King Saud University
Journal of Saudi Chemical Society
www.ksu.edu.sa
www.sciencedirect.com

ORIGINAL ARTICLE

DFT investigations of the ground and excited state geometries of the benzothiazine and benzisothiazol based anticancer drugs

Ahmad Irfan *, Abdullah G. Al-Sehemi
Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia

Received 13 November 2011; accepted 26 March 2012
Available online 19 April 2012

KEYWORDS

Benzothiazine;
Benzisothiazol;
Density-functional theory; B3LYP;
PBE0

Abstract

Density-functional theory (DFT) is a prevailing method for predicting the geometry of organic compounds. The ground state geometries have been calculated at the B3LYP/6-31G** and PBE0/6-31G ${ }^{* *}$ levels of theories. The excited state geometries have been computed at time dependent DFT (TD-DFT) by using TD-B3LYP/6-31G ${ }^{* *}$ and TD-PBE0/6-31G ${ }^{* *}$ levels of theories. It has been revealed that the PBE0 functional is better than B3LYP to predict the $\mathrm{S}-\mathrm{O}$ and $\mathrm{S}-\mathrm{C}$ bond lengths. Both of the functionals could not reproduce the $\mathrm{S}-\mathrm{N}$ bond lengths. The B3LYP is good to imitate the $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ bond lengths. The $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{Cl}$ bond lengths have been impersonated by both the functionals. Moreover, it has also been revealed that the $\mathrm{S}-\mathrm{N}$ bond length elongated while the $\mathrm{C}-\mathrm{N}$ bond length shortened from ground to excited state.

© 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University.

1. Introduction

Malignant tumor, i.e., cancer is a dreadful menace to human beings (Ye et al., 1999). The progress of potential and effective anticancer drugs has become one of the most intensely persuaded goals of contemporary medicinal chemistry. The role of schiff bases as intermediate products in biologically important reactions is well known (Rozwadowski et al., 2005).

[^0]

Benzothiazines find a number of applications in pharmaceutical chemistry (Gupta et al., 1985, 1993, 2002; Lombardino and Wiseman, 1972). The benzisothiazol derivatives are also excellent antimycobacterial and antitumor compounds.

There is no systematic structural study on $2 \mathrm{H}-1,2$-benzothi-azine-3-carboxylic acid, 4-hydroxy-2-(2-oxopropyl)-methyl ester, 1,1-dioxide (drug 1) which has been derived from benzothiazine of Chiaini et al. (1971) and Lorenzo et al. (1994), 2-[2-(3-chloro-phenyl)-2-oxoethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (drug 2) (Khalid et al., 2010a,b) and (3-chlorophenyl)(4-hydro-xy-1,1-dioxido-2H-1,2-benzothiazine-3-yl)methanone (drug 3) (Khalid et al., 2010a,b, p. o885), see Fig. 1.

The PBE1PBE (also called PBE0) functional has been recognized to provide reliable predictions and interpretations of the molecular geometries for sulfur compounds in good agreement with experimental data for organic molecules bearing

drug 1

drug 2

drug 3

Figure 1 Investigated drugs in the present study.
sulfur atoms (Perpète et al., 2006; Tang and Zhang, 2011; Jacquemin and Perpète, 2006). In the present study we have shed light on the ground and excited state geometries of the selected compounds. We pointed out which functional B3LYP or PBE0 is good to predict the $\mathrm{C}-\mathrm{S}, \mathrm{O}-\mathrm{S}, \mathrm{N}-\mathrm{S}, \mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ bond lengths as well as the bond angles that originated from the $\mathrm{C}, \mathrm{N}, \mathrm{O}$ and S elements.

2. Computational details

It is well reported that the density-functional theory (DFT) is a useful method for the investigation of the geometries of molecules (Scott and Radom, 1996; Irfan et al., 2009; Jacob and Fiscker, 2002; Andersen et al., 1999; Song et al., 2005). The ground state geometry optimizations were performed with Becke-Lee-Yang-Parr's three-parameter hybrid functional (B3LYP) (Becke, 1993) and PBE0 (Perdew et al., 1996, 1997; Adamo and Barone, 1999) with $6-31 \mathrm{G}^{* *}$ basic set (Hehre et al., 1986). All calculations were performed with the Gaussian 09W program suit (Frisch, 2009). The excited state geometries have been computed by time dependent DFT (TD-DFT) (Bauernschmitt and Ahlrichs, 1996; Casida et al., 1998; Stratmann et al., 1998; Scalmani et al., 2006; Furche and Ahlrichs, 2002) by using TD-B3LYP $/ 6-31 \mathrm{G}^{* *}$ and TD-PBE0 $/ 6-31 \mathrm{G}^{* *}$ levels of theories.

