Chromaticity of a family of K_{4}-homeomorphs ${ }^{2}$

Yan-ling Peng*, Ru-Ying Liu
Department of Mathematics, Qinghai Normal University, President's Office, 810008 Xining, Qinghai, China

Received 7 January 2000; received in revised form 21 May 2001; accepted 4 September 2001

Abstract

We discuss the chromaticity of one family of K_{4}-homeomorphs which has exactly 2 adjacent paths of length 1 , and give sufficient and necessary condition for the graphs in the family to be chromatically unique.

(C) 2002 Elsevier Science B.V. All rights reserved.

Keywords: Chromatic polynomial; K_{4}-homeomorph; Chromatic uniqueness

1. Introduction

In this paper, we consider graphs which are simple. For such a graph G, let $P(G ; \lambda)$ denote the chromatic polynomial of G. Two graphs G and H are chromatically equivalent, denoted by $G \sim H$, if $P(G ; \lambda)=P(H ; \lambda)$. A graph G is chromatically unique if for any graph H such that $H \sim G$, we have $H \cong G$, i.e., H is isomorphic to G.

A K_{4}-homeomorph is a subdivision of the complete graph K_{4}. Such a homeomorph is denoted by $K_{4}(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)$ if the six edges of K_{4} are replaced by the six paths of length $\alpha, \beta, \gamma, \delta, \varepsilon, \eta$, respectively, as shown in Fig. 1. Each of these six paths is called a *-path.

So far, the study of the chromaticity of K_{4}-homeomorphs with at least $3 *$-paths of length 1 has been fulfiled (see [2,6,3]). In this paper, we study the chromaticity of K_{4}-homeomorphs $K_{4}(\alpha, 1,1, \delta, \varepsilon, \eta)$ (as Fig. 2(a)) with $2 *$-path of length 1 are adjacent.

[^0]
α
Fig. 1.

Fig. 2.

2. Auxiliary results

In this section, we cite some known results used in the sequel.
Proposition 1. Let $G \sim H$. Then
(1) $|V(G)|=|V(H)|,|E(G)|=|E(H)|$ (see [3]);
(2) If G is a K_{4}-homeomorph, then H is a K_{4}-homeomorph as well (see [1]);
(3) If G and H are homeomorphic to K_{4}, then both the minimum values of parameters and the number of parameters equal to this minimum value of the graphs G and H coincide (see [5]).

Proposition 2 (Li [4]). Suppose that $G=K_{4}(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)$ and $H=K_{4}\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right)$ are chromatically equivalent homeomorphs such that two multisets $(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)$ and $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right)$ are the same, then H is isomorphic to G.

Proposition 3 (Guo and Whitehead Jr. [2] and Xu [6]). $K_{4}(1, \beta, \gamma, 1, \varepsilon, \eta$) (see Fig. $2(\mathrm{~b})$) is not chromatically unique if and only if it is $K_{4}(1, b+2, b, 1,2,2)$ or $K_{4}(1, a+$ $1, a+3,1,2, a)$ or $K_{4}(1, a+2, b, 1,2, a)$, where $a \geqslant 2, b \geqslant 1$, and

$$
\begin{aligned}
& K_{4}(1, b+2, b, 1,2,2) \sim K_{4}(3,1,1,2, b, b+1), \\
& K_{4}(1, a+1, a+3,1,2, a) \sim K_{4}(a+1,1,1, a, 3, a+2), \\
& K_{4}(1, a+2, b, 1,2, a) \sim K_{4}(a+1,1,1, b, 3, a) .
\end{aligned}
$$

3. Main results

Lemma. If $G \cong K_{4}(\alpha, 1,1, \delta, \varepsilon, \eta)$ and $H \cong K_{4}\left(\alpha^{\prime}, 1,1, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right)$, then we have
(1) $P(G)=(-1)^{n+1}\left[r /(r-1)^{2}\right]\left[-r^{n+1}-r^{2}+r+2+Q(G)\right]$, where

$$
\begin{aligned}
Q(G)= & -r^{\alpha}-r^{\delta}-r^{\varepsilon}-r^{\eta}-r^{\alpha+1}-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\delta} \\
& +r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}
\end{aligned}
$$

$r=1-\lambda, n$ is the number of vertices of G.
(2) If $P(G)=P(H)$, then $Q(G)=Q(H)$.

Proof. (1) Let $r=1-\lambda$. From [5], we have the chromatic polynomial of K_{4}-homeomorph $K_{4}(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)$ as follows:

$$
\begin{aligned}
P\left(K_{4}(\alpha, \beta, \gamma, \delta, \varepsilon, \eta)\right)= & (-1)^{n+1}\left[r /(r-1)^{2}\right]\left[\left(r^{2}+3 r+2\right)\right. \\
& -(r+1)\left(r^{\alpha}+r^{\beta}+r^{\gamma}+r^{\delta}+r^{\varepsilon}+r^{\eta}\right) \\
& +\left(r^{\alpha+\delta}+r^{\beta+\eta}+r^{\gamma+\varepsilon}+r^{\alpha+\beta+\varepsilon}\right. \\
& \left.\left.+r^{\beta+\delta+\gamma}+r^{\alpha+\gamma+\eta}+r^{\delta+\varepsilon+\eta}-r^{n+1}\right)\right] .
\end{aligned}
$$

Then

$$
\begin{aligned}
P(G)= & P\left(K_{4}(\alpha, 1,1, \delta, \varepsilon, \eta)\right) \\
= & (-1)^{n+1}\left[r /(r-1)^{2}\right]\left[\left(r^{2}+3 r+2\right)-(r+1)\left(r^{\alpha}+r^{\delta}+r^{\varepsilon}+r^{\eta}+2 r\right)\right. \\
& \left.+\left(r^{\varepsilon+1}+r^{\eta+1}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}-r^{n+1}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & (-1)^{n+1}\left[r /(r-1)^{2}\right]\left(-r^{n+1}-r^{2}+r+2-r^{\alpha}-r^{\delta}-r^{\varepsilon}-r^{\eta}-r^{\alpha+1}\right. \\
& \left.-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}\right) \\
= & (-1)^{n+1}\left[r /(r-1)^{2}\right]\left(-r^{n+1}-r^{2}+r+2+Q(G)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
Q(G)= & -r^{\alpha}-r^{\delta}-r^{\varepsilon}-r^{\eta}-r^{\alpha+1}-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\delta} \\
& +r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta} .
\end{aligned}
$$

Proof. (2) If $P(G)=P(H)$, then it is easy to see that $Q(G)=Q(H)$.
Theorem. K_{4}-homeomorphs $K_{4}(\alpha, 1,1, \delta, \varepsilon, \eta)(\min \{\alpha, \delta, \varepsilon, \eta\} \geqslant 2)$ is not chromatically unique if and only if it is $K_{4}(a, 1,1, a+b+1, b, b+1), K_{4}(a, 1,1, b, b+2, a+b), K_{4}(a+$ $1,1,1, a+3,2, a), K_{4}(a+2,1,1, a, 2, a+2), K_{4}(3,1,1,2, b, b+1), K_{4}(a+1,1,1, a, 3, a+2)$ or $K_{4}(a+1,1,1, b, 3, a)$, where $a \geqslant 2, b \geqslant 2$.

Proof. Let $G \cong K_{4}(\alpha, 1,1, \delta, \varepsilon, \eta)$ and $\min \{\alpha, \delta, \varepsilon, \eta\} \geqslant 2$ (see Fig. 2(a)). If there is a graph H such that $P(H)=P(G)$, then from Proposition 1, we know that H is a K_{4}-homeomorph $K_{4}\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right)$ and two of $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}$ must be 1 . We can assume that $\alpha^{\prime}=\delta^{\prime}=1$ or $\beta^{\prime}=\gamma^{\prime}=1$. We now solve the equation $P(G)=P(H)$ to get all solutions.

Case A : If $\alpha^{\prime}=\delta^{\prime}=1$, then $H \cong K_{4}\left(1, \beta^{\prime}, \gamma^{\prime}, 1, \varepsilon^{\prime}, \eta^{\prime}\right)$. From Proposition 3, we know the solutions of the equation $P(G)=P(H)$ are

$$
\begin{aligned}
& K_{4}(3,1,1,2, b, b+1) \sim K_{4}(1, b+2, b, 1,2,2), \\
& K_{4}(a+1,1,1, a, 3, a+2) \sim K_{4}(1, a+1, a+3,1,2, a), \\
& K_{4}(a+1,1,1, b, 3, a) \sim K_{4}(1, a+2, b, 1,2, a) .
\end{aligned}
$$

Case B : If $\beta^{\prime}=\gamma^{\prime}=1$, then $H \cong K_{4}\left(\alpha^{\prime}, 1,1, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right)$. We solve the equation $Q(G)=$ $Q(H)$. From lemma, we have

$$
\begin{aligned}
Q(G)= & -r^{\alpha}-r^{\delta}-r^{\varepsilon}-r^{\eta}-r^{\alpha+1}-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\delta} \\
& +r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
Q(H)= & -r^{\alpha^{\prime}}-r^{\delta^{\prime}}-r^{\varepsilon^{\prime}}-r^{\eta^{\prime}}-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}} \\
& +r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .
\end{aligned}
$$

We know that $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$ (from Proposition 1) and we can assume $\varepsilon \leqslant \eta, \varepsilon^{\prime} \leqslant \eta^{\prime}, \min \left\{\alpha^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right\} \geqslant 2$. We denote the lowest remaining power by 1.r.p. and the highest remaining power by h.r.p.

