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We examine the computational complexity of testing tinite state processes for 
equivalence in Mimer’s Calculus of Communicating Systems (CCS). The equiv- 
alence problems in CCS are presented as refinements of the familiar problem of 
testing whether two nondeterministic tinite automata (NFA) are equivalent, i.e., 
accept the same language. Three notions of equivalence proposed for CCS are 
investigated, namely, observational equivalence, strong observational equivalence. and 
failure equivalence. We show that observational equivalence can be tested in poly- 
nomial time. As defined in CCS, observational equivalence is the limit of a sequence 
of successively titter equivalence relations, hli, where z, IS nondeterministic tinite 
automaton equivalence. We prove that, for each fixed k, deciding zk is PSPACE- 
complete. We show that strong observational equivalence can be decided in poly- 
nomial time by reducing it to generali:edpartitioning. a new combinatorial problem 
of independent interest. Finally, we demonstrate that testing for failure equivalence 
is PSPACE-complete. even for a very restricted type of process. ;c 1990 Academic 

Preaa. Inc 

1. INTRODUCTION 

The Calculus of Communicating Systems (CCS) is an elegant formalism 
(Milner, 1980, 1983, 1984; Hennessy and Milner, 1985) for specifying and 
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verifying concurrent systems. Together with other new formalisms, such as 
Communicating Sequential Processes (Brookes et al., 1984; Brookes, 1983) 
and Algebra of Communicating Processes (Bergstra and Klop, 1986, 1987), 
it represents the algebraic approach to modeling concurrent computation. 
One of the nicest features of CCS as an algebraic theory is that it closely 
parallels the theory of regular expressions and finite automata (Milner, 
1984; Benson and Ben-Shachar, 1988). 

CCS is based on two central ideas (Milner, 1980): 

( 1) The notion of observationally equivalent processes, i.e., processes 
that are indistinguishable to an observer. Equivalence classes of processes 
are the basic objects of CCS. 

(2) The definition and manipulation of these basic objects using 
algebraic operators, such as u, ., *, and I. Of these, composition, 1, captures 
many features of interleaved concurrent computation and message passing. 

In this paper we focus on the notion of observational equivalence. We 
examine it from the point of view of computational complexity and in the 
context offinite state processes. We also investigate other notions, such as 
strong observational equivalence (Milner, 1984), or simply strong equiv- 
alence, and failure equivalence (Brookes et al., 1984), which have been 
proposed as alternatives to observational equivalence, perhaps more 
natural for certain types of processes. 

In our exposition we stress the similarity of CCS to the classical theory 
of regular expressions in order to show how new problems, which are 
meaningful in the context of distributed computing, can be derived from 
classical problems. As in (Milner, 1984), we consider only a restricted set 
of algebraic operators of the calculus (u, ., *), which produce the star 
expressions in CCS. These expressions are syntactically identical to regular 
expressions, but instead of having as semantics “sets of strings,” their 
semantics is “equivalence classes of processes” (see Section 2.3). 

We rigorously define all relevant features from CCS, in a fashion similar 
to Milner (1984). We consider (Section 2.1) finite state processes, which are 
slightly more general than the familiar nondeterministic finite automata 
(NFA) with empty moves (Hopcroft and Ullman, 1979). Also, some useful 
subsets of these general processes are considered. For example, a standard 
process is just an NFA; an observable process is a general process without 
t-moves, the CCS equivalent of empty moves; and a restricted process is a 
standard process with all states accepting. 

We review three basic notions of equivalence, i.e., observational equiva- 
lence, strong equivalence, and failure equivalence, and the relationships 
between them. We treat these notions as refinements of the classical notion 
of NFA equivalence, which is based on accepting the same language 
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(Section 2.2). Finally (Section 2.3), we relate star expressions in CCS to 
regular expressions and pose the CCS-equivalence problem for star expres- 
sions. This is essentially a problem of testing processes for observational 
equivalence, strong equivalence, or failure equivalence, depending upon the 
chosen notion of equivalence. 

We first deal with observable processes. Strong equivalence, which is 
observational equivalence for observable finite state processes, can be 
decided in polynomial time. We show this via a reduction to generalized 
partitioning, a new combinatorial problem of independent interest. In 
Kanellakis and Smolka (1983) and Smolka ( 1984), we developed an 
efficient algorithm for this problem by extending the technique of Hopcroft 
(1971) for minimizing the number of states of a deterministic finite 
automaton. Our time bounds have been recently improved by Paige and 
Tarjan (1987). Their algorithm yields an O(m log M + n) test of strong 
equivalence for n-state observable processes having nz transitions. 

For general finite state processes, observational equivalence is the central 
notion of Milner ( 1980). We demonstrate an important property of obser- 
vational equivalence: unlike classical NFA equivalence (Stockmeyer and 
Meyer, 1973), it is efficiently decidable in polynomial time. As defined in 
CCS, observational equivalence is the limit of a sequence of successively 
finer equivalence relations, kk, where %I is NFA equivalence. We show 
that zk is PSPACE-complete for every fixed k, a complexity that dis- 
appears when we take limits. Our negative results hold even for the 
restricted and observable model. 

For failure equivalence, an equivalence notion between Z, and z2, we 
show PSPACE-completeness, again even for the restricted and observable 
model. 

Section 2 contains the model, Section 3 the analysis of strong equiva- 
lence and the generalized partitioning problem, Section 4 the analysis of 
observational equivalence, and Section 5 the analysis of failure equivalence. 

We would like to point out that we examine only one critical feature of 
CCS, namely, the choice of equivalence notion. We do not discuss other 
important algebraic features of CCS, such as the various composition 
operators. However, we believe that we identify and answer some 
fundamental complexity questions in the calculus. Another paper 
(Kanellakis and Smolka, 1988) applies the theory presented here to the 
analysis of cooperation and antagonism in networks of communicating 
processes (i.e., with the composition operator). A preliminary version of the 
results of Kanellakis and Smolka (1988) and the results of this paper first 
appeared in Smolka (1984). 
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2. THE MODEL 

2.1. Finite State Processes 

The basic building block of our model for distributed computation is the 
finite state process, which very much resembles the nondeterministic finite 
automaton (NFA) of Hopcroft and Uliman (1979). 

DEFINITION 2.1.1. A Finite State Process (FSP) is a sextuple 
(K, po, C, A, V, E >, where: 

(1) K is a finite set of states. 

(2) pO E K is the start state. 

(3) C is a finite set of symbols called actions, and r is a special 
symbol not in Z called the unobservable action. 

