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Chromaticity of a family of K4-homeomorphs�
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Abstract

We discuss the chromaticity of one family of K4-homeomorphs which has exactly 2 adjacent
paths of length 1, and give su2cient and necessary condition for the graphs in the family to be
chromatically unique.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we consider graphs which are simple. For such a graph G, let P(G; �)
denote the chromatic polynomial of G. Two graphs G and H are chromatically equiv-
alent, denoted by G∼H , if P(G; �)=P(H ; �). A graph G is chromatically unique
if for any graph H such that H ∼G, we have H ∼=G, i.e., H is isomorphic to G.
A K4-homeomorph is a subdivision of the complete graph K4. Such a homeomorph

is denoted by K4(�; �; 	; 
; �; �) if the six edges of K4 are replaced by the six paths of
length �; �; 	; 
; �; �, respectively, as shown in Fig. 1. Each of these six paths is called
a ∗-path.
So far, the study of the chromaticity of K4-homeomorphs with at least 3 ∗-paths

of length 1 has been ful=led (see [2,6,3]). In this paper, we study the chromaticity
of K4-homeomorphs K4(�; 1; 1; 
; �; �) (as Fig. 2(a)) with 2 ∗-path of length 1 are
adjacent.
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Fig. 1.

Fig. 2.

2. Auxiliary results

In this section, we cite some known results used in the sequel.

Proposition 1. Let G∼H . Then

(1) |V (G)|= |V (H)|, |E(G)|= |E(H)| (see [3]);
(2) If G is a K4-homeomorph, then H is a K4-homeomorph as well (see [1]);
(3) If G and H are homeomorphic to K4, then both the minimum values of parameters

and the number of parameters equal to this minimum value of the graphs G and
H coincide (see [5]).
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Proposition 2 (Li [4]). Suppose that G=K4(�; �; 	; 
; �; �) and H=K4(�′; �′; 	′; 
′; �′; �′)
are chromatically equivalent homeomorphs such that two multisets (�; �; 	; 
; �; �) and
(�′; �′; 	′; 
′; �′; �′) are the same, then H is isomorphic to G.

Proposition 3 (Guo and Whitehead Jr. [2] and Xu [6]). K4(1; �; 	; 1; �; �) (see Fig.
2(b)) is not chromatically unique if and only if it is K4(1; b+2; b; 1; 2; 2) or K4(1; a+
1; a+ 3; 1; 2; a) or K4(1; a+ 2; b; 1; 2; a), where a¿2, b¿1, and

K4(1; b+ 2; b; 1; 2; 2)∼K4(3; 1; 1; 2; b; b+ 1);

K4(1; a+ 1; a+ 3; 1; 2; a)∼K4(a+ 1; 1; 1; a; 3; a+ 2);

K4(1; a+ 2; b; 1; 2; a)∼K4(a+ 1; 1; 1; b; 3; a):

3. Main results

Lemma. If G∼=K4(�; 1; 1; 
; �; �) and H ∼=K4(�′; 1; 1; 
′; �′; �′), then we have

(1) P(G)=(−1)n+1[r=(r − 1)2][−rn+1 − r2 + r + 2 + Q(G)], where

Q(G) =−r� − r
 − r� − r� − r�+1 − r
+1 + r
+2 + r�+


+ r�+�+1 + r�+�+1 + r
+�+�

r=1− �, n is the number of vertices of G.
(2) If P(G)=P(H), then Q(G)=Q(H).

Proof. (1) Let r=1 − �. From [5], we have the chromatic polynomial of K4-homeo-
morph K4(�; �; 	; 
; �; �) as follows:

P(K4(�; �; 	; 
; �; �)) = (−1)n+1[r=(r − 1)2][(r2 + 3r + 2)

− (r + 1)(r� + r� + r	 + r
 + r� + r�)

+ (r�+
 + r�+� + r	+� + r�+�+�

+ r�+
+	 + r�+	+� + r
+�+� − rn+1)]:

Then

P(G) = P(K4(�; 1; 1; 
; �; �))

= (−1)n+1[r=(r − 1)2][(r2 + 3r + 2)− (r + 1)(r� + r
 + r� + r� + 2r)

+ (r�+1 + r�+1 + r
+2 + r�+
 + r�+�+1 + r�+�+1 + r
+�+� − rn+1)]



164 Y.-l. Peng, R.-Y. Liu /Discrete Mathematics 258 (2002) 161–177

= (−1)n+1[r=(r − 1)2](−rn+1 − r2 + r + 2− r� − r
 − r� − r� − r�+1

− r
+1 + r
+2 + r�+
 + r�+�+1 + r�+�+1 + r
+�+�)

= (−1)n+1[r=(r − 1)2](−rn+1 − r2 + r + 2 + Q(G))

where

Q(G) =−r� − r
 − r� − r� − r�+1 − r
+1 + r
+2 + r�+


+ r�+�+1 + r�+�+1 + r
+�+�:

Proof. (2) If P(G)=P(H), then it is easy to see that Q(G)=Q(H).

Theorem. K4-homeomorphs K4(�; 1; 1; 
; �; �) (min{�; 
; �; �}¿2) is not chromatically
unique if and only if it is K4(a; 1; 1; a+b+1; b; b+1), K4(a; 1; 1; b; b+2; a+b), K4(a+
1; 1; 1; a+3; 2; a), K4(a+2; 1; 1; a; 2; a+2), K4(3; 1; 1; 2; b; b+1), K4(a+1; 1; 1; a; 3; a+2)
or K4(a+ 1; 1; 1; b; 3; a), where a¿2, b¿2.

