
INTERNATIONAL JOORNAL OF

N APPROXIMATE
REASONING

ELSEVIER International Journal of Approximate Reasoning 19 (1998) 73 90

Arranging program statements for locality on
the basis of neighbourhood preferences

Claudia Leopold 1
Fal~ult?it fi~r Mathematik und h!fi)rmatik, Friedrict>Schiller- L"nirerxitiit Jena, 07740 Jena, Germany

Received 1 March 1997: accepted 1 November 1997

A b s t r a c t

The gradual property of computer programs, that their successive operations prefer-
ably access data from the same memory block, is called locality. The paper deals with
locality optimization, more specifically with the sequencing aspect that N operations
are to be brought into sequence such that locality is maximized. We assume to be given
a matrix D =[Dii] of neighbourhood preferences, where entry D,j is the smaller the high-
er the expected gain in locality when arranging operations o, and o~ closely. The gain is
supposed to have been estimated from so far accumulated but still incomplete know-
ledge of an overall locality optimization process. Our task consists in finding a sequenc-
ing function T: {o~ . . . Or} ~ [1 . . .N] C_ {R that assigns to each operation a real time at
which it will be approximately carried out. The motivation for T mapping into reals in-
stead of integers is to transfer more knowledge on the certainty of operation ordering
decisions into the next step of the overall locality optimization process. The goal for
T consists in minimizing an objective function that was empirically designed to approx-
imately quantify the intuitive meaning of the degree of locality. In addition, T has to
spread the values "Y(oi) quite evenly over the interval [1. . . N]. We suggest a heuristic al-
gorithm that approximately solves the problem, and report on experiments with the al-
gori thm and several variants of it. Briefly, the algorithm starts with a random
sequencing that is iteratively improved, by alternatingly moving each T(oi) in the direc-
tion of the value that minimizes the objective function for fixed r(Oi)(i ¢ i), and spread-
ing the ir(o~) over [1 . . . N]. Experimental results indicate that our algorithm is efficient
and reasonably accurate. © 1998 Elsevier Science Inc. All rights reserved.

E-mail: claudia@minet.uni-jena.de.

0888-613X/98/$19.00 © 1998 Elsevier Science Inc. All rights reserved.
PII: S 0 8 8 8 - 6 1 3 X (9 8) 0 0 0 1 5 -2

CORE Metada ta , c i ta t i on and s im i la r papers a t co re .ac .uk

P r o v i d e d b y E l s e v i e r - P u b l i s h e r C o n n e c t o r

https://core.ac.uk/display/82522707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

74 C LeopoM / lnternat. J. Approx. Reason. 19 (1998) 73 90

Keywordsv Sequencing; Scheduling under uncertainty; Data locality; Iterative improve-
ment; Descent algorithms; Objective function methods

1. Introduction

Computers typically have a memory hierarchy with limited amount of fast
memory. Programs run faster if operations that access the same datum or
the same memory block (e.g. cache line) are arranged closely. The reason is that
only sufficiently close operations can reuse data brought into fast memory, oth-
erwise the data are overwritten in the meantime. The gradual property of com-
puter programs, that successive operations preferably access data from the
same memory block, is called locality. Programs tend to run the faster the high-
er their degree of locality is.

In [1], an iterative method to automatic data locality optimization was sug-
gested that will be summarized in the following. The method combines two
complementary [2] sources for locality optimization:
• data assignment, i.e., assigning the data to memory blocks, and
• sequencing, i.e., ordering the operations of the program.
The input program is given as a set of statement instances and a set of data el-
ements. Note that loops are unrolled into statement instances. In the following,
we will use the notions statement instances, statements and operations inter-
changeably. The statements are characterized by their access behaviour, i.e.,
we know which statement will access which data, and, for conditional state-
ments, also with which likelihood. The aim is to find a data assignment and se-
quencing to maximize the locality of the program.

The method tackles this complicated optimization problem iteratively, by al-
ternatingly refining the data assignment and the sequencing, starting with a da-
ta assignment step. Only the sequencing is dealt with in the present paper.
Taking a closer look at the iterative process, the first step has to find a data
assignment without an), knowledge on the operation sequencing. Hence, it assigns
to a common memory block those data that are accessed together in some
statement. It cannot, however, take into account that data accessed in succes-
sive statements should also be assigned to a common memory block, though
this is of equal importance, i.e., the data assignment step must take a decision
based on incomplete knowledge. Analogously, the sequencing step that follows
must decide for a sequencing on the basis of an only preliminary data assign-
ment, and so on. Thus, each decision is of necessity arbitrary to a certain de-
gree. If arbitrariness has led to a wrong decision in one step, it will often
imply a wrong decision in the next step, too. Hence, there is a high danger
of ending in a local optimum only.

To weaken this danger, the iterative method permits fuzziness in the decisions
taken in intermediate steps. The fuzzy decisions convey more information into

C Leopohl/hl ternat . J. Approx. Reason. 19 (1998) 73 90 75

the next step than crisp decisions and can be more easily corrected in successive
steps. Hence, they promise a decreasing danger of ending in a local opt imum
only. ThroughoUt the iterative process, the degree of fuzziness is decreased,
since at the very end we need a crisp data assignment and statement ordering.