3. Results and discussion

3.1. Geometries

The bond lengths and bond angles of drug 1 have been presented in Table 1 along with the experimental data of ground state geometry. B3LYP and PBE0 overestimate the $\mathrm{S}_{0}-\mathrm{O}_{1}$ $0.035,0.019 \AA, \mathrm{~S}_{0}-\mathrm{N}_{7} 0.056,0.038 \AA, \mathrm{~S}_{0}-\mathrm{C}_{8} 0.027$ and $0.012 \AA$, respectively, compared to experimental data (Chiaini et al., 1971; Lorenzo et al., 1994). B3LYP and PBE0 underestimate the $\mathrm{C}_{17}-\mathrm{O}_{5} 0.012,0.023 \AA, \mathrm{C}_{14}-\mathrm{O}_{3} 0.012$ and $0.022 \AA$, respectively. B3LYP and PBE0 underestimate the $\mathrm{C}_{15}-\mathrm{N}_{7}$, $0.010,0.018 \AA, \mathrm{C}_{18}-\mathrm{N}_{7} 0.012$ and $0.023 \AA$, respectively. The excited state bond lengths are analogous at both the levels of B3LYP and PBE0. Generally, $\mathrm{C}_{16}-\mathrm{O}_{4}, \mathrm{C}_{16}-\mathrm{O}_{5}$, and $\mathrm{S}_{0}-\mathrm{N}_{7}$ excited state bond lengths are elongated to $0.014,0.017$, and $0.091 \AA$ A , respectively, while $\mathrm{C}_{19}-\mathrm{O}_{6}, \mathrm{C}_{15}-\mathrm{N}_{7}$, and $\mathrm{C}_{18}-\mathrm{N}_{7}$ shortened to $0.012,0.025,0.046 \AA$, respectively, at $\mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}^{* *}$ level of theory. The $\mathrm{S}_{0}-\mathrm{O}_{1}, \mathrm{C}_{16}-\mathrm{O}_{4}, \mathrm{C}_{16}-\mathrm{O}_{5}$, and $\mathrm{S}_{0}-\mathrm{N}_{7}$ excited state bond lengths are elongated to $0.016,0.018,0.026$, and $0.109 \AA$, respectively, while $\mathrm{C}_{19}-\mathrm{O}_{6}, \mathrm{C}_{15}-\mathrm{N}_{7}$, and $\mathrm{C}_{18}-\mathrm{N}_{7}$

Table 1 Bond lengths (\AA) and bond angles (degree) of drug 1 at B3LYP/6-31G** and PBE0/6-31G** levels of theories.