(4) A E K x (2 u {r } ) x K is a relation called the transition relation. 

(5) V is a finite set of symbols different from Z LJ {T} called variables. 

(6) E G K x V is a relation called the extension relafion. 

We use the notation A(q) = ((a, q’) 1 (q, a, q’) E A} for the transitions 
from q, E(q)= (x ( (q, x) E Ej for the extensions of q, ahd A(q, a) = 
{q’ 1 (q, a, q’) E A > for the destinations of q via action a. We also write 
q --ta q’ when (q, a, q’) E d; thus, -+ is a Z-indexed family of binary rela- 
tions over K. 

An FSP can be represented by a labeled directed graph whose nodes are 
the states and which has labels on the arcs (i.e., the transitions) from 
Zu {T}, and labels on the nodes from 2” (i.e., the extensions). The exten- 
sions are used in Milner (1984) to represent different flavors of acceptance; 
they are the only difference from the classical notion of an NFA with 
empty transitions (Hopcroft and Ullman, 1979). Extensions do not affect 
most of our combinatorial analysis, but are included to maintain con- 
sistency with the exposition of Mimer (1984). Note also that we use dif- 
ferent symbols for r and the empty string E, because of the particular role 
of T as the unobservable action in distributed computation (Milner, 1980; 
Bergstra and Klop, 1987). 

We will refer to the model of computation in Definition 2.1.1 as the 
generaI model of FSPs. We also consider several specialized versions of the 
general model. The observable model (Milner, 1984) is obtained from the 
general model by not allowing z-transitions, and, if in this case there is 
exactly one transition for each symbol in 2, we have the deterministic 
model. The standard model is derived from the general model by restricting 
V to be the set (x}. In this model, an FSP can be viewed as a classical 
NFA with empty transitions, where a state q is accepting if E(q) = {x] and 
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nonaccepting if E(q) = @. If in the standard model, for all states 
p, E(p) = {x}, we have the restricted model. Thus all states of a restricted 
FSP are accepting, but states could be missing transitions. 

Nontrivial subsets of the restricted model are the restricted observable 
model+alled restricted observable unary (r.0.u.) when there is only one 
action in z-and the model where the FSP is a finite tree rooted at po. 
Subsets standard observable and standard observable unary (s.o.u.) of the 
standard model are defined analogously. 

The hierarchy of models is depicted in Fig. la. Every one of these models 
corresponds to some nontrivial case in our exposition. Examples of such 
FSPs are presented in Fig. lb; if the extension label is missing from a node 
it is assumed to be @. A guide to the various models of FSPs is included 
in Appendix A. 

We will always deal with states of FSPs, e.g., equivalent states, and 
the processes to which these states belong will be clearly defined from the 
context. 

Let .YE~Y* and p, p’ be states of an FSP. Also, let E denote the empty 
string. We say that p G-’ p’ when there is a sequence of k arcs in the FSP’s 
graph from p to p’ whose string of labels is tk, where k 3 0. (Obviously 
alwaysp+“p.)Ifs=cr,a,...o,,,oiEz, l<i,<n,wesaythatp+‘p’when 
there is a sequence of k, + k, + ... + k,, + n arcs in the FSP’s graph from 
p to p’ whose string of labels is r%, tkloZ . I. g,,rXn, where k,, k, , ,,,, k,, 2 0. 
We refer to p’ as an s-derivative of p. 

In the restricted model of FSPs, the only feature that distinguishes states 
is the absence of certain transitions. This concept is formalized in Brookes 
et al. (1984) as the failures(p) for state p of a restricted FSP. We say that 
l(p *‘) when there is no p’ such that p 3’ p’. 

fhilures( p) = ((s, Z) 1 s E .X*, Z c z such that 

3p’~K: p -1, p’and V;EZ: T(p’ 2)). 

For example, assuming ,Y = {a, h, c>, the failures for the start state of the 
finite tree process of Fig. 1 b are 

(E) x2:“,“; u [a} x21”: u {ah} x2”u [acj x2’. 

2.2. Equivalences of FSP States 

The essential new idea in CCS is a new notion of equivalence between 
states of FSPs. A number of “candidates” for the correct notion of equiva- 
lence have been proposed and investigated (e.g.,. Milner, 1980, 1983, 1984; 
Brookes, 1983; Brookes et al., 1984; Hennessy, 1985: de Nicola and Hen- 
nessy, 1984). We will deal with three such notions: observational equiva- 
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FIG. 1. (A) Hierarchy of FSP types. (B) Examples of FSPs. 

lence, strong observational equivalence, and failure equivalence. The exposi- 
tions of Mimer (1980) and Brookes et al. (1984) are, to a great extent, 
devoted to establishing the practical relevance of such choices in the 
context of distributed computation. 

In general, for two FSP states p, q to be equivalent, it is not enough to 
say that they represent start states of NFAs accepting the same language, 
as in the classical case. In particular: 
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DEFINITION 2.2.1 (Milner, 1980). Let p, q be states of general FSPs 
which have the same C and V. We define p, q to be k-ohservationally equiva- 
lent (p zk q) if: 

(1) E(p) = E(q), when k = 0. Otherwise, when k > 0, 

(2) For every s E C*, 

(i) if p*’ p, then (3q,: q*’ q, and p, zkP, q,), 

(ii) if q+’ q2 then (3~~: p *’ p2 and qr zkP, p2). 

States p. q are observational/y equivalent (p z q) if p z/, q for all k 3 0. 

Limited observational equivalence is similar to observational equivalence 
except that only strings of length zero or one are considered. 

DEFINITION 2.2.2. Let p, q be states of general FSPs which have the 
same C and V. We define p, q to be k-fimited observationally equivalent 
(p *k q) if: 

(1) E(p) = E(q), when k = 0. Otherwise, when k > 0, 

(2) For every a~Cu (~1, 

(i) ifpa”pl then (3q,:q*“ql and~,=~_,q,), 

(ii) ifq=-“q2 then (3p,:p~“p,andq,~,~,p,). 

States p, q are limited-observationally equivalent (p ‘Y q) if p hk q for all 
k 20. 

Strong equivalence and failure equivalence are defined for less general 
models of FSPs. 

DEFINITION 2.2.3. Let p, q be states of observable FSPs which have the 
same Z and V. We define p, q to be strongly equivalent (p - q) if p 2: q. 

DEFINITION 2.2.4 (Brookes et al., 1984). Let p, q be states of restricted 
FSPs which have the same Z and V. We define p, q to be failure equivalent 
(p=q) if 

,fuilures( p) = faihres( q). 

