem 
that we found different but well-established heuristics for similar optimization 
problems in the literature, we took this version as a basis for evaluation. Our 
algorithm is applied to the integer-valued version by first running the algorithm 
as usual to find a function T, and then returning the function S that corre- 
sponds to T. The quality of  S is an indicator of  the quality of  T, because T 
is an intermediate result. In the following, two reference algorithms are de- 
scribed. 

Enumerative algorithm." A trivial algorithm for the integer-valued version of 
our problem is to systematically generate all the N! candidates for S, determine 
f ( N ,  S, D) and return the minimum. The algorithm is guaranteed to yield the 
exact optimum, but takes exponential time and is prohibitively slow already 
for about  N > 12. 

Pairwise exchange heuristic: This is a simple local search heuristic, similar to 
the 2-opt edge exchange heuristic for the travelling salesman problem [5]. The 
algorithm starts with S: {OI...ON}--+ { 1 . . . N }  being a random one-to-one 
function. Then, it repeatedly picks two operations o, and 0J and exchanges 
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S(o~) and S(o/)  if the exchange decreases the objective function value by some 
minimum amount. The algorithm stops if there is no exchange possible any- 
more. The algorithm has fi'eedom in the choice of the S(o,)  S(o~) pair to 
be exchanged next. Taking solution quality and computation time into consid- 
eration, alter some experimentation, we decided to consider the S(o~) in cyclic 
order, choose the best S(o~) for the current S(o,) and exchange S(o,) and S(o/)  
if there is any gain in the objective function value. This variant is used as the 
reference algorithm. 

5. Experimental results 

We have run several variants of our algorithm and the reference algorithms 
on typically 500 randomly generated matrices D. Tables 1 and 2 list some char- 
acteristic results. Where nothing else is indicated, our algorithm was run with 
the following parameters: parallel update of T(o~), basic increasing scheme for 
B, c'l 0.9 in the criterion for determining Nrix, best value is returned, last in- 
termediate value is used, algorithm stops when B > 0.95. 

Table 1 compares our algorithm with the pairwise exchange heuristic. The 
given values are ratios between the objective function values achieved with 
our algorithm and with the pairwise exchange heuristic. More specifically, Ta- 
ble 1 lists the average, maximum and minimum ratios obtained over 500 runs. 
The upper part of the table refers to the above given standard variant of our 
algorithm, for the lower part, the randomized increasing scheme was used (with 
remaining parameters as in the standard variant). It is to be seen that the ob- 
jective function values of our algorithm are off those of the pairwise exchange 
heuristic by about 10%. The randomized scheme achieves somewhat better re- 
suits than the basic scheme. 

Table 1 
Ratios between objective ftmction values 

N 5 7 8 10 20 50 100 

Our alsvorithm (stamlard) / pairlrive e.w'llanL, e 
Avg.ratio 1,09 1.09 1.08 1.09 1.(19 1,10 1,12 
Max.ratio 3.7 2.5 2.0 1.4 1.6 1.4 1.4 
Min.ratio 0.88 0.88 0.83 0.89 0.90 0.95 1.0 

Ollr a/L~orilhm ( rand.izzcreasin~ .~'c/lelllc ) / l~airwise exchange 
Avg.ratio 1.06 1.06 1.06 1.07 1.06 1.08 1.10 
Max.ratio 2.1 2.6 1.9 3.3 2.6 3.1 1.9 
Min.ratio 0.84 0.77 0.82 [).85 0.86 0.89 0.98 
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Table 2 
Ratios between objective function values 
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N 5 7 8 10 20 50 100 

Our algorithm (standard) I our algorithm (stop,fin" B > 0.99999) 
Avg.ratio 1.05 1.02 1.01 1.0 1.0 1.0 1.0 

Our algorithm (htst value returned) / our algorithm (standard) 
Avg,ratio 1,02 1.02 1.02 1.02 1.01 1.00 1.00 

Our algorithm (sequential update) / our algorithm (standard) 
Avg.ratio 0.99 1.03 1.03 1.03 1.02 1.02 1.01 

Our algorithm (standard) / our algorithm (best intermediate) 
Avg.ratio 1.01 0.99 0.99 0.98 0.97 0.97 0.98 

Pairwise exchange / enumerative 
N 5 7 8 9 10 11 12 

Avg.ratio 1.01 1.02 1.03 1.04 1.04 1.09 1.05 

Max.ratio 1.3 1.2 1.2 1.3 1.2 1.2 1.07 
# Test runs 500 500 500 500 150 3 3 

Table 2 shows that another stopping criterion cannot improve the solution 
quality significantly, and also that there is no significant gain in using the best 
value. Furthermore,  Table 2 shows that with sequential update or best interme- 
diate, results were slightly worse than with the standard variant. This may be 
due to the fact that the remaining parameters were tuned for the standard vari- 
ant. Nevertheless, the experiments seem to indicate that not much gain can be 
expected from these variations. Table 2 also compares the pairwise exchange 
heuristic with the enumerative algorithm. Though this was practicable only 
for small values of  N, the results suggest that the pairwise exchange heuristic 
is less than 10% off the optimum, and that the deviation is rather independent 
on N. 