	B3LYP $^{\mathrm{a}}$	PBE0 $^{\mathrm{b}}$	Exp	B3LYP $^{\mathrm{c}}$	PBE0 $^{\mathrm{d}}$
Bond lengths					
$\mathrm{S}_{0}-\mathrm{O}_{1}$	1.469	1.453	1.434	1.469	1.469
$\mathrm{C}_{16}-\mathrm{O}_{4}$	1.239	1.235	1.230	1.253	1.253
$\mathrm{C}_{17}-\mathrm{O}_{5}$	1.440	1.429	1.452	1.436	1.436
$\mathrm{C}_{14}-\mathrm{O}_{3}$	1.333	1.323	1.345	1.326	1.326
$\mathrm{C}_{19}-\mathrm{O}_{6}$	1.214	1.210	1.212	1.202	1.202
$\mathrm{C}_{16}-\mathrm{O}_{5}$	1.343	1.334	1.325	1.360	1.360
$\mathrm{~S}_{0}-\mathrm{N}_{7}$	1.690	1.672	1.634	1.781	1.781
$\mathrm{~S}_{0}-\mathrm{C}_{8}$	1.784	1.769	1.757	1.763	1.763
$\mathrm{C}_{15}-\mathrm{N}_{7}$	1.424	1.416	1.434	1.399	1.399
$\mathrm{C}_{18}-\mathrm{N}_{7}$	1.461	1.450	1.473	1.416	1.417
Bond angles					
$\mathrm{O}_{1}-\mathrm{S}_{0}-\mathrm{O}_{2}$	120.62	120.83	119.25	120.20	120.20
$\mathrm{~N}_{7}-\mathrm{S}_{0}-\mathrm{C}_{8}$	100.56	100.71	102.07	98.83	98.83
$\mathrm{~S}_{0}-\mathrm{N}_{7} \mathrm{C}_{15}$	115.50	115.33	114.91	117.33	117.33
$\mathrm{C}_{15}-\mathrm{N}_{7}-\mathrm{C}_{18}$	120.89	120.69	119.38	123.56	123.56
$\mathrm{~S}_{0}-\mathrm{C}_{8}-\mathrm{C}_{9}$	120.06	120.22	121.43	118.01	118.02
$\mathrm{~S}_{0}-\mathrm{C}_{8}-\mathrm{C}_{13}$	117.91	117.81	116.52	119.45	119.44
$\mathrm{~N}_{7}-\mathrm{C}_{15}-\mathrm{C}_{14}$	121.46	121.64	120.99	115.52	115.52
$\mathrm{~N}_{7}-\mathrm{C}_{18}-\mathrm{C}_{19}$	115.35	114.98	114.36	113.55	113.55
$\mathrm{O}_{3}-\mathrm{C}_{14}-\mathrm{C}_{15}$	122.50	122.54	123.04	118.07	118.07
$\mathrm{O}_{3}-\mathrm{C}_{14}-\mathrm{C}_{13}$	114.78	115.12	113.34	118.11	118.10
$\mathrm{O}_{6}-\mathrm{C}_{19}-\mathrm{C}_{18}$	121.96	121.75	121.98	121.96	121.75
$\mathrm{O}_{6}-\mathrm{C}_{19}-\mathrm{C}_{20}$	122.57	122.75	122.74	122.57	122.75
$\mathrm{C}_{17}-\mathrm{O}_{5}-\mathrm{C}_{16}$	115.62	115.20	115.78	115.62	115.20
$\mathrm{O}_{4}-\mathrm{C}_{16}-\mathrm{O}_{5}$	121.79	121.87	123.75	121.78	121.87
$\mathrm{O}_{5}-\mathrm{C}_{16}-\mathrm{C}_{15}$	114.78	114.79	113.78	114.78	114.79

$\operatorname{Exp}=$ experimental data at ground state (Chiaini et al., 1971; Lorenzo et al., 1994).
${ }^{\mathrm{ab}}$ Ground state.
${ }^{\text {cd }}$ Excited state.
shortened to $0.008,0.017,0.033 \AA$, respectively, at PBE0/6$31 \mathrm{G}^{* *}$ level of theory.

All the angles $\mathrm{O}-\mathrm{S}-\mathrm{O}, \mathrm{N}-\mathrm{S}-\mathrm{C}, \mathrm{N}-\mathrm{C}-\mathrm{C}, \mathrm{O}-\mathrm{C}-\mathrm{C}, \mathrm{O}-\mathrm{C}-\mathrm{O}$, and $\mathrm{S}-\mathrm{C}-\mathrm{C}$ deviate by $<2^{\circ}$ compared to experimental data computed at B3LYP $/ 6-31 \mathrm{G}^{* *}$ and PBE0 $/ 6-31 \mathrm{G}^{* *}$ levels of theories which disclosed that both of the levels are good to reproduce the bond angles. The excited state bond angles of $\mathrm{C}_{15}-\mathrm{N}_{7}-\mathrm{C}_{18}$ and $\mathrm{O}_{3}-\mathrm{C}_{14}-\mathrm{C}_{13}$ are 2.67° and 3.33° larger, respectively, compared to ground state. The excited state bond angles of $\mathrm{S}_{0}-\mathrm{C}_{8}-\mathrm{C}_{9}, \mathrm{~N}_{7}-\mathrm{C}_{15}-\mathrm{C}_{14}$, and $\mathrm{O}_{3}-\mathrm{C}_{14}-\mathrm{C}_{15}$ are $2.05^{\circ}, 5.94^{\circ}$, and 4.43° smaller, respectively, compared to ground state at

Table 2 Bond lengths (\AA) and bond angles (degree) of drug 2 at B3LYP/6-31G** and PBE0 $/ 6-31 \mathrm{G}^{* *}$ levels of theories.