It is easy to verify that k-observational equivalence, observational equiva- 
lence, k-limited observational equivalence, limited observational equiva- 
lence, strong equivalence, and failure equivalence are true equivalence 
relations on FSP states: nameiy, they are reflexive, symmetric, and transi- 
tive. 
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DEFINITION 2.2.5. Let /i c C* be a set of strings. We call a relation R 
between states of FSPs having the same C and V a A-fixed-point when 
p R q implies that 

(1) E(p)=E(q). 
(2) For every SE A, 

(if if p jJ p, then (3q, : q =2’q, and p1 R q,), 

(ii) if q*’ q2 then (3p,: p =x’ pz and q2 R pz). 

We will use C*-fixed-points and (Cu is})-fixed-points in order to 
investigate the relationship between z and N. 

PROPOSITION 2.2.1. For FSP states p, q in the general model, 

(a) = is a (Cu {e})-fixed-point. 

(b) ‘v is a .X*-fixed-point. 

Cc) P”4 iffpzq. 
The arguments in the proof of Proposition 2.2.1 are simple generaliza- 

tions of the arguments in Milner (1980, Theorems 5.6 and 7.2). For com- 
pleteness of exposition, we include a detailed proof in Appendix B. The use 
of the pigeonhole principle in part (a) is critical and, as shown in Sander- 
son (1982), these fixed-point properties do not necessarily hold for infinite 
state processes. 

For observable FSPs, Milner refers to a binary relation which is a C- 
fixed-point as a strong bisimulation (Milner, 1983, 1984). Note that for the 
observable case, (C u Is))- and C-fixed-points are the same. He then shows 
that strong equivalence ( 5 ) is the largest, under set inclusion, strong 
bisimulation. As such, strong equivalence is often referred to as “strong 
bisimulation equivalence.” Similarly, using the Knaster-Tarski fixed-point 
theorem, Definitions 2.2.1-2.2.2, and Proposition 2.2.1 we have that: 

PROPOSITION 2.2.2. In the general model, 

k= E = IJ {R 1 R is a C u { .z}-fixed-point} 

and is the largest, under set inclusion, C u {&)-fixed-point. 

Let p, q represent start states of NFAs. Then we will denote the 
languages accepted by these NFAs as L(p), L(q), respectively. Recalling 
that E denotes failure equivalence, we have for the restricted model: 

PROPOSITION 2.2.3 (Brookes, 1983). For FSP states p, q in the restricted 
model, 

(a) pzzq impliesp=q impliespz, q. 

(b) P=I q iffUp)=Uq). 
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In the deterministic case the equivalence relations zL, k 3 1, collapse to 
z, ; this is an easy consequence of determinism. 

PROPOSITION 2.2.4. For FSP states p, q in the deterministic model, 

(a) pzlq~fpzq(orp~qorp~q). 

(b) p z, q $7 L(p) = L(q) (for the deterministic standard model). 

In this paper, we study the complexity of testing whether two states are 
observationally equivalent in the general model, strongly equivalent in the 
observable model, or failure equivalent in the restricted model. 

We should note that even in the r.o.u. model, the equivalence notions 
szk, E, and z (or z, or k ) are different. This is illustrated by the exam- 
ples of Fig. 2. A guide to the various equivalence relations for FSPs is 
included in Appendix A. 

2.3. Regular E-xpressions for Languages vs Star Expressions for CCS 

The theory of CCS expressions is developed in Milner (1984). Their 
syntax is very similar to that of regular expressions for languages. The basic 
novelty is that the semantics of a CCS expression is no longer a language 
but a class of observable FSPs with strongly equivalent start states. 

A particularly interesting class of these expressions are the star expres- 
sions. In this section, we describe star expressions in detail and refer to 
Milner (1984) for the complete definition of CCS expressions. The rationale 
for this is that star expressions use the familiar u, ., * symbols, with new 
semantics. They provide the link between the algebraic theories of CCS and 
regular sets. 

DEFINITION 2.3.1. The syntax of star expressions over C is the same as 
that of regular expressions over C. The semantics of star expression r is the 
class of observable and standard FSPs whose start states are strongly 
equivalent to p, the start state of the representative FSP of r. The 

FIG. 2. Example T.O.U. FSPs distinguishing the various equivalences 
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representative FSP of r is the NFA, without empty moves, P= 
(K, p, C, A, (x}. E), constructed inductively as follows: 

r=@: P=((p).,pJ,@, .(x),0). 

r=a: P=({p,q),p, z : (Pt 4 4) 17 (4, ((q* .d> >. 

Let rl, rz be star expressions having representative FSPs Pi= 
(K;, pi, C, A;, {x>, E,), i= 1,2, such that K, nK?=@. Then 

r=r,ur2: P=(K,uK,u(p},p,Z,A,uA,uA’, {x},E,uE,uE’), 
where p is a new state not in K, u Kz, and A’ = {p} x 
@,(P,)uA~(Pz)), E’= {P) x (E,(P,)u&(P,)). 

r=rt-rZ: P=(K,uK,,p,Z,A,uA,uA’, [x],EZ), where p=p,, and 
A’= (qEK, I E,(q)= .(x}} x A,(p,). 

r=rf: P=(K,u(p),p,C,({p}xA,(p,))uA+, {.~),Elu{(~3x)j), 

where p is a new state not in K,, 
and A+t(q)=A,(q)uA,(p,) if E,(q)= C-x) 

= A,(q) otherwise. 

Intuitively, the semantics of a star expression r is the class of FSPs whose 
start states are equivalent to the start state of the representative FSP of r. 
The representative FSP is the one constructed inductively in Defini- 
tion 2.3.1 and illustrated in Fig. 3. This definition follows closely the classi- 
cal construction used in showing that the language denoted by regular 
expression r is accepted by some NFA. Since we are dealing with strong 
equivalence classes of observable FSPs, the representative FSP is construc- 
ted so that it too is observable, i.e., free of r-actions, In Milner (1984) it 
is shown that using strong equivalence as the equivalence notion makes the 
semantics independent of the representative FSP chosen. 

The CCS equivalence problem is: “Given two CCS expressions, do they 
have the same semantics?’ This parallels the equivalence problem for 
regular expressions (Hopcroft and Ullman, 1979; Stockmeyer and Meyer, 
1973). Let the length of a star expression r be the number of symbols in the 
string r. Using Definition 2.3.1 we have: 

LEMMA 2.3.1. Let r he a star expression of length n over a fixed alphabet 
2:. Then the representative FSP of r is observable and standard; it has O(n) 
states and O(n2) transitions, and can be constructed in O(n2) time. 