For the data assignment, fuzziness has the form of fuzzy membership values
of data in blocks. They are conceptually fuzzy, since, for different data, the im-
portance for being stored in a particular set is different: Those data that are fre-
quently used with other data from the set have a high membership value, those
that are rarely used with other data from the set have a low membership value.
On the other hand, ultimately we need a crisp data assignment that respects the
requirement of a fixed block size but comes close to the fuzzy membership val-
ues. Hence, the membership values can also be understood as preliminary ap-
proximations of the probabili ty that the datum will finally be assigned to the
corresponding memory block.

Prior to the sequencing phase, the membership values are transformed into a
neighbourhood preference matrix D that reflects the degree of preference of
statement pairs for being placed close together. D is obtained via
D SD o (DB o' DB i) o SD i where SD and DB are matrices with SD[s, d] be-
ing an estimation of the likelihood that statement s accesses datum d, and
DB[d, b] being the membership value of datum d in block b. The composition
operators o and o' are probabilistic, justified by the probabilistic view of the
membership values and the fact that the entries of SD are probabilities, o' is
chosen such that (DB o' DB L) [d, d'] is an approximation of the probability that
d and d' will be finally assigned to the same memory block (taking the member-
ship values as probabilities), o is matrix multiplication with subsequent scaling
into [0, 1] such that D[o~,oi] reflects the expected number of reuses between
statements oi and OJ-

In the output of the sequencing, fuzziness is expressed via the concept of a
real-valued sequencing function introduced in the following: Usually, in se-
quencing, the task is to bring N operations Ol . . . o,~, into sequence such that
the result is a one-to-one function S : { o l . . . o N } - - - ~ { 1 . . . N } with
{ I . . . N } C_ 2. S(o,) t denotes that operation oi will be executed at time t.
Note that we assume all operations to have equal lengths. The concept of a
real-valued sequencing Junction, in contrast, consists in that the result is a func-
tion T:{o~. . .ON} ~ [I . . . N] C _ ~. The meaning of T is twofold: First, T rep -
resents a sequencing, namely the same sequencing as the integer-valued
function S that is obtained from T by ordering T's values (i.e., S(oi) = k iff
T(o,) is the kth largest value in the range of T). S will also be referred to as
the sequencing corresponding to T. Second, T indicates how certain the decision
for the relative ordering of operations in the sequencing is. If it is a clear ad-
vantage to place some operation oi before some other operation 0/, then the
distance between oi and 0 / i s large, on the real scale. I f it is only a minor ad-
vantage, then the distance is smaller.

76 (~ Leopoht / hTternat. J. Approx. ReasoH. 19 (1998) 73 90

Consider as an example the matrix

D =

0 0.5 0.1 0 .9)

0.5 0 0.7 0.3

0.1 0.7 0 ~8 '

o 0.9 0.3 0.8

which represents the following graph:

A good sequencing function, i.e., a function that places operations with high
neighbourhood preference closely and spreads its values over the whole inter-
val [1.. .N] would e.g.be

T(Ol) 1 .04 , T (o e) - - 3.85, T(o3) 1.0. T (o 4) - - 4.0,

The corresponding integer-valued sequencing is

3 (O l) = 2 , S (o 2) - - 3, 3 (0 3) = 1, S(o4) = 4

or, represented graphically,

T' 'IITI°" ' TI"I iT'°"
1 2 3 4 time

S(o~) s(o,) S(o~) s(o,)

I I I I
1 2 3 4 tim~

It is to be seen that T does not only represent the order of operations, but it
also reflects that the order of e.g. operations o~ and 02 is much more certain
than that of operations Ol and 03. Hence, minor modifications of D may change
the optimal order of operations o~ and o3, but they will not change the optimal
order of operations o~ and 0:.

The so far loose requirement of placing operations with high neighbourhood
preference "closely" is quantified through the following objective function

(\ Leopohl/ Internal. J. At~prox. Re¢tson. 19 f1998)73 90 77

4 /'nil Io,t- to,) I +,)) l~m(N~ T~ D)
i=l /=,~1~ D(/

The function is to be minimized under the constraint that T must spread its val-
ues quite evenly over [1. . . N] (see Section 2).

This objective function approximately reflects the requirements of a good
schedule: A large distance between operations oi and 0J is penalized the more
the higher the neighbourhood preference of oi and 0i is. This is reflected by
having] T(ol) T(o,) I in the numerator and Di/in the denominator. The log-
arithmic scale causes decreases in distance to pay out more for moderately far
away operations than for operations that are in any case too far away to permit
reuse. The exponent 2 improves analytic accessibility. The choice of function .f
is still somewhat arbitrary in that other scalings could produce the same qual-
itative effect like the logarithmic scaling, and in that additional parameters like
the base of the logarithm could adapt .f to concrete values of the memory size.
From design, our algorithm should be quite robust towards modifications of
the objective function. This expectation was also confirmed by initial experi-
mental results. Hence, the objective function j" considered in this paper should
be sufficiently representative.

The meaning of closeness is specified fuzzily, since the question if two state-
ments are placed closely enough to permit reuse can, at compile time, often not
be answered affirmatively. Reasons are cache effects (direct mapped or set-as-
sociative caches), conditional statements with different numbers of data ac-
cessed in the branches, and may be machine dependence.

The sequencing problem considered in the present paper is still simplified in
that it does not include hard precedence constraints between operations that
need to be respected when there are data dependencies between the statements
of the input program.