	B3LYP $^{\mathrm{a}}$	PBE0 $^{\mathrm{b}}$	Exp	B3LYP $^{\mathrm{c}}$	PBE0 $^{\mathrm{d}}$
Bond lengths					
$\mathrm{S}_{1}-\mathrm{O}_{3}$	1.462	1.453	1.428	1.461	1.460
$\mathrm{C}_{15}-\mathrm{O}_{5}$	1.215	1.211	1.206	1.288	1.288
$\mathrm{C}_{13}-\mathrm{O}_{2}$	1.216	1.211	1.207	1.219	1.217
$\mathrm{~N}_{6}-\mathrm{C}_{13}$	1.394	1.388	1.387	1.395	1.395
$\mathrm{~S}_{1}-\mathrm{N}_{6}$	1.728	1.708	1.671	1.742	1.743
$\mathrm{~S}_{1}-\mathrm{C}_{7}$	1.786	1.772	1.755	1.787	1.787
$\mathrm{~N}_{6}-\mathrm{C}_{14}$	1.446	1.436	1.456	1.445	1.445
$\mathrm{C}_{18}-\mathrm{Cl}_{0}$	1.757	1.738	1.740	1.764	1.764
Bond angles					
$\mathrm{O}_{4}-\mathrm{S}_{1}-\mathrm{O}_{3}$	118.99	119.01	117.00	119.84	119.84
$\mathrm{~N}_{6}-\mathrm{S}_{1}-\mathrm{C}_{7}$	91.20	91.42	92.64	90.90	90.90
$\mathrm{~S}_{1}-\mathrm{N}_{6}-\mathrm{C}_{13}$	115.19	115.47	115.43	114.89	114.89
$\mathrm{C}_{14}-\mathrm{N}_{6}-\mathrm{C}_{13}$	121.96	121.59	122.70	121.89	121.88
$\mathrm{~S}_{1}-\mathrm{C}_{7}-\mathrm{C}_{8}$	126.88	126.95	127.13	126.61	126.60
$\mathrm{~S}_{1}-\mathrm{C}_{7}-\mathrm{C}_{12}$	110.51	110.50	109.90	110.80	110.80
$\mathrm{~N}_{6}-\mathrm{C}_{14}-\mathrm{C}_{15}$	112.16	111.74	111.71	114.02	114.01
$\mathrm{~N}_{6}-\mathrm{C}_{13}-\mathrm{C}_{12}$	109.05	108.83	108.81	109.29	109.29
$\mathrm{O}_{3}-\mathrm{S}_{1}-\mathrm{C}_{7}$	112.66	112.77	112.54	111.88	111.87
$\mathrm{O}_{4}-\mathrm{S}_{1}-\mathrm{N}_{7}$	110.09	109.85	108.98	108.19	108.18
$\mathrm{O}_{2}-\mathrm{C}_{13}-\mathrm{C}_{12}$	126.92	127.13	127.45	127.32	127.32
$\mathrm{O}_{2}-\mathrm{C}_{13}-\mathrm{N}_{6}$	124.02	124.02	123.68	123.38	123.38
$\mathrm{O}_{5}-\mathrm{C}_{15}-\mathrm{C}_{16}$	121.67	121.69	121.92	124.86	124.86
$\mathrm{O}_{5}-\mathrm{C}_{15}-\mathrm{C}_{14}$	120.28	120.30	120.69	110.86	110.87
$\mathrm{Cl}_{0}-\mathrm{C}_{18}-\mathrm{C}_{17}$	119.26	119.34	119.19	118.67	118.66
$\mathrm{Cl}_{0}-\mathrm{C}_{18}-\mathrm{C}_{19}$	119.45	119.52	118.06	118.63	118.63

Exp $=$ experimental data at ground state (Khalid et al., 2010a,b).
${ }^{\mathrm{ab}}$ Ground state.
${ }^{\text {cd }}$ Excited state.

