

Discrete Mathematics 258 (2002) 161-177

www.elsevier.com/locate/disc

Chromaticity of a family of K_4 -homeomorphs $\stackrel{\text{tr}}{\sim}$

Yan-ling Peng*, Ru-Ying Liu

Department of Mathematics, Qinghai Normal University, President's Office, 810008 Xining, Qinghai, China

Received 7 January 2000; received in revised form 21 May 2001; accepted 4 September 2001

Abstract

We discuss the chromaticity of one family of K_4 -homeomorphs which has exactly 2 adjacent paths of length 1, and give sufficient and necessary condition for the graphs in the family to be chromatically unique.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Chromatic polynomial; K4-homeomorph; Chromatic uniqueness

1. Introduction

In this paper, we consider graphs which are simple. For such a graph G, let $P(G; \lambda)$ denote the chromatic polynomial of G. Two graphs G and H are chromatically equivalent, denoted by $G \sim H$, if $P(G; \lambda) = P(H; \lambda)$. A graph G is chromatically unique if for any graph H such that $H \sim G$, we have $H \cong G$, i.e., H is isomorphic to G.

A K_4 -homeomorph is a subdivision of the complete graph K_4 . Such a homeomorph is denoted by $K_4(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)$ if the six edges of K_4 are replaced by the six paths of length $\alpha, \beta, \gamma, \delta, \varepsilon, \eta$, respectively, as shown in Fig. 1. Each of these six paths is called a *-path.

So far, the study of the chromaticity of K_4 -homeomorphs with at least 3 *-paths of length 1 has been fulfiled (see [2,6,3]). In this paper, we study the chromaticity of K_4 -homeomorphs $K_4(\alpha, 1, 1, \delta, \varepsilon, \eta)$ (as Fig. 2(a)) with 2 *-path of length 1 are adjacent.

* Corresponding author.

0012-365X/02/\$ - see front matter O 2002 Elsevier Science B.V. All rights reserved. PII: \$0012-365X(02)00268-6

^{*} Project Supported by the National Natural Science Foundation of China.

E-mail address: pengyanling@263.net (Y.-l. Peng).

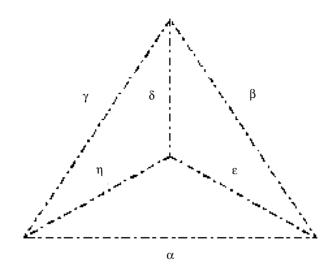
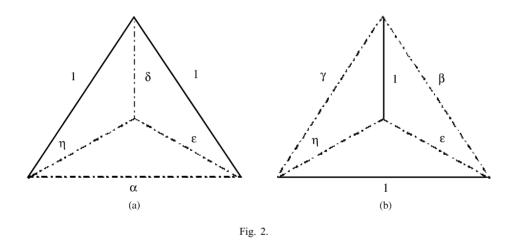


Fig. 1.



2. Auxiliary results

In this section, we cite some known results used in the sequel.

Proposition 1. Let $G \sim H$. Then

- (1) |V(G)| = |V(H)|, |E(G)| = |E(H)| (see [3]);
- (2) If G is a K_4 -homeomorph, then H is a K_4 -homeomorph as well (see [1]);
- (3) If G and H are homeomorphic to K₄, then both the minimum values of parameters and the number of parameters equal to this minimum value of the graphs G and H coincide (see [5]).

Proposition 2 (Li [4]). Suppose that $G=K_4(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)$ and $H=K_4(\alpha', \beta', \gamma', \delta', \varepsilon', \eta')$ are chromatically equivalent homeomorphs such that two multisets $(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)$ and $(\alpha', \beta', \gamma', \delta', \varepsilon', \eta')$ are the same, then H is isomorphic to G.

Proposition 3 (Guo and Whitehead Jr. [2] and Xu [6]). $K_4(1,\beta,\gamma,1,\varepsilon,\eta)$ (see Fig. 2(b)) is not chromatically unique if and only if it is $K_4(1,b+2,b,1,2,2)$ or $K_4(1,a+1,a+3,1,2,a)$ or $K_4(1,a+2,b,1,2,a)$, where $a \ge 2$, $b \ge 1$, and

$$K_4(1, b + 2, b, 1, 2, 2) \sim K_4(3, 1, 1, 2, b, b + 1),$$

$$K_4(1, a + 1, a + 3, 1, 2, a) \sim K_4(a + 1, 1, 1, a, 3, a + 2),$$

$$K_4(1, a + 2, b, 1, 2, a) \sim K_4(a + 1, 1, 1, b, 3, a).$$

3. Main results

Lemma. If $G \cong K_4(\alpha, 1, 1, \delta, \varepsilon, \eta)$ and $H \cong K_4(\alpha', 1, 1, \delta', \varepsilon', \eta')$, then we have (1) $P(G) = (-1)^{n+1} [r/(r-1)^2] [-r^{n+1} - r^2 + r + 2 + Q(G)]$, where $Q(G) = -r^{\alpha} - r^{\delta} - r^{\varepsilon} - r^{\eta} - r^{\alpha+1} - r^{\delta+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta}$

 $r=1-\lambda$, *n* is the number of vertices of G. (2) If P(G)=P(H), then Q(G)=Q(H).

Proof. (1) Let $r = 1 - \lambda$. From [5], we have the chromatic polynomial of K_4 -homeomorph $K_4(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)$ as follows:

$$P(K_4(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)) = (-1)^{n+1} [r/(r-1)^2] [(r^2 + 3r + 2)$$
$$- (r+1)(r^{\alpha} + r^{\beta} + r^{\gamma} + r^{\delta} + r^{\varepsilon} + r^{\eta})$$
$$+ (r^{\alpha+\delta} + r^{\beta+\eta} + r^{\gamma+\varepsilon} + r^{\alpha+\beta+\varepsilon}$$
$$+ r^{\beta+\delta+\gamma} + r^{\alpha+\gamma+\eta} + r^{\delta+\varepsilon+\eta} - r^{n+1})].$$

Then

$$P(G) = P(K_4(\alpha, 1, 1, \delta, \varepsilon, \eta))$$

= $(-1)^{n+1} [r/(r-1)^2] [(r^2 + 3r + 2) - (r+1)(r^{\alpha} + r^{\delta} + r^{\varepsilon} + r^{\eta} + 2r)$
+ $(r^{\varepsilon+1} + r^{\eta+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta} - r^{n+1})]$

Y.-l. Peng, R.-Y. Liu/Discrete Mathematics 258 (2002) 161-177

$$= (-1)^{n+1} [r/(r-1)^2] (-r^{n+1} - r^2 + r + 2 - r^{\alpha} - r^{\delta} - r^{\varepsilon} - r^{\eta} - r^{\alpha+1} -r^{\delta+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta}) = (-1)^{n+1} [r/(r-1)^2] (-r^{n+1} - r^2 + r + 2 + Q(G))$$

where

$$\begin{aligned} \mathcal{Q}(G) &= -r^{\alpha} - r^{\delta} - r^{\varepsilon} - r^{\eta} - r^{\alpha+1} - r^{\delta+1} + r^{\delta+2} + r^{\alpha+\delta} \\ &+ r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta}. \end{aligned}$$

Proof. (2) If P(G) = P(H), then it is easy to see that Q(G) = Q(H). \Box

Theorem. K_4 -homeomorphs $K_4(\alpha, 1, 1, \delta, \varepsilon, \eta)$ (min $\{\alpha, \delta, \varepsilon, \eta\} \ge 2$) is not chromatically unique if and only if it is $K_4(a, 1, 1, a+b+1, b, b+1)$, $K_4(a, 1, 1, b, b+2, a+b)$, $K_4(a+1, 1, 1, a+3, 2, a)$, $K_4(a+2, 1, 1, a, 2, a+2)$, $K_4(3, 1, 1, 2, b, b+1)$, $K_4(a+1, 1, 1, a, 3, a+2)$ or $K_4(a+1, 1, 1, b, 3, a)$, where $a \ge 2$, $b \ge 2$.

Proof. Let $G \cong K_4(\alpha, 1, 1, \delta, \varepsilon, \eta)$ and $\min\{\alpha, \delta, \varepsilon, \eta\} \ge 2$ (see Fig. 2(a)). If there is a graph *H* such that P(H) = P(G), then from Proposition 1, we know that *H* is a K_4 -homeomorph $K_4(\alpha', \beta', \gamma', \delta', \varepsilon', \eta')$ and two of $\alpha', \beta', \gamma', \delta', \varepsilon', \eta'$ must be 1. We can assume that $\alpha' = \delta' = 1$ or $\beta' = \gamma' = 1$. We now solve the equation P(G) = P(H) to get all solutions.