In the formulation of the sequencing problem, we have, for simplicity, as-
sumed the operations to be of equal length. It should not be a problem to gen-
eralize our algorithm to operations of different lengths. A straightforward
solution could be to represent longer operations by several shorter operations
with a very high degree of preference for being executed close to each other.

The paper is organized as follows. Section 2 gives a concise statement of the
problem considered. In Section 3, we describe our basic algorithm and moti-
vate its design. Briefly, the algorithm starts with a random sequencing that is
iteratively improved, by alternatingly moving each Y(oi) in the direction of
the value that minimizes.f for fixed Y(o/) (j ~ i), and spreading the Y(oi) over
[1 . . . N]. Implementation details such as the choice of parameters are discussed
in Section 4, where also several variants of the basic algorithm are introduced.
Particularly interesting is a variant where not only steps that decrease but with
some probability also steps that increase the objective function value are ac-

78 C. LeopoH / hTternat. J. Approx. Reason. 19 (1998) 73 90

cepted (similar to simulated annealing). In Section 4, we fur thermore explain
two reference algori thms we have used in our experiments: an enumerative al-
gor i thm and a local search algori thm based on pairwise exchange of opera-
tions. Section 5 lists and discusses our experimental results. Section 6
overviews related work and Section 7 finishes with conclusions.

2. Formal statement of the problem

A set o f N operat ions o l . . .ON is to be brought into sequence. Input is an
N x N matrix D = [Di/] with

0~<D~/~< 1 (l<~i,.j<~N).

D i i = D / ~ (1 < ~ i , j < ~ N) ,

D,:/--O ~ i - - . / (l < ~ i , j < ~ N) .

D is a dissimilarity matrix, i.e., entry D u is the smaller the higher the preference
o f operat ions o~ and 0/ for being arranged closely. Fur ther requirements on D
are not imposed, in part icular D need neither fulfill the triangle inequality nor
be Euclidean (embeddable into Euclidean space with distances D u between
points i and .j).

The task is to find a sequencing function T: { o l . . . o x } ~ [1 . . .N] • ~ that
minimizes, at least approximately, the objective function

¢.+ f, .ll T o,i- t
/_..~ /_..~
i i ~ i+ i D' i

Additionally, f must spread its values quite evenly over [1 . .. N]. We have ex-
perimented with several quantifications o f this constraint, all requiring
IT(og) - S (o i) [to be less than some bound which is e.g. a constant. Here, S de-
notes the sequencing corresponding to T, see Section I. In addition, there nqust
be operat ions oi and o i with T(oi) -- 1 and f(oj) -- N.

Sometimes, we will also consider an integer-valued version of the optimiza-
tion problem. Here, the task is to directly find a function
S: {Ol. . .o.v} ~ { I . . . N } C E that minimizes the objective function

+ + (l n (I S (o /) - S (o i) l + l)) ~

(without constraints).

(Z Leopohl / Internal. J. Approx. Reason. 19 (1998) 73 90

3. Our algorithm

79

The algorithm is heuristic and in essence an iterative descent method. It
starts with a random sequencing function T (°) that, with uniform distribution
over [1 . . . N], independently assigns to each operation oi a random initial time
T(°)(o,). In each step k, the algorithm cycles through the values T (~ ~)(o~), re-

k) placing each T (k ll(o,) by an intermediate value T~cp(O~) such that T~l~l)v(O~)
comes closer to the value that minimizes the objective function for fixed
T (~ 1)(o/) (j ¢ i). After each cycle, the ~(~ " ' ~adp~O0 are spread over [1 . . . N] to avoid
that the values of the sequencing function move closer and closer together. The
spread values are the new T(k)(o~).

A necessary condition for the objective function to take a minimum at some

T~elp(Oi) (for fixed (oi) (j • i)) is that its derivative equals zero for this
(k)

T~tp(Og). Unfortunately, equating the derivative to zero leads, for our objective
function, to an equation that is difficult to solve. Hence, we will use an approx-
imation.

Let us first consider a simpler objective function

2

g(N, T,D) = Z_,Z_,
~=1 /= i ÷ I O (I "

Then,

/ \

dT(oi) dT(o,) = 2~-~ T(o,) 2~-~. T(o/)
~ ~ DU : i Dii.
/ 0 /¢i

Hence, g has a local extremum at

T (o i) - - ,,V I "

It must be the global minimum, since g(.) obviously takes smaller values for
arguments from inside the interval

min {7"(o/)}... max {T(o/)}l

that for other arguments T(oi). Thus, g must possess a global minimum within
this interval. The above given local extremum is the only candidate.