B3LYP/6-31G ${ }^{* *}$ level of theory. The excited state bond angles of $\mathrm{C}_{15}-\mathrm{N}_{7}-\mathrm{C}_{18}$ and $\mathrm{O}_{3}-\mathrm{C}_{14}-\mathrm{C}_{13}$ are 2.87° and 2.99° larger, respectively, compared to ground state. The excited state bond angles of $\mathrm{S}_{0}-\mathrm{C}_{8}-\mathrm{C}_{9}, \mathrm{~N}_{7}-\mathrm{C}_{15}-\mathrm{C}_{14}$, and $\mathrm{O}_{3}-\mathrm{C}_{14}-\mathrm{C}_{15}$ are 2.20°, 6.12°, and 4.47° smaller, respectively, compared to ground state at PBE0/6-31G** level of theory.

The experimental and computed bond lengths and bond angles of drug 2 have been tabulated in Table 2. B3LYP (PBE0) overestimate the $\mathrm{S}_{1}-\mathrm{O}_{3}, \mathrm{~S}_{1}-\mathrm{N}_{6}, \mathrm{~S}_{1}-\mathrm{C}_{7}$ and $\mathrm{C}_{18}-\mathrm{Cl}_{0}$ as $0.034 \AA$ $(0.025 \AA), 0.057 \AA(0.034 \AA), 0.031 \AA(0.017 \AA)$ and $0.017 \AA$, respectively, compared to experimental geometries (Khalid et al., 2010a,b). B3LYP and PBE0 underestimate the $\mathrm{N}_{6}-\mathrm{C}_{14}$, as 0.010 and $0.020 \AA$, respectively. The excited state bond lengths are analogous at both the levels. Generally, $\mathrm{C}_{15}-\mathrm{O}_{5}$, and $\mathrm{S}_{1}-\mathrm{N}_{6}$ of excited state bond lengths are elongated to 0.073 and $0.014 \AA$, respectively, at B3LYP $/ 6-31 \mathrm{G}^{* *}$ level of theory. The $\mathrm{C}_{15}-\mathrm{O}_{5}$, $\mathrm{S}_{1}-\mathrm{N}_{6}, \mathrm{~S}_{1}-\mathrm{N}_{6}$, and $\mathrm{C}_{18}-\mathrm{Cl}_{0}$ of excited state bond lengths are elongated to $0.077,0.035,0.015$, and $0.026 \AA$, respectively, at PBE0/6-31G** level of theory.

We have observed that all the angles, i.e., $\mathrm{O}-\mathrm{S}-\mathrm{O}, \mathrm{N}-\mathrm{S}-\mathrm{C}$, $\mathrm{N}-\mathrm{C}-\mathrm{C}, \mathrm{O}-\mathrm{C}-\mathrm{C}, \mathrm{O}-\mathrm{C}-\mathrm{O}, \mathrm{S}-\mathrm{C}-\mathrm{C}$ and $\mathrm{Cl}-\mathrm{C}-\mathrm{C}$ are in good agreement with experimental data. The excited state bond angle of $\mathrm{O}_{5}-\mathrm{C}_{15}-\mathrm{C}_{16}$ is almost 3.19° larger while $\mathrm{O}_{5}-\mathrm{C}_{15}-\mathrm{C}_{14}$ is 9.42° smaller than the ground state at both the levels of theories.

In Table 3, we have tabulated the experimental and computed bond lengths and bond angles of drug 3. B3LYP overestimate the $\mathrm{S}_{1}-\mathrm{O}_{2}, \mathrm{C}_{18}-\mathrm{Cl}_{0}, \mathrm{~S}_{1}-\mathrm{N}_{6}$, and $\mathrm{S}_{1}-\mathrm{C}_{7}$ as $0.038,0.020$,

Table 3 Bond lengths (\AA) and bond angles (degree) of drug 3 at B3LYP/6-31G** and PBE0/6-31G** levels of theories.