Case A: If $\alpha' = \delta' = 1$, then $H \cong K_4(1, \beta', \gamma', 1, \varepsilon', \eta')$. From Proposition 3, we know the solutions of the equation P(G) = P(H) are

$$K_4(3, 1, 1, 2, b, b + 1) \sim K_4(1, b + 2, b, 1, 2, 2),$$

$$K_4(a + 1, 1, 1, a, 3, a + 2) \sim K_4(1, a + 1, a + 3, 1, 2, a),$$

$$K_4(a + 1, 1, 1, b, 3, a) \sim K_4(1, a + 2, b, 1, 2, a).$$

Case B: If $\beta' = \gamma' = 1$, then $H \cong K_4(\alpha', 1, 1, \delta', \varepsilon', \eta')$. We solve the equation Q(G) = Q(H). From lemma, we have

$$Q(G) = -r^{\alpha} - r^{\delta} - r^{\varepsilon} - r^{\eta} - r^{\alpha+1} - r^{\delta+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta}, Q(H) = -r^{\alpha'} - r^{\delta'} - r^{\varepsilon'} - r^{\eta'} - r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\varepsilon'+\eta'}.$$

We know that $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$ (from Proposition 1) and we can assume $\varepsilon \leq \eta$, $\varepsilon' \leq \eta'$, $\min\{\alpha', \delta', \varepsilon', \eta'\} \geq 2$. We denote the lowest remaining power by l.r.p. and the highest remaining power by h.r.p.

Case 1: If $\min\{\alpha, \delta, \varepsilon, \eta\} = \alpha$ and $\min\{\alpha', \delta', \varepsilon', \eta'\} = \alpha'$, then the lowest power in Q(G) is α and the lowest power in Q(H) is α' . Therefore $\alpha = \alpha'$. We obtain the following after simplification:

$$\begin{aligned} Q(G): & -r^{\delta} - r^{\varepsilon} - r^{\eta} - r^{\delta+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1}, \\ Q(H): & -r^{\delta'} - r^{\varepsilon'} - r^{\eta'} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1}. \end{aligned}$$

By considering the h.r.p. in Q(G) and the h.r.p. in Q(H), we have $\alpha + \eta + 1 = \alpha' + \eta' + 1$ or $\alpha + \delta = \alpha' + \delta'$ or $\alpha + \delta = \alpha' + \eta' + 1$ or $\alpha + \eta + 1 = \alpha' + \delta'$.

Case 1.1: If $\alpha + \eta + 1 = \alpha' + \eta' + 1$, then $\eta = \eta'$. After canceling $-r^{\eta}$ in Q(G) with $-r^{\eta'}$ in Q(H), we have the l.r.p. in Q(G) is δ or ε and the l.r.p. in Q(H) is δ' or ε' . Therefore $\delta = \varepsilon'$ or $\varepsilon = \delta'$ or $\delta = \delta'$ or $\varepsilon = \varepsilon'$. From $\alpha = \alpha'$, $\eta = \eta'$ and $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$, we know that the two multisets $(\alpha, 1, 1, \delta, \varepsilon, \eta)$ and $(\alpha', 1, 1, \delta', \varepsilon', \eta')$ are the same. Since $G \sim H$, from Proposition 2, we have G is isomorphic to H.

Case 1.2: If $\alpha + \delta = \alpha' + \delta'$, then we can handle this case in the same fashion as case 1.1, so we get $G \cong H$.

Case 1.3: If $\alpha + \delta = \alpha' + \eta' + 1$, then $\delta = \eta' + 1$ (since $\alpha = \alpha'$) and $\varepsilon + \eta + 1 = \varepsilon' + \delta'$ (since $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$). After simplification, we have

$$\begin{aligned} &Q(G): \ -r^{\delta}-r^{\varepsilon}-r^{\eta}-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}, \\ &Q(H): \ -r^{\delta'}-r^{\varepsilon'}-r^{\eta'}-r^{\delta'+1}+r^{\delta'+2}+r^{\alpha'+\delta'}+r^{\alpha'+\varepsilon'+1}. \end{aligned}$$

Since $\delta = \eta' + 1$ (which implies $\delta > \eta'$) and $\varepsilon' \leq \eta'$, we have the l.r.p. in Q(G) is ε and the l.r.p. in Q(H) is ε' or δ' . Then, $\varepsilon = \varepsilon'$ or $\varepsilon = \delta'$. If $\varepsilon = \varepsilon'$, then $\delta' = \eta + 1$ since $\varepsilon + \eta + 1 = \varepsilon' + \delta'$. After canceling $-r^{\varepsilon}$ in Q(G) with $-r^{\varepsilon'}$ in Q(H), we have the l.r.p. in Q(G) is η and the l.r.p. in Q(H) is η' . Therefore $\eta = \eta'$ which yields $\delta = \delta'$. So $G \cong H$. If $\varepsilon = \delta'$, then $\varepsilon' = \eta + 1$ since $\varepsilon + \eta + 1 = \varepsilon' + \delta'$. After simplification, we have

$$\begin{aligned} &Q(G): \ -r^{\delta} - r^{\eta} - r^{\delta+1} + r^{\delta+2} + r^{\alpha+\epsilon+1} + r^{\alpha+\eta+1}, \\ &Q(H): \ -r^{\varepsilon'} - r^{\eta'} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1}. \end{aligned}$$

Since $\varepsilon = \delta'$ and $\varepsilon' = \eta + 1$ and $\varepsilon \leq \eta$, we have $\delta' + 1 \leq \varepsilon' \leq \eta'$. By $\delta = \eta' + 1$, we know that no terms in Q(H) is equal to $-r^{\delta}$. So the term $-r^{\delta}$ and the term $-r^{\delta+1}$ must be cancelled by the term $+r^{\alpha+\varepsilon+1}$ and by the term $+r^{\alpha+\eta+1}$, respectively, therefore

 $\delta = \alpha + \varepsilon + 1, \quad \delta + 1 = \alpha + \eta + 1.$

Consider $-r^{\eta}$ in Q(G) (noting $\varepsilon' = \eta + 1$ and $\delta' + 1 \le \varepsilon' \le \eta'$). We have $-r^{\eta} = -r^{\delta'+1}$. So $\varepsilon' = \delta' + 2$. Let $\alpha = a$, $\varepsilon = b$, we obtain the solution (noting $\alpha = \alpha'$, $\varepsilon = \delta'$, $\varepsilon' = \delta' + 2$, $\delta = \eta' + 1$, $\eta = \delta' + 1$, $\delta = \alpha + \varepsilon + 1$ and $\delta + 1 = \alpha + \eta + 1$) where *G* is isomorphic to $K_4(a, 1, 1, a + b + 1, b, b + 1)$ and *H* is isomorphic to $K_4(a, 1, 1, b, b + 2, a + b)$.

Case 1.4: If $\alpha + \eta + 1 = \alpha' + \delta'$, then the results are similar to case 1.3.

Case 2: If $\min\{\alpha, \delta, \varepsilon, \eta\} = \alpha$ and $\min\{\alpha', \delta', \varepsilon', \eta'\} = \delta'$, then $\alpha = \delta'$. Since the case of $\min\{\alpha, \delta, \varepsilon, \eta\} = \alpha$ and $\min\{\alpha', \delta', \varepsilon', \eta'\} = \alpha'$ has been discussed in case 1, we can

suppose $\delta' \neq \alpha'$ in case 2.

$$Q(G) = -r^{\alpha} - r^{\delta} - r^{\varepsilon} - r^{\eta} - r^{\alpha+1} - r^{\delta+1} + r^{\delta+2} + r^{\alpha+\delta}$$
$$+ r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta},$$
$$Q(H) = -r^{\alpha'} - r^{\delta'} - r^{\varepsilon'} - r^{\eta'} - r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'}$$
$$+ r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\varepsilon'+\eta'}.$$

By considering the highest power in Q(G) and the highest power in Q(H), we have $\delta + \varepsilon + \eta = \alpha' + \eta' + 1$ or $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$. If $\delta + \varepsilon + \eta = \alpha' + \eta' + 1$, then $\alpha + 1 = \varepsilon' + \delta'$ since $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$. This is a contradiction since $\alpha = \delta'$ and $\varepsilon' \ge 2$. If $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$, then $\alpha = \alpha'$. since $\alpha = \delta'$, we have $\alpha' = \delta'$ which contradicts $\delta' \neq \alpha'$.