Proof. Let G∼=K4(�; 1; 1; 
; �; �) and min{�; 
; �; �}¿2 (see Fig. 2(a)). If there is a
graph H such that P(H)=P(G), then from Proposition 1, we know that H is a
K4-homeomorph K4(�′; �′; 	′; 
′; �′; �′) and two of �′; �′; 	′; 
′; �′; �′ must be 1. We can
assume that �′=
′=1 or �′=	′=1. We now solve the equation P(G)=P(H) to get
all solutions.
Case A: If �′=
′=1, then H ∼=K4(1; �′; 	′; 1; �′; �′). From Proposition 3, we know

the solutions of the equation P(G)=P(H) are

K4(3; 1; 1; 2; b; b+ 1)∼K4(1; b+ 2; b; 1; 2; 2);

K4(a+ 1; 1; 1; a; 3; a+ 2)∼K4(1; a+ 1; a+ 3; 1; 2; a);

K4(a+ 1; 1; 1; b; 3; a)∼K4(1; a+ 2; b; 1; 2; a):

Case B: If �′=	′=1, then H ∼=K4(�′; 1; 1; 
′; �′; �′). We solve the equation Q(G)=
Q(H). From lemma, we have

Q(G) =−r� − r
 − r� − r� − r�+1 − r
+1 + r
+2 + r�+


+ r�+�+1 + r�+�+1 + r
+�+�;

Q(H) =−r�′ − r
′ − r�′ − r�′ − r�′+1 − r
′+1 + r

′+2 + r�

′+
′

+ r�
′+�′+1 + r�

′+�′+1 + r

′+�′+�′ :

We know that � + 
 + � + �=�′ + 
′ + �′ + �′ (from Proposition 1) and we can
assume �6�, �′6�′, min{�′; 
′; �′; �′}¿2. We denote the lowest remaining power by
l.r.p. and the highest remaining power by h.r.p.
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Case 1: If min{�; 
; �; �}=� and min{�′; 
′; �′; �′}=�′, then the lowest power in
Q(G) is � and the lowest power in Q(H) is �′. Therefore �=�′. We obtain the
following after simpli=cation:

Q(G): − r
 − r� − r� − r
+1 + r
+2 + r�+
 + r�+�+1 + r�+�+1;

Q(H): − r
′ − r�′ − r�′ − r
′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1 + r�

′+�′+1:

By considering the h.r.p. in Q(G) and the h.r.p. in Q(H), we have �+�+1=�′+�′+1
or �+ 
=�′ + 
′ or �+ 
=�′ + �′ + 1 or �+ �+ 1=�′ + 
′.
Case 1.1: If �+�+1=�′+�′+1, then �=�′. After canceling −r� in Q(G) with −r�′

in Q(H), we have the l.r.p. in Q(G) is 
 or � and the l.r.p. in Q(H) is 
′ or �′. Therefore

=�′ or �=
′ or 
=
′ or �=�′. From �=�′, �=�′ and �+
+ �+�=�′+
′+ �′+�′,
we know that the two multisets (�; 1; 1; 
; �; �) and (�′; 1; 1; 
′; �′; �′) are the same. Since
G∼H , from Proposition 2, we have G is isomorphic to H .
Case 1.2: If � + 
=�′ + 
′, then we can handle this case in the same fashion as

case 1.1, so we get G∼=H .
Case 1.3: If �+ 
=�′ + �′ + 1, then 
=�′ + 1 (since �=�′) and �+ �+ 1=�′ + 
′

(since �+ 
+ �+ �=�′ + 
′ + �′ + �′). After simpli=cation, we have

Q(G): − r
 − r� − r� − r
+1 + r
+2 + r�+�+1 + r�+�+1;

Q(H): − r
′ − r�′ − r�′ − r
′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1:

Since 
=�′ + 1 (which implies 
¿�′) and �′6�′, we have the l.r.p. in Q(G) is �
and the l.r.p. in Q(H) is �′ or 
′. Then, �=�′ or �=
′. If �=�′, then 
′=�+ 1 since
�+ �+1=�′ + 
′. After canceling −r� in Q(G) with −r�′ in Q(H), we have the l.r.p.
in Q(G) is � and the l.r.p. in Q(H) is �′. Therefore �=�′ which yields 
=
′. So
G∼=H . If �=
′, then �′=�+ 1 since �+ �+ 1=�′ + 
′. After simpli=cation, we have

Q(G): − r
 − r� − r
+1 + r
+2 + r�+�+1 + r�+�+1;

Q(H): − r�′ − r�′ − r
′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1:

Since �=
′ and �′=�+ 1 and �6�, we have 
′ + 16�′6�′. By 
=�′ + 1, we know
that no terms in Q(H) is equal to −r
. So the term −r
 and the term −r
+1 must be
cancelled by the term +r�+�+1 and by the term +r�+�+1, respectively, therefore


=�+ �+ 1; 
+ 1=�+ �+ 1:

Consider −r� in Q(G) (noting �′=�+1 and 
′ +16�′6�′). We have −r�=− r
′+1.
So �′=
′ +2. Let �=a, �=b, we obtain the solution (noting �=�′, �=
′, �′=
′ +2,

=�′ + 1, �=
′ + 1, 
=� + � + 1 and 
 + 1=� + � + 1) where G is isomorphic to
K4(a; 1; 1; a+ b+ 1; b; b+ 1) and H is isomorphic to K4(a; 1; 1; b; b+ 2; a+ b).
Case 1.4: If �+ �+ 1=�′ + 
′, then the results are similar to case 1.3.
Case 2: If min{�; 
; �; �}=� and min{�′; 
′; �′; �′}=
′, then �=
′. Since the case

of min{�; 
; �; �}=� and min{�′; 
′; �′; �′}=�′ has been discussed in case 1, we can
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suppose 
′ �= �′ in case 2.

Q(G) =−r� − r
 − r� − r� − r�+1 − r
+1 + r
+2 + r�+


+ r�+�+1 + r�+�+1 + r
+�+�;

Q(H) =−r�′ − r
′ − r�′ − r�′ − r�′+1 − r
′+1 + r

′+2 + r�

′+
′

+ r�
′+�′+1 + r�

′+�′+1 + r

′+�′+�′ :

By considering the highest power in Q(G) and the highest power in Q(H), we have

+�+�=�′+�′+1 or 
+�+�=
′+�′+�′. If 
+�+�=�′+�′+1, then �+1=�′+
′

since � + 
 + � + �=�′ + 
′ + �′ + �′. This is a contradiction since �=
′ and �′¿2.
If 
 + � + �=
′ + �′ + �′, then �=�′. since �=
′, we have �′=
′ which contradicts

′ �= �′.
Case 3: If min{�; 
; �; �}=� and min{�′; 
′; �′; �′}=�′, then �=�′. Since the case

of min{�; 
; �; �}=� and min{�′; 
′; �′; �′}=�′ has been discussed in case 1, we can
suppose �′ �= �′ in case 3.