	B3LYP $^{\mathrm{a}}$	PBE0 $^{\mathrm{b}}$	Exp	B3LYP $^{\mathrm{c}}$	PBE0 $^{\mathrm{d}}$
Bond lengths					
$\mathrm{S}_{1}-\mathrm{O}_{2}$	1.462	1.454	1.424	1.459	1.460
$\mathrm{C}_{15}-\mathrm{O}_{5}$	1.257	1.252	1.250	1.273	1.275
$\mathrm{C}_{13}-\mathrm{O}_{4}$	1.322	1.312	1.327	1.334	1.336
$\mathrm{Cl}_{0}-\mathrm{C}_{18}$	1.759	1.739	1.739	1.766	1.766
$\mathrm{~S}_{1}-\mathrm{N}_{6}$	1.681	1.664	1.604	1.759	1.759
$\mathrm{~S}_{1}-\mathrm{C}_{7}$	1.788	1.780	1.747	1.781	1.782
$\mathrm{C}_{14}-\mathrm{N}_{6}$	1.431	1.436	1.422	1.341	1.342
Bond angles					
$\mathrm{O}_{2}-\mathrm{S}_{1}-\mathrm{O}_{3}$	121.52	121.65	118.25	120.85	120.86
$\mathrm{~N}_{6}-\mathrm{S}_{1}-\mathrm{C}_{7}$	100.59	100.66	101.04	98.61	98.61
$\mathrm{~S}_{1}-\mathrm{N}_{6}-\mathrm{C}_{14}$	117.62	117.25	119.33	125.03	125.05
$\mathrm{~S}_{1}-\mathrm{C}_{7}-\mathrm{C}_{12}$	118.42	118.35	117.44	120.61	120.61
$\mathrm{O}_{2}-\mathrm{S}_{1}-\mathrm{N}_{6}$	106.79	106.90	108.38	105.11	105.11
$\mathrm{O}_{3}-\mathrm{S}_{1}-\mathrm{C}_{7}$	108.72	108.63	106.32	110.36	110.36
$\mathrm{~N}_{6}-\mathrm{C}_{14}-\mathrm{C}_{15}$	120.49	120.87	120.78	119.02	119.00
$\mathrm{~N}_{6}-\mathrm{C}_{14}-\mathrm{C}_{13}$	120.23	120.35	118.69	121.34	121.36
$\mathrm{O}_{5}-\mathrm{C}_{15}-\mathrm{C}_{16}$	117.99	118.12	117.93	129.91	129.91
$\mathrm{O}_{5}-\mathrm{C}_{15}-\mathrm{C}_{14}$	119.32	119.37	119.18	107.60	107.61
$\mathrm{O}_{4}-\mathrm{C}_{13}-\mathrm{C}_{14}$	121.79	121.80	122.35	116.26	116.26
$\mathrm{O}_{4}-\mathrm{C}_{13}-\mathrm{C}_{12}$	115.34	115.76	115.07	119.86	119.86
$\mathrm{Cl}_{0}-\mathrm{C}_{18}-\mathrm{C}_{19}$	119.34	119.42	119.31	118.27	118.27
$\mathrm{Cl}_{0}-\mathrm{C}_{18}-\mathrm{C}_{17}$	119.40	119.49	119.03	119.11	119.12
$\mathrm{Exp}-2$					

$\operatorname{Exp}=$ experimental data at ground state (Khalid et al., 2010a,b, p. o885).
${ }^{a b}$ Ground state.
${ }^{\text {cd }}$ Excited state.
0.077 and $0.041 \AA$, respectively, compared to experimental bond lengths (Khalid et al., 2010a,b, p. o885). PBE0 overestimate the $\mathrm{S}_{1}-\mathrm{O}_{2}, \mathrm{~S}_{1}-\mathrm{N}_{6}$, and $\mathrm{S}_{1}-\mathrm{C}_{7}$ as $0.030,0.060$, and $0.033 \AA$, respectively, compared to experimental data. PBE0 underestimate the $\mathrm{C}_{13}-\mathrm{O}_{4}$, as $0.015 \AA$. Usually, $\mathrm{C}_{15}-\mathrm{O}_{5}$, and $\mathrm{S}_{1}-\mathrm{N}_{6}$ of excited state bond lengths are elongated to 0.016 and $0.078 \AA$, respectively, while $\mathrm{C}_{14}-\mathrm{N}_{6}$ shortened to $0.09 \AA$ compared to ground state at $\mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}^{* *}$ level of theory. $\mathrm{C}_{15}-\mathrm{O}_{5}, \mathrm{C}_{13}-\mathrm{O}, \mathrm{C}_{18}-\mathrm{Cl}_{0}$ and $\mathrm{S}_{1}-\mathrm{N}_{6}$ of excited state bond lengths are elongated to $0.023,0.020,0.027$ and $0.095 \AA$, respectively, while $\mathrm{C}_{14}-\mathrm{N}_{6}$ shortened to $0.094 \AA$ compared to ground state at PBE0/6-31G** level of theory.