Case 3: If $\min\{\alpha, \delta, \varepsilon, \eta\} = \alpha$ and $\min\{\alpha', \delta', \varepsilon', \eta'\} = \varepsilon'$, then $\alpha = \varepsilon'$. Since the case of $\min\{\alpha, \delta, \varepsilon, \eta\} = \alpha$ and $\min\{\alpha', \delta', \varepsilon', \eta'\} = \alpha'$ has been discussed in case 1, we can suppose $\varepsilon' \neq \alpha'$ in case 3.

$$Q(G) = -r^{\alpha} - r^{\delta} - r^{\varepsilon} - r^{\eta} - r^{\alpha+1} - r^{\delta+1} + r^{\delta+2} + r^{\alpha+\delta}$$
$$+ r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta},$$
$$Q(H) = -r^{\alpha'} - r^{\delta'} - r^{\varepsilon'} - r^{\eta'} - r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'}$$
$$+ r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\varepsilon'+\eta'}.$$

By considering the highest power in Q(G) and the highest power in Q(H), we have $\delta + \varepsilon + \eta = \alpha' + \delta'$ or $\delta + \varepsilon + \eta = \alpha' + \eta' + 1$ or $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$. If $\delta + \varepsilon + \eta = \alpha' + \delta'$, then $\alpha = \varepsilon' + \eta'$ since $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$. This is a contradiction since $\alpha = \varepsilon'$. If $\delta + \varepsilon + \eta = \alpha' + \eta' + 1$, then $\alpha + 1 = \varepsilon' + \delta'$ since $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$. This is a contradiction since $\alpha = \varepsilon'$ and $\delta' \ge 2$. If $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$, then $\alpha = \alpha'$. Since $\alpha = \varepsilon'$, we have $\alpha' = \varepsilon'$ which contradicts $\varepsilon' \neq \alpha'$.

Case 4: If $\min\{\alpha, \delta, \varepsilon, \eta\} = \delta$ and $\min\{\alpha', \delta', \varepsilon', \eta'\} = \delta'$, then $\delta = \delta'$. After simplifying Q(G) and Q(H), we have

$$\begin{aligned} Q(G): & -r^{\alpha} - r^{\varepsilon} - r^{\eta} - r^{\alpha+1} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta}, \\ Q(H): & -r^{\alpha'} - r^{\varepsilon'} - r^{\eta'} - r^{\alpha'+1} + r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\varepsilon'+\eta'}. \end{aligned}$$

By considering the l.r.p. in Q(G) and the l.r.p. in Q(H), we have $\alpha = \alpha'$ or $\varepsilon = \varepsilon'$ or $\alpha = \varepsilon'$ or $\varepsilon = \alpha'$.

Case 4.1: If $\alpha = \alpha'$, then $\varepsilon + \eta = \varepsilon' + \eta'$ since $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$. After simplifying Q(G) and Q(H), we have the l.r.p. in Q(G) is ε and the l.r.p. in Q(H) is ε' . Then $\varepsilon = \varepsilon'$. Therefore, $\eta = \eta'$ which implies that G is isomorphic to H.

Case 4.2: If $\varepsilon = \varepsilon'$, then $\alpha + \eta = \alpha' + \eta'$ since $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$. After canceling $-r^{\varepsilon}$ in Q(G) with $-r^{\varepsilon'}$ in Q(H), we have the l.r.p. in Q(G) is min $\{\alpha, \eta\}$ and the l.r.p. in Q(H) is min $\{\alpha', \eta'\}$. Therefore $\alpha = \alpha'$ or $\eta = \eta'$ or $\alpha = \eta'$ or $\eta = \alpha'$. From

 $\delta = \delta', \ \varepsilon = \varepsilon'$ and $\alpha + \eta = \alpha' + \eta'$, we know that the two multisets $(\alpha, 1, 1, \delta, \varepsilon, \eta)$ and $(\alpha', 1, 1, \delta', \varepsilon', \eta')$ are the same. Since $G \sim H$, by Proposition 2, we have G is isomorphic to H.

Case 4.3: If $\alpha = \varepsilon'$ which implies that $\alpha \leq \varepsilon$, then we obtain the following after simplification:

$$Q(G): -r^{\varepsilon} - r^{\eta} - r^{\alpha+1} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta},$$

$$Q(H): -r^{\alpha'} - r^{\eta'} - r^{\alpha'+1} + r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\varepsilon'+\eta'}.$$

By considering the h.r.p. in Q(G) and the h.r.p. in Q(H), we have the h.r.p. in Q(G) is $\delta + \varepsilon + \eta$ (since $\alpha \le \varepsilon$) and the h.r.p. in Q(H) is $\alpha' + \eta' + 1$ (since $\min\{\alpha', \delta', \varepsilon', \eta'\} = \delta'$) or $\delta' + \varepsilon' + \eta'$. Then $\delta + \varepsilon + \eta = \alpha' + \eta' + 1$ or $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$. If $\delta + \varepsilon + \eta = \alpha' + \eta' + 1$, then $\alpha + 1 = \varepsilon' + \delta'$ since $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$. This is a contradiction since $\alpha = \varepsilon'$ and $\delta' \ge 2$. If $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$, then $\alpha = \alpha'$. Since $\alpha = \varepsilon'$, we have $\alpha' = \varepsilon'$. After simplification, we have

$$\begin{aligned} &Q(G): \ -r^{\varepsilon}-r^{\eta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1},\\ &Q(H): \ -r^{\varepsilon'}-r^{\eta'}+r^{\alpha'+\varepsilon'+1}+r^{\alpha'+\eta'+1} \end{aligned}$$

By considering the l.r.p. in Q(G) and the l.r.p. in Q(H), we have $\varepsilon = \varepsilon'$. Since $\alpha = \alpha'$ and $\delta = \delta'$ and $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$, we have $\eta = \eta'$ which implies that G is isomorphic to H.

Case 4.4: If $\varepsilon = \alpha'$, then we can handle this case in the same fashion as Case 4.3. The results are similar to case 4.3.

Case 5: If $\min\{\alpha, \delta, \varepsilon, \eta\} = \varepsilon$ and $\min\{\alpha', \delta', \varepsilon', \eta'\} = \varepsilon'$, then $\varepsilon = \varepsilon'$. After simplifying Q(G) and Q(H), we have

$$Q(G): -r^{\alpha} - r^{\delta} - r^{\eta} - r^{\alpha+1} - r^{\delta+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\epsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\epsilon+\eta},$$

$$Q(H): -r^{\alpha'} - r^{\delta'} - r^{\eta'} - r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\epsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\epsilon'+\eta'}.$$

By considering the l.r.p. in Q(G) and the l.r.p. in Q(H), we have min $\{\alpha, \delta, \eta\} = \min\{\alpha', \delta', \eta'\}$. There are six cases to consider.

Case 5.1: If $\min\{\alpha, \delta, \eta\} = \alpha$ and $\min\{\alpha', \delta', \eta'\} = \alpha'$, then $\alpha = \alpha'$. After simplification, we have the l.r.p. in Q(G) is $\min\{\delta, \eta\}$ and the l.r.p. in Q(H) is $\min\{\delta', \eta'\}$. Then $\min\{\delta, \eta\} = \min\{\delta', \eta'\}$. From $\alpha = \alpha'$, $\varepsilon = \varepsilon'$ and $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$, we know that the two multisets $(\alpha, 1, 1, \delta, \varepsilon, \eta)$ and $(\alpha', 1, 1, \delta', \varepsilon', \eta')$ are the same. Since $G \sim H$, from Proposition 2, we have G is isomorphic to H.

Case 5.2: If $\min\{\alpha, \delta, \eta\} = \alpha$ and $\min\{\alpha', \delta', \eta'\} = \delta'$, then $\alpha = \delta'$. From $\varepsilon = \varepsilon'$ and $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$, we have

$$\delta + \eta = \alpha' + \eta'.$$

Since $\min\{\alpha, \delta, \eta\} = \alpha$ and $\min\{\alpha', \delta', \eta'\} = \delta'$, we know that the h.r.p. in Q(G) is $\delta + \varepsilon + \eta$ and the h.r.p. in Q(H) is $\alpha' + \eta' + 1$ or $\delta' + \varepsilon' + \eta'$. Therefore $\delta + \varepsilon + \eta = \alpha' + \eta' + 1$ or $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$. If $\delta + \varepsilon + \eta = \alpha' + \eta' + 1$, then $\varepsilon = 1$ since $\delta + \eta = \alpha' + \eta'$. This is a contradiction since $\varepsilon \ge 2$. If $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$, then $\alpha = \alpha'$. Thus, we can prove $G \cong H$ in the same fashion as case 5.1.

Case 5.3: If $\min\{\alpha, \delta, \eta\} = \alpha$ and $\min\{\alpha', \delta', \eta'\} = \eta'$, then $\alpha = \eta'$. Since $\varepsilon = \varepsilon'$ and $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$, we have

$$\delta + \eta = \alpha' + \delta'.$$

By considering the h.r.p. in Q(G) and the h.r.p. in Q(H), we have $\delta + \varepsilon + \eta = \alpha' + \delta'$ or $\delta + \varepsilon + \eta = \alpha' + \eta' + 1$ or $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$. If $\delta + \varepsilon + \eta = \alpha' + \delta'$, from $\delta + \eta = \alpha' + \delta'$, we have $\varepsilon = 0$ which contradicts $\varepsilon \ge 2$. If $\delta + \varepsilon + \eta = \alpha' + \eta' + 1$, from $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$, we have $\alpha + 1 = \delta' + \varepsilon'$. Since $\alpha = \eta'$, we have $\eta' + 1 = \delta' + \varepsilon'$ which implies $\delta' < \eta'$ since $\varepsilon' \ge 2$. This is a contradiction since $\min\{\alpha', \delta', \eta'\} = \eta'$. If $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$, then $\alpha = \alpha'$. Thus, we can prove $G \cong H$ in the same fashion as case 5.1.