Case 1: If $\min \{\alpha, \delta, \varepsilon, \eta\}=\alpha$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right\}=\alpha^{\prime}$, then the lowest power in $Q(G)$ is α and the lowest power in $Q(H)$ is α^{\prime}. Therefore $\alpha=\alpha^{\prime}$. We obtain the following after simplification:

$$
\begin{aligned}
& Q(G):-r^{\delta}-r^{\varepsilon}-r^{\eta}-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1} \\
& Q(H):-r^{\delta^{\prime}}-r^{\varepsilon^{\prime}}-r^{\eta^{\prime}}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1} .
\end{aligned}
$$

By considering the h.r.p. in $Q(G)$ and the h.r.p. in $Q(H)$, we have $\alpha+\eta+1=\alpha^{\prime}+\eta^{\prime}+1$ or $\alpha+\delta=\alpha^{\prime}+\delta^{\prime}$ or $\alpha+\delta=\alpha^{\prime}+\eta^{\prime}+1$ or $\alpha+\eta+1=\alpha^{\prime}+\delta^{\prime}$.

Case 1.1: If $\alpha+\eta+1=\alpha^{\prime}+\eta^{\prime}+1$, then $\eta=\eta^{\prime}$. After canceling $-r^{\eta}$ in $Q(G)$ with $-r^{\eta^{\prime}}$ in $Q(H)$, we have the 1.r.p. in $Q(G)$ is δ or ε and the 1.r.p. in $Q(H)$ is δ^{\prime} or ε^{\prime}. Therefore $\delta=\varepsilon^{\prime}$ or $\varepsilon=\delta^{\prime}$ or $\delta=\delta^{\prime}$ or $\varepsilon=\varepsilon^{\prime}$. From $\alpha=\alpha^{\prime}, \eta=\eta^{\prime}$ and $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we know that the two multisets ($\alpha, 1,1, \delta, \varepsilon, \eta$) and $\left(\alpha^{\prime}, 1,1, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right)$ are the same. Since $G \sim H$, from Proposition 2, we have G is isomorphic to H.

Case 1.2: If $\alpha+\delta=\alpha^{\prime}+\delta^{\prime}$, then we can handle this case in the same fashion as case 1.1 , so we get $G \cong H$.

Case 1.3: If $\alpha+\delta=\alpha^{\prime}+\eta^{\prime}+1$, then $\delta=\eta^{\prime}+1$ (since $\alpha=\alpha^{\prime}$) and $\varepsilon+\eta+1=\varepsilon^{\prime}+\delta^{\prime}$ (since $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$). After simplification, we have

$$
\begin{aligned}
& Q(G):-r^{\delta}-r^{\varepsilon}-r^{\eta}-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1} \\
& Q(H):-r^{\delta^{\prime}}-r^{\varepsilon^{\prime}}-r^{\eta^{\prime}}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1} .
\end{aligned}
$$

Since $\delta=\eta^{\prime}+1$ (which implies $\delta>\eta^{\prime}$) and $\varepsilon^{\prime} \leqslant \eta^{\prime}$, we have the 1.r.p. in $Q(G)$ is ε and the 1.r.p. in $Q(H)$ is ε^{\prime} or δ^{\prime}. Then, $\varepsilon=\varepsilon^{\prime}$ or $\varepsilon=\delta^{\prime}$. If $\varepsilon=\varepsilon^{\prime}$, then $\delta^{\prime}=\eta+1$ since $\varepsilon+\eta+1=\varepsilon^{\prime}+\delta^{\prime}$. After canceling $-r^{\varepsilon}$ in $Q(G)$ with $-r^{\varepsilon^{\prime}}$ in $Q(H)$, we have the 1.r.p. in $Q(G)$ is η and the 1.r.p. in $Q(H)$ is η^{\prime}. Therefore $\eta=\eta^{\prime}$ which yields $\delta=\delta^{\prime}$. So $G \cong H$. If $\varepsilon=\delta^{\prime}$, then $\varepsilon^{\prime}=\eta+1$ since $\varepsilon+\eta+1=\varepsilon^{\prime}+\delta^{\prime}$. After simplification, we have

$$
\begin{aligned}
& Q(G):-r^{\delta}-r^{\eta}-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1} \\
& Q(H):-r^{\varepsilon^{\prime}}-r^{\eta^{\prime}}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}
\end{aligned}
$$

Since $\varepsilon=\delta^{\prime}$ and $\varepsilon^{\prime}=\eta+1$ and $\varepsilon \leqslant \eta$, we have $\delta^{\prime}+1 \leqslant \varepsilon^{\prime} \leqslant \eta^{\prime}$. By $\delta=\eta^{\prime}+1$, we know that no terms in $Q(H)$ is equal to $-r^{\delta}$. So the term $-r^{\delta}$ and the term $-r^{\delta+1}$ must be cancelled by the term $+r^{\alpha+\varepsilon+1}$ and by the term $+r^{\alpha+\eta+1}$, respectively, therefore

$$
\delta=\alpha+\varepsilon+1, \quad \delta+1=\alpha+\eta+1
$$

Consider $-r^{\eta}$ in $Q(G)$ (noting $\varepsilon^{\prime}=\eta+1$ and $\delta^{\prime}+1 \leqslant \varepsilon^{\prime} \leqslant \eta^{\prime}$). We have $-r^{\eta}=-r^{\delta^{\prime}+1}$. So $\varepsilon^{\prime}=\delta^{\prime}+2$. Let $\alpha=a, \varepsilon=b$, we obtain the solution (noting $\alpha=\alpha^{\prime}, \varepsilon=\delta^{\prime}, \varepsilon^{\prime}=\delta^{\prime}+2$, $\delta=\eta^{\prime}+1, \eta=\delta^{\prime}+1, \delta=\alpha+\varepsilon+1$ and $\delta+1=\alpha+\eta+1$) where G is isomorphic to $K_{4}(a, 1,1, a+b+1, b, b+1)$ and H is isomorphic to $K_{4}(a, 1,1, b, b+2, a+b)$.

Case 1.4: If $\alpha+\eta+1=\alpha^{\prime}+\delta^{\prime}$, then the results are similar to case 1.3 .
Case 2: If $\min \{\alpha, \delta, \varepsilon, \eta\}=\alpha$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right\}=\delta^{\prime}$, then $\alpha=\delta^{\prime}$. Since the case of $\min \{\alpha, \delta, \varepsilon, \eta\}=\alpha$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right\}=\alpha^{\prime}$ has been discussed in case 1 , we can
suppose $\delta^{\prime} \neq \alpha^{\prime}$ in case 2.

$$
\begin{aligned}
Q(G)= & -r^{\alpha}-r^{\delta}-r^{\varepsilon}-r^{\eta}-r^{\alpha+1}-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\delta} \\
& +r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
Q(H)= & -r^{\alpha^{\prime}}-r^{\delta^{\prime}}-r^{\varepsilon^{\prime}}-r^{\eta^{\prime}}-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}} \\
& +r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .
\end{aligned}
$$

By considering the highest power in $Q(G)$ and the highest power in $Q(H)$, we have $\delta+\varepsilon+\eta=\alpha^{\prime}+\eta^{\prime}+1$ or $\delta+\varepsilon+\eta=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. If $\delta+\varepsilon+\eta=\alpha^{\prime}+\eta^{\prime}+1$, then $\alpha+1=\varepsilon^{\prime}+\delta^{\prime}$ since $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. This is a contradiction since $\alpha=\delta^{\prime}$ and $\varepsilon^{\prime} \geqslant 2$. If $\delta+\varepsilon+\eta=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, then $\alpha=\alpha^{\prime}$. since $\alpha=\delta^{\prime}$, we have $\alpha^{\prime}=\delta^{\prime}$ which contradicts $\delta^{\prime} \neq \alpha^{\prime}$.

Case 3: If $\min \{\alpha, \delta, \varepsilon, \eta\}=\alpha$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right\}=\varepsilon^{\prime}$, then $\alpha=\varepsilon^{\prime}$. Since the case of $\min \{\alpha, \delta, \varepsilon, \eta\}=\alpha$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right\}=\alpha^{\prime}$ has been discussed in case 1 , we can suppose $\varepsilon^{\prime} \neq \alpha^{\prime}$ in case 3 .

$$
\begin{aligned}
Q(G)= & -r^{\alpha}-r^{\delta}-r^{\varepsilon}-r^{\eta}-r^{\alpha+1}-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\delta} \\
& +r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
Q(H)= & -r^{\alpha^{\prime}}-r^{\delta^{\prime}}-r^{\varepsilon^{\prime}}-r^{\eta^{\prime}}-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}} \\
& +r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .
\end{aligned}
$$

By considering the highest power in $Q(G)$ and the highest power in $Q(H)$, we have $\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}$ or $\delta+\varepsilon+\eta=\alpha^{\prime}+\eta^{\prime}+1$ or $\delta+\varepsilon+\eta=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. If $\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}$, then $\alpha=\varepsilon^{\prime}+\eta^{\prime}$ since $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. This is a contradiction since $\alpha=\varepsilon^{\prime}$. If $\delta+\varepsilon+\eta=\alpha^{\prime}+\eta^{\prime}+1$, then $\alpha+1=\varepsilon^{\prime}+\delta^{\prime}$ since $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. This is a contradiction since $\alpha=\varepsilon^{\prime}$ and $\delta^{\prime} \geqslant 2$. If $\delta+\varepsilon+\eta=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, then $\alpha=\alpha^{\prime}$. Since $\alpha=\varepsilon^{\prime}$, we have $\alpha^{\prime}=\varepsilon^{\prime}$ which contradicts $\varepsilon^{\prime} \neq \alpha^{\prime}$.

Case 4: If $\min \{\alpha, \delta, \varepsilon, \eta\}=\delta$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right\}=\delta^{\prime}$, then $\delta=\delta^{\prime}$. After simplifying $Q(G)$ and $Q(H)$, we have

$$
\begin{aligned}
& Q(G):-r^{\alpha}-r^{\varepsilon}-r^{\eta}-r^{\alpha+1}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
& Q(H):-r^{\alpha^{\prime}}-r^{\varepsilon^{\prime}}-r^{\eta^{\prime}}-r^{\alpha^{\prime}+1}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .
\end{aligned}
$$

By considering the 1.r.p. in $Q(G)$ and the 1.r.p. in $Q(H)$, we have $\alpha=\alpha^{\prime}$ or $\varepsilon=\varepsilon^{\prime}$ or $\alpha=\varepsilon^{\prime}$ or $\varepsilon=\alpha^{\prime}$.

