
INFORMATION AND COMPUTATION 86, 43-68 (1990)

CCS Expressions, Finite State Processes,
and Three Problems of Equivalence*

PARIS C. KANELLAKIS’

Department qf‘ Computer Science, Bro~w University.
Providence. Rhode Island 02912

AND

SCOTT A. SMOLKA:

Department of Computer Science, SUNY.
Stony Brook, New York 11794

We examine the computational complexity of testing tinite state processes for
equivalence in Mimer’s Calculus of Communicating Systems (CCS). The equiv-
alence problems in CCS are presented as refinements of the familiar problem of
testing whether two nondeterministic tinite automata (NFA) are equivalent, i.e.,
accept the same language. Three notions of equivalence proposed for CCS are
investigated, namely, observational equivalence, strong observational equivalence. and
failure equivalence. We show that observational equivalence can be tested in poly-
nomial time. As defined in CCS, observational equivalence is the limit of a sequence
of successively titter equivalence relations, hli, where z, IS nondeterministic tinite
automaton equivalence. We prove that, for each fixed k, deciding zk is PSPACE-
complete. We show that strong observational equivalence can be decided in poly-
nomial time by reducing it to generali:edpartitioning. a new combinatorial problem
of independent interest. Finally, we demonstrate that testing for failure equivalence
is PSPACE-complete. even for a very restricted type of process. ;c 1990 Academic

Preaa. Inc

1. INTRODUCTION

The Calculus of Communicating Systems (CCS) is an elegant formalism
(Milner, 1980, 1983, 1984; Hennessy and Milner, 1985) for specifying and

* A preliminary version of this paper appeared as an extended abstract in the Proceedings
of the Second Annual ACM Symposium on Principles of Distributed Computing. Montreal,
Canada, August, 1983, pp. 228-240.

+ Research supported partly by the NSF under Grant MCS-8210830 and partly by the
ONR-DARPA under Grant NOOOl4-83-K-014, ARPA Order 4786.

* Research supported by the NSF under Grants NSF DCR-8505873 and CCR-8704309.

43
0890-5401/90 $3.00

Copyngh! C’ 1990 by Academic Press. Inc
All nghtr or reproduction m any form reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82522701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

44 KANELLAKIS AND SMOLKA

verifying concurrent systems. Together with other new formalisms, such as
Communicating Sequential Processes (Brookes et al., 1984; Brookes, 1983)
and Algebra of Communicating Processes (Bergstra and Klop, 1986, 1987),
it represents the algebraic approach to modeling concurrent computation.
One of the nicest features of CCS as an algebraic theory is that it closely
parallels the theory of regular expressions and finite automata (Milner,
1984; Benson and Ben-Shachar, 1988).

CCS is based on two central ideas (Milner, 1980):

(1) The notion of observationally equivalent processes, i.e., processes
that are indistinguishable to an observer. Equivalence classes of processes
are the basic objects of CCS.

(2) The definition and manipulation of these basic objects using
algebraic operators, such as u, ., *, and I. Of these, composition, 1, captures
many features of interleaved concurrent computation and message passing.

In this paper we focus on the notion of observational equivalence. We
examine it from the point of view of computational complexity and in the
context offinite state processes. We also investigate other notions, such as
strong observational equivalence (Milner, 1984), or simply strong equiv-
alence, and failure equivalence (Brookes et al., 1984), which have been
proposed as alternatives to observational equivalence, perhaps more
natural for certain types of processes.

In our exposition we stress the similarity of CCS to the classical theory
of regular expressions in order to show how new problems, which are
meaningful in the context of distributed computing, can be derived from
classical problems. As in (Milner, 1984), we consider only a restricted set
of algebraic operators of the calculus (u, ., *), which produce the star
expressions in CCS. These expressions are syntactically identical to regular
expressions, but instead of having as semantics “sets of strings,” their
semantics is “equivalence classes of processes” (see Section 2.3).

We rigorously define all relevant features from CCS, in a fashion similar
to Milner (1984). We consider (Section 2.1) finite state processes, which are
slightly more general than the familiar nondeterministic finite automata
(NFA) with empty moves (Hopcroft and Ullman, 1979). Also, some useful
subsets of these general processes are considered. For example, a standard
process is just an NFA; an observable process is a general process without
t-moves, the CCS equivalent of empty moves; and a restricted process is a
standard process with all states accepting.

We review three basic notions of equivalence, i.e., observational equiva-
lence, strong equivalence, and failure equivalence, and the relationships
between them. We treat these notions as refinements of the classical notion
of NFA equivalence, which is based on accepting the same language

CC-S EXPRESSIONS AND FINITE STATE PROCESSES 45

(Section 2.2). Finally (Section 2.3), we relate star expressions in CCS to
regular expressions and pose the CCS-equivalence problem for star expres-
sions. This is essentially a problem of testing processes for observational
equivalence, strong equivalence, or failure equivalence, depending upon the
chosen notion of equivalence.

We first deal with observable processes. Strong equivalence, which is
observational equivalence for observable finite state processes, can be
decided in polynomial time. We show this via a reduction to generalized
partitioning, a new combinatorial problem of independent interest. In
Kanellakis and Smolka (1983) and Smolka (1984), we developed an
efficient algorithm for this problem by extending the technique of Hopcroft
(1971) for minimizing the number of states of a deterministic finite
automaton. Our time bounds have been recently improved by Paige and
Tarjan (1987). Their algorithm yields an O(m log M + n) test of strong
equivalence for n-state observable processes having nz transitions.

For general finite state processes, observational equivalence is the central
notion of Milner (1980). We demonstrate an important property of obser-
vational equivalence: unlike classical NFA equivalence (Stockmeyer and
Meyer, 1973), it is efficiently decidable in polynomial time. As defined in
CCS, observational equivalence is the limit of a sequence of successively
finer equivalence relations, kk, where %I is NFA equivalence. We show
that zk is PSPACE-complete for every fixed k, a complexity that dis-
appears when we take limits. Our negative results hold even for the
restricted and observable model.

For failure equivalence, an equivalence notion between Z, and z2, we
show PSPACE-completeness, again even for the restricted and observable
model.

Section 2 contains the model, Section 3 the analysis of strong equiva-
lence and the generalized partitioning problem, Section 4 the analysis of
observational equivalence, and Section 5 the analysis of failure equivalence.

We would like to point out that we examine only one critical feature of
CCS, namely, the choice of equivalence notion. We do not discuss other
important algebraic features of CCS, such as the various composition
operators. However, we believe that we identify and answer some
fundamental complexity questions in the calculus. Another paper
(Kanellakis and Smolka, 1988) applies the theory presented here to the
analysis of cooperation and antagonism in networks of communicating
processes (i.e., with the composition operator). A preliminary version of the
results of Kanellakis and Smolka (1988) and the results of this paper first
appeared in Smolka (1984).

46 KANELLAKISAND SMOLKA

2. THE MODEL

2.1. Finite State Processes

The basic building block of our model for distributed computation is the
finite state process, which very much resembles the nondeterministic finite
automaton (NFA) of Hopcroft and Uliman (1979).

DEFINITION 2.1.1. A Finite State Process (FSP) is a sextuple
(K, po, C, A, V, E >, where:

(1) K is a finite set of states.