Case 5.4: If $\min\{\alpha, \delta, \eta\} = \delta$ and $\min\{\alpha', \delta', \eta'\} = \delta'$, then $\delta = \delta'$. After canceling $-r^{\delta}$ in Q(G) with $-r^{\delta'}$ in Q(H), and canceling $-r^{\delta+1}$ in Q(G) with $-r^{\delta'+1}$ in Q(H), we have the l.r.p. in Q(G) is $\min\{\alpha, \eta\}$ and the l.r.p. in Q(H) is $\min\{\alpha', \eta'\}$. Then, $\min\{\alpha, \eta\} = \min\{\alpha', \eta'\}$. From $\varepsilon = \varepsilon'$ and $\delta = \delta'$ and $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$, we know that the two multisets $(\alpha, 1, 1, \delta, \varepsilon, \eta)$ and $(\alpha', 1, 1, \delta', \varepsilon', \eta')$ are the same. Since $G \sim H$, from Proposition 2, we have G is isomorphic to H.

Case 5.5: If $\min{\{\alpha, \delta, \eta\}} = \eta$ and $\min{\{\alpha', \delta', \eta'\}} = \eta'$, then $\eta = \eta'$. Thus we can prove $G \cong H$ in the same fashion as case 5.4.

Case 5.6: If $\min\{\alpha, \delta, \eta\} = \delta$ and $\min\{\alpha', \delta', \eta'\} = \eta'$, then $\delta = \eta'$. From $\varepsilon = \varepsilon'$ and $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$, we have

$$\alpha + \eta = \alpha' + \delta'. \tag{1}$$

After simplification, we have

$$Q(G): -r^{\alpha} - r^{\eta} - r^{\alpha+1} - r^{\delta+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\epsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\epsilon+\eta},$$

$$Q(H): -r^{\alpha'} - r^{\delta'} - r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+\epsilon'} + r^{\alpha'+\delta'} + r^{\alpha'+\epsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\epsilon'+\eta'}.$$

By considering the l.r.p. in Q(G) and the l.r.p. in Q(H), we have min $\{\alpha, \eta, \delta+1\}$ = min $\{\alpha', \delta'\}$. If min $\{\alpha, \eta\}$ = min $\{\alpha', \delta'\}$, from (1) and $\delta = \eta'$ and $\varepsilon = \varepsilon'$, we know that the two multisets $(\alpha, 1, 1, \delta, \varepsilon, \eta)$ and $(\alpha', 1, 1, \delta', \varepsilon', \eta')$ are the same. Since $G \sim H$, from

169

Proposition 2, we have G is isomorphic to H. If $\min\{\alpha', \delta'\} = \delta + 1$. There are two cases to consider.

Case 5.6.1: If $\delta' \leq \alpha'$, then $\delta' = \delta + 1$. Consider $r^{\delta+2}$ in Q(G) and $-r^{\delta'+1}$ in Q(H). It is due to $\delta' \leq \alpha'$ that $-r^{\delta'+1}$ can cancel none of the positive terms in Q(H). Thus, no term in Q(H) is equal to $r^{\delta+2}$. Therefore, $\delta+2$ must equal one of $\alpha, \eta, \alpha+1$ and $\delta'+1$ must equal one of $\alpha, \eta, \alpha+1$. So $\delta+2=\delta'+1=\alpha=\eta$ or $\delta+2=\delta'+1=\alpha+1=\eta$. If

$$\delta + 2 = \delta' + 1 = \alpha = \eta \tag{2}$$

then we obtain the following after canceling $-r^{\alpha}$ with $r^{\delta+2}$, canceling $-r^{\eta}$ with $-r^{\delta'+1}$, and canceling $-r^{\delta+1}$ with $-r^{\delta'}$:

$$\begin{aligned} Q(G): & -r^{\alpha+1} + r^{\alpha+\delta} + r^{\alpha+\epsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\epsilon+\eta}, \\ Q(H): & -r^{\alpha'} - r^{\alpha'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\epsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\epsilon'+\eta'}. \end{aligned}$$

Since $\eta = \delta' + 1$ (from (2)) and $\alpha + \eta = \alpha' + \delta'$ (from (1)), we have $\alpha' = \alpha + 1$. By (2), we have $\alpha' + 1 = \delta' + 3$. This is a contradiction since nothing in Q(H) can cancel $-r^{\alpha'+1}$. If

$$\delta + 2 = \delta' + 1 = \alpha + 1 = \eta \tag{3}$$

then we obtain the following after canceling $-r^{\alpha+1}$ with $r^{\delta+2}$, canceling $-r^{\eta}$ with $-r^{\delta'+1}$, and canceling $-r^{\delta+1}$ with $-r^{\delta'}$:

$$\begin{aligned} Q(G): & -r^{\alpha} + r^{\alpha+\delta} + r^{\alpha+\epsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\epsilon+\eta}, \\ Q(H): & -r^{\alpha'} - r^{\alpha'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\epsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\epsilon'+\eta'}. \end{aligned}$$

Since $\eta = \delta' + 1$ (from (3)), by (1), we have $\alpha' = \alpha + 1$. This is a contradiction since no term in Q(H) is equal to $-r^{\alpha}$ and nothing in Q(G) can cancel $-r^{\alpha}$ (noting $\alpha = \delta + 1$ (from (3))).

Case 5.6.2: If $\alpha' \leq \delta'$, then $\alpha' = \delta + 1$. Consider $r^{\delta+2}$ in Q(G) and $-r^{\alpha'+1}$ in Q(H). It is due to $\alpha' \leq \delta'$ that $-r^{\alpha'+1}$ can cancel none of the positive terms in Q(H). Thus, no term in Q(H) is equal to $r^{\delta+2}$. Therefore, $\delta + 2$ must equal one of $\alpha, \eta, \alpha + 1$ and $\alpha' + 1$ must equal one of $\alpha, \eta, \alpha + 1$. So $\delta + 2 = \alpha' + 1 = \alpha + 1 = \eta$ or $\delta + 2 = \alpha' + 1 = \alpha = \eta$. If $\delta + 2 = \alpha' + 1 = \alpha + 1 = \eta$, then we obtain the following after canceling $-r^{\eta}$ with $r^{\delta+2}$, canceling $-r^{\alpha+1}$ with $-r^{\alpha'+1}$, and canceling $-r^{\delta+1}$ with $-r^{\alpha'}$:

$$\begin{aligned} & \mathcal{Q}(G): \ -r^{\alpha}+r^{\alpha+\delta}+r^{\alpha+\epsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\epsilon+\eta}, \\ & \mathcal{Q}(H): \ -r^{\delta'}-r^{\delta'+1}+r^{\delta'+2}+r^{\alpha'+\delta'}+r^{\alpha'+\epsilon'+1}+r^{\alpha'+\eta'+1}+r^{\delta'+\epsilon'+\eta'}. \end{aligned}$$

Since $\alpha' + 1 = \eta$, by (1), we have $\delta' = \alpha + 1$. This is a contradiction since no term in Q(H) is equal to $-r^{\alpha}$ and nothing in Q(G) can cancel $-r^{\alpha}$ (noting $\alpha = \delta + 1$).

If $\delta + 2 = \alpha' + 1 = \alpha = \eta$, then we obtain the following after canceling $-r^{\eta}$ with $r^{\delta+2}$, canceling $-r^{\alpha}$ with $-r^{\alpha'+1}$, and canceling $-r^{\delta+1}$ with $-r^{\alpha'}$:

$$Q(G): -r^{\alpha+1} + r^{\alpha+\delta} + r^{\alpha+\epsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\epsilon+\eta},$$

$$Q(H): -r^{\delta'} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\epsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\epsilon'+\eta'}.$$

Since $\alpha' + 1 = \eta$, from (1), we have $\delta' = \alpha + 1$. Consider $-r^{\delta'+1}$ in Q(H). We have $\delta' + 1 = \alpha' + \varepsilon' + 1$ or $\delta' + 1 = \alpha' + \eta' + 1$. If $\delta' + 1 = \alpha' + \varepsilon' + 1$, from $\delta' = \alpha + 1 = \alpha' + 2$, we have $\varepsilon' = 2$. So far, we have had $\delta = \eta'$, $\delta + 2 = \alpha' + 1 = \alpha = \eta$, $\delta' = \alpha + 1$, $\varepsilon = \varepsilon' = 2$. Let $\delta = a$, we obtain the solution where *G* is isomorphic to $k_4(a + 2, 1, 1, a, 2, a + 2)$ and *H* is isomorphic to $K_4(a + 1, 1, 1, a + 3, 2, a)$. If $\delta' + 1 = \alpha' + \eta' + 1$, from $\delta' = \alpha + 1 = \alpha' + 2$, we have $\eta' = 2$. From $\varepsilon' \leq \eta'$ and $\varepsilon' \geq 2$, we have $\varepsilon' = 2$. Since $\delta = \eta'$, $\delta + 2 = \alpha' + 1 = \alpha = \eta$, $\delta' = \alpha + 1$, $\varepsilon = \varepsilon'$, we have $\delta = 2$, $\alpha = 4$, $\eta = 4$, $\alpha' = 3$, $\delta' = 5$, $\varepsilon = \varepsilon' = 2$. Then we obtain the solution where *G* is isomorphic to $k_4(4, 1, 1, 2, 2, 4)$ and *H* is isomorphic to $K_4(3, 1, 1, 5, 2, 2)$.