Case 4.1: If $\alpha=\alpha^{\prime}$, then $\varepsilon+\eta=\varepsilon^{\prime}+\eta^{\prime}$ since $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. After simplifying $Q(G)$ and $Q(H)$, we have the 1.r.p. in $Q(G)$ is ε and the 1.r.p. in $Q(H)$ is ε^{\prime}. Then $\varepsilon=\varepsilon^{\prime}$. Therefore, $\eta=\eta^{\prime}$ which implies that G is isomorphic to H.

Case 4.2: If $\varepsilon=\varepsilon^{\prime}$, then $\alpha+\eta=\alpha^{\prime}+\eta^{\prime}$ since $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. After canceling $-r^{\varepsilon}$ in $Q(G)$ with $-r^{\varepsilon^{\varepsilon}}$ in $Q(H)$, we have the 1.r.p. in $Q(G)$ is $\min \{\alpha, \eta\}$ and the 1.r.p. in $Q(H)$ is $\min \left\{\alpha^{\prime}, \eta^{\prime}\right\}$. Therefore $\alpha=\alpha^{\prime}$ or $\eta=\eta^{\prime}$ or $\alpha=\eta^{\prime}$ or $\eta=\alpha^{\prime}$. From
$\delta=\delta^{\prime}, \varepsilon=\varepsilon^{\prime}$ and $\alpha+\eta=\alpha^{\prime}+\eta^{\prime}$, we know that the two multisets ($\alpha, 1,1, \delta, \varepsilon, \eta$) and $\left(\alpha^{\prime}, 1,1, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right)$ are the same. Since $G \sim H$, by Proposition 2 , we have G is isomorphic to H.

Case 4.3: If $\alpha=\varepsilon^{\prime}$ which implies that $\alpha \leqslant \varepsilon$, then we obtain the following after simplification:

$$
\begin{aligned}
Q(G): & -r^{\varepsilon}-r^{\eta}-r^{\alpha+1}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1} \\
& +r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
Q(H): & -r^{\alpha^{\prime}}-r^{\eta^{\prime}}-r^{\alpha^{\prime}+1}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1} \\
& +r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime} .} .
\end{aligned}
$$

By considering the h.r.p. in $Q(G)$ and the h.r.p. in $Q(H)$, we have the h.r.p. in $Q(G)$ is $\delta+\varepsilon+\eta($ since $\alpha \leqslant \varepsilon)$ and the h.r.p. in $Q(H)$ is $\alpha^{\prime}+\eta^{\prime}+1\left(\right.$ since $\left.\min \left\{\alpha^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right\}=\delta^{\prime}\right)$ or $\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. Then $\delta+\varepsilon+\eta=\alpha^{\prime}+\eta^{\prime}+1$ or $\delta+\varepsilon+\eta=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. If $\delta+\varepsilon+\eta=\alpha^{\prime}+\eta^{\prime}+1$, then $\alpha+1=\varepsilon^{\prime}+\delta^{\prime}$ since $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. This is a contradiction since $\alpha=\varepsilon^{\prime}$ and $\delta^{\prime} \geqslant 2$. If $\delta+\varepsilon+\eta=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, then $\alpha=\alpha^{\prime}$. Since $\alpha=\varepsilon^{\prime}$, we have $\alpha^{\prime}=\varepsilon^{\prime}$. After simplification, we have

$$
\begin{aligned}
& Q(G):-r^{\varepsilon}-r^{\eta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1} \\
& Q(H):-r^{\varepsilon^{\prime}}-r^{\eta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}
\end{aligned}
$$

By considering the 1.r.p. in $Q(G)$ and the 1.r.p. in $Q(H)$, we have $\varepsilon=\varepsilon^{\prime}$. Since $\alpha=\alpha^{\prime}$ and $\delta=\delta^{\prime}$ and $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have $\eta=\eta^{\prime}$ which implies that G is isomorphic to H.

Case 4.4: If $\varepsilon=\alpha^{\prime}$, then we can handle this case in the same fashion as Case 4.3. The results are similar to case 4.3.

Case 5: If $\min \{\alpha, \delta, \varepsilon, \eta\}=\varepsilon$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right\}=\varepsilon^{\prime}$, then $\varepsilon=\varepsilon^{\prime}$. After simplifying $Q(G)$ and $Q(H)$, we have

$$
\begin{aligned}
Q(G): & -r^{\alpha}-r^{\delta}-r^{\eta}-r^{\alpha+1}-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1} \\
& +r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
Q(H): & -r^{\alpha^{\prime}}-r^{\delta^{\prime}}-r^{\eta^{\prime}}-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}} \\
& +r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .
\end{aligned}
$$

By considering the 1.r.p. in $Q(G)$ and the 1.r.p. in $Q(H)$, we have $\min \{\alpha, \delta, \eta\}=\min \left\{\alpha^{\prime}\right.$, $\left.\delta^{\prime}, \eta^{\prime}\right\}$. There are six cases to consider.

Case 5.1: If $\min \{\alpha, \delta, \eta\}=\alpha$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \eta^{\prime}\right\}=\alpha^{\prime}$, then $\alpha=\alpha^{\prime}$. After simplification, we have the 1.r.p. in $Q(G)$ is $\min \{\delta, \eta\}$ and the 1.r.p. in $Q(H)$ is $\min \left\{\delta^{\prime}, \eta^{\prime}\right\}$. Then $\min \{\delta, \eta\}=\min \left\{\delta^{\prime}, \eta^{\prime}\right\}$. From $\alpha=\alpha^{\prime}, \varepsilon=\varepsilon^{\prime}$ and $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we know that the two multisets $(\alpha, 1,1, \delta, \varepsilon, \eta)$ and ($\alpha^{\prime}, 1,1, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}$) are the same. Since $G \sim H$, from Proposition 2, we have G is isomorphic to H.

Case 5.2: If $\min \{\alpha, \delta, \eta\}=\alpha$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \eta^{\prime}\right\}=\delta^{\prime}$, then $\alpha=\delta^{\prime}$. From $\varepsilon=\varepsilon^{\prime}$ and $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have

$$
\delta+\eta=\alpha^{\prime}+\eta^{\prime} .
$$

Since $\min \{\alpha, \delta, \eta\}=\alpha$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \eta^{\prime}\right\}=\delta^{\prime}$, we know that the h.r.p. in $Q(G)$ is $\delta+$ $\varepsilon+\eta$ and the h.r.p. in $Q(H)$ is $\alpha^{\prime}+\eta^{\prime}+1$ or $\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. Therefore $\delta+\varepsilon+\eta=\alpha^{\prime}+\eta^{\prime}+1$ or $\delta+\varepsilon+\eta=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. If $\delta+\varepsilon+\eta=\alpha^{\prime}+\eta^{\prime}+1$, then $\varepsilon=1$ since $\delta+\eta=\alpha^{\prime}+\eta^{\prime}$. This is a contradiction since $\varepsilon \geqslant 2$. If $\delta+\varepsilon+\eta=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, then $\alpha=\alpha^{\prime}$. Thus, we can prove $G \cong H$ in the same fashion as case 5.1.

Case 5.3: If $\min \{\alpha, \delta, \eta\}=\alpha$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \eta^{\prime}\right\}=\eta^{\prime}$, then $\alpha=\eta^{\prime}$. Since $\varepsilon=\varepsilon^{\prime}$ and $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have

$$
\delta+\eta=\alpha^{\prime}+\delta^{\prime} .
$$

By considering the h.r.p. in $Q(G)$ and the h.r.p. in $Q(H)$, we have $\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}$ or $\delta+\varepsilon+\eta=\alpha^{\prime}+\eta^{\prime}+1$ or $\delta+\varepsilon+\eta=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. If $\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}$, from $\delta+\eta=\alpha^{\prime}+\delta^{\prime}$, we have $\varepsilon=0$ which contradicts $\varepsilon \geqslant 2$. If $\delta+\varepsilon+\eta=\alpha^{\prime}+\eta^{\prime}+1$, from $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have $\alpha+1=\delta^{\prime}+\varepsilon^{\prime}$. Since $\alpha=\eta^{\prime}$, we have $\eta^{\prime}+1=\delta^{\prime}+\varepsilon^{\prime}$ which implies $\delta^{\prime}<\eta^{\prime}$ since $\varepsilon^{\prime} \geqslant 2$. This is a contradiction since $\min \left\{\alpha^{\prime}, \delta^{\prime}, \eta^{\prime}\right\}=\eta^{\prime}$. If $\delta+\varepsilon+\eta=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, then $\alpha=\alpha^{\prime}$. Thus, we can prove $G \cong H$ in the same fashion as case 5.1.

Case 5.4: If $\min \{\alpha, \delta, \eta\}=\delta$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \eta^{\prime}\right\}=\delta^{\prime}$, then $\delta=\delta^{\prime}$. After canceling $-r^{\delta}$ in $Q(G)$ with $-r^{\delta^{\prime}}$ in $Q(H)$, and canceling $-r^{\delta+1}$ in $Q(G)$ with $-r^{\delta^{\prime}+1}$ in $Q(H)$, we have the 1.r.p. in $Q(G)$ is $\min \{\alpha, \eta\}$ and the 1.r.p. in $Q(H)$ is $\min \left\{\alpha^{\prime}, \eta^{\prime}\right\}$. Then, $\min \{\alpha, \eta\}=\min \left\{\alpha^{\prime}, \eta^{\prime}\right\}$. From $\varepsilon=\varepsilon^{\prime}$ and $\delta=\delta^{\prime}$ and $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we know that the two multisets $(\alpha, 1,1, \delta, \varepsilon, \eta)$ and ($\alpha^{\prime}, 1,1, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}$) are the same. Since $G \sim H$, from Proposition 2, we have G is isomorphic to H.