Coming back to the minimization o f f , the above calculation is helpful if we
consider the following scaling of the time scale (scaled values are marked by
overlining):

t = l n (l t - T!*-l)(oi) l +l)sign(t-- T(*-I)(o,))

8 0 C Le(q)ok / / hTternal . .L Apln'Ox. Rca.~on. 19 f 1998) 73 90

for the currently to be updated T {a t>(o~) and any time t ~ E . (sign(x) I if

x > 0 and sign(x) = -1 otherwise). Hence T ik l)(o/) _ 0. With the new scaling,
.f applied to the values of step k - 1 appears as

f (N , T '~ I) D)
i I / t + I Di:

which has the same structure as g and hence, under the condition of" fixed
T(:' I)(oi), takes a global minimum if T(:' l~(o:) is replaced by

{ t /),,
~](k] / ~ / / : l

lelP ~Oi) - - \ ' l

151 '

(J)

Though ~h~h,~o,), the value corresponding to ~]~h,~oH on the original scale, is in
genera] not the global minimum o f f , it approximates the minimum at least in
so far as that it indicates in which direction from T (~ I)(o~) the new value

(k) Tj~ap(O~) should be located and gives a rough estimation on how far away it
should be located. The approximation seems to be sufficient for the purpose
of using it in our iterative approximation algorithm, as finally indicated by
the experimental results. A more exact approximation at this point could be
a source for further improvement of the algorithm.

We still have to invert the scaling, to locate h~tp~O,) on the original scale:

T]'> (o,) In ((a, T" ':'(o/) 1)sign(T]~h,(oe)- T '/' "(o,)) ;~],, = T],~,,p (o ,) + ~k

implies

T11~,;,(o,~ In(T]i~,;(o,) T 'a ')(oi) + l)

and

sign (Th~,p(Oi)) sign

Hence,

T,,a, ~ , T(/, I) -- 1 limb ~o,) - (oi) e ~'~'rl'';~

and consequently

Tt,~.b(o,.) = - s i g n T~,'p(Oi)/ (i) . (2)

7:, ~/') . After each cycle of replacin~ the T (~]~(oi) by hdp(O,) according to Eq. (2),
the values are spread over E1...N], using a simple proportional spreading
scheme.

C. Leopokt / htternat. J. AlqwOx. Reason. 19 (1998) 73 90 81

In the simplest case, we fix the two outermost values at 1 and N, respectively,
and proportionally adapt the remaining values. Hence,

- r~ap(o~) - m!n{T~] o/)
r ~ (o ,) = ' + 1. (3)

max{ T~If])r (o/) } . ix-) - mm{ T{~Lp(o/) }
/ l

Despite the spreading, it may still happen that the values tend to cluster in
some few points. In this case, we do not only fix the outermost values but also
some symmetrically chosen values between. Their number will be denoted by
Nnx. We have experimented with several variants of choosing N~, see Section 4.
If e.g. Nt~× = 4, then we would fix the smallest, the [N/3~-largest, the 12N/3J-

T, (~) " T (x~ (o~) 1, largest and the largest h~]p(o,) values at = ~N/3J, L2N/3~ and N, res-
pectively, and proportionally adapt the remaining values.

Simply applying Eqs. (2) and (3) alternatingly leads to a process that typical-
ly does not converge, but shows an oscillating behaviour similar to that ob-
served for gradient descent methods when a too large step size has been
chosen. For this reason, we introduce an additional parameter B E [0. . . 1],
the binding strength of the old values, and replace Eq. (2) by

T(k) ~ , T,,/k) ho]ptoi) (I - B) hdp(2/(o,)+BT (*]'(oi), (4)

where Tii~,lv(21(o~) is the value calculated according to Eq. (2). g is initialized
with a small N-dependent value, and slowly increased in the course of the iter-
ative process. Details on the increasing scheme will be given in Section 4. The
effect of B is that at the beginning of the iterative process, the values of the se-
quencing function may vary heavily between iterations. Hence, in a sense, the
solution space is scanned coarsely and the objective function typically quickly
approaches a value close to the optimum. This value is later fine-tuned when a
large B permits only minor adjustments of the sequencing function.

In summary, our algorithm starts with a random function T (°) that is iterat-
ively improved. Each iteration step carries out one cycle through the values
T (k I)(o~), replacing them by ~¢k/. . ql~lp(o~) according to Eq. (4). Then the values
are spread according to Eq. (3) into Tik~(o~). Convergence of the algorithm is
enforced via the parameter B. The algorithm stops when B has reached some
threshold. There are several variants of our algorithm that will be detailed in
the next section.

4. Implementation and reference algorithms

4.1. hnplementation details

Random number generator." To initialitize the function T (°> as well as for ran-
dom decisions in the increasing scheme for B (see below), and also to generate

8 2 C. Leopohl / hlternat. J. AM~rox. Reason. 19 (1998) 73 90

test graphs for our experiments, we need a r andom number generator with uni-
form distribution. We used the generator R A N 2 from [3] for all purposes, since
it avoids sequential correlations and is quite fast.

Sequential rs. parallel update o j T(oi): In the basic variant described in Sec-
tion 3, the updating step Eq. (4) (see Eq. (1)) refers to the old values T !k l!(o/).
This has the advantage that potentially all ~hdp~oi) can be evaluated in parallel,
hence we will refer to this version as parallel update. Alternatively, we could in

T (k) , (k) Eq. (1) replace ir~k II(o/) by hdptO/) for those ir~lp(O/) that have already been
evaluated before. This will be referred to as sequential update.

Determh~hzg Nn:,: Except of some few test runs where we have omitted the
spreading entirely until some bound was violated, we have always started with
Nn~ = 2~ and incremented Nn~ by one if the T~p(oi) values clustered too heavily.