Case 6: If $\min\{\alpha, \delta, \varepsilon, \eta\} = \delta$ and $\min\{\alpha', \delta', \varepsilon', \eta'\} = \varepsilon'$, then

$$\delta = \varepsilon'. \tag{4}$$

After simplifying Q(G) and Q(H), we have

$$\begin{aligned} Q(G): & -r^{\alpha} - r^{\varepsilon} - r^{\eta} - r^{\alpha+1} - r^{\delta+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta}, \\ Q(H): & -r^{\alpha'} - r^{\delta'} - r^{\eta'} - r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} \\ & + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\varepsilon'+\eta'}. \end{aligned}$$

Since the case of $\min\{\alpha, \delta, \varepsilon, \eta\} = \alpha$ and $\min\{\alpha', \delta', \varepsilon', \eta'\} = \varepsilon'$ has been discussed in case 3, we can suppose $\delta \neq \alpha$ in case 6. Thus $\delta < \alpha$. Since the case of $\min\{\alpha, \delta, \varepsilon, \eta\} = \varepsilon$ and $\min\{\alpha', \delta', \varepsilon', \eta'\} = \varepsilon'$ has been discussed in case 5, we can suppose $\delta \neq \varepsilon$ in case 6. Thus

$$\delta < \varepsilon.$$
 (5)

Therefore, the l.r.p. in Q(G) is $\delta + 1$ and the l.r.p. in Q(H) is α' or δ' or η' . So, we have $\delta + 1 = \alpha'$ or $\delta + 1 = \delta'$ or $\delta + 1 = \eta'$. There are three cases to consider.

Case 6.1: If $\delta + 1 = \alpha'$, then the h.r.p. in Q(G) is $\alpha + \eta + 1$ or $\delta + \varepsilon + \eta$ and the h.r.p. in Q(H) is $\delta' + \varepsilon' + \eta'$ (since $\min\{\alpha', \delta', \eta'\} = \alpha'$). Therefore, $\alpha + \eta + 1 = \delta' + \varepsilon' + \eta'$ or $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$. If $\alpha + \eta + 1 = \delta' + \varepsilon' + \eta'$, from $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$, we have $\varepsilon + \delta = \alpha' + 1$. Since $\delta + 1 = \alpha'$, we have $\varepsilon = 2$ which contradicts $\varepsilon > \delta \ge 2$. If $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$, then $\alpha = \alpha'$. After canceling $-r^{\alpha + 1}$ with $-r^{\alpha' + 1}$, canceling $-r^{\alpha}$ with $-r^{\alpha'}$, and canceling $-r^{\delta + \varepsilon + \eta}$ with $-r^{\delta' + \varepsilon' + \eta'}$, we have

$$Q(G): -r^{\varepsilon} - r^{\eta} - r^{\delta+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1},$$

$$Q(H): -r^{\delta'} - r^{\eta'} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1}.$$

Since $\delta < \varepsilon$ (from (5)) and $\varepsilon \leq \eta$, we have the h.r.p. in Q(G) is $\alpha + \eta + 1$. The h.r.p. in Q(H) is $\alpha' + \delta'$ or $\alpha' + \eta' + 1$ (noting $\varepsilon' \leq \eta'$). Therefore, $\alpha + \eta + 1 = \alpha' + \delta'$ or

171

 $\alpha + \eta + 1 = \alpha' + \eta' + 1$. If $\alpha + \eta + 1 = \alpha' + \delta'$, by $\alpha = \alpha'$, we have $\delta' = \eta + 1$. Thus, no terms in Q(G) are equal to $-r^{\delta'}$ and $-r^{\delta'+1}$. Then $-r^{\delta'}$ must be cancelled by $r^{\alpha'+\varepsilon'+1}$ and $-r^{\delta'+1}$ must be cancelled by $r^{\alpha'+\eta'+1}$. Since nothing in Q(G) can cancel $-r^{\delta+1}$ (noting $\delta < \varepsilon$ and $\varepsilon \leq \eta$), we have $-r^{\delta+1} = -r^{\eta'}$. Since no terms in Q(H) are equal to $-r^{\varepsilon}$ and $-r^{\eta}, -r^{\varepsilon}$ must be canceled by $r^{\delta+2}$ and $-r^{\eta}$ must be canceled by $r^{\alpha+\delta}$. So far, we have had $\alpha = \alpha', \ \delta' = \alpha' + \varepsilon' + 1$ and $\delta' + 1 = \alpha' + \eta' + 1$ (which implies $\eta' = \varepsilon' + 1$), $\delta + 1 = \eta'$, $\varepsilon = \delta + 2, \ \eta = \alpha + \delta$. Let $\alpha = a, \ \delta = b$. We obtain the solution where G is isomorphic to $K_4(a, 1, 1, b, b + 2, a + b)$ and H is isomorphic to $K_4(a, 1, 1, a + b + 1, b, b + 1)$. If $\alpha + \eta + 1 = \alpha' + \eta' + 1$, then $\eta = \eta'$ since $\alpha = \alpha'$. From $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$ and $\delta = \varepsilon'$ (from (4)), we have $\delta' = \varepsilon$. After simplification, we have

$$Q(G): -r^{\delta+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\epsilon+1},$$

$$Q(H): -r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\epsilon'+1}.$$

This is a contradiction since no term in Q(H) is equal to $-r^{\delta+1}$ (by noting $\delta < \varepsilon = \delta'$). Case 6.2: If $\delta + 1 = \delta'$, then we can suppose $\delta' \neq \alpha'$ in case 6.2 since the case of

 $\delta + 1 = \alpha'$ has been discussed in case 6.1. Thus

$$\delta' < \alpha'. \tag{6}$$

After canceling $-r^{\delta+1}$ with $-r^{\delta'}$, we have

$$\begin{aligned} Q(G): & -r^{\alpha} - r^{\varepsilon} - r^{\eta} - r^{\alpha+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta}, \\ Q(H): & -r^{\alpha'} - r^{\eta'} - r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1} \\ & + r^{\alpha'+\eta'+1} + r^{\delta'+\varepsilon'+\eta'}. \end{aligned}$$

Consider $r^{\delta+2}$ in Q(G) and $-r^{\delta'+1}$ in Q(H). It is due to (6) that $-r^{\delta'+1}$ can cancel none of the positive terms in Q(H). Thus, no terms in Q(H) is equal to $r^{\delta+2}$. Therefore, $-r^{\delta'+1}$ and $r^{\delta+2}$ must equal one of $-r^{\alpha}$, $-r^{\varepsilon}$, $-r^{\eta}$, $-r^{\alpha+1}$. So, $\delta' + 1 = \delta + 2 = \alpha = \varepsilon$ or $\delta' + 1 = \delta + 2 = \alpha = \eta$ or $\delta' + 1 = \delta + 2 = \alpha + 1 = \varepsilon$ or $\delta' + 1 = \delta + 2 = \alpha + 1 = \eta$ or $\delta' + 1 = \delta + 2 = \varepsilon = \eta$. Without loss of generality, only the following three cases need to be considered.

Case 6.2.1: If $\delta' + 1 = \delta + 2 = \alpha$, we consider $r^{\delta'+2}$ in Q(H) and $-r^{\alpha+1}$ in Q(G). It is due to $\alpha = \delta + 2$ that $-r^{\alpha+1}$ can cancel none of the positive terms in Q(G). Thus, no terms in Q(G) is equal to $r^{\delta'+2}$. Therefore, $\alpha + 1 = \delta' + 2 = \alpha' = \eta'$ or $\alpha + 1 = \delta'+2 = \alpha' + 1 = \eta'$. If

$$\alpha + 1 = \delta' + 2 = \alpha' = \eta' \tag{7}$$

then we obtain the following after canceling $-r^{\alpha}$ with $r^{\delta+2}$, canceling $-r^{\alpha+1}$ with $-r^{\alpha'}$, and canceling $-r^{\eta'}$ with $r^{\delta'+2}$:

$$Q(G): -r^{\varepsilon} - r^{\eta} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta},$$

$$Q(H): -r^{\alpha'+1} - r^{\delta'+1} + r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\varepsilon'+\eta'}$$

By considering the l.r.p. in Q(G) and the l.r.p. in Q(H), we have $\varepsilon = \delta' + 1$. Since $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$ and $\delta = \varepsilon'$ (from (4)) and $\alpha' = \alpha + 1$ (from (7)), we have $\eta = \eta'$. Therefore $\eta = \alpha'$ (noting (7)). This is a contradiction since no term in Q(G) is equal to $-r^{\alpha'+1}$ and nothing in Q(H) can cancel $-r^{\alpha'+1}$ (noting (7)). If $\alpha + 1 = \delta' + 2 = \alpha' + 1 = \eta'$, then we obtain the following after canceling $-r^{\alpha}$ with $r^{\delta+2}$, canceling $-r^{\alpha+1}$ with $-r^{\alpha'+1}$, canceling $-r^{\eta'}$ with $r^{\delta'+2}$, and canceling $-r^{\delta+\varepsilon+\eta}$ with $-r^{\delta'+\varepsilon'+\eta'}$

$$\begin{aligned} Q(G): & -r^{\varepsilon} - r^{\eta} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1}, \\ Q(H): & -r^{\alpha'} - r^{\delta'+1} + r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1}. \end{aligned}$$

Consider $r^{\alpha+\delta}$ in Q(G). It is due to $\alpha = \alpha'$, and $\delta' = \delta + 1$ and $\delta = \varepsilon'$ (from (4)) that no term in Q(H) is equal to $r^{\alpha+\delta}$. This is a contradiction since nothing in Q(G) can cancel $r^{\alpha+\delta}$ (by noting $-r^{\alpha'} = -r^{\delta'+1} = -r^{\varepsilon} = -r^{\eta}$).