Case 5.5: If $\min \{\alpha, \delta, \eta\}=\eta$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \eta^{\prime}\right\}=\eta^{\prime}$, then $\eta=\eta^{\prime}$. Thus we can prove $G \cong H$ in the same fashion as case 5.4.

Case 5.6: If $\min \{\alpha, \delta, \eta\}=\delta$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \eta^{\prime}\right\}=\eta^{\prime}$, then $\delta=\eta^{\prime}$. From $\varepsilon=\varepsilon^{\prime}$ and $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have

$$
\begin{equation*}
\alpha+\eta=\alpha^{\prime}+\delta^{\prime} . \tag{1}
\end{equation*}
$$

After simplification, we have

$$
\begin{aligned}
Q(G): & -r^{\alpha}-r^{\eta}-r^{\alpha+1}-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1} \\
& +r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
Q(H): & -r^{\alpha^{\prime}}-r^{\delta^{\prime}}-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}} \\
& +r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .
\end{aligned}
$$

By considering the 1.r.p. in $Q(G)$ and the 1.r.p. in $Q(H)$, we have $\min \{\alpha, \eta, \delta+1\}$ $=\min \left\{\alpha^{\prime}, \delta^{\prime}\right\}$. If $\min \{\alpha, \eta\}=\min \left\{\alpha^{\prime}, \delta^{\prime}\right\}$, from (1) and $\delta=\eta^{\prime}$ and $\varepsilon=\varepsilon^{\prime}$, we know that the two multisets $(\alpha, 1,1, \delta, \varepsilon, \eta)$ and $\left(\alpha^{\prime}, 1,1, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right)$ are the same. Since $G \sim H$, from

Proposition 2, we have G is isomorphic to H. If $\min \left\{\alpha^{\prime}, \delta^{\prime}\right\}=\delta+1$. There are two cases to consider.

Case 5.6.1: If $\delta^{\prime} \leqslant \alpha^{\prime}$, then $\delta^{\prime}=\delta+1$. Consider $r^{\delta+2}$ in $Q(G)$ and $-r^{\delta^{\prime}+1}$ in $Q(H)$. It is due to $\delta^{\prime} \leqslant \alpha^{\prime}$ that $-r^{\delta^{\prime}+1}$ can cancel none of the positive terms in $Q(H)$. Thus, no term in $Q(H)$ is equal to $r^{\delta+2}$. Therefore, $\delta+2$ must equal one of $\alpha, \eta, \alpha+1$ and $\delta^{\prime}+1$ must equal one of $\alpha, \eta, \alpha+1$. So $\delta+2=\delta^{\prime}+1=\alpha=\eta$ or $\delta+2=\delta^{\prime}+1=\alpha+1=\eta$. If

$$
\begin{equation*}
\delta+2=\delta^{\prime}+1=\alpha=\eta \tag{2}
\end{equation*}
$$

then we obtain the following after canceling $-r^{\alpha}$ with $r^{\delta+2}$, canceling $-r^{\eta}$ with $-r^{\delta^{\prime}+1}$, and canceling $-r^{\delta+1}$ with $-r^{\delta^{\prime}}$:

$$
\begin{aligned}
& Q(G):-r^{\alpha+1}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta} \\
& Q(H):-r^{\alpha^{\prime}}-r^{\alpha^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}
\end{aligned}
$$

Since $\eta=\delta^{\prime}+1$ (from (2)) and $\alpha+\eta=\alpha^{\prime}+\delta^{\prime}$ (from (1)), we have $\alpha^{\prime}=\alpha+1$. By (2), we have $\alpha^{\prime}+1=\delta^{\prime}+3$. This is a contradiction since nothing in $Q(H)$ can cancel $-r^{\alpha^{\prime}+1}$. If

$$
\begin{equation*}
\delta+2=\delta^{\prime}+1=\alpha+1=\eta \tag{3}
\end{equation*}
$$

then we obtain the following after canceling $-r^{\alpha+1}$ with $r^{\delta+2}$, canceling $-r^{\eta}$ with $-r^{\delta^{\prime}+1}$, and canceling $-r^{\delta+1}$ with $-r^{\delta^{\prime}}$:

$$
\begin{aligned}
& Q(G):-r^{\alpha}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
& Q(H):-r^{\alpha^{\prime}}-r^{\alpha^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}
\end{aligned}
$$

Since $\eta=\delta^{\prime}+1$ (from (3)), by (1), we have $\alpha^{\prime}=\alpha+1$. This is a contradiction since no term in $Q(H)$ is equal to $-r^{\alpha}$ and nothing in $Q(G)$ can cancel $-r^{\alpha}$ (noting $\alpha=\delta+1$ (from (3))).

Case 5.6.2: If $\alpha^{\prime} \leqslant \delta^{\prime}$, then $\alpha^{\prime}=\delta+1$. Consider $r^{\delta+2}$ in $Q(G)$ and $-r^{\alpha^{\prime}+1}$ in $Q(H)$. It is due to $\alpha^{\prime} \leqslant \delta^{\prime}$ that $-r^{\alpha^{\prime}+1}$ can cancel none of the positive terms in $Q(H)$. Thus, no term in $Q(H)$ is equal to $r^{\delta+2}$. Therefore, $\delta+2$ must equal one of $\alpha, \eta, \alpha+1$ and $\alpha^{\prime}+1$ must equal one of $\alpha, \eta, \alpha+1$. So $\delta+2=\alpha^{\prime}+1=\alpha+1=\eta$ or $\delta+2=\alpha^{\prime}+1=\alpha=\eta$.

If $\delta+2=\alpha^{\prime}+1=\alpha+1=\eta$, then we obtain the following after canceling $-r^{\eta}$ with $r^{\delta+2}$, canceling $-r^{\alpha+1}$ with $-r^{\alpha^{\prime}+1}$, and canceling $-r^{\delta+1}$ with $-r^{\alpha^{\prime}}$:

$$
\begin{aligned}
& Q(G):-r^{\alpha}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
& Q(H):-r^{\delta^{\prime}}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}
\end{aligned}
$$

Since $\alpha^{\prime}+1=\eta$, by (1), we have $\delta^{\prime}=\alpha+1$. This is a contradiction since no term in $Q(H)$ is equal to $-r^{\alpha}$ and nothing in $Q(G)$ can cancel $-r^{\alpha}$ (noting $\alpha=\delta+1$).

If $\delta+2=\alpha^{\prime}+1=\alpha=\eta$, then we obtain the following after canceling $-r^{\eta}$ with $r^{\delta+2}$, canceling $-r^{\alpha}$ with $-r^{\alpha^{\prime}+1}$, and canceling $-r^{\delta+1}$ with $-r^{\alpha^{\prime}}$:

$$
\begin{aligned}
& Q(G):-r^{\alpha+1}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta} \\
& Q(H):-r^{\delta^{\prime}}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}
\end{aligned}
$$

Since $\alpha^{\prime}+1=\eta$, from (1), we have $\delta^{\prime}=\alpha+1$. Consider $-r^{\delta^{\prime}+1}$ in $Q(H)$. We have $\delta^{\prime}+1=\alpha^{\prime}+\varepsilon^{\prime}+1$ or $\delta^{\prime}+1=\alpha^{\prime}+\eta^{\prime}+1$. If $\delta^{\prime}+1=\alpha^{\prime}+\varepsilon^{\prime}+1$, from $\delta^{\prime}=\alpha+1=\alpha^{\prime}+2$, we have $\varepsilon^{\prime}=2$. So far, we have had $\delta=\eta^{\prime}, \delta+2=\alpha^{\prime}+1=\alpha=\eta, \delta^{\prime}=\alpha+1, \varepsilon=\varepsilon^{\prime}=2$. Let $\delta=a$, we obtain the solution where G is isomorphic to $k_{4}(a+2,1,1, a, 2, a+2)$ and H is isomorphic to $K_{4}(a+1,1,1, a+3,2, a)$. If $\delta^{\prime}+1=\alpha^{\prime}+\eta^{\prime}+1$, from $\delta^{\prime}=\alpha+1=\alpha^{\prime}+2$, we have $\eta^{\prime}=2$. From $\varepsilon^{\prime} \leqslant \eta^{\prime}$ and $\varepsilon^{\prime} \geqslant 2$, we have $\varepsilon^{\prime}=2$. Since $\delta=\eta^{\prime}, \delta+2=\alpha^{\prime}+1$ $=\alpha=\eta, \delta^{\prime}=\alpha+1, \varepsilon=\varepsilon^{\prime}$, we have $\delta=2, \alpha=4, \eta=4, \alpha^{\prime}=3, \delta^{\prime}=5, \varepsilon=\varepsilon^{\prime}=2$. Then we obtain the solution where G is isomorphic to $k_{4}(4,1,1,2,2,4)$ and H is isomorphic to $K_{4}(3,1,1,5,2,2)$.

Case 6: If $\min \{\alpha, \delta, \varepsilon, \eta\}=\delta$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right\}=\varepsilon^{\prime}$, then

$$
\begin{equation*}
\delta=\varepsilon^{\prime} . \tag{4}
\end{equation*}
$$

After simplifying $Q(G)$ and $Q(H)$, we have

$$
\begin{aligned}
Q(G): & -r^{\alpha}-r^{\varepsilon}-r^{\eta}-r^{\alpha+1}-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
Q(H): & -r^{\alpha^{\prime}}-r^{\delta^{\prime}}-r^{\eta^{\prime}}-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}} \\
& +r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .}
\end{aligned}
$$

Since the case of $\min \{\alpha, \delta, \varepsilon, \eta\}=\alpha$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right\}=\varepsilon^{\prime}$ has been discussed in case 3 , we can suppose $\delta \neq \alpha$ in case 6 . Thus $\delta<\alpha$. Since the case of $\min \{\alpha, \delta, \varepsilon, \eta\}=\varepsilon$ and $\min \left\{\alpha^{\prime}, \delta^{\prime}, \varepsilon^{\prime}, \eta^{\prime}\right\}=\varepsilon^{\prime}$ has been discussed in case 5 , we can suppose $\delta \neq \varepsilon$ in case 6 . Thus

$$
\begin{equation*}
\delta<\varepsilon \tag{5}
\end{equation*}
$$

Therefore, the 1.r.p. in $Q(G)$ is $\delta+1$ and the 1.r.p. in $Q(H)$ is α^{\prime} or δ^{\prime} or η^{\prime}. So, we have $\delta+1=\alpha^{\prime}$ or $\delta+1=\delta^{\prime}$ or $\delta+1=\eta^{\prime}$. There are three cases to consider.