• . . ~ k) • (k ~ •

Referring to the integer-valued funcnon Sh~lp corresponding to Th~lp, we consid-
ered three definitions o f what it means to cluster too heavily:

(/,) o i / , I ~lidp(O,) > (N /N nx) for somei . L d p (o ,) - e l

(],) r , i / , I
Jlleip(O,) > _ some Th~lp (o,) -- c~N for i,

T (k l / , h~,pfo,) -- S,l,~Ip(Os)] > c3 for some i,

Basic increasing seheme jbr B: Here, B is initialized to B (°) -- 1IN. Let B (ti
denote the value o f B used for step k o f our algorithm. Then we have either
B(k) B(k 1) or B (k~ (B!k ~i+ 1)/2. We have B!k~ _ (B(k t! + 1)/2 iff
J '(N, T (k I),D) > J '(N, T (k 21,D) except if Nn~ was incremented in step k - 1

and not in step k - 2. Otherwise B (~ - - B (k J). The scheme has been derived
from manual experience with the algorithm.

Randomized hwreasing scheme for B: This scheme was inspired by simulated
annealing (see e.g. [4]). To make the algori thm more flexible, we accept not
only steps that decrease but with some probabil i ty also steps that increase
the value o f the objective function. B is again initialized to B (°) = 1/N. If

./'(N, r (k 1, D) <~.f(N, T (~ 2)D)

then we always keep B (k) -- B (~ l) (independent on Nn~). If

f (N , T 'k li.D) > f (N , r (k 2),D)

then we keep with some probabil i ty B/k) =B/k t) and otherwise set
B(/,! _ (B(k l i + 1)/2. In accordance with simulated annealing, the probabil i ty
is determined as

\, m!nl{f(N,T~'~'D)}
where F/~ ~ is a parameter called temperature. We are using the ratio instead
o f the difference between f (N , T Ik I!,D) and min { f (N, TI"I,D)} since objec-

i =] . _ k - I

(~ Leopoht / h~ternat. J. Aly~rox. Reason. 19 (1998) 7_? 90 83

tive function values may vary heavily between different input graphs; the ratio
gives independence from absolute values without requiring to adapt the tem-
perature parameter. F iki has been determined from manual experience with
the algorithm as F !k/ -- 1.5(1 - B ! k l) 2, where the squaring has the effect that
the duration of the steps does not grow too much for large k. We restrict the
maximum number of iterations carried out with the same B/k) to 100, to guar-
antee termination also in case of convergence, and to guarantee bounds on the
running time of the algorithm.

Last t~alue t,s. best t~alue." The objective function value of the final sequencing
may be worse than that of some intermediate sequencing. This is e.g. due to the
fact that B is updated on the basis of T, not of S, in the integer-valued version
of the optimization problem. We let the algorithm either return the objective
function value of the final S or the best objective function value encountered
so far. The former is referred to as last value, the latter as best value. Clearly,
the best value can never be worse than the last value. Returning the last value
saves the time to evaluate intermediate S/kl and their objective function values
f (N , S ik!, D).

Last-intermediate t's. besl-intermediale: While with the random increasing
scheme, after increasing B, we always reset 7 "/k 1/ to the best so far sequencing
function, for the basic increasing scheme we have tried both keeping T/k ~) at
the function determined in step k 1, and resetting T !k-I) to the best so far
function. We refer to the former case as last-intermediate and to the latter as
best-intermediate variant.

4.2. Re/k, rence algorithms

As it was only for the integer-valued version of the optimization problem
that we found different but well-established heuristics for similar optimization
problems in the literature, we took this version as a basis for evaluation. Our
algorithm is applied to the integer-valued version by first running the algorithm
as usual to find a function T, and then returning the function S that corre-
sponds to T. The quality of S is an indicator of the quality of T, because T
is an intermediate result. In the following, two reference algorithms are de-
scribed.

Enumerative algorithm." A trivial algorithm for the integer-valued version of
our problem is to systematically generate all the N! candidates for S, determine
f (N , S, D) and return the minimum. The algorithm is guaranteed to yield the
exact optimum, but takes exponential time and is prohibitively slow already
for about N > 12.

Pairwise exchange heuristic: This is a simple local search heuristic, similar to
the 2-opt edge exchange heuristic for the travelling salesman problem [5]. The
algorithm starts with S: {OI...ON}--+ { 1 . . . N } being a random one-to-one
function. Then, it repeatedly picks two operations o, and 0J and exchanges

84 c. Leopold / lnlernat. .I. Apl~rov. Rea.s'olz. 19 (1998) 73 90

S(o~) and S(o/) if the exchange decreases the objective function value by some
minimum amount. The algorithm stops if there is no exchange possible any-
more. The algorithm has fi'eedom in the choice of the S(o,) S(o~) pair to
be exchanged next. Taking solution quality and computation time into consid-
eration, alter some experimentation, we decided to consider the S(o~) in cyclic
order, choose the best S(o~) for the current S(o,) and exchange S(o,) and S(o/)
if there is any gain in the objective function value. This variant is used as the
reference algorithm.

5. Experimental results

We have run several variants of our algorithm and the reference algorithms
on typically 500 randomly generated matrices D. Tables 1 and 2 list some char-
acteristic results. Where nothing else is indicated, our algorithm was run with
the following parameters: parallel update of T(o~), basic increasing scheme for
B, c'l 0.9 in the criterion for determining Nrix, best value is returned, last in-
termediate value is used, algorithm stops when B > 0.95.