In Definition 2.3.1 we described the syntax and semantics of star expres- 
sions. The CCS expressions of Mimer (1984) are slightly more general, 
because of the presence of extensions. Their semantics are strong equiva- 
lence classes of observable, though not necessarily standard, FSPs, and a 
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straightforward generalization of Lemma 2.3.1 also holds for CCS expres- 
sions. Thus we have that the CCS equivalence problem is in essence one of 
testing FSPs for observational equivalence, strong equivalence, or failure 
equivalence. 

Finally, let us briefly mention a number of interesting connections 
between CCS expressions and regular expressions from Milner (1984). 

(I) Every observable FSP is a member of some set of observable 
FSPs that is the semantics, i.e., strong equivalence class, of a CCS expres- 
sion. 

(2) There is a complete inference system for identities of CCS expres- 
sions paralleling that of Salomaa (1986) for regular expressions. 

(3) The significant algebraic properties that regular expressions have 
and star expressions lack are the following two identities. Let Y, s, t be 
arbitrary regular expressions. Then: r . (s u t) = r . s u r . t and Y . @ = a. 
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3. STRONG EQUIVALENCE IS EFFICIENTLY DECIDABLE 

The problem of language equivalence of two finite state automata of size 
N, i.e., whether they accept the same language, has received a great deal of 
attention in the literature. For DFAs there is an O(N G(N)) algorithm that 
uses UNION-FIND (Aho et al., 1974, Sect. 4.8) and for NFAs the 
problem has been shown to be PSPACE-complete (Stockmeyer and 
Meyer, 1973). Also, the problem of minimizing the states of a DFA of size 
N has an elegant O(N log N) solution, and is related to a combinatorial 
partitioning problem (Aho et al., 1974, Sect. 4.13; Hopcroft, 1971). 

For testing strong equivalence of states of deterministic FSPs, the above 
techniques for DFAs are directly applicable (see Proposition 2.2.4(b)). For 
the larger class of observable FSPs, strong equivalence of states can still be 
tested efficiently. In this case, unfortunately, the UNION-FIND technique 
does not lead to an efficient algorithm because of possible multiple transi- 
tions for one symbol of the alphabet. However, we can show that strong 
equivalence of states can be tested by solving the following partitioning 
problem, which is also of independent interest. 

Generalized Partitioning 

Input: A set S, an initial partition of S into disjoint blocks 7c= 
(4, B,, . . . . Bp}, and k functions f,: S-+2’, 161<k. 
Output: A partition of S into disjoint blocks rt’= {E,, E2, . . . . E,}, such 
that: 

(1) 71’ is consistent with rt, i.e., each Ej is a subset of some e,. 

(2) For a, b in block E,, any block E,, 1 6 i, j < q, and any function 
fi, 161Gk: 

fi(a)nEiZG3 iff f,(b)n{,#B. 

(3) rr’ is the coarsest such partition, i.e., has the fewest blocks. 

The generalized partitioning problem is well-posed, i.e., there always 
exists a coarsest partition with properties (1) and (2). To see this, consider 
the lattice of partitions of the set S under the ordering: rci < rc2 if every 
block of partition x1 is contained in some block of partition x2. Properties 
(1) and (2) of the generalized partitioning problem can be used to define 
a monotone function on this lattice whose greatest fixed-point exists and is 
unique, by the Knaster-Tarski theorem. This greatest fixed-point is the 
coarsest partition satisfying (1) and (2). 

Intuitively, the initial partition rc is relined into the final partition rr’, 
in the coarsest fashion possible, so that each f, induces a mapping from 
blocks of rr’ to sets of blocks of rc’. It is easy to see that the generalized 
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partitioning problem is different from that of minimizing the states of a 
DFA. 

Obviously, each function f, can be represented as a directed graph with 
node set S and arcs (i, j) iff j is in f,(i). The size of an instance of 
generalized partitioning is (n, m), where the cardinality of set S (denoted 
IS( ) is n and the total number of arcs in the corresponding k graphs is m. 
In the deterministic case, we have f,: S -+ S, for each 1, and m = k . n. 

LEMMA 3.1. Let p, q be states of observable FSPs having a total of n 
states and a total of m transitions. We can test whether p - q by reducing this 
problem, in O(n + m) time, to a generalized partitioning problem of size at 
most (n, m). 

Proof Let p, q be states of the observable FSP (K, pO, C, A, V, E); the 
proof is similar if p, q belong to two distinct observable FSPs having the 
same C and V. We can construct an instance of generalized partitioning in 
O(n + m) time as follows. The set S is identified with K. For the initial par- 
tition n, two states p and q are in the same block iff they have the same 
extensions, i.e., E(p) = E(q). Finally, for each e E C, there is a function f,, 
corresponding to the restriction of A to (T, i.e., f,(p) = { p' 1 p' E A(p, G) j. 
We are left to show that: 

Claim. p-q iff p and q belong to the same block of 71’. 
The relation - is an equivalence relation on states. It therefore defines 

a partition rc- . By Proposition 2.2.2, - is a C-fixed-point. From Delini- 
tion 2.2.5 it follows that x, satisfies properties (1) and (2) of the 
generalized partitioning problem. Assume that rc- is not the coarsest parti- 
tion satisfying these properties. Then the coarsest such partition would give 
us a Z-fixed-point larger than -, contradicting Proposition 2.2.2. This 
completes the proof of the claim and hence the lemma. 1 

An obvious solution to the generalized partitioning problem is, starting 
from 7c, reline the blocks of the partition by the following method. Let Bi 
be a block. For each of the k functions fr, examine f,(a) c S, for each a in 
B,. We can think off,(a) as denoting a set of blocks, i.e., those blocks such 
that each one contains some element of f,(a). Now we partition B, so that 
two elements a and b are put in the same block if and only iff,(a) and f,(b) 
denote the same set of blocks. We will refer to this method as the naive 
method. 