We noticed that B3LYP and PBE0 overestimate bond angles, i.e., $\mathrm{O}_{1}-\mathrm{S}_{1}-\mathrm{O}_{2}$ and $\mathrm{O}_{3}-\mathrm{S}_{1}-\mathrm{C}_{7}$ as 3.27° and 2.40°, respectively. The excited state bond angles of $\mathrm{S}_{1}-\mathrm{N}_{6}-\mathrm{C}_{14}, \mathrm{~S}_{1}-\mathrm{C}_{7}$ $\mathrm{C}_{12}, \mathrm{O}_{5}-\mathrm{C}_{15}-\mathrm{C}_{16}$, and $\mathrm{O}_{4}-\mathrm{C}_{13}-\mathrm{C}_{12}$, are almost $7.41^{\circ}, 2.19^{\circ}$, 11.92°, and 4.52° larger while $\mathrm{O}_{5}-\mathrm{C}_{15}-\mathrm{C}_{14}$ and $\mathrm{O}_{4}-\mathrm{C}_{13}-\mathrm{C}_{14}$ are 11.72° and 5.53° smaller, respectively, than the ground state at the B3LYP/6-31G** and PBE0/6-31G ${ }^{* *}$ levels of theories.

We have observed that B3LYP is not good to predict the S$\mathrm{O}, \mathrm{S}-\mathrm{N}$ and $\mathrm{S}-\mathrm{C}$ bond lengths while PBE0 is reliable to envisage the $\mathrm{S}-\mathrm{O}$ and $\mathrm{S}-\mathrm{C}$ bond lengths up to some extent. It was also revealed that B3LYP is good to reproduce the $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ bond lengths. Both the functionals are good to predict $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{Cl}$ bond lengths. B3LYP would be a better choice if investigated compounds have $\mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{C}$ or $\mathrm{C}-\mathrm{Cl}$. But selection of PBE0 to expect the $\mathrm{S}-\mathrm{O}$ and $\mathrm{S}-\mathrm{C}$ might be good but not for all the cases. Both of the functionals are not reliable to imitate $\mathrm{S}-\mathrm{N}$ experimental data. Moreover, it has also been
revealed that $\mathrm{S}-\mathrm{N}$ bond length elongated while $\mathrm{C}-\mathrm{N}$ bond length shortened from ground to excited state. In the excited state, a major change in $\mathrm{O}-\mathrm{C}-\mathrm{C}$ bond angles toward superior or inferior has been observed compared to the ground state especially with the carbonyl angles.

4. Conclusions

In the framework of our present theoretical investigation, we can draw the following conclusions:
(a) B3LYP is not good to predict the $\mathrm{S}-\mathrm{O}, \mathrm{S}-\mathrm{N}$ and $\mathrm{S}-\mathrm{C}$ bond lengths while PBE0 is reliable to envisage the S O and $\mathrm{S}-\mathrm{C}$ bond lengths.
(b) The $\mathrm{S}-\mathrm{N}$ bond length elongated while the $\mathrm{C}-\mathrm{N}$ bond length shortened from ground to excited state.
(c) In the excited state, a major change in $\mathrm{O}-\mathrm{C}-\mathrm{C}$ bond angles toward superior or inferior has been observed compared to the ground state especially with the carbonyl angles.
(d) B3LYP is good to reproduce the $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ bond lengths.
(e) Both the functionals are good to predict $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{Cl}$ bond lengths.
(f) B3LYP would be a better choice if investigated compounds have $\mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{C}$ or $\mathrm{C}-\mathrm{Cl}$ but selection of PBE0 is expected to predict $\mathrm{S}-\mathrm{O}$ and $\mathrm{S}-\mathrm{C}$ in a reasonable manner but not for all the cases.
(g) Both of the functionals are not reliable to imitate $\mathrm{S}-\mathrm{N}$ experimental data.