Table 1 compares our algorithm with the pairwise exchange heuristic. The
given values are ratios between the objective function values achieved with
our algorithm and with the pairwise exchange heuristic. More specifically, Ta-
ble 1 lists the average, maximum and minimum ratios obtained over 500 runs.
The upper part of the table refers to the above given standard variant of our
algorithm, for the lower part, the randomized increasing scheme was used (with
remaining parameters as in the standard variant). It is to be seen that the ob-
jective function values of our algorithm are off those of the pairwise exchange
heuristic by about 10%. The randomized scheme achieves somewhat better re-
suits than the basic scheme.

Table 1
Ratios between objective ftmction values

N 5 7 8 10 20 50 100

Our alsvorithm (stamlard) / pairlrive e.w'llanL, e
Avg.ratio 1,09 1.09 1.08 1.09 1.(19 1,10 1,12
Max.ratio 3.7 2.5 2.0 1.4 1.6 1.4 1.4
Min.ratio 0.88 0.88 0.83 0.89 0.90 0.95 1.0

Ollr a/L~orilhm (rand.izzcreasin~ .~'c/lelllc) / l~airwise exchange
Avg.ratio 1.06 1.06 1.06 1.07 1.06 1.08 1.10
Max.ratio 2.1 2.6 1.9 3.3 2.6 3.1 1.9
Min.ratio 0.84 0.77 0.82 [).85 0.86 0.89 0.98

C. Leopohl / hTternat. J. Approx. Reason. 19 (1998) 73-90

Table 2
Ratios between objective function values

85

N 5 7 8 10 20 50 100

Our algorithm (standard) I our algorithm (stop,fin" B > 0.99999)
Avg.ratio 1.05 1.02 1.01 1.0 1.0 1.0 1.0

Our algorithm (htst value returned) / our algorithm (standard)
Avg,ratio 1,02 1.02 1.02 1.02 1.01 1.00 1.00

Our algorithm (sequential update) / our algorithm (standard)
Avg.ratio 0.99 1.03 1.03 1.03 1.02 1.02 1.01

Our algorithm (standard) / our algorithm (best intermediate)
Avg.ratio 1.01 0.99 0.99 0.98 0.97 0.97 0.98

Pairwise exchange / enumerative
N 5 7 8 9 10 11 12

Avg.ratio 1.01 1.02 1.03 1.04 1.04 1.09 1.05

Max.ratio 1.3 1.2 1.2 1.3 1.2 1.2 1.07
Test runs 500 500 500 500 150 3 3

Table 2 shows that another stopping criterion cannot improve the solution
quality significantly, and also that there is no significant gain in using the best
value. Furthermore, Table 2 shows that with sequential update or best interme-
diate, results were slightly worse than with the standard variant. This may be
due to the fact that the remaining parameters were tuned for the standard vari-
ant. Nevertheless, the experiments seem to indicate that not much gain can be
expected from these variations. Table 2 also compares the pairwise exchange
heuristic with the enumerative algorithm. Though this was practicable only
for small values of N, the results suggest that the pairwise exchange heuristic
is less than 10% off the optimum, and that the deviation is rather independent
on N.

We have also run the algorithm on some application-specific graphs, gener-
ated from a program for multiplying 2 x 2 matrices (N = 8) with several de-
grees of fuzziness in the data assignment, and observed similar results as
with the random graphs. Objective function values have been 0 8% off the op-
t imum if the degree of fuzziness was high in D, they have been up to 14% off the
opt imum if D was close to a 0-1-matrix.

We tried initializing N]~x with 1, but, though it improved the solution quality
for about N = 3 . . . 5, it was disadvantageous for larger N. We experimented
with c2 = 0 . 2 and c3 = 2, and observed about the same results as with
cl = 0.9, at least for N >~ 10. The algorithm was quite robust towards the
choice of the parameter c1: varying cj between 0.6 and 1.0 changed the objec-

86 C. Leopohl / lnternat, d. Approx. Reason. 19 (1998) 73 90

Table 3
Influence of multiple initializations

k I 2 3 4 5

Our alg. (standard n'ith k hlilh/lizations) / pairwise exch., N - 50
Avg.ratio 1.10 1.08 1.06 1.06 1.05

Our alg. (rand. scheme with k #litia/izalio/ls) /pairw. exch., N - 50
Avg.ratio 1.08 1.05 1.045 1.040 1.037

tive function value by less than 1%, setting ct 1.3 decreased the objective
function value by 2%, for the standard variant.

It pays off to run our algorithm with multiple initializations as shown in Ta-
ble 3. This result was to be expected, since the algorithm typically converges to
a local but not necessarily to a global optimum. Multiple initializations cover
different local optima.

Fig. 1 gives time measurements referring to straightforward codings of the
algorithms in Modula-2 on a DECstat ion 5000. The time measurements have
been averaged over 500 test runs, except for the slow programs where it has
been less test runs.