LEMMA 3.2. The naive method correct1.v solves an instance of the 
generalized partitioning problem of size (n, m), and can be implemented in 
O(nm) time. 
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Proof It is easy to see that the method described above gives the 
correct output partition. However, the O(mn) implementation is less 
obvious. We perform O(n) iterations since there can be at most n blocks. 
In each iteration the lexicographic sorting method from Aho et al. (1974) 
is used and takes O(n + nz) time. Also, simple examples show that this 
bound is tight. 1 

The time bound of the naive method can be improved upon substan- 
tially. In Kanellakis and Smolka (1983), a generalization of the divide-and- 
conquer method of Hopcroft (1971) was presented for the case of bounded 
fanout, i.e., for all a in S, If,(a)1 6 c, for some constant c. This case 
corresponds to FSPs that have at most c transitions out of any state for 
each symbol of the action alphabet. The algorithm of Kanellakis and 
Smolka (1983) runs in O(c’ .n log n) time. Recently, Paige and Tarjan 
(1987) have developed an algorithm that solves the generalized partitioning 
problem (which they refer to as “relational coarsest partitioning”) of size 
(n, m) in time O(m log n + n). This resolves an open problem in Kanellakis 
and Smolka (1983). Therefore from Lemma 3.1 and Paige and Tarjan 
(1987) we have that: 

THEOREM 3.1. Let p, q he states of observable FSPs having a total qf n 
states and m transitions. Strong equivalence of p and q can be decided in 
O(m log ?r + n) time. 

4. THE COMPLEXITY OF OBSERVATIONAL EQUIVALENCE 

In this section, we examine the complexity of testing for observational 
equivalence. This equivalence notion may be used for FSP states from all 
of our models. The upper bounds presented in this section hold even for 
FSPs of the general kind, and the lower bounds even for FSPs that are 
restricted and observable, and in some cases r.o.u. 

We begin by presenting two lemmas that will be used in the proof of 
Theorem 4.1, which contains the main results of the section. To concisely 
state the first of these lemmas, we use the syntax and semantics of the star 
expressions given in Definition 2.3.1. For any standard, observable FSP 
state p, we alternatively view p as a star expression whose representative 
FSP is the one having start state p. We will limit our usage of this notation 
to restricted and observable FSPs. So, for example, the star expression a .p 
denotes the restricted and observable FSP consisting of an a-transition into 
state p. The second lemma is due to Chandra and Stockmeyer (1982) and 
gives a sharper lower bound on language equivalence of NFAs. 
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LEMMA 4.1. In the restricted and observable model, for any k 2 0, 

P%kq iff (PUq=:, PandpUq=,q). 

Proof: only if: Assume p z:k q and consider all strings s E C*. We show 
the first conjunct p u q zk p. Let r be an s-derivative of p u q. Case (1): r 
is an s-derivative of q. The fact that p z.k q guarantees we can find a 
suitable s-derivative p’ of p, i.e., one for which p’ z&, r. Case (2): Y is an 
s-derivative of p, and the result is obvious. Showing the second condition 
of k-observational equivalence in which the s-derivatives of p are first con- 
sidered is also obvious. The other conjunct p u q zk q is proved similarly. 

if: Assume p u q zk p and p u q Z~ q, and consider all strings s E Z*. 
We show that p zk q. Let p’ be an s-derivative of p. The fact that p u q zk q 
guarantees we can find a suitable s-derivative q’ of q. The proof of the 
second condition of k-observational equivalence is symmetric. 1 

LEMMA 4.2 (Chandra and Stockmeyer, 1982). In the restricted and 
observable model, deciding p z 1 q is PSPACE-complete. 

Proof Membership in PSPACE for this problem is immediate since a 
restricted and observable FSP is also a standard FSP. To show PSPACE- 
hardness, let p be a state of a standard FSP. We reduce the PSPACE-com- 
plete problem of whether L(p) = Z* (Stockmeyer and Meyer, 1973) to the 
corresponding problem for restricted observable FSPs. Consider the 
standard FSP M= (K, pO, Z, d, {x}, E), having the set of accept states 
F= {p,-EKI E(p,,)= {.x}}. By a simple reduction whose details we do not 
present, assume that Z= {a, b}, and that M is observable with both a- and 
b-transitions leaving each state. Transform M to the restricted observable 
FSP M’ = (K’, pb = pO, C, A’, Ix>. E’) as follows (see Fig. 4): 

K’=Ku (ptrap}u (~6 I SEA}, 

where pIrap and ps, S E A, are new states not in K; 

E’ = K’ x (x}, i.e., every state of M’ is accepting; 

A’ = ( ( pf, a, ptrap > I p+ F is an accept state of M) 

ui(~~b,~,),(p,,~,q)l~=(p,a,q)isinA) 

U{CP trap, 4 ptrap >> (strap, b> ptrap > >. 

We now show that L(p,) #I* iff L(pb) #Z*. For the “only if” direc- 
tion, suppose s $ L(pO) with s = g1 gz.. . (T,, n >, 0, and all prefixes of s are 
in L(p,). Then bo, ba, . . . ba,a 4 L(pb) for this would otherwise mean that 
s can take pO to an accept state. 

For the “if” direction, suppose s # L(pb) and all prefixes of s are in L( pb). 
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FIG. 4. Reduction of Lemma 4.2. 

Then s can be written as ba, ba, . . ba,a, since if an “a” appeared in any 
of the first k odd positions then s would be in L(pb). It follows that 
0, oz . . (TV 4 L(p,) since otherwise s E L( pb). 1 

THEOREM 4.1. Let p, q be FSP states and assume that the FSPs to which 
these states belong have a total of n states and m transitions. 

(a) In the general model, p zz q can be decided in 
O(n’m log(n) + mn’.376) time. 

(b) If p and q are restricted and observable, then p ek q, for any fi.xed 
k > 1, is PSPACE-complete. 

(c) If p and q are r.o.u. states, then p zk q, for any fixed k 3 2, is co- 
NP-complete, and decidable in linear time for k = 1. 

Proof (a) We know from Proposition 2.2.1(c) that pzq iff p = q. By 
the definition of = (Definition 2.2.2), we see that we have a problem which 
is very similar to that of Section 3; our only additional consideration is 
r-transitions. In particular, let p, q be states of the general FSP P= 
(K, pO, C, A, V, E). The problem of deciding p z q is reducible to deciding 
strong equivalence as follows. Compute the transition relation 3 of the 
observable FSP P= (K. p,,, L’u {s}, 2, I’. E) such that 

J=i<P>W) I P Z-qinP,oEZu(v}}. 