Case 6.1: If $\delta+1=\alpha^{\prime}$, then the h.r.p. in $Q(G)$ is $\alpha+\eta+1$ or $\delta+\varepsilon+\eta$ and the h.r.p. in $Q(H)$ is $\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}\left(\right.$ since $\left.\min \left\{\alpha^{\prime}, \delta^{\prime}, \eta^{\prime}\right\}=\alpha^{\prime}\right)$. Therefore, $\alpha+\eta+1=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$ or $\delta+\varepsilon+\eta=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. If $\alpha+\eta+1=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, from $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have $\varepsilon+\delta=\alpha^{\prime}+1$. Since $\delta+1=\alpha^{\prime}$, we have $\varepsilon=2$ which contradicts $\varepsilon>\delta \geqslant 2$. If $\delta+\varepsilon+\eta=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, then $\alpha=\alpha^{\prime}$. After canceling $-r^{\alpha+1}$ with $-r^{\alpha^{\prime}+1}$, canceling $-r^{\alpha}$ with $-r^{\alpha^{\prime}}$, and canceling $-r^{\delta+\varepsilon+\eta}$ with $-r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}$, we have

$$
\begin{aligned}
& Q(G):-r^{\varepsilon}-r^{\eta}-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}, \\
& Q(H):-r^{\delta^{\prime}}-r^{\eta^{\prime}}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1} .
\end{aligned}
$$

Since $\delta<\varepsilon$ (from (5)) and $\varepsilon \leqslant \eta$, we have the h.r.p. in $Q(G)$ is $\alpha+\eta+1$. The h.r.p. in $Q(H)$ is $\alpha^{\prime}+\delta^{\prime}$ or $\alpha^{\prime}+\eta^{\prime}+1$ (noting $\varepsilon^{\prime} \leqslant \eta^{\prime}$). Therefore, $\alpha+\eta+1=\alpha^{\prime}+\delta^{\prime}$ or
$\alpha+\eta+1=\alpha^{\prime}+\eta^{\prime}+1$. If $\alpha+\eta+1=\alpha^{\prime}+\delta^{\prime}$, by $\alpha=\alpha^{\prime}$, we have $\delta^{\prime}=\eta+1$. Thus, no terms in $Q(G)$ are equal to $-r^{\delta^{\prime}}$ and $-r^{\delta^{\prime}+1}$. Then $-r^{\delta^{\prime}}$ must be cancelled by $r^{\alpha^{\prime}+\varepsilon^{\prime}+1}$ and $-r^{\delta^{\prime}+1}$ must be cancelled by $r^{\alpha^{\prime}+\eta^{\prime}+1}$. Since nothing in $Q(G)$ can cancel $-r^{\delta+1}$ (noting $\delta<\varepsilon$ and $\varepsilon \leqslant \eta$), we have $-r^{\delta+1}=-r^{\eta^{\prime}}$. Since no terms in $Q(H)$ are equal to $-r^{\varepsilon}$ and $-r^{\eta},-r^{\varepsilon}$ must be canceled by $r^{\delta+2}$ and $-r^{\eta}$ must be canceled by $r^{\alpha+\delta}$. So far, we have had $\alpha=\alpha^{\prime}, \delta^{\prime}=\alpha^{\prime}+\varepsilon^{\prime}+1$ and $\delta^{\prime}+1=\alpha^{\prime}+\eta^{\prime}+1$ (which implies $\eta^{\prime}=\varepsilon^{\prime}+1$), $\delta+1=\eta^{\prime}$, $\varepsilon=\delta+2, \eta=\alpha+\delta$. Let $\alpha=a, \delta=b$. We obtain the solution where G is isomorphic to $K_{4}(a, 1,1, b, b+2, a+b)$ and H is isomorphic to $K_{4}(a, 1,1, a+b+1, b, b+1)$. If $\alpha+\eta+1=\alpha^{\prime}+\eta^{\prime}+1$, then $\eta=\eta^{\prime}$ since $\alpha=\alpha^{\prime}$. From $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$ and $\delta=\varepsilon^{\prime}$ (from (4)), we have $\delta^{\prime}=\varepsilon$. After simplification, we have

$$
\begin{aligned}
& Q(G):-r^{\delta+1}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}, \\
& Q(H):-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1} .
\end{aligned}
$$

This is a contradiction since no term in $Q(H)$ is equal to $-r^{\delta+1}$ (by noting $\delta<\varepsilon=\delta^{\prime}$).
Case 6.2: If $\delta+1=\delta^{\prime}$, then we can suppose $\delta^{\prime} \neq \alpha^{\prime}$ in case 6.2 since the case of $\delta+1=\alpha^{\prime}$ has been discussed in case 6.1. Thus

$$
\begin{equation*}
\delta^{\prime}<\alpha^{\prime} \tag{6}
\end{equation*}
$$

After canceling $-r^{\delta+1}$ with $-r^{\delta^{\prime}}$, we have

$$
\begin{aligned}
Q(G): & -r^{\alpha}-r^{\varepsilon}-r^{\eta}-r^{\alpha+1}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
Q(H): & -r^{\alpha^{\prime}}-r^{\eta^{\prime}}-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1} \\
& +r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .
\end{aligned}
$$

Consider $r^{\delta+2}$ in $Q(G)$ and $-r^{\delta^{\prime}+1}$ in $Q(H)$. It is due to (6) that $-r^{\delta^{\prime}+1}$ can cancel none of the positive terms in $Q(H)$. Thus, no terms in $Q(H)$ is equal to $r^{\delta+2}$. Therefore, $-r^{\delta^{\prime}+1}$ and $r^{\delta+2}$ must equal one of $-r^{\alpha},-r^{\varepsilon},-r^{\eta},-r^{\alpha+1}$. So, $\delta^{\prime}+1=\delta+2=\alpha=\varepsilon$ or $\delta^{\prime}+1=\delta+2=\alpha=\eta$ or $\delta^{\prime}+1=\delta+2=\alpha+1=\varepsilon$ or $\delta^{\prime}+1=\delta+2=\alpha+1=\eta$ or $\delta^{\prime}+1=\delta+2=\varepsilon=\eta$. Without loss of generality, only the following three cases need to be considered.

Case 6.2.1: If $\delta^{\prime}+1=\delta+2=\alpha$, we consider $r^{\delta^{\prime}+2}$ in $Q(H)$ and $-r^{\alpha+1}$ in $Q(G)$. It is due to $\alpha=\delta+2$ that $-r^{\alpha+1}$ can cancel none of the positive terms in $Q(G)$. Thus, no terms in $Q(G)$ is equal to $r^{\delta^{\prime}+2}$. Therefore, $\alpha+1=\delta^{\prime}+2=\alpha^{\prime}=\eta^{\prime}$ or $\alpha+1=\delta^{\prime}+2$ $=\alpha^{\prime}+1=\eta^{\prime}$. If

$$
\begin{equation*}
\alpha+1=\delta^{\prime}+2=\alpha^{\prime}=\eta^{\prime} \tag{7}
\end{equation*}
$$

then we obtain the following after canceling $-r^{\alpha}$ with $r^{\delta+2}$, canceling $-r^{\alpha+1}$ with $-r^{\alpha^{\prime}}$, and canceling $-r^{\eta^{\prime}}$ with $r^{\delta^{\prime}+2}$:

$$
\begin{aligned}
& Q(G):-r^{\varepsilon}-r^{\eta}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta} \\
& Q(H):-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}
\end{aligned}
$$

By considering the 1.r.p. in $Q(G)$ and the 1.r.p. in $Q(H)$, we have $\varepsilon=\delta^{\prime}+1$. Since $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$ and $\delta=\varepsilon^{\prime}$ (from (4)) and $\alpha^{\prime}=\alpha+1$ (from (7)), we have $\eta=\eta^{\prime}$. Therefore $\eta=\alpha^{\prime}$ (noting (7)). This is a contradiction since no term in $Q(G)$ is equal to $-r^{\alpha^{\prime}+1}$ and nothing in $Q(H)$ can cancel $-r^{\alpha^{\prime}+1}$ (noting (7)). If $\alpha+1=\delta^{\prime}+2=\alpha^{\prime}+1=\eta^{\prime}$, then we obtain the following after canceling $-r^{\alpha}$ with $r^{\delta+2}$, $\underset{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}{\text { canceling }}-r^{\alpha+1}$ with $-r^{\alpha^{\prime}+1}$, canceling $-r^{\eta^{\prime}}$ with $r^{\delta^{\prime}+2}$, and canceling $-r^{\delta+\varepsilon+\eta}$ with $-r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}$

$$
\begin{aligned}
& Q(G):-r^{\varepsilon}-r^{\eta}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}, \\
& Q(H):-r^{\alpha^{\prime}}-r^{\delta^{\prime}+1}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1} .
\end{aligned}
$$

Consider $r^{\alpha+\delta}$ in $Q(G)$. It is due to $\alpha=\alpha^{\prime}$, and $\delta^{\prime}=\delta+1$ and $\delta=\varepsilon^{\prime}$ (from (4)) that no term in $Q(H)$ is equal to $r^{\alpha+\delta}$. This is a contradiction since nothing in $Q(G)$ can cancel $r^{\alpha+\delta}$ (by noting $-r^{\alpha^{\prime}}=-r^{\delta^{\prime}+1}=-r^{\varepsilon}=-r^{\eta}$).