Case 6.2.2: If $\delta' + 1 = \delta + 2 = \alpha + 1$, then $\alpha = \delta'$. After canceling $-r^{\alpha+1}$ with $r^{\delta+2}$, we have

$$Q(G): -r^{\alpha} - r^{\varepsilon} - r^{\eta} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta},$$

$$Q(H): -r^{\alpha'} - r^{\eta'} - r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\varepsilon'+\eta'}.$$

It is due to $\delta' < \alpha'$ (from (6)) and $\alpha = \delta'$ that $\alpha < \alpha'$. Then $-r^{\alpha} = -r^{\eta'}$. Since $\delta = \varepsilon'$ (from (4)) and $\alpha = \eta'$ and $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$, we have

$$\delta' + \alpha' = \varepsilon + \eta.$$

Consider $-r^{\delta'+1}$ in Q(H). It is due to (6) that nothing in Q(H) can cancel $-r^{\delta'+1}$. Therefore $-r^{\delta'+1} = -r^{\varepsilon}$ or $-r^{\delta'+1} = -r^{\eta}$. If $\delta'+1 = \varepsilon$, then $\alpha' = \eta + 1$ since $\delta' + \alpha' = \varepsilon + \eta$. This is a contradiction since no terms in Q(G) are equal to $-r^{\alpha'}$ and $-r^{\alpha'+1}$ (noting $\alpha < \alpha'$). If $\delta' + 1 = \eta$, then $\alpha' = \varepsilon + 1$ since $\delta' + \alpha' = \varepsilon + \eta$. After canceling $-r^{\alpha}$ with $-r^{\eta'}$, canceling $-r^{\delta'+1}$ with $-r^{\eta}$, we have

$$\begin{aligned} Q(G): & -r^{\varepsilon} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta}, \\ Q(H): & -r^{\alpha'} - r^{\alpha'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\varepsilon'+\eta'}. \end{aligned}$$

This is a contradiction since no terms in Q(G) are equal to $-r^{\alpha'}$ and $-r^{\alpha'+1}$. Case 6.2.3: If

$$\delta' + 1 = \delta + 2 = \varepsilon = \eta. \tag{8}$$

Then, from (4) and $\delta' + 1 = \varepsilon$ and $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$, we have

$$\alpha + \eta + 1 = \alpha' + \eta'. \tag{9}$$

173

After canceling $-r^{\eta}$ with $r^{\delta+2}$, canceling $-r^{\varepsilon}$ with $-r^{\delta'+1}$, we have

$$Q(G): -r^{\alpha} - r^{\alpha+1} + r^{\alpha+\delta} + r^{\alpha+\epsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\epsilon+\eta},$$

$$Q(H): -r^{\alpha'} - r^{\eta'} - r^{\alpha'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\epsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\epsilon'+\eta'}.$$

Consider $-r^{\alpha}$ and $-r^{\alpha+1}$. One of $-r^{\alpha}$ and $-r^{\alpha+1}$ must equal $-r^{\alpha'}$ or $-r^{\alpha'+1}$.

If $-r^{\alpha+1} = -r^{\alpha'}$, then $\alpha + 1 = \alpha'$. Therefore, $\eta = \eta'$ since $\alpha + \eta + 1 = \alpha' + \eta'$ (from (9)). By $\eta = \delta' + 1$ (from (8)), we have $\eta' = \delta' + 1$. After canceling $-r^{\alpha'}$ with $-r^{\alpha+1}$, we have

$$\begin{aligned} &Q(G): \ -r^{\alpha} + r^{\alpha+\delta} + r^{\alpha+\epsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\epsilon+\eta}, \\ &Q(H): \ -r^{\alpha'+1} - r^{\eta'} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\epsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\epsilon'+\eta'}. \end{aligned}$$

Consider $-r^{\eta'}$ in Q(H). It is due to $\eta' = \delta' + 1 < \alpha' + 1$ (noting (6)) that nothing in Q(H) can cancel $-r^{\eta'}$. So $-r^{\eta'} = -r^{\alpha}$. Then $\alpha' + 1 = \alpha + 2 = \eta' + 2 = \delta' + 3$. This is a contradiction since nothing in Q(H) can cancel $-r^{\alpha'+1}$ and no term in Q(G) is equal to $-r^{\alpha'+1}$.

If $-r^{\alpha+1} = -r^{\alpha'+1}$, then $\alpha = \alpha'$. Therefore, $\eta + 1 = \eta'$ since $\alpha + \eta + 1 = \alpha' + \eta'$. By $\eta = \delta' + 1$ (from (8)), we have $\eta' = \delta' + 2$. After canceling $-r^{\alpha}$ with $-r^{\alpha'}$, canceling $-r^{\alpha+1}$ with $-r^{\alpha'+1}$, canceling $-r^{\eta'}$ with $r^{\delta'+2}$, and canceling $-r^{\delta+\epsilon+\eta}$ with $-r^{\delta'+\epsilon'+\eta'}$, we have

$$Q(G): r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1},$$

$$Q(H): r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1},$$

This is a contradiction since no term in Q(H) is equal to $r^{\alpha+\delta}$ (noting $\alpha = \alpha'$ and $\delta = \varepsilon'$ (from (4)) and $\delta + 1 = \delta'$ (from (8))).

If $-r^{\alpha} = -r^{\alpha'}$, by the same reason as in case $-r^{\alpha+1} = -r^{\alpha'+1}$, we have a contradiction. If $-r^{\alpha} = -r^{\alpha'+1}$, then $\alpha = \alpha' + 1$. Therefore, $\eta' = \eta + 2$ since $\alpha + \eta + 1 = \alpha' + \eta'$. By $\eta = \delta' + 1$ (from (8)), we have $\eta' = \delta' + 3$. After simplification, we have

$$\begin{aligned} Q(G): & -r^{\alpha+1} + r^{\alpha+\delta} + r^{\alpha+\epsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\epsilon+\eta}, \\ Q(H): & -r^{\alpha'} - r^{\eta'} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\epsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\epsilon'+\eta'}. \end{aligned}$$

Consider $-r^{\alpha'}$ in Q(H). It is due to $\alpha = \alpha' + 1$ that $-r^{\alpha'}$ must be canceled by $r^{\delta'+2}$ or by $r^{\delta'+\epsilon'+\eta'}$. If $\alpha' = \delta' + 2$, by $\eta' = \delta' + 3$, we have $\alpha' + 1 = \eta'$. So $\alpha = \eta'$. This is a contradiction since nothing in Q(H) can cancel $-r^{\eta'}$ and no term in Q(G) is equal to $-r^{\eta'}$. If $\alpha' = \delta' + \epsilon' + \eta'$ (which implies $\eta' < \alpha' = \alpha - 1$), then we obtain a contradiction since nothing in Q(H) can cancel $-r^{\eta'}$ and no term in Q(G) is equal to $-r^{\eta'}$.

Case 6.3: If $\delta + 1 = \eta'$, then we can suppose $\eta' \neq \delta'$ in case 6.3 since the case of $\delta + 1 = \delta'$ has been discussed in Case 6.2. Thus $\eta' < \delta'$ which implies

$$\eta' + 1 \leqslant \delta'. \tag{10}$$

After simplification, we have

$$Q(G): -r^{\alpha} - r^{\varepsilon} - r^{\eta} - r^{\alpha+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1} + r^{\delta+\varepsilon+\eta},$$

$$Q(H): -r^{\alpha'} - r^{\delta'} - r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\varepsilon'+1},$$

By considering the h.r.p. in Q(G) and the h.r.p. in Q(H), we have the h.r.p. in Q(G) is $\alpha + \eta + 1$ (since $\min\{\alpha, \delta, \varepsilon, \eta\} = \delta$) or $\delta + \varepsilon + \eta$, the h.r.p. in Q(H) is $\alpha' + \delta'$ (since $\eta' + 1 \leq \delta'$) or $\delta' + \varepsilon' + \eta'$. There are four cases to consider.