(2) pO E K is the start state.

(3) C is a finite set of symbols called actions, and r is a special
symbol not in Z called the unobservable action.

(4) A E K x (2 u {r }) x K is a relation called the transition relation.

(5) V is a finite set of symbols different from Z LJ {T} called variables.

(6) E G K x V is a relation called the extension relafion.

We use the notation A(q) = ((a, q’) 1 (q, a, q’) E A} for the transitions
from q, E(q)= (x ((q, x) E Ej for the extensions of q, ahd A(q, a) =
{q’ 1 (q, a, q’) E A > for the destinations of q via action a. We also write
q --ta q’ when (q, a, q’) E d; thus, -+ is a Z-indexed family of binary rela-
tions over K.

An FSP can be represented by a labeled directed graph whose nodes are
the states and which has labels on the arcs (i.e., the transitions) from
Zu {T}, and labels on the nodes from 2” (i.e., the extensions). The exten-
sions are used in Milner (1984) to represent different flavors of acceptance;
they are the only difference from the classical notion of an NFA with
empty transitions (Hopcroft and Ullman, 1979). Extensions do not affect
most of our combinatorial analysis, but are included to maintain con-
sistency with the exposition of Mimer (1984). Note also that we use dif-
ferent symbols for r and the empty string E, because of the particular role
of T as the unobservable action in distributed computation (Milner, 1980;
Bergstra and Klop, 1987).

We will refer to the model of computation in Definition 2.1.1 as the
generaI model of FSPs. We also consider several specialized versions of the
general model. The observable model (Milner, 1984) is obtained from the
general model by not allowing z-transitions, and, if in this case there is
exactly one transition for each symbol in 2, we have the deterministic
model. The standard model is derived from the general model by restricting
V to be the set (x}. In this model, an FSP can be viewed as a classical
NFA with empty transitions, where a state q is accepting if E(q) = {x] and

CCS EXPRESSIONS AND FINITE STATE PROCESSES 47

nonaccepting if E(q) = @. If in the standard model, for all states
p, E(p) = {x}, we have the restricted model. Thus all states of a restricted
FSP are accepting, but states could be missing transitions.

Nontrivial subsets of the restricted model are the restricted observable
model+alled restricted observable unary (r.0.u.) when there is only one
action in z-and the model where the FSP is a finite tree rooted at po.
Subsets standard observable and standard observable unary (s.o.u.) of the
standard model are defined analogously.

The hierarchy of models is depicted in Fig. la. Every one of these models
corresponds to some nontrivial case in our exposition. Examples of such
FSPs are presented in Fig. lb; if the extension label is missing from a node
it is assumed to be @. A guide to the various models of FSPs is included
in Appendix A.

We will always deal with states of FSPs, e.g., equivalent states, and
the processes to which these states belong will be clearly defined from the
context.

Let .YE~Y* and p, p’ be states of an FSP. Also, let E denote the empty
string. We say that p G-’ p’ when there is a sequence of k arcs in the FSP’s
graph from p to p’ whose string of labels is tk, where k 3 0. (Obviously
alwaysp+“p.)Ifs=cr,a,...o,,,oiEz, l<i,<n,wesaythatp+‘p’when
there is a sequence of k, + k, + ... + k,, + n arcs in the FSP’s graph from
p to p’ whose string of labels is r%, tkloZ . I. g,,rXn, where k,, k, , ,,,, k,, 2 0.
We refer to p’ as an s-derivative of p.

In the restricted model of FSPs, the only feature that distinguishes states
is the absence of certain transitions. This concept is formalized in Brookes
et al. (1984) as the failures(p) for state p of a restricted FSP. We say that
l(p *‘) when there is no p’ such that p 3’ p’.

fhilures(p) = ((s, Z) 1 s E .X*, Z c z such that

3p’~K: p -1, p’and V;EZ: T(p’ 2)).

For example, assuming ,Y = {a, h, c>, the failures for the start state of the
finite tree process of Fig. 1 b are

(E) x2:“,“; u [a} x21”: u {ah} x2”u [acj x2’.

2.2. Equivalences of FSP States

The essential new idea in CCS is a new notion of equivalence between
states of FSPs. A number of “candidates” for the correct notion of equiva-
lence have been proposed and investigated (e.g.,. Milner, 1980, 1983, 1984;
Brookes, 1983; Brookes et al., 1984; Hennessy, 1985: de Nicola and Hen-
nessy, 1984). We will deal with three such notions: observational equiva-

48 KANELLAKIS AND SMOLKA

A

B
(X.Yl

b
a

fl ‘T
c

b (4

(Y)
general

standard

Key:

restricted I I observable

observable deterministic

restricted finite tree T.0.“.

4
0 start state

0 state with extension (x)

FIG. 1. (A) Hierarchy of FSP types. (B) Examples of FSPs.

lence, strong observational equivalence, and failure equivalence. The exposi-
tions of Mimer (1980) and Brookes et al. (1984) are, to a great extent,
devoted to establishing the practical relevance of such choices in the
context of distributed computation.

In general, for two FSP states p, q to be equivalent, it is not enough to
say that they represent start states of NFAs accepting the same language,
as in the classical case. In particular:

CCS EXPRESSIONS AND FINITE STATE PROCESSES 49

DEFINITION 2.2.1 (Milner, 1980). Let p, q be states of general FSPs
which have the same C and V. We define p, q to be k-ohservationally equiva-
lent (p zk q) if:

(1) E(p) = E(q), when k = 0. Otherwise, when k > 0,

(2) For every s E C*,

(i) if p*’ p, then (3q,: q*’ q, and p, zkP, q,),

(ii) if q+’ q2 then (3~~: p *’ p2 and qr zkP, p2).

States p. q are observational/y equivalent (p z q) if p z/, q for all k 3 0.

Limited observational equivalence is similar to observational equivalence
except that only strings of length zero or one are considered.

DEFINITION 2.2.2. Let p, q be states of general FSPs which have the
same C and V. We define p, q to be k-fimited observationally equivalent
(p *k q) if:

(1) E(p) = E(q), when k = 0. Otherwise, when k > 0,

(2) For every a~Cu (~1,

(i) ifpa”pl then (3q,:q*“ql and~,=~_,q,),

(ii) ifq=-“q2 then (3p,:p~“p,andq,~,~,p,).

States p, q are limited-observationally equivalent (p ‘Y q) if p hk q for all
k 20.

Strong equivalence and failure equivalence are defined for less general
models of FSPs.

DEFINITION 2.2.3. Let p, q be states of observable FSPs which have the
same Z and V. We define p, q to be strongly equivalent (p - q) if p 2: q.

DEFINITION 2.2.4 (Brookes et al., 1984). Let p, q be states of restricted
FSPs which have the same Z and V. We define p, q to be failure equivalent
(p=q) if

,fuilures(p) = faihres(q).

It is easy to verify that k-observational equivalence, observational equiva-
lence, k-limited observational equivalence, limited observational equiva-
lence, strong equivalence, and failure equivalence are true equivalence
relations on FSP states: nameiy, they are reflexive, symmetric, and transi-
tive.