Case 6.2.2: If $\delta^{\prime}+1=\delta+2=\alpha+1$, then $\alpha=\delta^{\prime}$. After canceling $-r^{\alpha+1}$ with $r^{\delta+2}$, we have

$$
\begin{aligned}
Q(G): & -r^{\alpha}-r^{\varepsilon}-r^{\eta}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
Q(H): & -r^{\alpha^{\prime}}-r^{\eta^{\prime}}-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1} \\
& +r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .
\end{aligned}
$$

It is due to $\delta^{\prime}<\alpha^{\prime}$ (from (6)) and $\alpha=\delta^{\prime}$ that $\alpha<\alpha^{\prime}$. Then $-r^{\alpha}=-r^{\eta^{\prime}}$. Since $\delta=\varepsilon^{\prime}$ (from (4)) and $\alpha=\eta^{\prime}$ and $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have

$$
\delta^{\prime}+\alpha^{\prime}=\varepsilon+\eta .
$$

Consider $-r^{\delta^{\prime}+1}$ in $Q(H)$. It is due to (6) that nothing in $Q(H)$ can cancel $-r^{\delta^{\prime}+1}$. Therefore $-r^{\delta^{\prime}+1}=-r^{\varepsilon}$ or $-r^{\delta^{\prime}+1}=-r^{\eta}$. If $\delta^{\prime}+1=\varepsilon$, then $\alpha^{\prime}=\eta+1$ since $\delta^{\prime}+\alpha^{\prime}=\varepsilon+\eta$. This is a contradiction since no terms in $Q(G)$ are equal to $-r^{\alpha^{\prime}}$ and $-r^{\alpha^{\prime}+1}$ (noting $\alpha<\alpha^{\prime}$). If $\delta^{\prime}+1=\eta$, then $\alpha^{\prime}=\varepsilon+1$ since $\delta^{\prime}+\alpha^{\prime}=\varepsilon+\eta$. After canceling $-r^{\alpha}$ with $-r^{\eta^{\prime}}$, canceling $-r^{\delta^{\prime}+1}$ with $-r^{\eta}$, we have

$$
\begin{aligned}
& Q(G):-r^{\varepsilon}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
& Q(H):-r^{\alpha^{\prime}}-r^{\alpha^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}
\end{aligned}
$$

This is a contradiction since no terms in $Q(G)$ are equal to $-r^{\alpha^{\prime}}$ and $-r^{\alpha^{\prime}+1}$.
Case 6.2.3: If

$$
\begin{equation*}
\delta^{\prime}+1=\delta+2=\varepsilon=\eta . \tag{8}
\end{equation*}
$$

Then, from (4) and $\delta^{\prime}+1=\varepsilon$ and $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have

$$
\begin{equation*}
\alpha+\eta+1=\alpha^{\prime}+\eta^{\prime} . \tag{9}
\end{equation*}
$$

After canceling $-r^{\eta}$ with $r^{\delta+2}$, canceling $-r^{\varepsilon}$ with $-r^{\delta^{\prime}+1}$, we have

$$
\begin{aligned}
Q(G): & -r^{\alpha}-r^{\alpha+1}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
Q(H): & -r^{\alpha^{\prime}}-r^{\eta^{\prime}}-r^{\alpha^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1} \\
& +r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .
\end{aligned}
$$

Consider $-r^{\alpha}$ and $-r^{\alpha+1}$. One of $-r^{\alpha}$ and $-r^{\alpha+1}$ must equal $-r^{\alpha^{\prime}}$ or $-r^{\alpha^{\prime}+1}$.
If $-r^{\alpha+1}=-r^{\alpha^{\prime}}$, then $\alpha+1=\alpha^{\prime}$. Therefore, $\eta=\eta^{\prime}$ since $\alpha+\eta+1=\alpha^{\prime}+\eta^{\prime}$ (from (9)). By $\eta=\delta^{\prime}+1$ (from (8)), we have $\eta^{\prime}=\delta^{\prime}+1$. After canceling $-r^{\alpha^{\prime}}$ with $-r^{\alpha+1}$, we have

$$
\begin{aligned}
& Q(G):-r^{\alpha}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
& Q(H):-r^{\alpha^{\prime}+1}-r^{\eta^{\prime}}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .
\end{aligned}
$$

Consider $-r^{\eta^{\prime}}$ in $Q(H)$. It is due to $\eta^{\prime}=\delta^{\prime}+1<\alpha^{\prime}+1$ (noting (6)) that nothing in $Q(H)$ can cancel $-r^{\eta^{\prime}}$. So $-r^{\eta^{\prime}}=-r^{\alpha}$. Then $\alpha^{\prime}+1=\alpha+2=\eta^{\prime}+2=\delta^{\prime}+3$. This is a contradiction since nothing in $Q(H)$ can cancel $-r^{\alpha^{\prime}+1}$ and no term in $Q(G)$ is equal to $-r^{\alpha^{\prime}+1}$.

If $-r^{\alpha+1}=-r^{\alpha^{\prime}+1}$, then $\alpha=\alpha^{\prime}$. Therefore, $\eta+1=\eta^{\prime}$ since $\alpha+\eta+1=\alpha^{\prime}+\eta^{\prime}$. By $\eta=\delta^{\prime}+1$ (from (8)), we have $\eta^{\prime}=\delta^{\prime}+2$. After canceling $-r^{\alpha}$ with $-r^{\alpha^{\prime}}$, canceling $-r^{\alpha+1}$ with $-r^{\alpha^{\prime}+1}$, canceling $-r^{\eta^{\prime}}$ with $r^{\delta^{\prime}+2}$, and canceling $-r^{\delta+\varepsilon+\eta}$ with $-r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}$, we have

$$
\begin{aligned}
& Q(G): r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1} \\
& Q(H): r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1} .
\end{aligned}
$$

This is a contradiction since no term in $Q(H)$ is equal to $r^{\alpha+\delta}$ (noting $\alpha=\alpha^{\prime}$ and $\delta=\varepsilon^{\prime}$ (from (4)) and $\delta+1=\delta^{\prime}$ (from (8))).

If $-r^{\alpha}=-r^{\alpha^{\prime}}$, by the same reason as in case $-r^{\alpha+1}=-r^{\alpha^{\prime}+1}$, we have a contradiction.
If $-r^{\alpha}=-r^{\alpha^{\prime}+1}$, then $\alpha=\alpha^{\prime}+1$. Therefore, $\eta^{\prime}=\eta+2$ since $\alpha+\eta+1=\alpha^{\prime}+\eta^{\prime}$. By $\eta=\delta^{\prime}+1$ (from (8)), we have $\eta^{\prime}=\delta^{\prime}+3$. After simplification, we have

$$
\begin{aligned}
& Q(G):-r^{\alpha+1}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
& Q(H):-r^{\alpha^{\prime}}-r^{\eta^{\prime}}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .} .
\end{aligned}
$$

Consider $-r^{\alpha^{\prime}}$ in $Q(H)$. It is due to $\alpha=\alpha^{\prime}+1$ that $-r^{\alpha^{\prime}}$ must be canceled by $r^{\delta^{\prime}+2}$ or by $r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}$. If $\alpha^{\prime}=\delta^{\prime}+2$, by $\eta^{\prime}=\delta^{\prime}+3$, we have $\alpha^{\prime}+1=\eta^{\prime}$. So $\alpha=\eta^{\prime}$. This is a contradiction since nothing in $Q(H)$ can cancel $-r^{\eta^{\prime}}$ and no term in $Q(G)$ is equal to $-r^{\eta^{\prime}}$. If $\alpha^{\prime}=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$ (which implies $\eta^{\prime}<\alpha^{\prime}=\alpha-1$), then we obtain a contradiction since nothing in $Q(H)$ can cancel $-r^{\eta^{\prime}}$ and no term in $Q(G)$ is equal to $-r^{\eta^{\prime}}$.

Case 6.3: If $\delta+1=\eta^{\prime}$, then we can suppose $\eta^{\prime} \neq \delta^{\prime}$ in case 6.3 since the case of $\delta+1=\delta^{\prime}$ has been discussed in Case 6.2. Thus $\eta^{\prime}<\delta^{\prime}$ which implies

$$
\begin{equation*}
\eta^{\prime}+1 \leqslant \delta^{\prime} . \tag{10}
\end{equation*}
$$

After simplification, we have

$$
\begin{aligned}
Q(G): & -r^{\alpha}-r^{\varepsilon}-r^{\eta}-r^{\alpha+1}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}+r^{\delta+\varepsilon+\eta}, \\
Q(H): & -r^{\alpha^{\prime}}-r^{\delta^{\prime}}-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1} \\
& +r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .
\end{aligned}
$$

By considering the h.r.p. in $Q(G)$ and the h.r.p. in $Q(H)$, we have the h.r.p. in $Q(G)$ is $\alpha+\eta+1$ (since $\min \{\alpha, \delta, \varepsilon, \eta\}=\delta)$ or $\delta+\varepsilon+\eta$, the h.r.p. in $Q(H)$ is $\alpha^{\prime}+\delta^{\prime}$ (since $\eta^{\prime}+1 \leqslant \delta^{\prime}$) or $\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. There are four cases to consider.