So far, the pairwise exchange heuristic had been coded with solution quality
as the primary aim. We also tried running the pairwise exchange heuristic for
the same amount of time as our algorithm (just stopping the program when
time was over), and observed the pairwise exchange heuristic to be still slightly
superior to our algorithm. Table 4 gives some results.

time (ms) ,

10 7

10 6

105

104 -

1 0 3 @

102j -

101 4-

1

/
/

' / /~ -

/ .¢~C- "

C "

5 10 20 50 100 N

Fig. I . C P U time for several algorithms.

o o standard

o-- --~ stop for B>0.99999

o o randomized scheme

c+- - -~ pairwise exchange

: enumerative

C Leopold/bz ter ,a t . J. Appro.v. Reason. 19 (1998) 73 90

Table 4
Ratios of objective function values for equal running times

87

N 5 7 8 l0 20 50 100

Oura~ori thm(standard) /pa irw~e e.veh,(same time)
Avg.ratio 1.07 1.08 1.06 1.07 1.04 1.05 1.07

Hence, for the integer-valued version of our problem, the pairwise exchange
heuristic leads to slightly better sequencings than our algorithm, but the differ-
ence is rather small and perhaps even due to current parameter settings.

The situation is different for the real-valued version of our problem, how-
ever, that cannot even be handled with the pairwise exchange heuristic. To nev-
ertheless evaluate the pairwise exchange heuristic in this situation, we have run
a combination between the pairwise exchange heuristic and our algorithm
(standard variant) against our algorithm alone. In the combination, our algo-
rithm was initialized with the result of the pairwise exchange heuristic, and it
started with a larger B (°/ than usual. Our algorithm was not only much faster
than the combination (the combination has about the same running time as the
pairwise exchange heuristic), but it also achieved slightly better objective func-
tion values. They are given in Table 5.

While for integer results, the recorded ratios have been relatively constant
over different test runs (rarely over 20% deviation for N > 10), the ratios fluc-
tuated more heavily for real results. For our parameter settings, objective func-
tion values obtained for the real-valued version have been about 60% of those
obtained for the integer-valued version. For the real-valued version, objective
function values obtained with the randomized scheme were about 10% worse
than those obtained with the standard variant. This may be due to current pa-
rameter settings.

We also did some initial experiments with other objective functions. Some
results are listed in Table 6. We expect that the results can be improved by
adapting the parameters to the respective objective function, but we have not
yet tried this in the experiments.

Table 5
Comparison of the combination against our standard algorithm

N 5 7 8 10 20 50 100

Ore" algorithm (standard) / combination, B (()) 0,7
Avg.ratio 1.2 1.07 1.07 1.07 0.92 0.98 0,95

Our a~4orithm /standard) / eombination, B m) 0.5
Avg.ratio 1.2 1.08 1.09 1.14 0.96 0.92 0.90

88 C Leopokt / hTternat. ~L Approv. Reason. 19 (1998) 73 90

Tablc 6

Results with o ther objective funct ions

N l0 20 50 100

Our algorithm (slandard)/pairwise exch (same time)

/ N, r,D) Z " ~ ' ~ : / i + l D,,

Acg.ratio 1.16 1.13 1.14 1.18

Time in ms 2 x l0 t 1 × 102 4 × 102 1 x 10 ~

./(,~:. r.D) = ~;~, 7,, ~j=i+]
Arg.ratio 1.06 1.08 1.10 1.11
time in ms 2 x 102 6 x 102 2 × I0 ~ 1 x 1 0 4

To summarize, the results indicate that our algorithm typically achieves ob-
jective function values within 20% of the optimum. Though we have done
some experimentation, we expect that the quality of the algorithm can be fur-
ther improved by fine-tuning the parameters. The algorithm exhibits a trade-
off between solution quality and computat ion time that can be shifted with
other settings. The experiments indicate that our algorithm is sufficiently effi-
cient for the applications we have in mind and reasonably accurate. Initial
measurements indicate that it will have similar properties for other objective
functions.

6. Related work

The topic of this paper is different from other data locality optimization re-
search which typically aims at regular loop structures and considers a restricted
set of candidate transformations only (see e.g. [6], or [1] for a discussion). There
is related work from other areas, though.

The sequencing problem considered in this paper can be understood as a
scheduling problem [7] with a single processor and a special type of constraints.
The constraints are the (typically conflicting) neighbourhood preferences. The
aim of the sequencing problem corresponds to finding compromises between
these constraints. In this sense, the constraints are comparable to the fuzzy
constraints of [8].

Other related work is multidimensional scaling [9,10] that aims at embed-
ding a dissimilarity matrix into Euclidean space such that the distances between
data points approximate the dissimilarities. For a one-dimensional space, it is
similar to our problem, except that the objective function favours both related
data points to be placed close to each other and unrelated data points to be
placed far away. Our problem is restricted to the former.

Our algorithm closely resembles the centroid and annealing heuristics devel-
oped in the context of visualizing semantic nets [11] in three-dimensional space.

C Leopold/Internat. J. Approx. Reason. 19 (1998) 73 90 89

Differences result mainly from that we require the algorithm to spread the T
values evenly, whereas [1 I] requires them to be discriminable.

Our algorithm was inspired by Fuzzy Clustering [12]. The problem of fuzzy
clustering resembles our problem in that a (dis)similarity matrix is given, and
objects are to be arranged with the aim of realizing neighbourhood preferences.
In fuzzy clustering, the objects are to be arranged into groups, whereas in our
problem they are to be arranged on a one-dimensional scale. Both cases use an
objective function that is minimized in an iterative process, where, assuming
some parameters of the arrangement to be fixed, other parameters are set to op-
timum (or close to optimum) values, determined with the help of a derivative.