50 KANELLAKISANDSMOLKA

DEFINITION 2.2.5. Let /i c C* be a set of strings. We call a relation R
between states of FSPs having the same C and V a A-fixed-point when
p R q implies that

(1) E(p)=E(q).
(2) For every SE A,

(if if p jJ p, then (3q, : q =2’q, and p1 R q,),

(ii) if q*’ q2 then (3p,: p =x’ pz and q2 R pz).

We will use C*-fixed-points and (Cu is})-fixed-points in order to
investigate the relationship between z and N.

PROPOSITION 2.2.1. For FSP states p, q in the general model,

(a) = is a (Cu {e})-fixed-point.

(b) ‘v is a .X*-fixed-point.

Cc) P”4 iffpzq.
The arguments in the proof of Proposition 2.2.1 are simple generaliza-

tions of the arguments in Milner (1980, Theorems 5.6 and 7.2). For com-
pleteness of exposition, we include a detailed proof in Appendix B. The use
of the pigeonhole principle in part (a) is critical and, as shown in Sander-
son (1982), these fixed-point properties do not necessarily hold for infinite
state processes.

For observable FSPs, Milner refers to a binary relation which is a C-
fixed-point as a strong bisimulation (Milner, 1983, 1984). Note that for the
observable case, (C u Is))- and C-fixed-points are the same. He then shows
that strong equivalence (5) is the largest, under set inclusion, strong
bisimulation. As such, strong equivalence is often referred to as “strong
bisimulation equivalence.” Similarly, using the Knaster-Tarski fixed-point
theorem, Definitions 2.2.1-2.2.2, and Proposition 2.2.1 we have that:

PROPOSITION 2.2.2. In the general model,

k= E = IJ {R 1 R is a C u { .z}-fixed-point}

and is the largest, under set inclusion, C u {&)-fixed-point.

Let p, q represent start states of NFAs. Then we will denote the
languages accepted by these NFAs as L(p), L(q), respectively. Recalling
that E denotes failure equivalence, we have for the restricted model:

PROPOSITION 2.2.3 (Brookes, 1983). For FSP states p, q in the restricted
model,

(a) pzzq impliesp=q impliespz, q.

(b) P=I q iffUp)=Uq).

CCS EXPRESSIONS AND FINITE STATE PROCESSES 51

In the deterministic case the equivalence relations zL, k 3 1, collapse to
z, ; this is an easy consequence of determinism.

PROPOSITION 2.2.4. For FSP states p, q in the deterministic model,

(a) pzlq~fpzq(orp~qorp~q).

(b) p z, q $7 L(p) = L(q) (for the deterministic standard model).

In this paper, we study the complexity of testing whether two states are
observationally equivalent in the general model, strongly equivalent in the
observable model, or failure equivalent in the restricted model.

We should note that even in the r.o.u. model, the equivalence notions
szk, E, and z (or z, or k) are different. This is illustrated by the exam-
ples of Fig. 2. A guide to the various equivalence relations for FSPs is
included in Appendix A.

2.3. Regular E-xpressions for Languages vs Star Expressions for CCS

The theory of CCS expressions is developed in Milner (1984). Their
syntax is very similar to that of regular expressions for languages. The basic
novelty is that the semantics of a CCS expression is no longer a language
but a class of observable FSPs with strongly equivalent start states.

A particularly interesting class of these expressions are the star expres-
sions. In this section, we describe star expressions in detail and refer to
Milner (1984) for the complete definition of CCS expressions. The rationale
for this is that star expressions use the familiar u, ., * symbols, with new
semantics. They provide the link between the algebraic theories of CCS and
regular sets.

DEFINITION 2.3.1. The syntax of star expressions over C is the same as
that of regular expressions over C. The semantics of star expression r is the
class of observable and standard FSPs whose start states are strongly
equivalent to p, the start state of the representative FSP of r. The

FIG. 2. Example T.O.U. FSPs distinguishing the various equivalences

52 KANELLAKISAND SMOLKA

representative FSP of r is the NFA, without empty moves, P=
(K, p, C, A, (x}. E), constructed inductively as follows:

r=@: P=((p).,pJ,@, .(x),0).

r=a: P=({p,q),p, z : (Pt 4 4) 17 (4, ((q* .d> >.

Let rl, rz be star expressions having representative FSPs Pi=
(K;, pi, C, A;, {x>, E,), i= 1,2, such that K, nK?=@. Then

r=r,ur2: P=(K,uK,u(p},p,Z,A,uA,uA’, {x},E,uE,uE’),
where p is a new state not in K, u Kz, and A’ = {p} x
@,(P,)uA~(Pz)), E’= {P) x (E,(P,)u&(P,)).

r=rt-rZ: P=(K,uK,,p,Z,A,uA,uA’, [x],EZ), where p=p,, and
A’= (qEK, I E,(q)= .(x}} x A,(p,).

r=rf: P=(K,u(p),p,C,({p}xA,(p,))uA+, {.~),Elu{(~3x)j),

where p is a new state not in K,,
and A+t(q)=A,(q)uA,(p,) if E,(q)= C-x)

= A,(q) otherwise.

Intuitively, the semantics of a star expression r is the class of FSPs whose
start states are equivalent to the start state of the representative FSP of r.
The representative FSP is the one constructed inductively in Defini-
tion 2.3.1 and illustrated in Fig. 3. This definition follows closely the classi-
cal construction used in showing that the language denoted by regular
expression r is accepted by some NFA. Since we are dealing with strong
equivalence classes of observable FSPs, the representative FSP is construc-
ted so that it too is observable, i.e., free of r-actions, In Milner (1984) it
is shown that using strong equivalence as the equivalence notion makes the
semantics independent of the representative FSP chosen.

The CCS equivalence problem is: “Given two CCS expressions, do they
have the same semantics?’ This parallels the equivalence problem for
regular expressions (Hopcroft and Ullman, 1979; Stockmeyer and Meyer,
1973). Let the length of a star expression r be the number of symbols in the
string r. Using Definition 2.3.1 we have:

LEMMA 2.3.1. Let r he a star expression of length n over a fixed alphabet
2:. Then the representative FSP of r is observable and standard; it has O(n)
states and O(n2) transitions, and can be constructed in O(n2) time.

In Definition 2.3.1 we described the syntax and semantics of star expres-
sions. The CCS expressions of Mimer (1984) are slightly more general,
because of the presence of extensions. Their semantics are strong equiva-
lence classes of observable, though not necessarily standard, FSPs, and a

CCS EXPRESSIONS AND FINITE STATE PROCESSES

Syntax , Semantics (the representative FSP)

0

a

Let

‘1 1 ‘2
have
rmantic!

qUr2 f

(q)*

FIG. 3. Construction procedure for representative FSP

53

straightforward generalization of Lemma 2.3.1 also holds for CCS expres-
sions. Thus we have that the CCS equivalence problem is in essence one of
testing FSPs for observational equivalence, strong equivalence, or failure
equivalence.

Finally, let us briefly mention a number of interesting connections
between CCS expressions and regular expressions from Milner (1984).

(I) Every observable FSP is a member of some set of observable
FSPs that is the semantics, i.e., strong equivalence class, of a CCS expres-
sion.

(2) There is a complete inference system for identities of CCS expres-
sions paralleling that of Salomaa (1986) for regular expressions.