Case 6.3.1: When $\alpha+\eta+1>\delta+\varepsilon+\eta$ and $\alpha^{\prime}+\delta^{\prime}>\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have

$$
\begin{equation*}
\alpha+\eta+1=\alpha^{\prime}+\delta^{\prime} . \tag{11}
\end{equation*}
$$

Since $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$ and $\delta+1=\eta^{\prime}$, we have $\varepsilon=\varepsilon^{\prime}+2$. From (4), we have $\varepsilon=\delta+2$. After simplification, we have

$$
\begin{aligned}
& Q(G):-r^{\alpha}-r^{\eta}-r^{\alpha+1}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\delta+\varepsilon+\eta} \\
& Q(H):-r^{\alpha^{\prime}}-r^{\delta^{\prime}}-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}
\end{aligned}
$$

By considering the 1.r.p. in $Q(G)$ and the 1.r.p. in $Q(H)$, we have $\alpha=\alpha^{\prime}$ or $\alpha=\delta^{\prime}$ or $\eta=\alpha^{\prime}$ or $\eta=\delta^{\prime}$

If $\alpha=\alpha^{\prime}$, then $\delta^{\prime}=\eta+1$ since $\alpha+\eta+1=\alpha^{\prime}+\delta^{\prime}$ (from (11)). After canceling $-r^{\alpha}$ with $-r^{\alpha^{\prime}}$, and canceling $-r^{\alpha+1}$ with $-r^{\alpha^{\prime}+1}$, we know that the terms $-r^{\delta^{\prime}}$ and $-r^{\delta^{\prime}+1}$ must be canceled by the terms in $Q(H)$. Then $\delta^{\prime}=\alpha^{\prime}+\varepsilon^{\prime}+1$ and $\delta^{\prime}+1=\alpha^{\prime}+\eta^{\prime}+1$. Let $\alpha^{\prime}=a$ and $\varepsilon^{\prime}=b$. Then we obtain the solution (noting $\alpha=\alpha^{\prime}, \delta=\varepsilon^{\prime}$ (from (4)), $\varepsilon=\varepsilon^{\prime}+2$, $\eta^{\prime}=\delta+1, \delta^{\prime}=\eta+1, \delta^{\prime}=\alpha^{\prime}+\varepsilon^{\prime}+1, \delta^{\prime}+1=\alpha^{\prime}+\eta^{\prime}+1$) where G is isomorphic to $K_{4}(a, 1,1, b, b+2, a+b)$ and H is isomorphic to $K_{4}(a, 1,1, a+b+1, b, b+1)$.

If $\alpha=\delta^{\prime}$, then $\alpha^{\prime}=\eta+1$ since $\alpha+\eta+1=\alpha^{\prime}+\delta^{\prime}$. After canceling $-r^{\alpha}$ with $-r^{\delta^{\prime}}$, and canceling $-r^{\alpha+1}$ with $-r^{\delta^{\prime}+1}$, we know that no term in $Q(G)$ is equal to $-r^{\alpha^{\prime}}$ or $-r^{\alpha^{\prime}+1}$. This is a contradiction since only one of $-r^{\alpha^{\prime}}$ and $-r^{\alpha^{\prime}+1}$ can be canceled in $Q(H)$.

If $\eta=\alpha^{\prime}$, then $\alpha+1=\delta^{\prime}$ since $\alpha+\eta+1=\alpha^{\prime}+\delta^{\prime}$. After simplification, we have

$$
\begin{aligned}
& Q(G):-r^{\alpha}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\delta+\varepsilon+\eta}, \\
& Q(H):-r^{\alpha^{\alpha^{\prime}+1}}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .
\end{aligned}
$$

Consider $-r^{\delta^{\prime}+1}$ in $Q(H)$. It is due to $\delta^{\prime}=\alpha+1$ that $-r^{\delta^{\prime}+1}$ must be canceled by the term in $Q(H)$. Then $\delta^{\prime}+1=\alpha^{\prime}+\varepsilon^{\prime}+1$ or $\delta^{\prime}+1=\alpha^{\prime}+\eta^{\prime}+1$. Thus $-r^{\alpha^{\prime}+1}$ cannot be canceled by the term in $Q(H)$. So $\alpha^{\prime}+1=\alpha$. Turn to the term $r^{\alpha^{\prime}+\varepsilon^{\prime}+1}$, we have $r^{\alpha^{\prime}+\varepsilon^{\prime}+1}=r^{\alpha+\delta}$ (noting $\alpha^{\prime}+1=\alpha$ and $\delta=\varepsilon^{\prime}\left(\right.$ from (4))). Therefore $-r^{\delta^{\prime}+1}$ must be canceled by $r^{\alpha^{\prime}+\eta^{\prime}+1}$. From $\delta^{\prime}=\alpha+1$ and $\alpha=\alpha^{\prime}+1$, we have $\delta^{\prime}=\alpha^{\prime}+2$. By $\delta^{\prime}+1=\alpha^{\prime}+\eta^{\prime}+1$, we have $\eta^{\prime}=2$. From $\delta+1=\eta^{\prime}$, we have $\delta=1$ which contradicts $\delta \geqslant 2$.

If $\eta=\delta^{\prime}$, then $\alpha+1=\alpha^{\prime}$ since $\alpha+\eta+1=\alpha^{\prime}+\delta^{\prime}$. After simplification, we have

$$
\begin{aligned}
& Q(G):-r^{\alpha}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\delta+\varepsilon+\eta}, \\
& Q(H):-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}} .
\end{aligned}
$$

Consider $-r^{\alpha^{\prime}+1}$ in $Q(H)$. It is due to $\alpha^{\prime}=\alpha+1$ that $-r^{\alpha^{\prime}+1}$ must be canceled by $r^{\delta^{\prime}+2}$ or $r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}$. Thus we have a contradiction since no term in $Q(G)$ is equal to $-r^{\delta^{\prime}+1}$.

Case 6.3.2: When $\alpha+\eta+1>\delta+\varepsilon+\eta$ and $\alpha^{\prime}+\delta^{\prime} \leqslant \delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have $\alpha+\eta+1$ $=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. Then, by $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have

$$
\begin{equation*}
\alpha^{\prime}+1=\delta+\varepsilon . \tag{12}
\end{equation*}
$$

From $\alpha+\eta+1>\delta+\varepsilon+\eta(\alpha+1>\delta+\varepsilon)$, we have

$$
\begin{equation*}
\alpha>\alpha^{\prime} . \tag{13}
\end{equation*}
$$

After simplification, we have

$$
\begin{aligned}
& Q(G):-r^{\alpha}-r^{\varepsilon}-r^{\eta}-r^{\alpha+1}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\delta+\varepsilon+\eta}, \\
& Q(H):-r^{\alpha^{\prime}}-r^{\delta^{\prime}}-r^{\alpha^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1} .} .
\end{aligned}
$$

Since the h.r.p. in $Q(G)$ is $\alpha+\varepsilon+1($ since $\min \{\alpha, \delta, \varepsilon, \eta\}=\delta)$ or $\delta+\varepsilon+\eta$ and the h.r.p. in $Q(H)$ is $\alpha^{\prime}+\delta^{\prime}\left(\right.$ since $\eta^{\prime}+1 \leqslant \delta^{\prime}\left(\right.$ from (10))), we have $\alpha+\varepsilon+1=\alpha^{\prime}+\delta^{\prime}$ or $\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}$.

If $\alpha+\varepsilon+1=\alpha^{\prime}+\delta^{\prime}$, by $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have $\varepsilon^{\prime}+\eta^{\prime}+1=\delta+\eta$. Then, from $\delta+1=\eta^{\prime}$ and $\delta=\varepsilon^{\prime}$ (from (4)), we have $\eta=\delta+2$. Therefore, $-r^{\eta}$ is canceled by $r^{\delta+2}$. After simplification, we have

$$
\begin{aligned}
& Q(G):-r^{\alpha}-r^{\varepsilon}-r^{\alpha+1}+r^{\alpha+\delta}+r^{\delta+\varepsilon+\eta} \\
& Q(H):-r^{\alpha^{\prime}}-r^{\delta^{\prime}}-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1} .
\end{aligned}
$$

Consider $-r^{\alpha^{\prime}}$ in $Q(H)$. It is due to $\alpha>\alpha^{\prime}$ (from (13)) and $\alpha^{\prime}+1=\delta+\varepsilon$ (which implies $\alpha^{\prime}>\varepsilon$) that $-r^{\alpha^{\prime}}$ must be canceled by the term in $Q(H)$. Thus $\alpha^{\prime}=\delta^{\prime}+2$. This is a contradiction since $\alpha>\alpha^{\prime}=\delta^{\prime}+2$ and none of the terms $-r^{\delta^{\prime}}$ and $-r^{\delta^{\prime}+1}$ can be canceled by terms in $Q(H)$.

If $\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}$, then $\delta^{\prime}=\eta+1$ since $\alpha^{\prime}+1=\delta+\varepsilon$ (from (12)). After simplification, we have

$$
\begin{aligned}
& Q(G):-r^{\alpha}-r^{\varepsilon}-r^{\eta}-r^{\alpha+1}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1} \\
& Q(H):-r^{\alpha^{\prime}}-r^{\delta^{\prime}}-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1} .
\end{aligned}
$$

If $\delta^{\prime} \leqslant \alpha^{\prime}$, then we have a contradiction since no term in $Q(G)$ is equal to $-r^{\gamma^{\prime}}$ (by noting $\alpha>\alpha^{\prime}$ and $\delta^{\prime}=\eta+1$). If $\delta^{\prime}>\alpha^{\prime}$. Consider $-r^{\alpha^{\prime}}$ in $Q(H)$. It is due to $\alpha>\alpha^{\prime}$ (from (13)) and $\alpha^{\prime}+1=\delta+\varepsilon$ (which implies $\alpha^{\prime}>\varepsilon$) that $-r^{\alpha^{\prime}}=-r^{\eta}$. From $\delta^{\prime}=\eta+1$,
we have $\delta^{\prime}=\alpha^{\prime}+1$. Thus $-r^{\delta^{\prime}}=-r^{\alpha^{\prime}+1}$. This is a contradiction since no pair of terms in $Q(G)$ are equal to $-r^{\delta^{\prime}}$ and $-r^{\alpha^{\prime}+1}$ (by noting $\alpha^{\prime}=\eta \geqslant \varepsilon$).