Q(G) =−r� − r
 − r� − r� − r�+1 − r
+1 + r
+2 + r�+


+ r�+�+1 + r�+�+1 + r
+�+�;

Q(H) =−r�′ − r
′ − r�′ − r�′ − r�′+1 − r
′+1 + r

′+2 + r�

′+
′

+ r�
′+�′+1 + r�

′+�′+1 + r

′+�′+�′ :

By considering the highest power in Q(G) and the highest power in Q(H), we have

+ �+�=�′+
′ or 
+ �+�=�′+�′+1 or 
+ �+�=
′+ �′+�′. If 
+ �+�=�′+
′,
then �=�′+�′ since �+
+ �+�=�′+
′+ �′+�′. This is a contradiction since �=�′.
If 
 + � + �=�′ + �′ + 1, then � + 1=�′ + 
′ since � + 
 + � + �=�′ + 
′ + �′ + �′.
This is a contradiction since �=�′ and 
′¿2. If 
 + � + �=
′ + �′ + �′, then �=�′.
Since �=�′, we have �′=�′ which contradicts �′ �= �′.
Case 4: If min{�; 
; �; �}=
 and min{�′; 
′; �′; �′}=
′, then 
=
′. After simplifying

Q(G) and Q(H), we have

Q(G): − r� − r� − r� − r�+1 + r�+
 + r�+�+1 + r�+�+1 + r
+�+�;

Q(H): − r�′ − r�′ − r�′ − r�′+1 + r�
′+
′ + r�

′+�′+1 + r�
′+�′+1 + r


′+�′+�′ :

By considering the l.r.p. in Q(G) and the l.r.p. in Q(H), we have �=�′ or �=�′ or
�=�′ or �=�′.
Case 4.1: If �=�′, then �+ �=�′ + �′ since �+ 
+ �+ �=�′ + 
′ + �′ + �′. After

simplifying Q(G) and Q(H), we have the l.r.p. in Q(G) is � and the l.r.p. in Q(H) is
�′. Then �=�′. Therefore, �=�′ which implies that G is isomorphic to H .
Case 4.2: If �=�′, then �+ �=�′ + �′ since �+ 
+ �+ �=�′ + 
′ + �′ + �′. After

canceling −r� in Q(G) with −r�′ in Q(H), we have the l.r.p. in Q(G) is min{�; �}
and the l.r.p. in Q(H) is min{�′; �′}. Therefore �=�′ or �=�′ or �=�′ or �=�′. From
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=
′, �=�′ and � + �=�′ + �′, we know that the two multisets (�; 1; 1; 
; �; �) and
(�′; 1; 1; 
′; �′; �′) are the same. Since G∼H , by Proposition 2, we have G is isomorphic
to H .
Case 4.3: If �=�′ which implies that �6�, then we obtain the following after

simpli=cation:

Q(G): −r� − r� − r�+1 + r�+
 + r�+�+1

+r�+�+1 + r
+�+�;

Q(H): −r�′ − r�′ − r�′+1 + r�
′+
′ + r�

′+�′+1

+r�
′+�′+1 + r


′+�′+�′ :

By considering the h.r.p. in Q(G) and the h.r.p. in Q(H), we have the h.r.p. in Q(G) is

+ �+� (since �6�) and the h.r.p. in Q(H) is �′+�′+1 (since min{�′; 
′; �′; �′}=
′)
or 
′+�′+�′. Then 
+�+�=�′+�′+1 or 
+�+�=
′+�′+�′. If 
+�+�=�′+�′+1,
then �+ 1=�′ + 
′ since �+ 
+ �+ �=�′ + 
′ + �′ + �′. This is a contradiction since
�=�′ and 
′¿2. If 
 + � + �=
′ + �′ + �′, then �=�′. Since �=�′, we have �′=�′.
After simpli=cation, we have

Q(G): − r� − r� + r�+�+1 + r�+�+1;

Q(H): − r�′ − r�′ + r�′+�′+1 + r�
′+�′+1:

By considering the l.r.p. in Q(G) and the l.r.p. in Q(H), we have �=�′. Since �=�′

and 
=
′ and �+ 
+ �+ �=�′ + 
′ + �′ + �′, we have �=�′ which implies that G is
isomorphic to H .
Case 4.4: If �=�′, then we can handle this case in the same fashion as Case 4.3.

The results are similar to case 4.3.
Case 5: If min{�; 
; �; �}=� and min{�′; 
′; �′; �′}=�′, then �=�′. After simplifying

Q(G) and Q(H), we have

Q(G): −r� − r
 − r� − r�+1 − r
+1 + r
+2 + r�+
 + r�+�+1

+r�+�+1 + r
+�+�;

Q(H): − r�′ − r
′ − r�′ − r�′+1 − r
′+1 + r

′+2 + r�

′+
′

+ r�
′+�′+1 + r�

′+�′+1 + r

′+�′+�′ :

By considering the l.r.p. in Q(G) and the l.r.p. in Q(H), we have min{�; 
; �}= min{�′;

′; �′}. There are six cases to consider.
Case 5.1: If min{�; 
; �}=� and min{�′; 
′; �′}=�′, then �=�′. After simpli=cation,

we have the l.r.p. in Q(G) is min{
; �} and the l.r.p. in Q(H) is min{
′; �′}. Then
min{
; �}=min{
′; �′}. From �=�′, �=�′ and �+
+ �+�=�′+
′+ �′+�′, we know
that the two multisets (�; 1; 1; 
; �; �) and (�′; 1; 1; 
′; �′; �′) are the same. Since G∼H ,
from Proposition 2, we have G is isomorphic to H .
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Case 5.2: If min{�; 
; �}=� and min{�′; 
′; �′}=
′, then �=
′. From �=�′ and
�+ 
+ �+ �=�′ + 
′ + �′ + �′, we have


+ �=�′ + �′:

Since min{�; 
; �}=� and min{�′; 
′; �′}=
′, we know that the h.r.p. in Q(G) is 
+
�+� and the h.r.p. in Q(H) is �′+�′+1 or 
′+�′+�′. Therefore 
+�+�=�′+�′+1
or 
 + � + �=
′ + �′ + �′. If 
 + � + �=�′ + �′ + 1, then �=1 since 
 + �=�′ + �′.
This is a contradiction since �¿2. If 
+ �+ �=
′ + �′ + �′, then �=�′. Thus, we can
prove G∼=H in the same fashion as case 5.1.
Case 5.3: If min{�; 
; �}=� and min{�′; 
′; �′}=�′, then �=�′. Since �=�′ and