(3) The significant algebraic properties that regular expressions have
and star expressions lack are the following two identities. Let Y, s, t be
arbitrary regular expressions. Then: r . (s u t) = r . s u r . t and Y . @ = a.

54 KANELLAKISANDSMOLKA

3. STRONG EQUIVALENCE IS EFFICIENTLY DECIDABLE

The problem of language equivalence of two finite state automata of size
N, i.e., whether they accept the same language, has received a great deal of
attention in the literature. For DFAs there is an O(N G(N)) algorithm that
uses UNION-FIND (Aho et al., 1974, Sect. 4.8) and for NFAs the
problem has been shown to be PSPACE-complete (Stockmeyer and
Meyer, 1973). Also, the problem of minimizing the states of a DFA of size
N has an elegant O(N log N) solution, and is related to a combinatorial
partitioning problem (Aho et al., 1974, Sect. 4.13; Hopcroft, 1971).

For testing strong equivalence of states of deterministic FSPs, the above
techniques for DFAs are directly applicable (see Proposition 2.2.4(b)). For
the larger class of observable FSPs, strong equivalence of states can still be
tested efficiently. In this case, unfortunately, the UNION-FIND technique
does not lead to an efficient algorithm because of possible multiple transi-
tions for one symbol of the alphabet. However, we can show that strong
equivalence of states can be tested by solving the following partitioning
problem, which is also of independent interest.

Generalized Partitioning

Input: A set S, an initial partition of S into disjoint blocks 7c=
(4, B,, Bp}, and k functions f,: S-+2’, 161<k.
Output: A partition of S into disjoint blocks rt’= {E,, E2, E,}, such
that:

(1) 71’ is consistent with rt, i.e., each Ej is a subset of some e,.

(2) For a, b in block E,, any block E,, 1 6 i, j < q, and any function
fi, 161Gk:

fi(a)nEiZG3 iff f,(b)n{,#B.

(3) rr’ is the coarsest such partition, i.e., has the fewest blocks.

The generalized partitioning problem is well-posed, i.e., there always
exists a coarsest partition with properties (1) and (2). To see this, consider
the lattice of partitions of the set S under the ordering: rci < rc2 if every
block of partition x1 is contained in some block of partition x2. Properties
(1) and (2) of the generalized partitioning problem can be used to define
a monotone function on this lattice whose greatest fixed-point exists and is
unique, by the Knaster-Tarski theorem. This greatest fixed-point is the
coarsest partition satisfying (1) and (2).

Intuitively, the initial partition rc is relined into the final partition rr’,
in the coarsest fashion possible, so that each f, induces a mapping from
blocks of rr’ to sets of blocks of rc’. It is easy to see that the generalized

CCS EXPRESSIONS AND FINITE STATE PROCESSES 55

partitioning problem is different from that of minimizing the states of a
DFA.

Obviously, each function f, can be represented as a directed graph with
node set S and arcs (i, j) iff j is in f,(i). The size of an instance of
generalized partitioning is (n, m), where the cardinality of set S (denoted
IS() is n and the total number of arcs in the corresponding k graphs is m.
In the deterministic case, we have f,: S -+ S, for each 1, and m = k . n.

LEMMA 3.1. Let p, q be states of observable FSPs having a total of n
states and a total of m transitions. We can test whether p - q by reducing this
problem, in O(n + m) time, to a generalized partitioning problem of size at
most (n, m).

Proof Let p, q be states of the observable FSP (K, pO, C, A, V, E); the
proof is similar if p, q belong to two distinct observable FSPs having the
same C and V. We can construct an instance of generalized partitioning in
O(n + m) time as follows. The set S is identified with K. For the initial par-
tition n, two states p and q are in the same block iff they have the same
extensions, i.e., E(p) = E(q). Finally, for each e E C, there is a function f,,
corresponding to the restriction of A to (T, i.e., f,(p) = { p' 1 p' E A(p, G) j.
We are left to show that:

Claim. p-q iff p and q belong to the same block of 71’.
The relation - is an equivalence relation on states. It therefore defines

a partition rc- . By Proposition 2.2.2, - is a C-fixed-point. From Delini-
tion 2.2.5 it follows that x, satisfies properties (1) and (2) of the
generalized partitioning problem. Assume that rc- is not the coarsest parti-
tion satisfying these properties. Then the coarsest such partition would give
us a Z-fixed-point larger than -, contradicting Proposition 2.2.2. This
completes the proof of the claim and hence the lemma. 1

An obvious solution to the generalized partitioning problem is, starting
from 7c, reline the blocks of the partition by the following method. Let Bi
be a block. For each of the k functions fr, examine f,(a) c S, for each a in
B,. We can think off,(a) as denoting a set of blocks, i.e., those blocks such
that each one contains some element of f,(a). Now we partition B, so that
two elements a and b are put in the same block if and only iff,(a) and f,(b)
denote the same set of blocks. We will refer to this method as the naive
method.

LEMMA 3.2. The naive method correct1.v solves an instance of the
generalized partitioning problem of size (n, m), and can be implemented in
O(nm) time.

56 KANELLAKISANDSMOLKA

Proof It is easy to see that the method described above gives the
correct output partition. However, the O(mn) implementation is less
obvious. We perform O(n) iterations since there can be at most n blocks.
In each iteration the lexicographic sorting method from Aho et al. (1974)
is used and takes O(n + nz) time. Also, simple examples show that this
bound is tight. 1

The time bound of the naive method can be improved upon substan-
tially. In Kanellakis and Smolka (1983), a generalization of the divide-and-
conquer method of Hopcroft (1971) was presented for the case of bounded
fanout, i.e., for all a in S, If,(a)1 6 c, for some constant c. This case
corresponds to FSPs that have at most c transitions out of any state for
each symbol of the action alphabet. The algorithm of Kanellakis and
Smolka (1983) runs in O(c’ .n log n) time. Recently, Paige and Tarjan
(1987) have developed an algorithm that solves the generalized partitioning
problem (which they refer to as “relational coarsest partitioning”) of size
(n, m) in time O(m log n + n). This resolves an open problem in Kanellakis
and Smolka (1983). Therefore from Lemma 3.1 and Paige and Tarjan
(1987) we have that:

THEOREM 3.1. Let p, q he states of observable FSPs having a total qf n
states and m transitions. Strong equivalence of p and q can be decided in
O(m log ?r + n) time.

4. THE COMPLEXITY OF OBSERVATIONAL EQUIVALENCE

In this section, we examine the complexity of testing for observational
equivalence. This equivalence notion may be used for FSP states from all
of our models. The upper bounds presented in this section hold even for
FSPs of the general kind, and the lower bounds even for FSPs that are
restricted and observable, and in some cases r.o.u.

We begin by presenting two lemmas that will be used in the proof of
Theorem 4.1, which contains the main results of the section. To concisely
state the first of these lemmas, we use the syntax and semantics of the star
expressions given in Definition 2.3.1. For any standard, observable FSP
state p, we alternatively view p as a star expression whose representative
FSP is the one having start state p. We will limit our usage of this notation
to restricted and observable FSPs. So, for example, the star expression a .p
denotes the restricted and observable FSP consisting of an a-transition into
state p. The second lemma is due to Chandra and Stockmeyer (1982) and
gives a sharper lower bound on language equivalence of NFAs.

