An ECG every 3 years is enough to follow patients with myotonic dystrophy

Béatrice Brembilla-Perrot (1), Sarah Louis (2), Pierre Kaminsky (3)

(1) CHU of Brabois, Cardiologie, Vandoeuvre Les Nancy, France – (2) NHS trust East Yorkshire, Academic Cardiology, Cottingham, Royaume-Uni – (3) CHU Ibn Rochd, Cardiologie, Casablanca, Maroc

Patients (pts) with type I myotonic dystrophy (MD) were reported as at high risk of arrhythmias, mainly conduction disturbances. The purpose of the study was to evaluate the mean time of change of noninvasive investigations and to propose recommendations for the follow-up of patients with MD.

Methods: 129 asymptomatic pts, mean age 41±14 years, with MD, were consecutively recruited. ECG, left ventricular ejection fraction (EF) determination, Holter monitoring, were obtained and repeated each year in pts without conduction abnormalities. Electrophysiological study (EPS) was performed in 51 pts. Follow-up duration ranged from 1 to 23 years, with a mean duration of 10 ± 5 years.

Results: At initial study, ECG and Holter monitoring were normal in 72 and 62 pts respectively; EF was normal in all but 6 pts (60±10.5 %). At the last study, the ECG did not change in 65 % of pts; in 49 pts with normal ECG, the ECG remained normal in 32 pts; first degree (d) AV block (B) developed in 11 pts, left hemiblock (HB) in 3 pts, complete bundle branch block (BBB) in 3 pts; 3 pts with a BBB developed another localization of conduction disturbance. HV increase was noted in patients with first d AVB and HB or BBB, and never in pts with normal ECG. Initially normal Holter monitoring (n=61) remained normal in 44 pts (72 %); sinus pauses were noted in 6 pts and non sustained ventricular tachycardia in one pt. In 19 pts with initial abnormalities, Holter monitoring became normal in 10 of them. LVEF did not change significantly (61±11 at first study, 58±11 % at 2nd study). The ECG modifications developed after a mean follow-up of 5 ±1 years. The shorter time of the occurrence of a significant modification was 4 years. However, to be sure to detect a significant change and risk of arrhythmias, a period of 3 years (±2 standard deviations) could be retained.

Conclusions: HV increase was noted only in patients with abnormal ECG. No change of ECG was noted in patients with normal ECG before 4 years. The repetition of ECG every 3 years is recommended and EPS should be indicated when ECG became abnormal.

Does the physical examination still have a role in patients with potential chronic heart failure?

Thibaud Damy (1), Anna Bennet (2), Kevin Goode (2), Jean-Luc Dubois-Rande (1), Andrew Clark (2), Luc Hittinger (1), John Gf Cleland (2)

(1) CHU Henri Mondor, Fédération de Cardiologie, Créteil, France – (2) NHS trust East Yorkshire, Academic Cardiology, Cottingham, Royaume-Uni

Objective: Define the prognosis value of the congestive clinical signs of heart failure (CHF) in an out-patient clinic patient compared to other clinical variables.

Background: Clinical examination is non-specific to diagnose CHF. However the prognosis value of the clinical signs of CHF is unknown.

Methods: Analysis of referrals to a community clinic of suspected chronic heart failure with a clinical examination. Clinical signs of CHF were defined as no sign, fluid retention (FR, oedema, ascites, hepatomegaly, jugular vein distension), lung crackles (LC) and their combination (FR+LC). Systolic heart failure was defined as LVEF failure was defined as LVEF<45% (S-HF), CHF with normal ejection fraction (No-HF), and LC with normal EF (HeFNEF). Ischaemic heart disease and chronic obstructive pulmonary disease predicted an adverse prognosis; increasing diastolic blood pressure and female sex predicted a better outcome. Using Kaplan Meier curves, LC and FR indicated a similar bad prognosis, LC+FR indicated the worse prognosis when all the patients were considered (log Rank=185, p<0.0001), or the three HF groups separately.

Conclusion: Clinical signs of CHF are powerful predictors of prognosis in outpatient clinic. Presence of fluid retention and lung crackles showing the worse prognosis. These clinical signs should be assessed systematically to evaluate the prognosis in symptomatic patients.

Patterns of acute heart failure in nonagenarians

Helena Dossi, Damien Logeart, Florence Beauvais, Alain Cohen-Solal, Francois Tournoux

CHU Lariboisière, Cardiologie, Paris, France

Background: Since heart failure (HF) often occurs in subjects >70y old and the population of Western countries is getting older, the incidence of HF is expected to dramatically increase in the future. However, limited information is available on HF in the extreme elderly.

Methods: We retrospectively studied patients >90y old patients admitted to our hospital for acute HF between 2007 and March 2010. Patients with incomplete clinical records were excluded. Main foci were: epidemiological data, initial presentation, results of routine biological and imaging tests and clinical outcome.

Results: 56 patients (mean age 94 [range 91-97], 60% female) were included. Cardiovascular risk factors were hypertension (75%), hypercholesterolemia (16%) and diabetes (7%). 56% of patients had no underlying cardiomyopathy while 16% had coronary artery disease, 13% had valve disease, 5% had hypertension and 10% had cardiomyopathy due to multiple factors. On presentation, mean creatinine was 163 mmol/L [79-317], hemoglobin was 11.5 g/dl [9.9-12.4], and BNP was 2617 pg/mL [128-14.574]. Mean ejection fraction was 46% [34-58]. The 3 main precipitating factors of acute HF were hypertension (23%), infection (23%) and acute coronary syndrome (20%). In 15% of patients, no reason for acute decompensation could be identified. More than 50% of patients were admitted to the ICU, 30% required breath assistance and 5% required inotropic drugs. Average hospital stay was 6 days [2.9-9.5]. 63% of patients were discharged home; hospital mortality was 20%. Medical treatment at discharge included diuretics (90%), ACE inhibitors (60%) and beta-blockers (45%).

Conclusion: Acute HF in nonagenarians is associated with poor prognosis. Main characteristics are a preserved ejection fraction, no obvious underlying cardiomyopathy and infection and hypertension as precipitating factors.