Case 6.3.1: When $\alpha + \eta + 1 > \delta + \varepsilon + \eta$ and $\alpha' + \delta' > \delta' + \varepsilon' + \eta'$, we have

$$\alpha + \eta + 1 = \alpha' + \delta'. \tag{11}$$

Since $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$ and $\delta + 1 = \eta'$, we have $\varepsilon = \varepsilon' + 2$. From (4), we have $\varepsilon = \delta + 2$. After simplification, we have

$$\begin{aligned} &Q(G): \ -r^{\alpha} - r^{\eta} - r^{\alpha+1} + r^{\alpha+\delta} + r^{\alpha+\epsilon+1} + r^{\delta+\epsilon+\eta}, \\ &Q(H): \ -r^{\alpha'} - r^{\delta'} - r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\epsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\epsilon'+\eta'}. \end{aligned}$$

By considering the l.r.p. in Q(G) and the l.r.p. in Q(H), we have $\alpha = \alpha'$ or $\alpha = \delta'$ or $\eta = \alpha'$ or $\eta = \delta'$

If $\alpha = \alpha'$, then $\delta' = \eta + 1$ since $\alpha + \eta + 1 = \alpha' + \delta'$ (from (11)). After canceling $-r^{\alpha}$ with $-r^{\alpha'}$, and canceling $-r^{\alpha+1}$ with $-r^{\alpha'+1}$, we know that the terms $-r^{\delta'}$ and $-r^{\delta'+1}$ must be canceled by the terms in Q(H). Then $\delta' = \alpha' + \varepsilon' + 1$ and $\delta' + 1 = \alpha' + \eta' + 1$. Let $\alpha' = a$ and $\varepsilon' = b$. Then we obtain the solution (noting $\alpha = \alpha', \delta = \varepsilon'$ (from (4)), $\varepsilon = \varepsilon' + 2$, $\eta' = \delta + 1, \delta' = \eta + 1, \delta' = \alpha' + \varepsilon' + 1, \delta' + 1 = \alpha' + \eta' + 1$) where *G* is isomorphic to $K_4(a, 1, 1, b, b + 2, a + b)$ and *H* is isomorphic to $K_4(a, 1, 1, a + b + 1, b, b + 1)$.

If $\alpha = \delta'$, then $\alpha' = \eta + 1$ since $\alpha + \eta + 1 = \alpha' + \delta'$. After canceling $-r^{\alpha}$ with $-r^{\delta'}$, and canceling $-r^{\alpha+1}$ with $-r^{\delta'+1}$, we know that no term in Q(G) is equal to $-r^{\alpha'}$ or $-r^{\alpha'+1}$. This is a contradiction since only one of $-r^{\alpha'}$ and $-r^{\alpha'+1}$ can be canceled in Q(H).

If $\eta = \alpha'$, then $\alpha + 1 = \delta'$ since $\alpha + \eta + 1 = \alpha' + \delta'$. After simplification, we have

$$\begin{aligned} Q(G): & -r^{\alpha} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\delta+\varepsilon+\eta}, \\ Q(H): & -r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\varepsilon'+\eta'}. \end{aligned}$$

Consider $-r^{\delta'+1}$ in Q(H). It is due to $\delta' = \alpha + 1$ that $-r^{\delta'+1}$ must be canceled by the term in Q(H). Then $\delta' + 1 = \alpha' + \varepsilon' + 1$ or $\delta' + 1 = \alpha' + \eta' + 1$. Thus $-r^{\alpha'+1}$ cannot be canceled by the term in Q(H). So $\alpha' + 1 = \alpha$. Turn to the term $r^{\alpha'+\varepsilon'+1}$, we have $r^{\alpha'+\varepsilon'+1} = r^{\alpha+\delta}$ (noting $\alpha' + 1 = \alpha$ and $\delta = \varepsilon'$ (from (4))). Therefore $-r^{\delta'+1}$ must be canceled by $r^{\alpha'+\eta'+1}$. From $\delta' = \alpha + 1$ and $\alpha = \alpha' + 1$, we have $\delta' = \alpha' + 2$. By $\delta' + 1 = \alpha' + \eta' + 1$, we have $\eta' = 2$. From $\delta + 1 = \eta'$, we have $\delta = 1$ which contradicts $\delta \ge 2$. If $\eta = \delta'$, then $\alpha + 1 = \alpha'$ since $\alpha + \eta + 1 = \alpha' + \delta'$. After simplification, we have

$$\begin{aligned} &Q(G): \ -r^{\alpha}+r^{\alpha+\delta}+r^{\alpha+\epsilon+1}+r^{\delta+\epsilon+\eta}, \\ &Q(H): \ -r^{\alpha'+1}-r^{\delta'+1}+r^{\delta'+2}+r^{\alpha'+\epsilon'+1}+r^{\alpha'+\eta'+1}+r^{\delta'+\epsilon'+\eta'}. \end{aligned}$$

Consider $-r^{\alpha'+1}$ in Q(H). It is due to $\alpha' = \alpha + 1$ that $-r^{\alpha'+1}$ must be canceled by $r^{\delta'+2}$ or $r^{\delta'+\varepsilon'+\eta'}$. Thus we have a contradiction since no term in Q(G) is equal to $-r^{\delta'+1}$. *Case* 6.3.2: When $\alpha + \eta + 1 > \delta + \varepsilon + \eta$ and $\alpha' + \delta' \le \delta' + \varepsilon' + \eta'$, we have $\alpha + \eta + 1$

 $=\delta'+\varepsilon'+\eta'.$ Then, by $\alpha+\delta+\varepsilon+\eta=\alpha'+\delta'+\varepsilon'+\eta'$, we have

$$\alpha' + 1 = \delta + \varepsilon. \tag{12}$$

From $\alpha + \eta + 1 > \delta + \varepsilon + \eta(\alpha + 1 > \delta + \varepsilon)$, we have

$$\alpha > \alpha'. \tag{13}$$

After simplification, we have

$$\begin{aligned} &Q(G): \ -r^{\alpha} - r^{\varepsilon} - r^{\eta} - r^{\alpha+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\delta+\varepsilon+\eta}, \\ &Q(H): \ -r^{\alpha'} - r^{\delta'} - r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1}. \end{aligned}$$

Since the h.r.p. in Q(G) is $\alpha + \varepsilon + 1$ (since $\min\{\alpha, \delta, \varepsilon, \eta\} = \delta$) or $\delta + \varepsilon + \eta$ and the h.r.p. in Q(H) is $\alpha' + \delta'$ (since $\eta' + 1 \le \delta'$ (from (10))), we have $\alpha + \varepsilon + 1 = \alpha' + \delta'$ or $\delta + \varepsilon + \eta = \alpha' + \delta'$.

If $\alpha + \varepsilon + 1 = \alpha' + \delta'$, by $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$, we have $\varepsilon' + \eta' + 1 = \delta + \eta$. Then, from $\delta + 1 = \eta'$ and $\delta = \varepsilon'$ (from (4)), we have $\eta = \delta + 2$. Therefore, $-r^{\eta}$ is canceled by $r^{\delta+2}$. After simplification, we have

$$\begin{split} & \mathcal{Q}(G): \ -r^{\alpha}-r^{\varepsilon}-r^{\alpha+1}+r^{\alpha+\delta}+r^{\delta+\varepsilon+\eta}, \\ & \mathcal{Q}(H): \ -r^{\alpha'}-r^{\delta'}-r^{\alpha'+1}-r^{\delta'+1}+r^{\delta'+2}+r^{\alpha'+\varepsilon'+1}+r^{\alpha'+\eta'+1} \end{split}$$

Consider $-r^{\alpha'}$ in Q(H). It is due to $\alpha > \alpha'$ (from (13)) and $\alpha' + 1 = \delta + \varepsilon$ (which implies $\alpha' > \varepsilon$) that $-r^{\alpha'}$ must be canceled by the term in Q(H). Thus $\alpha' = \delta' + 2$. This is a contradiction since $\alpha > \alpha' = \delta' + 2$ and none of the terms $-r^{\delta'}$ and $-r^{\delta'+1}$ can be canceled by terms in Q(H).