The algorithm also shares similarity with the Elastic Net approach to the
travelling salesman problem in that real values are moving under the influence
of several forces (in our case, attractive forces of the preferred neighbours and
the binding force of the old value), and the relative strengths of the forces
change in the course of the optimization process.

In general, our algorithm resembles the well-known gradient descent optimi-
zation methods in that it is iterative and determines the next iterate with the
help of the partial derivatives. Our optimization problem could alternatively
be tackled with gradient descent methods. We preferred the present approach
because of its comparatively low computational expense for determining the
next iterate, and because of the special situation arising from the constraints.

The idea of relaxing the requirement of integer-valued schedules, i.e., con-
sidering ir instead of S, was also used in e.g. [13]. There it was used for another
purpose, though (being able to apply techniques from nonsmooth optimization
to the schedule construction, not to get a real-valued result).

Increasing B in the iterative process to first coarsely and later finely search
for an optimum is similar in spirit to simulated annealing [14] or deterministic
annealing [4].

Finally, our problem is related to the Minimum Linear Arrangement and
Minimum Bandwidth problems [15], except that we are considering weighted
graphs and have a different objective function.

7. Conclusions

In this paper, we have defined a sequencing problem where statements
should be arranged with the aim of fulfilling neighbourhood preferences. The
result is a sequencing function that assigns to each operation a real time at
which it will be approximately carried out. The problem is a problem of sched-
uling under uncertainty where fuzziness/imprecision pertains to:
• the matrix D of neighbourhood preferences,
• the representation of the result (T instead of S), and
• the meaning of closeness.

90 c. Le(q~ohl / lntermtl. J. Ap/wox. Reason. 19 (1998) 73 90

W e h a v e i n t r o d u c e d a n d e v a l u a t e d a n a l g o r i t h m to a p p r o x i m a t e l y so lve t he

s t a t e d p r o b l e m . E x p e r i m e n t a l r e su l t s i n d i c a t e t h a t t he a l g o r i t h m is eff ic ient a n d

r e a s o n a b l y a c c u r a t e . T h o u g h we h a v e a l r e a d y e x p e r i m e n t e d w i t h s eve ra l p a -

r a m e t e r se t t ings , we e x p e c t t h a t t he q u a l i t y o f the a l g o r i t h m c a n be f u r t h e r im-

p r o v e d by f i n e - t u n i n g the p a r a m e t e r s . A n i m p o r t a n t o p e n p r o b l e m is to i n c l u d e

h a r d p r e c e d e n c e c o n s t r a i n t s , t h a t r e p r e s e n t d a t a d e p e n d e n c i e s , i n t o t he a lgo-

r i t h m .

References

[1] C. Leopold, A fuzzy approach to automatic data locality optimization, Proceedings of ACM
Symposium on Applied Computing, 1996, 515 518.

[2] M. Cierniak, W. Li, Unifying data and control transl\~rmations l\~r dislributed shared memory
machines, Proceedings of ACM Symposium on Programming Language Design and
Implementation, 1995, pp. 205 217.

[3] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes, Cambridge
University Press, London, 1986.

[4] S.C. Shapiro. Encyclopedia of Artiticial Intelligence, Wiley, New York, 1992.
[5] E.L. LaMer, J.K. Lenstru, A.H.G. Rinnooy Kan, D.B. Shmoys (Eds.), The Traveling

Salesman Problem A Guided Tour of Combinal,orial Optimization, Wiley. New York, 1995.
[6] D.F. Bacon, S.L. Graham, O.J. Sharp, Compiler transl\~rmations for high-performance

computing, ACM Computing Surveys 26 (4) (1994) 345 420.
[7] J. Bta~ewicz. K.H. Ecker. E. Pesch, G. Schmidl. J. Wqglarz. Scheduling Computer and

Manufacturing Processes, Springer, Berlin, 1996.
[8] W. Slany, Scheduling as a fuzzy multiple criteria optimization problem, Fuzzy Sets and

Systems 78 (19961 197 222.
[9] T.F. Cox, M.A.A. Cox, Mull,idimensional Scaling, Chapman & Hall. London, 1994.

[10] T. Hoflnann, J. Buhmann, Multidimensional scaling and data clustering, in: Advances in
Neural Information Processing Systems 7, Morgan Kaufmann. Los Ahtos, CA, 1995, pp. 104
II1.

[11] K.M. Fairchild, S.E. Poll.rock, G.W. Furnas, SemNet: Three-Dimensional Graphic Repre-
sentations of Large Knowledge Bases, Lawrence Erlbaum, London. 1988.

[12] J.C. Bezdek, Pauern Recognition with Fuzzy Objective Function Algorithms, Plenum Press,
New York, 1981.

[13] W. Achl,ziger, K.-H. Zimmermann. Optimal polynomial schedules: An approach via non-
smooth optimization, Proceedings of the Workshop on Approximate Reasoning in Scheduling,
ICSC Press, 4 10, 1997.

[14] E. Gurewitz. K. Rose, G.C. Fox. Constrained clustering as an optimization method. IEEE
Trans. on Pattern Analysis and Machine Intelligence 15 (8) (1993) 785 794.

[15] P. Crescenzi, V. Kann, A compendium of NP optimizal,ion problems, Technical Report SI/
RR-95/02, Dipartimento di Scienze dell'Int\~rmazione. Universitll di Roma La Sapienza, 1995.