We have also run the algorithm on some application-specific graphs, gener- 
ated from a program for multiplying 2 x 2 matrices (N = 8) with several de- 
grees of  fuzziness in the data assignment, and observed similar results as 
with the random graphs. Objective function values have been 0 8% off the op- 
t imum if the degree of fuzziness was high in D, they have been up to 14% off the 
opt imum if D was close to a 0-1-matrix. 

We tried initializing N]~x with 1, but, though it improved the solution quality 
for about  N = 3 . . .  5, it was disadvantageous for larger N. We experimented 
with c2 = 0 . 2  and c3 = 2, and observed about  the same results as with 
cl = 0.9, at least for N >~ 10. The algorithm was quite robust towards the 
choice of  the parameter  c1: varying cj between 0.6 and 1.0 changed the objec- 
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Table 3 
Influence of  multiple initializations 

k I 2 3 4 5 

Our alg. (standard n'ith k hlilh/lizations) / pairwise exch., N - 50 
Avg.ratio 1.10 1.08 1.06 1.06 1.05 

Our alg. (rand. scheme with k #litia/izalio/ls) /pairw. exch., N - 50 
Avg.ratio 1.08 1.05 1.045 1.040 1.037 

tive function value by less than 1%, setting ct 1.3 decreased the objective 
function value by 2%, for the standard variant. 

It pays off to run our algorithm with multiple initializations as shown in Ta- 
ble 3. This result was to be expected, since the algorithm typically converges to 
a local but not necessarily to a global optimum. Multiple initializations cover 
different local optima. 

Fig. 1 gives time measurements referring to straightforward codings of  the 
algorithms in Modula-2 on a DECstat ion 5000. The time measurements have 
been averaged over 500 test runs, except for the slow programs where it has 
been less test runs. 

So far, the pairwise exchange heuristic had been coded with solution quality 
as the primary aim. We also tried running the pairwise exchange heuristic for 
the same amount  of  time as our algorithm (just stopping the program when 
time was over), and observed the pairwise exchange heuristic to be still slightly 
superior to our algorithm. Table 4 gives some results. 

time (ms) , 
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Table 4 
Ratios of objective function values for equal running times 
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N 5 7 8 l0 20 50 100 

Oura~ori thm(standard)  /pa irw~e  e.veh,(same time) 
Avg.ratio 1.07 1.08 1.06 1.07 1.04 1.05 1.07 

Hence, for the integer-valued version of our problem, the pairwise exchange 
heuristic leads to slightly better sequencings than our algorithm, but the differ- 
ence is rather small and perhaps even due to current parameter  settings. 

The situation is different for the real-valued version of  our problem, how- 
ever, that cannot even be handled with the pairwise exchange heuristic. To nev- 
ertheless evaluate the pairwise exchange heuristic in this situation, we have run 
a combination between the pairwise exchange heuristic and our algorithm 
(standard variant) against our algorithm alone. In the combination, our algo- 
rithm was initialized with the result of  the pairwise exchange heuristic, and it 
started with a larger B (°/ than usual. Our algorithm was not only much faster 
than the combination (the combination has about  the same running time as the 
pairwise exchange heuristic), but it also achieved slightly better objective func- 
tion values. They are given in Table 5. 

While for integer results, the recorded ratios have been relatively constant 
over different test runs (rarely over 20% deviation for N > 10), the ratios fluc- 
tuated more heavily for real results. For our parameter  settings, objective func- 
tion values obtained for the real-valued version have been about  60% of  those 
obtained for the integer-valued version. For the real-valued version, objective 
function values obtained with the randomized scheme were about 10% worse 
than those obtained with the standard variant. This may be due to current pa- 
rameter settings. 

We also did some initial experiments with other objective functions. Some 
results are listed in Table 6. We expect that the results can be improved by 
adapting the parameters to the respective objective function, but we have not 
yet tried this in the experiments. 

Table 5 
Comparison of the combination against our standard algorithm 

N 5 7 8 10 20 50 100 

Ore" algorithm (standard) / combination, B (()) 0,7 
Avg.ratio 1.2 1.07 1.07 1.07 0.92 0.98 0,95 

Our a~4orithm /standard) / eombination, B m) 0.5 
Avg.ratio 1.2 1.08 1.09 1.14 0.96 0.92 0.90 
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Tablc 6 

Results with o ther  objective funct ions 

N l0 20 50 100 

Our algorithm (slandard)/pairwise exch (same time) 

/ N, r,D) Z "  ~ ........ ' ........ ~ :  / i + l  D,,  

Acg.ratio 1.16 1.13 1.14 1.18 

Time in ms 2 x l0 t 1 × 102 4 ×  102 1 x 10 ~ 

./(,~:. r.D) = ~;~, .... 7,, ~j=i+] 
Arg.ratio 1.06 1.08 1.10 1.11 
time in ms 2 x 102 6 x 102 2 × I0 ~ 1 x 1 0  4 

To summarize, the results indicate that our algorithm typically achieves ob- 
jective function values within 20% of the optimum. Though we have done 
some experimentation, we expect that the quality of  the algorithm can be fur- 
ther improved by fine-tuning the parameters. The algorithm exhibits a trade- 
off between solution quality and computat ion time that can be shifted with 
other settings. The experiments indicate that our algorithm is sufficiently effi- 
cient for the applications we have in mind and reasonably accurate. Initial 
measurements indicate that it will have similar properties for other objective 
functions. 