Case 6.3.3: When $\alpha+\eta+1 \leqslant \delta+\varepsilon+\eta$ and $\alpha^{\prime}+\delta^{\prime} \leqslant \delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have $\delta+\varepsilon+\eta$ $=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. Then $\alpha=\alpha^{\prime}$ since $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. After simplification, we have

$$
\begin{aligned}
& Q(G):-r^{\varepsilon}-r^{\eta}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1}, \\
& Q(H):-r^{\delta^{\prime}}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\delta^{\prime}}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1} .
\end{aligned}
$$

Since the h.r.p. in $Q(G)$ is $\alpha+\eta+1$ (since $\min \{\alpha, \delta, \varepsilon, \eta\}=\delta$ and $\varepsilon \leqslant \eta$) and the h.r.p. in $Q(H)$ is $\alpha^{\prime}+\delta^{\prime}$ (since $\eta^{\prime}+1 \leqslant \delta^{\prime}\left(\right.$ from (10))), we have $\alpha+\eta+1=\alpha^{\prime}+\delta^{\prime}$. Then $\delta^{\prime}=\eta+1$ since $\alpha=\alpha^{\prime}$. Thus $-r^{\delta^{\prime}}$ and $-r^{\delta^{\prime}+1}$ must be canceled by terms in $Q(H)$, and $-r^{\varepsilon},-r^{\eta}$ must be canceled by terms in $Q(G)$. So, we have $\delta^{\prime}=\alpha^{\prime}+\varepsilon^{\prime}+1$, $\delta^{\prime}+1=\alpha^{\prime}+\eta^{\prime}+1, \varepsilon=\delta+2$ and $\eta=\alpha+\delta$. Let $\alpha^{\prime}=a$ and $\varepsilon^{\prime}=b$. Then we obtain the solution (noting $\alpha=\alpha^{\prime}, \delta=\varepsilon^{\prime}$ (from (4)), $\varepsilon=\delta+2, \eta^{\prime}=\delta+1, \delta^{\prime}=\eta+1, \delta^{\prime}=\alpha^{\prime}+\varepsilon^{\prime}+1$, $\left.\delta^{\prime}+1=\alpha^{\prime}+\eta^{\prime}+1, \eta=\alpha+\delta\right)$ where G is isomorphic to $K_{4}(a, 1,1, b, b+2, a+b)$ and H is isomorphic to $K_{4}(a, 1,1, a+b+1, b, b+1)$.

Case 6.3.4: When $\alpha+\eta+1 \leqslant \delta+\varepsilon+\eta$ and $\alpha^{\prime}+\delta^{\prime}>\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have

$$
\begin{equation*}
\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime} \tag{14}
\end{equation*}
$$

by $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, we have

$$
\begin{equation*}
\alpha=\varepsilon^{\prime}+\eta^{\prime} . \tag{15}
\end{equation*}
$$

Then, from $\alpha^{\prime}+\delta^{\prime}>\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}\left(\alpha^{\prime}>\varepsilon^{\prime}+\eta^{\prime}\right)$, we have

$$
\begin{equation*}
\alpha^{\prime}>\alpha \tag{16}
\end{equation*}
$$

After simplification, we have

$$
\begin{aligned}
& Q(G):-r^{\alpha}-r^{\varepsilon}-r^{\eta}-r^{\alpha+1}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1}+r^{\alpha+\eta+1} \\
& Q(H):-r^{\alpha^{\prime}}-r^{\delta^{\prime}}-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\alpha^{\prime}+\eta^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}
\end{aligned}
$$

Since the h.r.p. in $Q(G)$ is $\alpha+\eta+1$ (since $\min \{\alpha, \delta, \varepsilon, \eta\}=\delta$ and $\varepsilon \leqslant \eta$) and the h.r.p. in $Q(H)$ is $\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$ or $\alpha^{\prime}+\eta^{\prime}+1$, we have $\alpha+\eta+1=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$ or $\alpha+\eta+1=\alpha^{\prime}+\eta^{\prime}+1$.

If $\alpha+\eta+1=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, then, by $\alpha=\varepsilon^{\prime}+\eta^{\prime}$ (from (15)), we have

$$
\delta^{\prime}=\eta+1
$$

Consider $-r^{\alpha^{\prime}+1}$ in $Q(H)$. It is due to $\alpha^{\prime}>\alpha$ (from (16)) that $\alpha^{\prime}+1=\varepsilon$ or $\alpha^{\prime}+1=\eta$. If $\alpha^{\prime}+1=\varepsilon$, then $\delta^{\prime}=\delta+\eta+1$ since $\delta+\varepsilon+\eta=\delta^{\prime}+\alpha^{\prime}$ (from (14)). This is a contradiction since $\delta^{\prime}=\eta+1$. If $\alpha^{\prime}+1=\eta$, then $\delta^{\prime}=\alpha^{\prime}+2$ since $\delta^{\prime}=\eta+1$. From $\alpha^{\prime}>\alpha$, we have $\delta^{\prime}>\alpha+2$. So we have a contradiction since no term in $Q(G)$ is equal to $-r^{\delta^{\prime}}$ (noting $\delta^{\prime}=\eta+1$ and $\varepsilon \leqslant \eta$) and nothing in $Q(H)$ can cancel $-r^{\delta^{\prime}}$ (by noting $\delta^{\prime}=\alpha^{\prime}+2$).

If $\alpha+\eta+1=\alpha^{\prime}+\eta^{\prime}+1$, then, by $\alpha+\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$ and $\delta=\varepsilon^{\prime}$ (from (4)), we have $\varepsilon=\delta^{\prime}$. Since $\delta+\varepsilon+\eta=\alpha^{\prime}+\delta^{\prime}$ (from (14)), we have $\alpha^{\prime}=\delta+\eta$ which implies

$$
\begin{equation*}
\eta<\alpha^{\prime} \tag{17}
\end{equation*}
$$

After canceling $-r^{\varepsilon}$ with $-r^{\delta^{\prime}}$, canceling $r^{\alpha+\eta+1}$ with $r^{\alpha^{\prime}+\eta^{\prime}+1}$, we have

$$
\begin{aligned}
& Q(G):-r^{\alpha}-r^{\eta}-r^{\alpha+1}+r^{\delta+2}+r^{\alpha+\delta}+r^{\alpha+\varepsilon+1} \\
& Q(H):-r^{\alpha^{\prime}}-r^{\alpha^{\prime}+1}-r^{\delta^{\prime}+1}+r^{\delta^{\prime}+2}+r^{\alpha^{\prime}+\varepsilon^{\prime}+1}+r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}
\end{aligned}
$$

Consider $-r^{\alpha^{\prime}+1}$ in $Q(H)$. It is due to $\alpha^{\prime}>\alpha$ (from (16)) and $\eta<\alpha^{\prime}$ (from (17)) that $-r^{\alpha^{\prime}+1}$ must be canceled by $r^{\delta^{\prime}+2}$ or $r^{\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}}$. Thus, $\alpha^{\prime}+1=\delta^{\prime}+2$ or $\alpha^{\prime}+1=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$. If $\alpha^{\prime}+1=\delta^{\prime}+2$, then we have a contradiction since no pair of terms in $Q(G)$ are equal to $-r^{\alpha^{\prime}}$ and $-r^{\delta^{\prime}+1}$ (by noting $\eta<\alpha^{\prime}$). If $\alpha^{\prime}+1=\delta^{\prime}+\varepsilon^{\prime}+\eta^{\prime}$, then $\alpha^{\prime}=\delta^{\prime}+\alpha-1$ since $\alpha=\varepsilon^{\prime}+\eta^{\prime}$ (from (15)). Since $\delta^{\prime} \geqslant \eta^{\prime}+1$ (from (10)) and $\eta^{\prime} \geqslant 2$, we have $\delta^{\prime} \geqslant 3$. Then $\alpha^{\prime}=\delta^{\prime}+\alpha-1 \geqslant \alpha+2$. This is a contradiction since no term in $Q(G)$ is equal to $-r^{\alpha^{\prime}}$ (noting $\eta<\alpha^{\prime}$) and nothing in $Q(H)$ can cancel $-r^{\alpha^{\prime}}$ (by noting $\alpha^{\prime}+1=\delta^{\prime}+$ $\left.\varepsilon^{\prime}+\eta^{\prime} \geqslant \delta^{\prime}+4\right)$.

So far, we have solved the equation $P(G)=P(H)$ and got the solution as follows:

$$
\begin{aligned}
& k_{4}(a, 1,1, a+b+1, b, b+1) \sim K_{4}(a, 1,1, b, b+2, a+b), \\
& k_{4}(a+1,1,1, a+3,2, a) \sim K_{4}(a+2,1,1, a, 2, a+2) .
\end{aligned}
$$

The proof is completed.

Acknowledgements

We thank the referees for suggestions which resulted in improvements to this paper.

References

[1] C.Y. Chao, L.C. Zhao, Chromatic polynomials of a family of graphs, Ars Combin. 15 (1983) 111-129.
[2] Z.-Y. Guo, E.G. Whitehead Jr., Chromaticity of a family of K_{4}-homeomorphs, Discrete Math. 172 (1997) 53-58.
[3] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259-285.
[4] W.M. Li, Almost every K_{4}-homeomorph is chromatically unique, Ars Combin. 23 (1987) 13-36.
[5] E.G. Whitehead Jr., L.C. Zhao, Chromatic uniqueness and equivalence of K_{4}-homeomorphs, J. Graph Theory 8 (1984) 355-364.
[6] S. Xu, Chromaticity of a family of K_{4}-homeomorphs, Discrete Math. 117 (1993) 293-297.

[^0]: ${ }^{2}$ Project Supported by the National Natural Science Foundation of China.

 * Corresponding author.

 E-mail address: pengyanling@263.net (Y.-1. Peng).