To do this, we first note that, for each (T EC, p j” q in P iff there exist a 
p’ and p” such that p =>’ p’ +” p” 3” q. Thus, 2 can be determined by the 
following procedure: 

(1) Compute the adjacency matrix M, for the binary relation aE 
over K, i.e., the reflexive transitive closure of A with respect to the symbol 
t; and then 
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(2) For each 0~ .Z, compute the matrix products M,: .M,. M,, 
where M, is the adjacency matrix of the binary relation --f”. The 
resulting matrix is the adjacency matrix of the binary relation 
{(P-q)1 (Pdw)~~~. 

Note that the size of d is O(n*m), as there can be at most m distinct sym- 
bols 0 labelling the transitions of A. By the definition of d and Proposition 
2.2.1 (c), we have that 

p zq in P iff p-q in P. 

Using Lemma 3.1, we can now directly apply the algorithm of Paige 
and Tarjan (1987) for generalized partitioning to the states of P to 
obtain an algorithm for observational equivalence whose complexity is 
O(n*m log(n) + mn”). Here O(n”) is the time needed to perform transitive 
closure on a directed graph having n nodes. The smallest such a currently 
known is 2.376 (Coppersmith and Winograd, 1987). 

If only a constant number of different symbols rr label the transitions of 
A, then the size of d is O(n’), and the term na will dominate the time com- 
plexity of deciding observational equivalence. 

(b) Let p be a state of a standard FSP (an NFA) and let f(p) be the 
language accepted by this NFA with start state p. We know from Proposi- 
tion 2.2.3(b) that p Z, q iff L(p) = L(q). Thus, it is PSPACE-complete 
(Stockmeyer and Meyer, 1973) to decide Z, in the standard, observable 
model. From Lemma 4.2 (Chandra and Stockmeyer, 1982) we have that 
deciding %I is PSPACE-complete even for restricted and observable FSPs. 
Obviously, testing for z0 is trivial. 

Membership in PSPACE for z~, k > 1, can be established by a reduc- 
tion to the classical problem of NFA equivalence. Let p and q be states of 
general FSPs such that p E K and q E K’. Let {B, 1 1 d id I} be the partition 
induced by %:x- over K v K’, i.e., each B, is an equivalence class of Ku K’ 
with respect to ZZ~. Then we can restate Definition 2.2.1, the definition of 
=k+l, as 

PZx+1 q iff Vi, 1 GiGI, L,(p)=L;(q), 

where Lj(p) denotes the language accepted by the standard FSP having 
start state p and accept states Kn Bi. Similarly, L,(q) denotes the language 
accepted by the standard FSP having start state q and accept states 
K’n Bi, and we have the reduction. 

We show that deciding z~, for any fixed k> 1, is PSPACE-hard in the 
restricted, observable model. The following technique is used which allows 
us to inductively reduce the problem of Z, to z~: 
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Given two FSP states p, q we construct two states p’, q’ of new FSPs 
such that 

P%kq iff p’ %k+, q’, for k 2 1. 

The reduction uses one symbol, the symbol a, from the alphabet Z, and 
is illustrated in Fig. 5a. We can once again use the syntax of star expres- 
sions to formalize the reduction in a concise manner: 

P’=a*(Puq) 

q’=(a.p)u(a.q). 

if: We prove the contrapositive, namely, p $k q implies 
p’ $k+, q’. Consider the a-derivatives of p’ and q’. State p’ has only one, 
viz., p u q, while q’ has both p and q as u-derivatives. Assuming p $sk q, we 
have, by Lemma 4.1, that either pu q $kk p or pug ;ck q, and thus 
P’ +k+l 4’. 

only if: We prove the contrapositive, namely, p’ $k + r q’ implies 
P #k 4. Assuming P’ +k + 1 4’, then the string that distinguishes p’ and q’ 
must consist of the single character a. This is because for any longer string 
s, p’ and q’ have identical sets of s-derivatives. Thus, either p u q $k p or 
p u q qkk q and, by Lemma 4.1, p ?$k q as desired. 

Starting with =I and applying this reduction inductively k - 1 times 
gives us PSPACE-hardness of zk in the restricted and observable model, 
for any fixed k 2 1. 

a 

t 

0 p’ 
a 

FIG. 5. (a) Reduction of Theorem 4.1(b). (b) The FSP chaos. (c) Reduction of Theorem 
4.1(c). (d) The trivial NFA. 
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(c) Consider the r.0.u. model in which C = (u ). Here, it is easy to 
decide p zz, q or L(p) = L(q), as the languages L(p), L(q) are closed under 
prefix and are therefore either {u}* or finite initial segments of (at*. 
However, if p and q are from the S.O.U. model, and thus not all states need 
be accepting, the problem of deciding p =I q becomes co-NP-complete. 
This is an easy consequence of the co-NP-completeness of deciding 
I= (a}*, for star expression Y (Stockmeyer and Meyer, 1973). For 
k >, 2, the technique of part (b) can be used to reduce the problem of r.o.u. 
8k to S.O.U. 2,. Thus it is in co-NP. 

Let a dead state be a state devoid of outgoing transitions. To show the 
co-NP-hardness of deciding z~, k 3 2, in the r.o.u. model, we consider the 
problem L(p) = {a>+, where p is a state of an S.O.U. FSP having no dead 
states. The co-NP-hardness of this S.O.U. equivalence problem is, again, an 
easy consequence of the Stockmeyer and Meyer (1973) result. We now 
reduce this problem to q zz chaos, where q is an r.o.u. state and chaos is the 
start state of the r.o.u. FSP given in Fig. 5b. Observe that, for any 
q, q z2 chaos iff 

(i) for every SE {u} +, q has an s-derivative q, such that 
uq, I= 0. 

(ii) for every s E {a) *, q has an s-derivative q2 such that 
Uq,) = {a)*. 

(iii) for every s E {a) *, these are the only types of s-derivatives of q. 

We begin by transforming p into p’, the start state of an S.O.U. FSP in 
which a state is an accept state iff it is a dead state, and L(p) = L(p’). We 
use the following procedure, illustrated in Fig. SC. Let pr be an accept state 
that is not a dead state. Change pf to be a non-accept state and then 
create a new state pnew which is both an accept and dead state, having as 
incoming transitions exactly those of pf. Intuitively, a string that emanated 
from p and was accepted at p, now emanates from p’ and is accepted at 
P new. 

Now we obtain q from p’ by making every state of p’ accepting, and 
complete the proof of (c) by showing that L(p) = (u} + iff q z2 chao.~. 

onfy if: Assume L(p)= {a)+. Then in q there is clearly a dead 
state s-derivative for every s E {a} +. Hence (i). Also, q must lead to a cycle 
and hence (ii). Condition (iii) follows from the fact that the s.o.u. FSP of 
which p was a state did not contain any dead states, and from the construc- 
tion procedure for p’. 

if: Assume q z:z chaos. That L(p) = (u I- + follows immediately 
from condition (i). 