If $\delta + \varepsilon + \eta = \alpha' + \delta'$, then $\delta' = \eta + 1$ since $\alpha' + 1 = \delta + \varepsilon$ (from (12)). After simplification, we have

$$Q(G): -r^{\alpha} - r^{\varepsilon} - r^{\eta} - r^{\alpha+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1},$$

$$Q(H): -r^{\alpha'} - r^{\delta'} - r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1},$$

If $\delta' \leq \alpha'$, then we have a contradiction since no term in Q(G) is equal to $-r^{\delta'}$ (by noting $\alpha > \alpha'$ and $\delta' = \eta + 1$). If $\delta' > \alpha'$. Consider $-r^{\alpha'}$ in Q(H). It is due to $\alpha > \alpha'$ (from (13)) and $\alpha' + 1 = \delta + \varepsilon$ (which implies $\alpha' > \varepsilon$) that $-r^{\alpha'} = -r^{\eta}$. From $\delta' = \eta + 1$,

we have $\delta' = \alpha' + 1$. Thus $-r^{\delta'} = -r^{\alpha'+1}$. This is a contradiction since no pair of terms in Q(G) are equal to $-r^{\delta'}$ and $-r^{\alpha'+1}$ (by noting $\alpha' = \eta \ge \varepsilon$).

Case 6.3.3: When $\alpha + \eta + 1 \leq \delta + \varepsilon + \eta$ and $\alpha' + \delta' \leq \delta' + \varepsilon' + \eta'$, we have $\delta + \varepsilon + \eta = \delta' + \varepsilon' + \eta'$. Then $\alpha = \alpha'$ since $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$. After simplification, we have

$$Q(G): -r^{\varepsilon} - r^{\eta} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1},$$

$$Q(H): -r^{\delta'} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\delta'} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1}$$

Since the h.r.p. in Q(G) is $\alpha + \eta + 1$ (since min $\{\alpha, \delta, \varepsilon, \eta\} = \delta$ and $\varepsilon \leq \eta$) and the h.r.p. in Q(H) is $\alpha' + \delta'$ (since $\eta' + 1 \leq \delta'$ (from (10))), we have $\alpha + \eta + 1 = \alpha' + \delta'$. Then $\delta' = \eta + 1$ since $\alpha = \alpha'$. Thus $-r^{\delta'}$ and $-r^{\delta'+1}$ must be canceled by terms in Q(H), and $-r^{\varepsilon}$, $-r^{\eta}$ must be canceled by terms in Q(G). So, we have $\delta' = \alpha' + \varepsilon' + 1$, $\delta' + 1 = \alpha' + \eta' + 1$, $\varepsilon = \delta + 2$ and $\eta = \alpha + \delta$. Let $\alpha' = a$ and $\varepsilon' = b$. Then we obtain the solution (noting $\alpha = \alpha'$, $\delta = \varepsilon'$ (from (4)), $\varepsilon = \delta + 2$, $\eta' = \delta + 1$, $\delta' = \eta + 1$, $\delta' = \alpha' + \varepsilon' + 1$, $\delta' + 1 = \alpha' + \eta' + 1$, $\eta = \alpha + \delta$) where G is isomorphic to $K_4(a, 1, 1, b, b + 2, a + b)$ and H is isomorphic to $K_4(a, 1, 1, a + b + 1, b, b + 1)$.

Case 6.3.4: When $\alpha + \eta + 1 \leq \delta + \varepsilon + \eta$ and $\alpha' + \delta' > \delta' + \varepsilon' + \eta'$, we have

$$\delta + \varepsilon + \eta = \alpha' + \delta' \tag{14}$$

by $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$, we have

$$\alpha = \varepsilon' + \eta'. \tag{15}$$

Then, from $\alpha' + \delta' > \delta' + \varepsilon' + \eta' \ (\alpha' > \varepsilon' + \eta')$, we have

$$\alpha' > \alpha.$$
 (16)

After simplification, we have

$$\begin{aligned} Q(G): & -r^{\alpha} - r^{\varepsilon} - r^{\eta} - r^{\alpha+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1} + r^{\alpha+\eta+1}, \\ Q(H): & -r^{\alpha'} - r^{\delta'} - r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\varepsilon'+1} + r^{\alpha'+\eta'+1} + r^{\delta'+\varepsilon'+\eta'}. \end{aligned}$$

Since the h.r.p. in Q(G) is $\alpha + \eta + 1$ (since min $\{\alpha, \delta, \varepsilon, \eta\} = \delta$ and $\varepsilon \leq \eta$) and the h.r.p. in Q(H) is $\delta' + \varepsilon' + \eta'$ or $\alpha' + \eta' + 1$, we have $\alpha + \eta + 1 = \delta' + \varepsilon' + \eta'$ or $\alpha + \eta + 1 = \alpha' + \eta' + 1$. If $\alpha + \eta + 1 = \delta' + \varepsilon' + \eta'$, then, by $\alpha = \varepsilon' + \eta'$ (from (15)), we have

 $\delta' = \eta + 1.$

Consider $-r^{\alpha'+1}$ in Q(H). It is due to $\alpha' > \alpha$ (from (16)) that $\alpha' + 1 = \varepsilon$ or $\alpha' + 1 = \eta$. If $\alpha' + 1 = \varepsilon$, then $\delta' = \delta + \eta + 1$ since $\delta + \varepsilon + \eta = \delta' + \alpha'$ (from (14)). This is a contradiction since $\delta' = \eta + 1$. If $\alpha' + 1 = \eta$, then $\delta' = \alpha' + 2$ since $\delta' = \eta + 1$. From $\alpha' > \alpha$, we have $\delta' > \alpha + 2$. So we have a contradiction since no term in Q(G) is equal to $-r^{\delta'}$ (noting $\delta' = \eta + 1$ and $\varepsilon \leq \eta$) and nothing in Q(H) can cancel $-r^{\delta'}$ (by noting $\delta' = \alpha' + 2$).

If $\alpha + \eta + 1 = \alpha' + \eta' + 1$, then, by $\alpha + \delta + \varepsilon + \eta = \alpha' + \delta' + \varepsilon' + \eta'$ and $\delta = \varepsilon'$ (from (4)), we have $\varepsilon = \delta'$. Since $\delta + \varepsilon + \eta = \alpha' + \delta'$ (from (14)), we have $\alpha' = \delta + \eta$ which implies

$$\eta < \alpha'. \tag{17}$$

After canceling $-r^{\varepsilon}$ with $-r^{\delta'}$, canceling $r^{\alpha+\eta+1}$ with $r^{\alpha'+\eta'+1}$, we have

$$\begin{aligned} Q(G): & -r^{\alpha} - r^{\eta} - r^{\alpha+1} + r^{\delta+2} + r^{\alpha+\delta} + r^{\alpha+\varepsilon+1}, \\ Q(H): & -r^{\alpha'} - r^{\alpha'+1} - r^{\delta'+1} + r^{\delta'+2} + r^{\alpha'+\varepsilon'+1} + r^{\delta'+\varepsilon'+\eta'}. \end{aligned}$$

Consider $-r^{\alpha'+1}$ in Q(H). It is due to $\alpha' > \alpha$ (from (16)) and $\eta < \alpha'$ (from (17)) that $-r^{\alpha'+1}$ must be canceled by $r^{\delta'+2}$ or $r^{\delta'+\varepsilon'+\eta'}$. Thus, $\alpha'+1=\delta'+2$ or $\alpha'+1=\delta'+\varepsilon'+\eta'$. If $\alpha'+1=\delta'+2$, then we have a contradiction since no pair of terms in Q(G) are equal to $-r^{\alpha'}$ and $-r^{\delta'+1}$ (by noting $\eta < \alpha'$). If $\alpha'+1=\delta'+\varepsilon'+\eta'$, then $\alpha'=\delta'+\alpha-1$ since $\alpha=\varepsilon'+\eta'$ (from (15)). Since $\delta' \ge \eta'+1$ (from (10)) and $\eta'\ge 2$, we have $\delta'\ge 3$. Then $\alpha'=\delta'+\alpha-1\ge \alpha+2$. This is a contradiction since no term in Q(G) is equal to $-r^{\alpha'}$ (noting $\eta < \alpha'$) and nothing in Q(H) can cancel $-r^{\alpha'}$ (by noting $\alpha'+1=\delta'+\varepsilon'+\eta'$.

So far, we have solved the equation P(G) = P(H) and got the solution as follows:

$$k_4(a, 1, 1, a + b + 1, b, b + 1) \sim K_4(a, 1, 1, b, b + 2, a + b),$$

$$k_4(a+1,1,1,a+3,2,a) \sim K_4(a+2,1,1,a,2,a+2).$$

The proof is completed. \Box

Acknowledgements

We thank the referees for suggestions which resulted in improvements to this paper.

References

- [1] C.Y. Chao, L.C. Zhao, Chromatic polynomials of a family of graphs, Ars Combin. 15 (1983) 111-129.
- [2] Z.-Y. Guo, E.G. Whitehead Jr., Chromaticity of a family of K₄-homeomorphs, Discrete Math. 172 (1997) 53-58.
- [3] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259–285.
- [4] W.M. Li, Almost every K_4 -homeomorph is chromatically unique, Ars Combin. 23 (1987) 13–36.
- [5] E.G. Whitehead Jr., L.C. Zhao, Chromatic uniqueness and equivalence of K₄-homeomorphs, J. Graph Theory 8 (1984) 355–364.
- [6] S. Xu, Chromaticity of a family of K₄-homeomorphs, Discrete Math. 117 (1993) 293-297.