�+ 
+ �+ �=�′ + 
′ + �′ + �′, we have


+ �=�′ + 
′:

By considering the h.r.p. in Q(G) and the h.r.p. in Q(H), we have 
+ �+ �=�′ + 
′

or 
 + � + �=�′ + �′ + 1 or 
 + � + �=
′ + �′ + �′. If 
 + � + �=�′ + 
′, from

+ �=�′ + 
′, we have �=0 which contradicts �¿2. If 
+ � + �=�′ + �′ + 1, from
�+
+�+�=�′+
′+�′+�′, we have �+1=
′+�′. Since �=�′, we have �′+1=
′+�′

which implies 
′¡�′ since �′¿2. This is a contradiction since min{�′; 
′; �′}=�′. If

+ �+ �=
′ + �′ + �′, then �=�′. Thus, we can prove G∼=H in the same fashion as
case 5.1.
Case 5.4: If min{�; 
; �}=
 and min{�′; 
′; �′}=
′, then 
=
′. After canceling −r


in Q(G) with −r
′ in Q(H), and canceling −r
+1 in Q(G) with −r
′+1 in Q(H),
we have the l.r.p. in Q(G) is min{�; �} and the l.r.p. in Q(H) is min{�′; �′}. Then,
min{�; �}= min{�′; �′}. From �=�′ and 
=
′ and �+ 
+ �+ �=�′ + 
′ + �′ + �′, we
know that the two multisets (�; 1; 1; 
; �; �) and (�′; 1; 1; 
′; �′; �′) are the same. Since
G∼H , from Proposition 2, we have G is isomorphic to H .
Case 5.5: If min{�; 
; �}=� and min{�′; 
′; �′}=�′, then �=�′. Thus we can prove

G∼=H in the same fashion as case 5.4.
Case 5.6: If min{�; 
; �}=
 and min{�′; 
′; �′}=�′, then 
=�′. From �=�′ and

�+ 
+ �+ �=�′ + 
′ + �′ + �′, we have

�+ �=�′ + 
′: (1)

After simpli=cation, we have

Q(G): −r� − r� − r�+1 − r
+1 + r
+2 + r�+
 + r�+�+1

+r�+�+1 + r
+�+�;

Q(H): −r�′ − r
′ − r�′+1 − r
′+1 + r

′+2 + r�

′+
′

+ r�
′+�′+1 + r�

′+�′+1 + r

′+�′+�′ :

By considering the l.r.p. in Q(G) and the l.r.p. in Q(H), we have min{�; �; 
+1}
= min{�′; 
′}. If min{�; �}= min{�′; 
′}, from (1) and 
=�′ and �=�′, we know that
the two multisets (�; 1; 1; 
; �; �) and (�′; 1; 1; 
′; �′; �′) are the same. Since G∼H , from
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Proposition 2, we have G is isomorphic to H . If min{�′; 
′}=
 + 1. There are two
cases to consider.
Case 5.6.1: If 
′6�′, then 
′=
+1. Consider r
+2 in Q(G) and −r
′+1 in Q(H). It

is due to 
′6�′ that −r
′+1 can cancel none of the positive terms in Q(H). Thus, no
term in Q(H) is equal to r
+2. Therefore, 
+2 must equal one of �; �; �+1 and 
′+1
must equal one of �; �; �+ 1. So 
+ 2=
′ + 1=�=� or 
+ 2=
′ + 1=�+ 1=�. If


+ 2=
′ + 1=�=� (2)

then we obtain the following after canceling −r� with r
+2, canceling −r� with −r
′+1,
and canceling −r
+1 with −r
′ :

Q(G): − r�+1 + r�+
 + r�+�+1 + r�+�+1 + r
+�+�;

Q(H): − r�′ − r�′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1 + r�

′+�′+1 + r

′+�′+�′ :

Since �=
′ + 1 (from (2)) and � + �=�′ + 
′ (from (1)), we have �′=� + 1. By
(2), we have �′ +1=
′ +3. This is a contradiction since nothing in Q(H) can cancel
−r�′+1. If


+ 2=
′ + 1=�+ 1=� (3)

then we obtain the following after canceling −r�+1 with r
+2, canceling −r� with
−r
′+1, and canceling −r
+1 with −r
′ :

Q(G): − r� + r�+
 + r�+�+1 + r�+�+1 + r
+�+�;

Q(H): − r�′ − r�′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1 + r�

′+�′+1 + r

′+�′+�′ :

Since �=
′+1 (from (3)), by (1), we have �′=�+1. This is a contradiction since no
term in Q(H) is equal to −r� and nothing in Q(G) can cancel −r� (noting �=
+ 1
(from (3))).
Case 5.6.2: If �′6
′, then �′=
+ 1. Consider r
+2 in Q(G) and −r�′+1 in Q(H).

It is due to �′6
′ that −r�′+1 can cancel none of the positive terms in Q(H). Thus,
no term in Q(H) is equal to r
+2. Therefore, 
+ 2 must equal one of �; �; � + 1 and
�′+1 must equal one of �; �; �+1. So 
+2=�′+1=�+1=� or 
+2=�′+1=�=�.
If 
+ 2=�′ + 1=� + 1=�, then we obtain the following after canceling −r� with

r
+2, canceling −r�+1 with −r�′+1, and canceling −r
+1 with −r�′ :

Q(G): − r� + r�+
 + r�+�+1 + r�+�+1 + r
+�+�;

Q(H): − r
′ − r
′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1 + r�

′+�′+1 + r

′+�′+�′ :

Since �′ + 1=�, by (1), we have 
′=� + 1. This is a contradiction since no term in
Q(H) is equal to −r� and nothing in Q(G) can cancel −r� (noting �=
+ 1).
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If 
+2=�′+1=�=�, then we obtain the following after canceling −r� with r
+2,
canceling −r� with −r�′+1, and canceling −r
+1 with −r�′ :

Q(G): − r�+1 + r�+
 + r�+�+1 + r�+�+1 + r
+�+�;

Q(H): − r
′ − r
′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1 + r�

′+�′+1 + r

′+�′+�′ :