Now that we have established co-NP-hardness for deciding r.o.u. z?, we 
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can apply the PSPACE-hardness reduction of part (b) inductively k - 1 
times to obtain the co-NP-hardness of r.o.u. z~, for any fixed k > 2. 
(Recall that the reduction of part (b) used only one symbol, a, and is thus 
still applicable in the r.o.u. case.) 1 

Finally, we would like to point out that in classical complextity theory 
(Stockmeyer and Meyer, 1973), there are results for the problem p z, q*, 
where q* is the trivial NFA that accepts L’* (see Fig. 5d). Using Definition 
2.2.1, we can show that testing p x2 q* in the general model is easy. 
Namely, p z:z q* iff “every state reachable from p has outgoing transitions 
for every symbol from C.” This is a consequence of the fact that in going 
from %i to %;2, we examine all s E .X*, whereas in going from N, to N *, 
we examine only s E z u {E}. 

5. THE COMPLEXITY OF FAILURE EQUIVALENCE 

In this section, we analyze the complexity of testing two FSP states for 
failure equivalence. We will therefore be working in the restricted model. 
As described in Section 2, for restricted states p, q we have 

failures(p) = {(s, Z) 1 s E C*, Z G C such that 

3p’~K: p & p’andV’zEZ: l(p’ i)) 

and 

p=q iff fuilures( p) = failures(q). 

Failure equivalence can be tested efficiently for the case of finite trees 
with r-transitions (Smolka, 1984). However, for slightly more complex 
finite processes, even without r-transitions, we have: 

THEOREM 5.1. For FSP states p, q in the restricted model, deciding p = q 
is in PSPACE and in co-NP of [.?I[ = 1. Even for the restricted observable 
model with ICI = 2, deciding p = q is PSPACE-complete. For the r.o.u. model 
it is co-NP-complete. 

Proof. We exhibit a nondeterministic, polynomial space algorithm for 
deciding the failure equivalence of p and q in the restricted model. Since 
PSPACE = NPSPACE, this will give us membership in PSPACE. Assuming 
that p $ q, the algorithm guesses a failure pair (s, Z) EfuiZures(p), and then 
verifies in polynomial space that (s, Z) $fuiZures(q) (or vice versa). In par- 
ticular, let s=u, . ..uk. The algorithm guesses s one’symbol at a time. In 
response to the ith guess, i.e., the symbol ai, the algorithm computes the 
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aI ... a,-derivatives, i.e., the set of states reachable from q by the observable 
string a, ... ai, from the a, ... ai_ I -derivatives of q. Finally, each 
s-derivative of q is checked separately for the existence of an a-derivative, 
for each aEZ. Note that, because of nondeterminism, s may be exponen- 
tially long in terms of the total number of transitions in p and q. 

To prove the PSPACE-hardness of deciding failure equivalence in the 
restricted observable model, we establish a reduction from the PSPACE- 
hard problem of restricted observable NFA equivalence (Lemma 4.2). Let 
p and q be the start states of two restricted observable FSPs. They can also 
be viewed as the start states of two NFAs which accept the languages L(p) 
and L(q), respectively. Note that, as a consequence of the restricted model, 
the only way a string s is not in L(p) or L(q) is if 1 (p j”) or 1 (q a”). 

Given p, q, we will produce two states p’, q’ such that L(p) = L(q) 
iff p’=q’. Let p be the start state of the restricted and observable 
FSP <K P, Z, A, {x>, E), and obtain the restricted and observable 
FSP (K’, p’, C, A’, {-XI, E’) as follows: 

(i) p’=p. 

(ii) K’ = Ku {PdeadJ, where P&ad 4 K is a new state, devoid of out- 
going transitions. 

(iii) ~‘=Au{(P~~B,P~~~~) 1 p,EKand aez}. Note thatp,,,, has 
incoming transitions from all other states. 

(iv) E’ = K’ x {of, i.e., all states are accepting. 

Similarly, obtain q’ from q. 
Obviously, L(p’) = L(p) u L(p) .z, L(q’) = L(q) u L(q) ..Y:, and 

failztres(p’)= {(s, @) I sEL(p)j u ((s, Z) I sEL(p).z 

failures(q’)= ((s, (25) 1 Sol) u 

andZzCJ. 

I(% Z) I sEuq ‘) .z 

Hence, p’ = q’ iff 

(a) L(p) .C= L(q) .z, and 

(b) L(~)uL(p).~=L(q)uL(q).~. 

It is easy to see that L(p) = L(q) implies p’ = q’. If p’ = q’ then L(p), ,Y = 
L(q) .C and, because in the restricted model L(p) and L(q) are prelix- 
closed, we have L(p) = L(q). 

This completes the reduction. 
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In the r.o.u. model, the problem of deciding p = q is easily shown to be 
in co-NP by reduction to the co-NP-complete problem of S.O.U. z I (Stock- 
meyer and Meyer, 1973). In particular, assuming C= {a}, 

p=q if f  (L,(p) = L,(q) and L,(p) = b(q)), 

where L,(p) = {s ( (s, 121) ~failures(p)) and L,(p) = {s I (s, (uj) E 
failures(p)}. Th e 1 anguages L,(q) and L,(q) are defined similarly. 

To show the co-NP-hardness of deciding p = q in the r.o.u. model we 
resort, as in Theorem 4.1(c), to the problem of L(p) = L(q) in the standard 
observable model with C = {u}. Let p be a state of an S.O.U. FSP. We may 
assume that the set of accept states of this FSP is exactly the set of dead 
states. If not, apply the transformation described in the proof of 
Theorem 4.1(c) and depicted in Fig. 5c. The resulting FSP has the desired 
property and still has language L(p). 

Add to p an a-transition to a newly introduced state which contains a 
single u-transition back to itself. If we now rename p as p’ and view p’ as 
an r.o.u. state, thenfailures( ((3, @) 1 SE {u]*) u {(s, (u}) 1 Sol}. 

The first set of the union is a consequence of the newly added state. The 
second set represents the fact that a failure of the form (s, @) can arise 
only by following string s to a dead state. Let q also be a state of an S.O.U. 
FSP and obtain q’ from q in the same way. The argument now that 
L(p) = L(q) iff p’ = q’ is immediate. i 

The PSPACE-completeness of failure equivalence for restricted processes 
was shown independently by Brookes and Rounds (1983). 