CCS EXPRESSIONS AND FINITE STATE PROCESSES 57

LEMMA 4.1. In the restricted and observable model, for any k 2 0,

P%kq iff (PUq=:, PandpUq=,q).

Proof: only if: Assume p z:k q and consider all strings s E C*. We show
the first conjunct p u q zk p. Let r be an s-derivative of p u q. Case (1): r
is an s-derivative of q. The fact that p z.k q guarantees we can find a
suitable s-derivative p’ of p, i.e., one for which p’ z&, r. Case (2): Y is an
s-derivative of p, and the result is obvious. Showing the second condition
of k-observational equivalence in which the s-derivatives of p are first con-
sidered is also obvious. The other conjunct p u q zk q is proved similarly.

if: Assume p u q zk p and p u q Z~ q, and consider all strings s E Z*.
We show that p zk q. Let p’ be an s-derivative of p. The fact that p u q zk q
guarantees we can find a suitable s-derivative q’ of q. The proof of the
second condition of k-observational equivalence is symmetric. 1

LEMMA 4.2 (Chandra and Stockmeyer, 1982). In the restricted and
observable model, deciding p z 1 q is PSPACE-complete.

Proof Membership in PSPACE for this problem is immediate since a
restricted and observable FSP is also a standard FSP. To show PSPACE-
hardness, let p be a state of a standard FSP. We reduce the PSPACE-com-
plete problem of whether L(p) = Z* (Stockmeyer and Meyer, 1973) to the
corresponding problem for restricted observable FSPs. Consider the
standard FSP M= (K, pO, Z, d, {x}, E), having the set of accept states
F= {p,-EKI E(p,,)= {.x}}. By a simple reduction whose details we do not
present, assume that Z= {a, b}, and that M is observable with both a- and
b-transitions leaving each state. Transform M to the restricted observable
FSP M’ = (K’, pb = pO, C, A’, Ix>. E’) as follows (see Fig. 4):

K’=Ku (ptrap}u (~6 I SEA},

where pIrap and ps, S E A, are new states not in K;

E’ = K’ x (x}, i.e., every state of M’ is accepting;

A’ = ((pf, a, ptrap > I p+ F is an accept state of M)

ui(~~b,~,),(p,,~,q)l~=(p,a,q)isinA)

U{CP trap, 4 ptrap >> (strap, b> ptrap > >.

We now show that L(p,) #I* iff L(pb) #Z*. For the “only if” direc-
tion, suppose s $ L(pO) with s = g1 gz.. . (T,, n >, 0, and all prefixes of s are
in L(p,). Then bo, ba, . . . ba,a 4 L(pb) for this would otherwise mean that
s can take pO to an accept state.

For the “if” direction, suppose s # L(pb) and all prefixes of s are in L(pb).

58 KANELLAKIS AND SMOLKA

FIG. 4. Reduction of Lemma 4.2.

Then s can be written as ba, ba, . . ba,a, since if an “a” appeared in any
of the first k odd positions then s would be in L(pb). It follows that
0, oz . . (TV 4 L(p,) since otherwise s E L(pb). 1

THEOREM 4.1. Let p, q be FSP states and assume that the FSPs to which
these states belong have a total of n states and m transitions.

(a) In the general model, p zz q can be decided in
O(n’m log(n) + mn’.376) time.

(b) If p and q are restricted and observable, then p ek q, for any fi.xed
k > 1, is PSPACE-complete.

(c) If p and q are r.o.u. states, then p zk q, for any fixed k 3 2, is co-
NP-complete, and decidable in linear time for k = 1.

Proof (a) We know from Proposition 2.2.1(c) that pzq iff p = q. By
the definition of = (Definition 2.2.2), we see that we have a problem which
is very similar to that of Section 3; our only additional consideration is
r-transitions. In particular, let p, q be states of the general FSP P=
(K, pO, C, A, V, E). The problem of deciding p z q is reducible to deciding
strong equivalence as follows. Compute the transition relation 3 of the
observable FSP P= (K. p,,, L’u {s}, 2, I’. E) such that

J=i<P>W) I P Z-qinP,oEZu(v}}.

To do this, we first note that, for each (T EC, p j” q in P iff there exist a
p’ and p” such that p =>’ p’ +” p” 3” q. Thus, 2 can be determined by the
following procedure:

(1) Compute the adjacency matrix M, for the binary relation aE
over K, i.e., the reflexive transitive closure of A with respect to the symbol
t; and then

CCS EXPRESSIONS AND FINITE STATE PROCESSES 59

(2) For each 0~ .Z, compute the matrix products M,: .M,. M,,
where M, is the adjacency matrix of the binary relation --f”. The
resulting matrix is the adjacency matrix of the binary relation
{(P-q)1 (Pdw)~~~.

Note that the size of d is O(n*m), as there can be at most m distinct sym-
bols 0 labelling the transitions of A. By the definition of d and Proposition
2.2.1 (c), we have that

p zq in P iff p-q in P.

Using Lemma 3.1, we can now directly apply the algorithm of Paige
and Tarjan (1987) for generalized partitioning to the states of P to
obtain an algorithm for observational equivalence whose complexity is
O(n*m log(n) + mn”). Here O(n”) is the time needed to perform transitive
closure on a directed graph having n nodes. The smallest such a currently
known is 2.376 (Coppersmith and Winograd, 1987).

If only a constant number of different symbols rr label the transitions of
A, then the size of d is O(n’), and the term na will dominate the time com-
plexity of deciding observational equivalence.

(b) Let p be a state of a standard FSP (an NFA) and let f(p) be the
language accepted by this NFA with start state p. We know from Proposi-
tion 2.2.3(b) that p Z, q iff L(p) = L(q). Thus, it is PSPACE-complete
(Stockmeyer and Meyer, 1973) to decide Z, in the standard, observable
model. From Lemma 4.2 (Chandra and Stockmeyer, 1982) we have that
deciding %I is PSPACE-complete even for restricted and observable FSPs.
Obviously, testing for z0 is trivial.

Membership in PSPACE for z~, k > 1, can be established by a reduc-
tion to the classical problem of NFA equivalence. Let p and q be states of
general FSPs such that p E K and q E K’. Let {B, 1 1 d id I} be the partition
induced by %:x- over K v K’, i.e., each B, is an equivalence class of Ku K’
with respect to ZZ~. Then we can restate Definition 2.2.1, the definition of
=k+l, as

PZx+1 q iff Vi, 1 GiGI, L,(p)=L;(q),

where Lj(p) denotes the language accepted by the standard FSP having
start state p and accept states Kn Bi. Similarly, L,(q) denotes the language
accepted by the standard FSP having start state q and accept states
K’n Bi, and we have the reduction.

We show that deciding z~, for any fixed k> 1, is PSPACE-hard in the
restricted, observable model. The following technique is used which allows
us to inductively reduce the problem of Z, to z~:

60 KANELLAKIS AND SMOLKA

Given two FSP states p, q we construct two states p’, q’ of new FSPs
such that

P%kq iff p’ %k+, q’, for k 2 1.