Acknowledgment

We are pleased to thank KKU for facilities and support to carry out the research.

References

Adamo, C., Barone, V., 1999. J. Chem. Phys. 110, 6158-6169.
Andersen, K.B., Langgard, M., Sparget-Larsen, J., 1999. J. Mol. Struct. 509, 153-163.

Bauernschmitt, R., Ahlrichs, R., 1996. Chem. Phys. Lett. 256, 454-464. Becke, A.D., 1993. J. Chem. Phys. 98, 5648-5652.
Casida, M.E., Jamorski, C., Casida, K.C., Salahub, D.R., 1998. J. Chem. Phys. 108, 4439-4449.
Chiaini, J., Wiseman, E.H., Lombardino, J.G., 1971. J. Med. Chem. 14, 1175-1177.
Frisch, M.J., et al., 2009. Gaussian 09, Revision A.1; Gaussian, Inc.: Wallingford, CT.
Furche, F., Ahlrichs, R., 2002. J. Chem. Phys. 117, 7433-7447.
Gupta, R.R., Kumar, R., Gautam, R.K., 1985. J. Fluorine Chem. 28, 381-385.
Gupta, R.R., Dev, P.K., Sharma, M.L., Rajoria, C.M., Gupta, A., Nyati, M., 1993. Anticancer Drugs 4, 589-592.
Gupta, S.K., Bansal, P., Bhardwaj, R.K., Jaiswal, J., Velpandian, T., 2002. Skin Pharmacol. Appl. Skin Physiol. 15, 105-111.

Hehre, W.J., Radom, L., Schleyer, P.V.R., Pople, J.A., 1986. Ab Initio Molecular Orbital Theory. Wiley, New York.
Irfan, A., Cui, R., Zhang, J., Hao, L., 2009. Chem. Phys. 364, 39-45.
Jacob, R., Fiscker, G., 2002. J. Mol. Struct. 613, 175-188.
Jacquemin, D., Perpète, E.A., 2006. Chem. Phys. Lett. 429, 147-152.
Khalid, Z., Siddiqui, H.L., Ahmad, M., Aslam, S., Parvez, M., 2010a. Acta Crystallogr. E66, o885.
Khalid, Z., Siddiqui, H.L., Ahmad, M., Bukhari, I.H., Parvez, M., 2010b. Acta Crystallogr. E66, 0617.
Lombardino, J.G., Wiseman, E.H., 1972. J. Med. Chem. 15, 848-849.
Lorenzo, M.G., Schapira, C.B., Perillo, I.A., 1994. Spectrosc. Lett. 27, 387-395.
Perdew, J.P., Burke, K., Ernzerhof, M., 1996. Phys. Rev. Lett. 77, 3865-3868.
Perdew, J.P., Burke, K., Ernzerhof, M., 1997. Phys. Rev. Lett. 78, 1396.

Perpète, E.A., Preat, J., Andre, J.M., Jacquemin, D., 2006. J. Phys. Chem. A 110, 5629-5635.
Rozwadowski, Z., Ambroziak, K., Szypa, M., Jagodzińska, E., Spychaj, S., Schilf, W., Kamieński, B., 2005. J. Mol. Struct. 734, 137-142.
Scalmani, G., Frisch, M.J., Mennucci, B., Tomasi, J., Cammi, R., Barone, V., 2006. J. Chem. Phys. 124, 094107-094121.
Scott, A.P., Radom, L., 1996. J. Phys. Chem. 100, 16502-16513.
Song, Y.Z., Zhou, J.F., Song, Y., Wei, Y.G., Wang, H., 2005. Bioorg. Med. Chem. Lett. 15, 4671-4680.
Stratmann, R.E., Scuseria, G.E., Frisch, M.J., 1998. J. Chem. Phys. 109, 8218-8224.
Tang, S., Zhang, J., 2011. Int. J. Quantum Chem. 111, 2089-2098.
Ye, Y., Hu, J.M., He, L., Zeng, Y., 1999. Vib. Spectrosc. 20, 1-4.

[^0]: * Corresponding author. Tel.: + 96672418632 ; fax: +96672418426.

 E-mail address: irfaahmad@gmail.com (A. Irfan).
 Peer review under responsibility of King Saud University.