6. DISCUSSION AND OPEN PROBLEMS 

We have investigated the complexity of three equivalence notions that 
are central to the definition of CCS semantics. We have tried to draw a 
close analogy between finite state processes and expressions in CCS on one 
hand, and finite state automata and regular expressions on the other. We 
believe that in CCS, an algebraic model for distributed computation, many 
of the classical problems are cast in a new light. An example is the star 
height question about star expressions raised in Milner (1984). We would 
like to point out an open problem which we believe is both interesting and 
important. 

CCS Equivalence. For the star expressions defined in Section 2.3, the 
CCS equivalence problem is essentially that of testing finite state processes, 
of size comparable to that of the expressions, for strong equivalence of start 
states. CCS, being a calculus, provides a number of other algebraic 
operators besides u, ., *. Therefore, as we have extended regular expres- 
sions in the classical theory (Stockmeyer and Meyer, 1973), we have 
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extended star expressions in CCS. Since the semantics of CCS is in terms 
of sets of processes rather than strings, an operator such as complement 
(1) would make little sense in the new context. However, operators such 
as composition (Milner, 1980) or intersection can be given new semantics. 
(Composition is one of the main distributed features of CCS.) The new 
semantics is, predictably, in terms of a “direct product of states” construc- 
tion. In the spirit of Definition 2.3.1, the representative process of the whole 
is the result of taking the direct product of the representative processes of 
the parts. With extended star expressions, the CCS equivalence problem 
acquires new interest. Extended star expressions are succinct programs with 
large representative finite state processes, because of possible nesting of the 
new operators. So perhaps the CCS equivalence problem becomes hard, as 
do its counterparts in Stockmeyer and Meyer (1973). 

We would like to end this discussion on a note of optimism. For regular 
expressions, the MEMBER problem-i.e., Is string s in the language 
denoted by regular expression r?-is different from the EQUIVALENCE 
problem and solvable efficiently by dynamic programming (Hopcroft and 
Ullman, 1979, Sect. 4.5). For extended star expressions, the distinction 
between the membership problem for CCS-i.e., Is state P in the equiva- 
lence class denoted by CCS expression r?-and the equivalence problem 
for CCS is much weaker. Therefore, it is possible that the CCS equivalence 
problem for extended star expressions has an elegant and efficient solution. 

APPENDIX A: FSP TYPES AND EQUIVALENCES 

TABLE I 

FSP Types 

FSP type 

General 
Observable 
Standard 

Deterministic 

Restricted 
Restricted observable 
Restricted observable 

wary (r.0.u. ) 

Standard observable 
Standard observable 

*nary ( S.O.U. ) 
Finite tree 

The most general type of FSP as given by Definition 2.1.1. 
General FSPs without T-transitions. 
General FSPs in which each state is either an accept state 

or non-accept state. 
Observable FSPs where for each state there is exactly one transition 

for each symbol in Z. 
Standard FSPs in which every state is an accept state. 
FSPs that are both restricted and observable. 
FSPs that are both restricted and observable, with ICI = 1. 

FSPs that are both standard and observable. 
FSPs that are both standard and observable, with I,?‘( = 1. 

Restricted FSPs whose underlying directed graph is a tree. 
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Equivalence relation symbol 

TABLE II 

Equivalences 

Name and definition 

k-observational equivalence (Definition 2.2.1) 
Observational equivalence (Definition 2.2.1) 
/c-limited observational equivalence (Definition 2.2.2) 
Limited observational equivalence (Definition 2.2.2) 
Strong (observational) equivalence (Delinition 2.2.3) 

G Failure equivalence (Definition 2.2.4) 

APPENDIX B: PROOF OF PROPOSITION 2.2.1 

PROPOSITION 2.2.1. For FSP states p, q in the general model, 

(a) 2: is a (Cu (8))~fixed-point. 

(b) z is a C*-fixed-point. 

Cc) P”9 iffPZ9. 

Proof (a) We have to show that p ‘v q iff conditions (1) and (2) for 
a C u {&)-fixed-point hold (see Definition 2.2.5). 

o&y if: Let p N q. Then by Definition 2.2.2, E(p) = E(q) and, for 
each k>O, phk+, q. Thus for each k>O and each (T in Zu {a} we have 

if p & p’ then ( 3qk : q G?=+. qk and p’ N k qk). 

Since our processes are finite state, the set (qk 1 q j” qk and p’ =k qk} is 
finite. By the pigeonhole principle there is a q’ such that (q =c-~ q’ and 
p’ N k q’) for infinitely many k. Since p’ 2: ,+ , q’ implies p’ zvi q’ we must 
have p’ N q’. Therefore for each cr in C u (E) we have 

if p & p’ then (39’: q & q’ and p’ N 9’). 

A symmetric argument completes the only if direction. 

if: If conditions (1) and (2) hold for states p and q it is easy to see 
that p zk q for all k and thus p N q. 

(b) We have to show that p N q iff conditions (1) and (2) for a C*- 
fixed-point hold. 

if: Since Z u (E} G Z* this direction is immediate from the if 
direction of part (a). 

only if: We proceed by induction on the length of s in C*. For 
S=E the result follows immediately from the only if direction of part (a). 
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Consider next s = r~, . . G,,, n >, 1, (T; in 2. Assume p jol p 1 au2 . . . au” pn. 
Then by part (a) used repeatedly 3q,, .,., q,,: q 3”’ q, S-O?. . =-On q,! with 
p,=q,, 1 <i<n, and thus 

ifp A p,, then (3q,: q & qn andp, ‘v q,,). 

A symmetric argument completes the only if direction. 

(c) only if: We show by induction that p N q implies pzk q for all 
k 3 0. At k = 0 it is trivial. Assume it for k (for all p and q); we will prove 
it for k + 1. From part (b), p ‘v q implies 

(1) E(p)=E(q). 
(2) For every s E C*, 

(i) ifp=“p, then (3q,:q*‘q, andp,=q,), 

(ii) if q =s’ qr then (3~~: pa” pr and q2 ‘v pz). 

Using the inductive hypothesis, we can replace p1 ‘v q, with p1 xk q1 and 
pz 2: q2 with p2 z./; q2, and by Definition 2.2.1 we have that p c q implies 
P=k+l 4. 

if: We show by induction that p zk q implies p =k q for all k. At 
k = 0 it is trivial. The inductive step is an easy consequence of Definitions 
2.2.1 and 2.2.2. 1 
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