6. Related work 

The topic of  this paper is different from other data locality optimization re- 
search which typically aims at regular loop structures and considers a restricted 
set of  candidate transformations only (see e.g. [6], or [1] for a discussion). There 
is related work from other areas, though. 

The sequencing problem considered in this paper can be understood as a 
scheduling problem [7] with a single processor and a special type of constraints. 
The constraints are the (typically conflicting) neighbourhood preferences. The 
aim of the sequencing problem corresponds to finding compromises between 
these constraints. In this sense, the constraints are comparable to the fuzzy 
constraints of  [8]. 

Other related work is multidimensional scaling [9,10] that aims at embed- 
ding a dissimilarity matrix into Euclidean space such that the distances between 
data points approximate the dissimilarities. For a one-dimensional space, it is 
similar to our problem, except that the objective function favours both related 
data points to be placed close to each other and unrelated data points to be 
placed far away. Our problem is restricted to the former. 

Our algorithm closely resembles the centroid and annealing heuristics devel- 
oped in the context of  visualizing semantic nets [11] in three-dimensional space. 
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Differences result mainly from that we require the algorithm to spread the T 
values evenly, whereas [1 I] requires them to be discriminable. 

Our algorithm was inspired by Fuzzy Clustering [12]. The problem of fuzzy 
clustering resembles our problem in that a (dis)similarity matrix is given, and 
objects are to be arranged with the aim of realizing neighbourhood preferences. 
In fuzzy clustering, the objects are to be arranged into groups, whereas in our 
problem they are to be arranged on a one-dimensional scale. Both cases use an 
objective function that is minimized in an iterative process, where, assuming 
some parameters of  the arrangement to be fixed, other parameters are set to op- 
timum (or close to optimum) values, determined with the help of a derivative. 

The algorithm also shares similarity with the Elastic Net approach to the 
travelling salesman problem in that real values are moving under the influence 
of  several forces (in our case, attractive forces of the preferred neighbours and 
the binding force of the old value), and the relative strengths of the forces 
change in the course of the optimization process. 

In general, our algorithm resembles the well-known gradient descent optimi- 
zation methods in that it is iterative and determines the next iterate with the 
help of the partial derivatives. Our optimization problem could alternatively 
be tackled with gradient descent methods. We preferred the present approach 
because of its comparatively low computational expense for determining the 
next iterate, and because of the special situation arising from the constraints. 

The idea of relaxing the requirement of integer-valued schedules, i.e., con- 
sidering ir instead of S, was also used in e.g. [13]. There it was used for another 
purpose, though (being able to apply techniques from nonsmooth optimization 
to the schedule construction, not to get a real-valued result). 

Increasing B in the iterative process to first coarsely and later finely search 
for an optimum is similar in spirit to simulated annealing [14] or deterministic 
annealing [4]. 

Finally, our problem is related to the Minimum Linear Arrangement and 
Minimum Bandwidth problems [15], except that we are considering weighted 
graphs and have a different objective function. 

7. Conclusions 

In this paper, we have defined a sequencing problem where statements 
should be arranged with the aim of fulfilling neighbourhood preferences. The 
result is a sequencing function that assigns to each operation a real time at 
which it will be approximately carried out. The problem is a problem of sched- 
uling under uncertainty where fuzziness/imprecision pertains to: 
• the matrix D of neighbourhood preferences, 
• the representation of the result (T instead of S), and 
• the meaning of  closeness. 
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W e  h a v e  i n t r o d u c e d  a n d  e v a l u a t e d  a n  a l g o r i t h m  to  a p p r o x i m a t e l y  so lve  t he  

s t a t e d  p r o b l e m .  E x p e r i m e n t a l  r e su l t s  i n d i c a t e  t h a t  t he  a l g o r i t h m  is eff ic ient  a n d  

r e a s o n a b l y  a c c u r a t e .  T h o u g h  we h a v e  a l r e a d y  e x p e r i m e n t e d  w i t h  s eve ra l  p a -  

r a m e t e r  se t t ings ,  we e x p e c t  t h a t  t he  q u a l i t y  o f  the  a l g o r i t h m  c a n  be  f u r t h e r  im-  

p r o v e d  by  f i n e - t u n i n g  the  p a r a m e t e r s .  A n  i m p o r t a n t  o p e n  p r o b l e m  is to  i n c l u d e  

h a r d  p r e c e d e n c e  c o n s t r a i n t s ,  t h a t  r e p r e s e n t  d a t a  d e p e n d e n c i e s ,  i n t o  t he  a lgo-  

r i t h m .  
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