The reduction uses one symbol, the symbol a, from the alphabet Z, and
is illustrated in Fig. 5a. We can once again use the syntax of star expres-
sions to formalize the reduction in a concise manner:

P’=a*(Puq)

q’=(a.p)u(a.q).

if: We prove the contrapositive, namely, p $k q implies
p’ $k+, q’. Consider the a-derivatives of p’ and q’. State p’ has only one,
viz., p u q, while q’ has both p and q as u-derivatives. Assuming p $sk q, we
have, by Lemma 4.1, that either pu q $kk p or pug ;ck q, and thus
P’ +k+l 4’.

only if: We prove the contrapositive, namely, p’ $k + r q’ implies
P #k 4. Assuming P’ +k + 1 4’, then the string that distinguishes p’ and q’
must consist of the single character a. This is because for any longer string
s, p’ and q’ have identical sets of s-derivatives. Thus, either p u q $k p or
p u q qkk q and, by Lemma 4.1, p ?$k q as desired.

Starting with =I and applying this reduction inductively k - 1 times
gives us PSPACE-hardness of zk in the restricted and observable model,
for any fixed k 2 1.

a

t

0 p’
a

FIG. 5. (a) Reduction of Theorem 4.1(b). (b) The FSP chaos. (c) Reduction of Theorem
4.1(c). (d) The trivial NFA.

CC-S EXPRESSIONS AND FINITE STATE PROCESSES 61

(c) Consider the r.0.u. model in which C = (u). Here, it is easy to
decide p zz, q or L(p) = L(q), as the languages L(p), L(q) are closed under
prefix and are therefore either {u}* or finite initial segments of (at*.
However, if p and q are from the S.O.U. model, and thus not all states need
be accepting, the problem of deciding p =I q becomes co-NP-complete.
This is an easy consequence of the co-NP-completeness of deciding
I= (a}*, for star expression Y (Stockmeyer and Meyer, 1973). For
k >, 2, the technique of part (b) can be used to reduce the problem of r.o.u.
8k to S.O.U. 2,. Thus it is in co-NP.

Let a dead state be a state devoid of outgoing transitions. To show the
co-NP-hardness of deciding z~, k 3 2, in the r.o.u. model, we consider the
problem L(p) = {a>+, where p is a state of an S.O.U. FSP having no dead
states. The co-NP-hardness of this S.O.U. equivalence problem is, again, an
easy consequence of the Stockmeyer and Meyer (1973) result. We now
reduce this problem to q zz chaos, where q is an r.o.u. state and chaos is the
start state of the r.o.u. FSP given in Fig. 5b. Observe that, for any
q, q z2 chaos iff

(i) for every SE {u} +, q has an s-derivative q, such that
uq, I= 0.

(ii) for every s E {a) *, q has an s-derivative q2 such that
Uq,) = {a)*.

(iii) for every s E {a) *, these are the only types of s-derivatives of q.

We begin by transforming p into p’, the start state of an S.O.U. FSP in
which a state is an accept state iff it is a dead state, and L(p) = L(p’). We
use the following procedure, illustrated in Fig. SC. Let pr be an accept state
that is not a dead state. Change pf to be a non-accept state and then
create a new state pnew which is both an accept and dead state, having as
incoming transitions exactly those of pf. Intuitively, a string that emanated
from p and was accepted at p, now emanates from p’ and is accepted at
P new.

Now we obtain q from p’ by making every state of p’ accepting, and
complete the proof of (c) by showing that L(p) = (u} + iff q z2 chao.~.

onfy if: Assume L(p)= {a)+. Then in q there is clearly a dead
state s-derivative for every s E {a} +. Hence (i). Also, q must lead to a cycle
and hence (ii). Condition (iii) follows from the fact that the s.o.u. FSP of
which p was a state did not contain any dead states, and from the construc-
tion procedure for p’.

if: Assume q z:z chaos. That L(p) = (u I- + follows immediately
from condition (i).

Now that we have established co-NP-hardness for deciding r.o.u. z?, we

62 KANELLAKISANDSMOLKA

can apply the PSPACE-hardness reduction of part (b) inductively k - 1
times to obtain the co-NP-hardness of r.o.u. z~, for any fixed k > 2.
(Recall that the reduction of part (b) used only one symbol, a, and is thus
still applicable in the r.o.u. case.) 1

Finally, we would like to point out that in classical complextity theory
(Stockmeyer and Meyer, 1973), there are results for the problem p z, q*,
where q* is the trivial NFA that accepts L’* (see Fig. 5d). Using Definition
2.2.1, we can show that testing p x2 q* in the general model is easy.
Namely, p z:z q* iff “every state reachable from p has outgoing transitions
for every symbol from C.” This is a consequence of the fact that in going
from %i to %;2, we examine all s E .X*, whereas in going from N, to N *,
we examine only s E z u {E}.

5. THE COMPLEXITY OF FAILURE EQUIVALENCE

In this section, we analyze the complexity of testing two FSP states for
failure equivalence. We will therefore be working in the restricted model.
As described in Section 2, for restricted states p, q we have

failures(p) = {(s, Z) 1 s E C*, Z G C such that

3p’~K: p & p’andV’zEZ: l(p’ i))

and

p=q iff fuilures(p) = failures(q).

Failure equivalence can be tested efficiently for the case of finite trees
with r-transitions (Smolka, 1984). However, for slightly more complex
finite processes, even without r-transitions, we have:

THEOREM 5.1. For FSP states p, q in the restricted model, deciding p = q
is in PSPACE and in co-NP of [.?I[= 1. Even for the restricted observable
model with ICI = 2, deciding p = q is PSPACE-complete. For the r.o.u. model
it is co-NP-complete.

Proof. We exhibit a nondeterministic, polynomial space algorithm for
deciding the failure equivalence of p and q in the restricted model. Since
PSPACE = NPSPACE, this will give us membership in PSPACE. Assuming
that p $ q, the algorithm guesses a failure pair (s, Z) EfuiZures(p), and then
verifies in polynomial space that (s, Z) $fuiZures(q) (or vice versa). In par-
ticular, let s=u, . ..uk. The algorithm guesses s one’symbol at a time. In
response to the ith guess, i.e., the symbol ai, the algorithm computes the

Cf.3 EXPRESSIONS AND FINITE STATE PROCESSES 63

aI ... a,-derivatives, i.e., the set of states reachable from q by the observable
string a, ... ai, from the a, ... ai_ I -derivatives of q. Finally, each
s-derivative of q is checked separately for the existence of an a-derivative,
for each aEZ. Note that, because of nondeterminism, s may be exponen-
tially long in terms of the total number of transitions in p and q.

To prove the PSPACE-hardness of deciding failure equivalence in the
restricted observable model, we establish a reduction from the PSPACE-
hard problem of restricted observable NFA equivalence (Lemma 4.2). Let
p and q be the start states of two restricted observable FSPs. They can also
be viewed as the start states of two NFAs which accept the languages L(p)
and L(q), respectively. Note that, as a consequence of the restricted model,
the only way a string s is not in L(p) or L(q) is if 1 (p j”) or 1 (q a”).