Since �′ + 1=�, from (1), we have 
′=� + 1. Consider −r
′+1 in Q(H). We have

′+1=�′+�′+1 or 
′+1=�′+�′+1. If 
′+1=�′+�′+1, from 
′=�+1=�′+2, we
have �′=2. So far, we have had 
=�′, 
+2=�′ +1=�=�, 
′=�+1, �=�′=2. Let

=a, we obtain the solution where G is isomorphic to k4(a+2; 1; 1; a; 2; a+2) and H
is isomorphic to K4(a+1; 1; 1; a+3; 2; a). If 
′+1=�′+�′+1, from 
′=�+1=�′+2,
we have �′=2. From �′6�′ and �′¿2, we have �′=2. Since 
=�′, 
 + 2=�′+1
=�=�, 
′=�+ 1, �=�′, we have 
=2, �=4, �=4, �′=3, 
′=5, �=�′=2. Then we
obtain the solution where G is isomorphic to k4(4; 1; 1; 2; 2; 4) and H is isomorphic to
K4(3; 1; 1; 5; 2; 2).
Case 6: If min{�; 
; �; �}=
 and min{�′; 
′; �′; �′}=�′, then

=�′: (4)

After simplifying Q(G) and Q(H), we have

Q(G): −r� − r� − r� − r�+1 − r
+1 + r
+2 + r�+
 + r�+�+1 + r�+�+1 + r
+�+�;

Q(H): −r�′ − r
′ − r�′ − r�′+1 − r
′+1 + r

′+2 + r�

′+
′

+ r�
′+�′+1 + r�

′+�′+1 + r

′+�′+�′ :

Since the case of min{�; 
; �; �}=� and min{�′; 
′; �′; �′}=�′ has been discussed in
case 3, we can suppose 
 �= � in case 6. Thus 
¡�. Since the case of min{�; 
; �; �}=�
and min{�′; 
′; �′; �′}=�′ has been discussed in case 5, we can suppose 
 �= � in case 6.
Thus


¡�: (5)

Therefore, the l.r.p. in Q(G) is 
+ 1 and the l.r.p. in Q(H) is �′ or 
′ or �′. So, we
have 
+ 1=�′ or 
+ 1=
′ or 
+ 1=�′. There are three cases to consider.
Case 6.1: If 
+1=�′, then the h.r.p. in Q(G) is �+�+1 or 
+ �+� and the h.r.p.

in Q(H) is 
′ + �′ + �′ (since min{�′; 
′; �′}=�′). Therefore, �+ �+1=
′ + �′ + �′ or

+ �+ �=
′ + �′ + �′. If �+ �+1=
′ + �′ + �′, from �+ 
+ �+ �=�′ + 
′ + �′ + �′,
we have � + 
=�′ + 1. Since 
+ 1=�′, we have �=2 which contradicts �¿
¿2. If

+ �+ �=
′ + �′ + �′, then �=�′. After canceling −r�+1 with −r�′+1, canceling −r�
with −r�′ , and canceling −r
+�+� with −r
′+�′+�′ , we have

Q(G): − r� − r� − r
+1 + r
+2 + r�+
 + r�+�+1 + r�+�+1;

Q(H): − r
′ − r�′ − r
′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1 + r�

′+�′+1:

Since 
¡� (from (5)) and �6�, we have the h.r.p. in Q(G) is � + � + 1. The h.r.p.
in Q(H) is �′ + 
′ or �′ + �′ + 1 (noting �′6�′). Therefore, � + � + 1=�′ + 
′ or
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�+�+1=�′+�′+1. If �+�+1=�′+
′, by �=�′, we have 
′=�+1. Thus, no terms
in Q(G) are equal to −r
′ and −r
′+1. Then −r
′ must be cancelled by r�

′+�′+1 and
−r
′+1 must be cancelled by r�

′+�′+1. Since nothing in Q(G) can cancel −r
+1 (noting

¡� and �6�), we have −r
+1=− r�′ . Since no terms in Q(H) are equal to −r� and
−r�, −r� must be canceled by r
+2 and −r� must be canceled by r�+
. So far, we have
had �=�′, 
′=�′+ �′+1 and 
′+1=�′+�′+1 (which implies �′=�′+1), 
+1=�′,
�=
 + 2, �=� + 
. Let �=a, 
=b. We obtain the solution where G is isomorphic
to K4(a; 1; 1; b; b + 2; a + b) and H is isomorphic to K4(a; 1; 1; a + b + 1; b; b + 1). If
�+ �+ 1=�′ + �′ + 1, then �=�′ since �=�′. From �+ 
+ �+ �=�′ + 
′ + �′ + �′

and 
=�′ (from (4)), we have 
′=�. After simpli=cation, we have

Q(G): − r
+1 + r
+2 + r�+
 + r�+�+1;

Q(H): − r
′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1:

This is a contradiction since no term in Q(H) is equal to −r
+1 (by noting 
¡�=
′).
Case 6.2: If 
 + 1=
′, then we can suppose 
′ �= �′ in case 6.2 since the case of


+ 1=�′ has been discussed in case 6.1. Thus


′¡�′: (6)

After canceling −r
+1 with −r
′ , we have

Q(G): −r� − r� − r� − r�+1 + r
+2 + r�+
 + r�+�+1 + r�+�+1 + r
+�+�;

Q(H): − r�′ − r�′ − r�′+1 − r
′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1

+ r�
′+�′+1 + r


′+�′+�′ :

Consider r
+2 in Q(G) and −r
′+1 in Q(H). It is due to (6) that −r
′+1 can cancel
none of the positive terms in Q(H). Thus, no terms in Q(H) is equal to r
+2. Therefore,
−r
′+1 and r
+2 must equal one of −r�, −r�, −r�, −r�+1. So, 
′ + 1=
 + 2=�=�
or 
′ + 1=
 + 2=�=� or 
′ + 1=
 + 2=� + 1=� or 
′ + 1=
 + 2=� + 1=� or

′ + 1=
 + 2=�=�. Without loss of generality, only the following three cases need
to be considered.
Case 6.2.1: If 
′ + 1=
+ 2=�, we consider r


′+2 in Q(H) and −r�+1 in Q(G). It
is due to �=
 + 2 that −r�+1 can cancel none of the positive terms in Q(G). Thus,
no terms in Q(G) is equal to r


′+2. Therefore, �+ 1=
′ + 2=�′=�′ or �+ 1=
′+2
=�′ + 1=�′. If

�+ 1=
′ + 2=�′=�′ (7)

then we obtain the following after canceling −r� with r
+2, canceling −r�+1 with −r�′ ,
and canceling −r�′ with r


′+2:

Q(G): − r� − r� + r�+
 + r�+�+1 + r�+�+1 + r
+�+�;

Q(H): − r�′+1 − r
′+1 + r�
′+
′ + r�

′+�′+1 + r�
′+�′+1 + r


′+�′+�′ :
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By considering the l.r.p. in Q(G) and the l.r.p. in Q(H), we have �=
′ + 1. Since
� + 
 + � + �=�′ + 
′ + �′ + �′ and 
=�′ (from (4)) and �′=� + 1 (from (7)),
we have �=�′. Therefore �=�′ (noting (7)). This is a contradiction since no term
in Q(G) is equal to −r�′+1 and nothing in Q(H) can cancel −r�′+1 (noting (7)). If
�+1=
′+2=�′+1=�′, then we obtain the following after canceling −r� with r
+2,
canceling −r�+1 with −r�′+1, canceling −r�′ with r


′+2, and canceling −r
+�+� with
−r
′+�′+�′

Q(G): − r� − r� + r�+
 + r�+�+1 + r�+�+1;

Q(H): − r�′ − r
′+1 + r�
′+
′ + r�

′+�′+1 + r�
′+�′+1:

Consider r�+
 in Q(G). It is due to �=�′, and 
′=
 + 1 and 
=�′ (from (4)) that
no term in Q(H) is equal to r�+
. This is a contradiction since nothing in Q(G) can
cancel r�+
 (by noting −r�′ =− r
′+1=− r�=− r�).
Case 6.2.2: If 
′ + 1=
 + 2=� + 1, then �=
′. After canceling −r�+1 with r
+2,

we have

Q(G): −r� − r� − r� + r�+
 + r�+�+1 + r�+�+1 + r
+�+�;

Q(H): −r�′ − r�′ − r�′+1 − r
′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1

+ r�
′+�′+1 + r


′+�′+�′ :

It is due to 
′¡�′ (from (6)) and �=
′ that �¡�′. Then −r�= − r�′ . Since 
=�′
(from (4)) and �=�′ and �+ 
+ �+ �=�′ + 
′ + �′ + �′, we have


′ + �′=�+ �:

Consider −r
′+1 in Q(H). It is due to (6) that nothing in Q(H) can cancel −r
′+1.
Therefore −r
′+1=−r� or −r
′+1=−r�. If 
′+1=�, then �′=�+1 since 
′+�′=�+�.
This is a contradiction since no terms in Q(G) are equal to −r�′ and −r�′+1 (noting
�¡�′). If 
′ + 1=�, then �′=� + 1 since 
′ + �′=� + �. After canceling −r� with
−r�′ , canceling −r
′+1 with −r�, we have

Q(G): − r� + r�+
 + r�+�+1 + r�+�+1 + r
+�+�;

Q(H): − r�′ − r�′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1 + r�

′+�′+1 + r

′+�′+�′ :

This is a contradiction since no terms in Q(G) are equal to −r�′ and −r�′+1.
Case 6.2.3: If


′ + 1=
+ 2=�=�: (8)

Then, from (4) and 
′ + 1=� and �+ 
+ �+ �=�′ + 
′ + �′ + �′, we have

�+ �+ 1=�′ + �′: (9)
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After canceling −r� with r
+2, canceling −r� with −r
′+1, we have

Q(G): −r� − r�+1 + r�+
 + r�+�+1 + r�+�+1 + r
+�+�;

Q(H): −r�′ − r�′ − r�′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1

+ r�
′+�′+1 + r


′+�′+�′ :

Consider −r� and −r�+1. One of −r� and −r�+1 must equal −r�′ or −r�′+1.
If −r�+1= − r�′ , then � + 1=�′. Therefore, �=�′ since � + � + 1=�′ + �′ (from

(9)). By �=
′ + 1 (from (8)), we have �′=
′ + 1. After canceling −r�′ with −r�+1,
we have

Q(G): − r� + r�+
 + r�+�+1 + r�+�+1 + r
+�+�;

Q(H): − r�′+1 − r�′ + r
′+2 + r�
′+
′ + r�

′+�′+1 + r�
′+�′+1 + r


′+�′+�′ :

Consider −r�′ in Q(H). It is due to �′=
′ + 1¡�′ + 1 (noting (6)) that nothing in
Q(H) can cancel −r�′ . So −r�′ =− r�. Then �′ +1=�+2=�′ +2=
′ +3. This is a
contradiction since nothing in Q(H) can cancel −r�′+1 and no term in Q(G) is equal
to −r�′+1.
If −r�+1= − r�′+1, then �=�′. Therefore, � + 1=�′ since � + � + 1=�′ + �′. By

�=
′ + 1 (from (8)), we have �′=
′ + 2. After canceling −r� with −r�′ , canceling
−r�+1 with −r�′+1, canceling −r�′ with r


′+2, and canceling −r
+�+� with −r
′+�′+�′ ,
we have

Q(G): r�+
 + r�+�+1 + r�+�+1;

Q(H): r�
′+
′ + r�

′+�′+1 + r�
′+�′+1:

This is a contradiction since no term in Q(H) is equal to r�+
 (noting �=�′ and 
=�′

(from (4)) and 
+ 1=
′ (from (8))).
If −r�=−r�′ , by the same reason as in case −r�+1=−r�′+1, we have a contradiction.
If −r�=− r�′+1, then �=�′ + 1. Therefore, �′=�+ 2 since �+ �+ 1=�′ + �′. By

�=
′ + 1 (from (8)), we have �′=
′ + 3. After simpli=cation, we have

Q(G): − r�+1 + r�+
 + r�+�+1 + r�+�+1 + r
+�+�;

Q(H): − r�′ − r�′ + r
′+2 + r�
′+
′ + r�

′+�′+1 + r�
′+�′+1 + r


′+�′+�′ :