Given p, q, we will produce two states p’, q’ such that L(p) = L(q)
iff p’=q’. Let p be the start state of the restricted and observable
FSP <K P, Z, A, {x>, E), and obtain the restricted and observable
FSP (K’, p’, C, A’, {-XI, E’) as follows:

(i) p’=p.

(ii) K’ = Ku {PdeadJ, where P&ad 4 K is a new state, devoid of out-
going transitions.

(iii) ~‘=Au{(P~~B,P~~~~) 1 p,EKand aez}. Note thatp,,,, has
incoming transitions from all other states.

(iv) E’ = K’ x {of, i.e., all states are accepting.

Similarly, obtain q’ from q.
Obviously, L(p’) = L(p) u L(p) .z, L(q’) = L(q) u L(q) ..Y:, and

failztres(p’)= {(s, @) I sEL(p)j u ((s, Z) I sEL(p).z

failures(q’)= ((s, (25) 1 Sol) u

andZzCJ.

I(% Z) I sEuq ‘) .z

Hence, p’ = q’ iff

(a) L(p) .C= L(q) .z, and

(b) L(~)uL(p).~=L(q)uL(q).~.

It is easy to see that L(p) = L(q) implies p’ = q’. If p’ = q’ then L(p), ,Y =
L(q) .C and, because in the restricted model L(p) and L(q) are prelix-
closed, we have L(p) = L(q).

This completes the reduction.

64 KANELLAKISAND SMOLKA

In the r.o.u. model, the problem of deciding p = q is easily shown to be
in co-NP by reduction to the co-NP-complete problem of S.O.U. z I (Stock-
meyer and Meyer, 1973). In particular, assuming C= {a},

p=q if f (L,(p) = L,(q) and L,(p) = b(q)),

where L,(p) = {s ((s, 121) ~failures(p)) and L,(p) = {s I (s, (uj) E
failures(p)}. Th e 1 anguages L,(q) and L,(q) are defined similarly.

To show the co-NP-hardness of deciding p = q in the r.o.u. model we
resort, as in Theorem 4.1(c), to the problem of L(p) = L(q) in the standard
observable model with C = {u}. Let p be a state of an S.O.U. FSP. We may
assume that the set of accept states of this FSP is exactly the set of dead
states. If not, apply the transformation described in the proof of
Theorem 4.1(c) and depicted in Fig. 5c. The resulting FSP has the desired
property and still has language L(p).

Add to p an a-transition to a newly introduced state which contains a
single u-transition back to itself. If we now rename p as p’ and view p’ as
an r.o.u. state, thenfailures(((3, @) 1 SE {u]*) u {(s, (u}) 1 Sol}.

The first set of the union is a consequence of the newly added state. The
second set represents the fact that a failure of the form (s, @) can arise
only by following string s to a dead state. Let q also be a state of an S.O.U.
FSP and obtain q’ from q in the same way. The argument now that
L(p) = L(q) iff p’ = q’ is immediate. i

The PSPACE-completeness of failure equivalence for restricted processes
was shown independently by Brookes and Rounds (1983).

6. DISCUSSION AND OPEN PROBLEMS

We have investigated the complexity of three equivalence notions that
are central to the definition of CCS semantics. We have tried to draw a
close analogy between finite state processes and expressions in CCS on one
hand, and finite state automata and regular expressions on the other. We
believe that in CCS, an algebraic model for distributed computation, many
of the classical problems are cast in a new light. An example is the star
height question about star expressions raised in Milner (1984). We would
like to point out an open problem which we believe is both interesting and
important.

CCS Equivalence. For the star expressions defined in Section 2.3, the
CCS equivalence problem is essentially that of testing finite state processes,
of size comparable to that of the expressions, for strong equivalence of start
states. CCS, being a calculus, provides a number of other algebraic
operators besides u, ., *. Therefore, as we have extended regular expres-
sions in the classical theory (Stockmeyer and Meyer, 1973), we have

CCS EXPRESSIONS AND FINITE STATE PROCESSES 65

extended star expressions in CCS. Since the semantics of CCS is in terms
of sets of processes rather than strings, an operator such as complement
(1) would make little sense in the new context. However, operators such
as composition (Milner, 1980) or intersection can be given new semantics.
(Composition is one of the main distributed features of CCS.) The new
semantics is, predictably, in terms of a “direct product of states” construc-
tion. In the spirit of Definition 2.3.1, the representative process of the whole
is the result of taking the direct product of the representative processes of
the parts. With extended star expressions, the CCS equivalence problem
acquires new interest. Extended star expressions are succinct programs with
large representative finite state processes, because of possible nesting of the
new operators. So perhaps the CCS equivalence problem becomes hard, as
do its counterparts in Stockmeyer and Meyer (1973).

We would like to end this discussion on a note of optimism. For regular
expressions, the MEMBER problem-i.e., Is string s in the language
denoted by regular expression r?-is different from the EQUIVALENCE
problem and solvable efficiently by dynamic programming (Hopcroft and
Ullman, 1979, Sect. 4.5). For extended star expressions, the distinction
between the membership problem for CCS-i.e., Is state P in the equiva-
lence class denoted by CCS expression r?-and the equivalence problem
for CCS is much weaker. Therefore, it is possible that the CCS equivalence
problem for extended star expressions has an elegant and efficient solution.

APPENDIX A: FSP TYPES AND EQUIVALENCES

TABLE I

FSP Types

FSP type

General
Observable
Standard

Deterministic

Restricted
Restricted observable
Restricted observable

wary (r.0.u.)

Standard observable
Standard observable

*nary (S.O.U.)
Finite tree

The most general type of FSP as given by Definition 2.1.1.
General FSPs without T-transitions.
General FSPs in which each state is either an accept state

or non-accept state.
Observable FSPs where for each state there is exactly one transition

for each symbol in Z.
Standard FSPs in which every state is an accept state.
FSPs that are both restricted and observable.
FSPs that are both restricted and observable, with ICI = 1.

FSPs that are both standard and observable.
FSPs that are both standard and observable, with I,?‘(= 1.

Restricted FSPs whose underlying directed graph is a tree.

66 KANELLAKIS AND SMOLKA

Equivalence relation symbol

TABLE II

Equivalences

Name and definition

k-observational equivalence (Definition 2.2.1)
Observational equivalence (Definition 2.2.1)
/c-limited observational equivalence (Definition 2.2.2)
Limited observational equivalence (Definition 2.2.2)
Strong (observational) equivalence (Delinition 2.2.3)

G Failure equivalence (Definition 2.2.4)

APPENDIX B: PROOF OF PROPOSITION 2.2.1

PROPOSITION 2.2.1. For FSP states p, q in the general model,

(a) 2: is a (Cu (8))~fixed-point.

(b) z is a C*-fixed-point.

Cc) P”9 iffPZ9.

Proof (a) We have to show that p ‘v q iff conditions (1) and (2) for
a C u {&)-fixed-point hold (see Definition 2.2.5).

o&y if: Let p N q. Then by Definition 2.2.2, E(p) = E(q) and, for
each k>O, phk+, q. Thus for each k>O and each (T in Zu {a} we have

if p & p’ then (3qk : q G?=+. qk and p’ N k qk).