Consider −r�′ in Q(H). It is due to �=�′ + 1 that −r�′ must be canceled by r

′+2

or by r

′+�′+�′ . If �′=
′ + 2, by �′=
′ + 3, we have �′ + 1=�′. So �=�′. This is a

contradiction since nothing in Q(H) can cancel −r�′ and no term in Q(G) is equal to
−r�′ . If �′=
′ + �′ + �′ (which implies �′¡�′=�− 1), then we obtain a contradiction
since nothing in Q(H) can cancel −r�′ and no term in Q(G) is equal to −r�′ .
Case 6.3: If 
 + 1=�′, then we can suppose �′ �= 
′ in case 6.3 since the case of


+ 1=
′ has been discussed in Case 6.2. Thus �′¡
′ which implies

�′ + 16
′: (10)
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After simpli=cation, we have

Q(G): −r� − r� − r� − r�+1 + r
+2 + r�+
 + r�+�+1 + r�+�+1 + r
+�+�;

Q(H): −r�′ − r
′ − r�′+1 − r
′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1

+ r�
′+�′+1 + r


′+�′+�′ :

By considering the h.r.p. in Q(G) and the h.r.p. in Q(H), we have the h.r.p. in Q(G)
is �+ �+1 (since min{�; 
; �; �}=
) or 
+ �+ �, the h.r.p. in Q(H) is �′ + 
′ (since
�′ + 16
′) or 
′ + �′ + �′. There are four cases to consider.
Case 6.3.1: When �+ �+ 1¿
+ �+ � and �′ + 
′¿
′ + �′ + �′, we have

�+ �+ 1=�′ + 
′: (11)

Since �+ 
+ �+ �=�′ + 
′ + �′ + �′ and 
+1=�′, we have �=�′ +2. From (4), we
have �=
+ 2. After simpli=cation, we have

Q(G): − r� − r� − r�+1 + r�+
 + r�+�+1 + r
+�+�;

Q(H): − r�′ − r
′ − r�′+1 − r
′+1 + r

′+2 + r�

′+�′+1 + r�
′+�′+1 + r


′+�′+�′ :

By considering the l.r.p. in Q(G) and the l.r.p. in Q(H), we have �=�′ or �=
′ or
�=�′ or �=
′

If �=�′, then 
′=�+ 1 since �+ �+ 1=�′ + 
′ (from (11)). After canceling −r�
with −r�′ , and canceling −r�+1 with −r�′+1, we know that the terms −r
′ and −r
′+1

must be canceled by the terms in Q(H). Then 
′=�′+�′+1 and 
′+1=�′+�′+1. Let
�′=a and �′=b. Then we obtain the solution (noting �=�′, 
=�′ (from (4)), �=�′+2,
�′=
 + 1, 
′=� + 1, 
′=�′ + �′ + 1, 
′ + 1=�′ + �′ + 1) where G is isomorphic to
K4(a; 1; 1; b; b+ 2; a+ b) and H is isomorphic to K4(a; 1; 1; a+ b+ 1; b; b+ 1).
If �=
′, then �′=� + 1 since � + � + 1=�′ + 
′. After canceling −r� with −r
′ ,

and canceling −r�+1 with −r
′+1, we know that no term in Q(G) is equal to −r�′ or
−r�′+1. This is a contradiction since only one of −r�′ and −r�′+1 can be canceled in
Q(H).
If �=�′, then �+ 1=
′ since �+ �+ 1=�′ + 
′. After simpli=cation, we have

Q(G): − r� + r�+
 + r�+�+1 + r
+�+�;

Q(H): − r�′+1 − r
′+1 + r

′+2 + r�

′+�′+1 + r�
′+�′+1 + r


′+�′+�′ :

Consider −r
′+1 in Q(H). It is due to 
′=� + 1 that −r
′+1 must be canceled by
the term in Q(H). Then 
′ + 1=�′ + �′ + 1 or 
′ + 1=�′ + �′ + 1. Thus −r�′+1

cannot be canceled by the term in Q(H). So �′ + 1=�. Turn to the term r�
′+�′+1,

we have r�
′+�′+1=r�+
 (noting �′ + 1=� and 
=�′ (from (4))). Therefore −r
′+1

must be canceled by r�
′+�′+1. From 
′=�+ 1 and �=�′ + 1, we have 
′=�′ + 2. By


′ + 1=�′ + �′ + 1, we have �′=2. From 
+ 1=�′, we have 
=1 which contradicts

¿2.
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If �=
′, then �+ 1=�′ since �+ �+ 1=�′ + 
′. After simpli=cation, we have

Q(G): − r� + r�+
 + r�+�+1 + r
+�+�;

Q(H): − r�′+1 − r
′+1 + r

′+2 + r�

′+�′+1 + r�
′+�′+1 + r


′+�′+�′ :

Consider −r�′+1 in Q(H). It is due to �′=�+1 that −r�′+1 must be canceled by r

′+2

or r

′+�′+�′ . Thus we have a contradiction since no term in Q(G) is equal to −r
′+1.

Case 6.3.2: When �+ �+1¿
+ �+ � and �′ + 
′6
′ + �′ + �′, we have �+ �+1
=
′ + �′ + �′. Then, by �+ 
+ �+ �=�′ + 
′ + �′ + �′, we have

�′ + 1=
+ �: (12)

From �+ �+ 1¿
+ �+ �(�+ 1¿
+ �), we have

�¿�′: (13)

After simpli=cation, we have

Q(G): − r� − r� − r� − r�+1 + r
+2 + r�+
 + r�+�+1 + r
+�+�;

Q(H): − r�′ − r
′ − r�′+1 − r
′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1 + r�

′+�′+1:

Since the h.r.p. in Q(G) is � + � + 1 (since min{�; 
; �; �}=
) or 
 + � + � and the
h.r.p. in Q(H) is �′ + 
′ (since �′ + 16
′ (from (10))), we have � + � + 1=�′ + 
′

or 
+ �+ �=�′ + 
′.
If �+�+1=�′+
′, by �+
+�+�=�′+
′+�′+�′, we have �′+�′+1=
+�. Then,

from 
 + 1=�′ and 
=�′ (from (4)), we have �=
 + 2. Therefore, −r� is canceled
by r
+2. After simpli=cation, we have

Q(G): − r� − r� − r�+1 + r�+
 + r
+�+�;

Q(H): − r�′ − r
′ − r�′+1 − r
′+1 + r

′+2 + r�

′+�′+1 + r�
′+�′+1:

Consider −r�′ in Q(H). It is due to �¿�′ (from (13)) and �′ + 1=
 + � (which
implies �′¿�) that −r�′ must be canceled by the term in Q(H). Thus �′=
′+2. This
is a contradiction since �¿�′=
′ + 2 and none of the terms −r
′ and −r
′+1 can be
canceled by terms in Q(H).
If 
+�+�=�′+
′, then 
′=�+1 since �′+1=
+� (from (12)). After simpli=cation,

we have

Q(G): − r� − r� − r� − r�+1 + r
+2 + r�+
 + r�+�+1;

Q(H): − r�′ − r
′ − r�′+1 − r
′+1 + r

′+2 + r�

′+�′+1 + r�
′+�′+1:

If 
′6�′, then we have a contradiction since no term in Q(G) is equal to −r
′ (by
noting �¿�′ and 
′=� + 1). If 
′¿�′. Consider −r�′ in Q(H). It is due to �¿�′

(from (13)) and �′+1=
+ � (which implies �′¿�) that −r�′ =− r�. From 
′=�+1,
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we have 
′=�′+1. Thus −r
′ =− r�′+1. This is a contradiction since no pair of terms
in Q(G) are equal to −r
′ and −r�′+1 (by noting �′=�¿�).
Case 6.3.3: When �+ �+ 16
+ �+ � and �′ + 
′6
′ + �′ + �′, we have 
+ �+�

=
′ + �′ + �′. Then �=�′ since � + 
+ � + �=�′ + 
′ + �′ + �′. After simpli=cation,
we have

Q(G): − r� − r� + r
+2 + r�+
 + r�+�+1 + r�+�+1;

Q(H): − r
′ − r
′+1 + r

′+2 + r�

′+
′ + r�
′+�′+1 + r�

′+�′+1:

Since the h.r.p. in Q(G) is �+ �+1 (since min{�; 
; �; �}=
 and �6�) and the h.r.p.
in Q(H) is �′ + 
′ (since �′ + 16
′ (from (10))), we have � + �+ 1=�′ + 
′. Then

′=� + 1 since �=�′. Thus −r
′ and −r
′+1 must be canceled by terms in Q(H),
and −r�, −r� must be canceled by terms in Q(G). So, we have 
′=�′ + �′ + 1,

′ + 1=�′ + �′ + 1, �=
+ 2 and �=�+ 
. Let �′=a and �′=b. Then we obtain the
solution (noting �=�′, 
=�′ (from (4)), �=
+2, �′=
+1, 
′=�+1, 
′=�′+ �′+1,

′ + 1=�′ + �′ + 1, �=�+ 
) where G is isomorphic to K4(a; 1; 1; b; b+ 2; a+ b) and
H is isomorphic to K4(a; 1; 1; a+ b+ 1; b; b+ 1).
Case 6.3.4: When �+ �+ 16
+ �+ � and �′ + 
′¿
′ + �′ + �′, we have


+ �+ �=�′ + 
′ (14)

by �+ 
+ �+ �=�′ + 
′ + �′ + �′, we have

�=�′ + �′: (15)

Then, from �′ + 
′¿
′ + �′ + �′ (�′¿�′ + �′), we have

�′¿�: (16)

After simpli=cation, we have

Q(G): − r� − r� − r� − r�+1 + r
+2 + r�+
 + r�+�+1 + r�+�+1;

Q(H): − r�′ − r
′ − r�′+1 − r
′+1 + r

′+2 + r�

′+�′+1 + r�
′+�′+1 + r


′+�′+�′ :

Since the h.r.p. in Q(G) is �+�+1 (since min{�; 
; �; �}=
 and �6�) and the h.r.p. in
Q(H) is 
′+�′+�′ or �′+�′+1, we have �+�+1=
′+�′+�′ or �+�+1=�′+�′+1.

If �+ �+ 1=
′ + �′ + �′, then, by �=�′ + �′ (from (15)), we have


′=�+ 1:

Consider −r�′+1 in Q(H). It is due to �′¿� (from (16)) that �′+1=� or �′+1=�. If
�′+1=�, then 
′=
+�+1 since 
+�+�=
′+�′ (from (14)). This is a contradiction
since 
′=� + 1. If �′ + 1=�, then 
′=�′ + 2 since 
′=� + 1. From �′¿�, we have

′¿�+2. So we have a contradiction since no term in Q(G) is equal to −r
′ (noting

′=�+ 1 and �6�) and nothing in Q(H) can cancel −r
′ (by noting 
′=�′ + 2).
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If �+ �+ 1=�′ + �′ + 1, then, by �+ 
+ �+ �=�′ + 
′ + �′ + �′ and 
=�′ (from
(4)), we have �=
′. Since 
+ � + �=�′ + 
′ (from (14)), we have �′=
+ � which
implies

�¡�′: (17)

After canceling −r� with −r
′ , canceling r�+�+1 with r�
′+�′+1, we have

Q(G): − r� − r� − r�+1 + r
+2 + r�+
 + r�+�+1;

Q(H): − r�′ − r�′+1 − r
′+1 + r

′+2 + r�

′+�′+1 + r

′+�′+�′ :

Consider −r�′+1 in Q(H). It is due to �′¿� (from (16)) and �¡�′ (from (17)) that
−r�′+1 must be canceled by r


′+2 or r

′+�′+�′ . Thus, �′+1=
′+2 or �′+1=
′+�′+�′.

If �′ + 1=
′ + 2, then we have a contradiction since no pair of terms in Q(G) are
equal to −r�′ and −r
′+1 (by noting �¡�′). If �′+1=
′+ �′+�′, then �′=
′+�−1
since �=�′ + �′ (from (15)). Since 
′¿�′ +1 (from (10)) and �′¿2, we have 
′¿3.
Then �′=
′ + � − 1¿� + 2. This is a contradiction since no term in Q(G) is equal
to −r�′ (noting �¡�′) and nothing in Q(H) can cancel −r�′ (by noting �′ + 1=
′ +
�′ + �′¿
′ + 4).
So far, we have solved the equation P(G)=P(H) and got the solution as follows:

k4(a; 1; 1; a+ b+ 1; b; b+ 1)∼K4(a; 1; 1; b; b+ 2; a+ b);

k4(a+ 1; 1; 1; a+ 3; 2; a)∼K4(a+ 2; 1; 1; a; 2; a+ 2):

The proof is completed.
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