Since our processes are finite state, the set (qk 1 q j” qk and p’ =k qk} is
finite. By the pigeonhole principle there is a q’ such that (q =c-~ q’ and
p’ N k q’) for infinitely many k. Since p’ 2: ,+ , q’ implies p’ zvi q’ we must
have p’ N q’. Therefore for each cr in C u (E) we have

if p & p’ then (39’: q & q’ and p’ N 9’).

A symmetric argument completes the only if direction.

if: If conditions (1) and (2) hold for states p and q it is easy to see
that p zk q for all k and thus p N q.

(b) We have to show that p N q iff conditions (1) and (2) for a C*-
fixed-point hold.

if: Since Z u (E} G Z* this direction is immediate from the if
direction of part (a).

only if: We proceed by induction on the length of s in C*. For
S=E the result follows immediately from the only if direction of part (a).

CCS EXPRESSIONS AND FINITE STATE PROCESSES 67

Consider next s = r~, . . G,,, n >, 1, (T; in 2. Assume p jol p 1 au2 . . . au” pn.
Then by part (a) used repeatedly 3q,, .,., q,,: q 3”’ q, S-O?. . =-On q,! with
p,=q,, 1 <i<n, and thus

ifp A p,, then (3q,: q & qn andp, ‘v q,,).

A symmetric argument completes the only if direction.

(c) only if: We show by induction that p N q implies pzk q for all
k 3 0. At k = 0 it is trivial. Assume it for k (for all p and q); we will prove
it for k + 1. From part (b), p ‘v q implies

(1) E(p)=E(q).
(2) For every s E C*,

(i) ifp=“p, then (3q,:q*‘q, andp,=q,),

(ii) if q =s’ qr then (3~~: pa” pr and q2 ‘v pz).

Using the inductive hypothesis, we can replace p1 ‘v q, with p1 xk q1 and
pz 2: q2 with p2 z./; q2, and by Definition 2.2.1 we have that p c q implies
P=k+l 4.

if: We show by induction that p zk q implies p =k q for all k. At
k = 0 it is trivial. The inductive step is an easy consequence of Definitions
2.2.1 and 2.2.2. 1

ACKNOWLEDGMENTS

We thank the anonymous referees for their critical reading of the manuscript which
produced numerous constructive comments. We are also grateful to Tommaso Bolognesi.
Ashok Chandra, Gordon Plotkin, and Larry Stockmeyer for many helpful discussions, and to
Ashfaq Munshi for his comments on the presentation of these results.

RECEIVED October 1, 1986; ACCEPTED January 24, 1989

REFERENCES

AHO, A. V.. HOPCKOFT, J. E., AND ULLMAN, J. D. (1974), “The Design and Analysis of
Computer Algorithms,” Addison-Wesley, Reading, MA,

BENSON, D. B., AND BEN-SHACHAR. 0. (1988), Bisimulation of automata, Inform. and Comp~.
79, No. 1, 60-83.

BERGSTRA, J. A., AND KLOP, J. W. (1986), Algebra of communicating processes, in “CWI
Monographs I, Proceedings of the CWI Symposium on Mathematics and Computer
Science” (J. W. de Bakker. M. Hazewinkel, and J. K. Lenstra, Eds.), pp. 89-138, North-
Holland, Amsterdam.

68 KANELLAKIS AND SMOLKA

BERGSTRA, J. A., AND KLOP, J. W. (19871, “ACP,: A Universal Axiom System for Process
Specification,” Report CS-R8725, Computer Science/Department of Software Technology,
CWI, Amsterdam, The Netherlands.

BROOKES, S. D. (1983), On the relationship of CCS and CSP, in “Proceedings, 10th Interna-
tional Conference on Automata, Languages, and Programming, Barcelona, Spain,”
pp 83-96, Lecture Notes in Computer Science. Vol. 154, Springer-Verlag, New
York/Berlin.

BROOKES. S. D., HOARE. C. A. R., AND ROSCOE, A. W. (1984). A theory of communicating
sequential processes, J. Assoc. Compur. Mach. 31, No, 3, 56C599.

BROOKES, S. D., AND ROUNDS, W. C. (1983), Behavioural equivalence relationships induced
by programming logics, in “Proceedings, 10th International Conference on Automata,
Languages, and Programming, Barcelona, Spain,“ pp. 97-108, Lecture Notes in Computer
Science, Vol. 154, Springer-Verlag, New York/Berlin.

CHANDRA, A. K.. AND STOCKMEYER, L. J. (1982), Private communication.
COPPERSMITH, D.. AND WINOGRAD. S. (1987), Matrix multiplication via arithmetic progres-

sions, in “Proceedings, 19th ACM Symposium on Theory of Computing, New York,”
pp. l-6.

HENNESSY, M. C. B. (1985). Acceptance trees, J. A.vsoc. Comput. Mach. 34, No. 4, 896928.
HENNESSY, M. C. B.. AND MILNER, R. (1985). Algebraic laws for nondeterminism and

concurrency, J. Assoc. Compur. Much. 32, No. 1, 137-161.
HOPCROFT, J. E. (1971). An n log II algorithm for minimizing states in a finite automaton, in

“Theory of Machines and Computations” (Z. Kohavi and A. Paz, Eds.), pp. 189-196,
Academic Press. San Diego. CA/New York.

HOPCROFT, J. E.. AND ULLMAN, J. D. (1979), “Introduction to Automata Theory, Languages,
and Computation,” Addison-Wesley, Reading, MA.

KANELLAKIS, P. C., AND SMOLKA, S. A. (1983), CCS expressions, finite state processes,
and three problems of equivalence, in “Proceedings, 2nd Annual ACM Symposium on
Principles of Distributed Computing, Montreal, Canada,” pp. 228-240.

KANELLAKIS, P. C., AND SMOLKA. S. A. (1988). On the analysis of cooperation and
antagonism in networks of communicating processes, Algorithmica 3, 421450.

MILNER, R. (1980), A calculus of communicating systems, in “Lecture Notes in Computer

Science, Vol. 92,” Springer-Verlag, New York, Berlin.
MILNER, R. (1983). Calculi for synchrony and asynchrony, Theoret. Comput. Sci. 25, 267-310.
MILNER, R. (1984), A complete inference system for a class of regular behaviors. J. Compuf.

System Sri. 28, 439466.
DE NICOLA. R., AND HENNESSY, M. C. B. (1984), Testing equivalences for processes, Theoret.

Compuf. Sci. 34, No. 1, 83-133.
PAIGE. R., AND TARJAN, R. E. (1987), Three partition refinement algorithms, SIAM J.

Comput. 16, No. 6, 973-989.
SALOMAA. A. (1986), Two complete axiom systems for the algebra of regular events, J. Assoc.

Compul. Mach. 13, No. 1, 158-169.
SANDERSON. M. T. (1982), “Proof Techniques for CC&” Internal Report CST-19-82, Depart-

ment of Computer Science, University of Edinburgh.
SMOLKA, S. A. (1984), “Analysis of Communicating Finite-State Processes,” Ph. D. disserta-

tion, Technical Report CS-84-05, Department of Computer Science, Brown University,
Providence, RI.

STOCKMEYER, L. J.. AND MEYER, A. R. (1973), Word problems requiring exponential time, in
“Proceedings, 5th ACM Symposium on Theory of Computing, Austin, Texas.” pp. 1-9.

