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a b s t r a c t

In this paper, we address the problem of applying SAT-based bounded model checking
(BMC) and temporal k-induction to asynchronous concurrent systems. We investigate
refinement checking in the process-algebraic setting of Communicating Sequential
Processes (CSP), focusing on the CSP traces model which is sufficient for verifying safety
properties.We adapt the BMC framework to the context of CSP and the existing refinement
checker FDR yielding bounded refinement checking which also lays the foundation for
tailoring the k-induction technique. As refinement checking reduces to checking for reverse
containment of possible behaviours, we exploit the SAT-solver to decide bounded language
inclusion as opposed to bounded reachability of error states, as in most existing model
checkers. Due to the harder problem to decide and the presence of invisible silent actions in
process algebras, the original syntactic translation of BMC to SAT cannot be applied directly
and we adopt a semantic translation algorithm based on watchdog transformations. We
propose a Boolean encoding of CSP processes resting on FDR’s hybrid two-level approach
for calculating the operational semantics using supercombinators. We have implemented
a prototype tool, SymFDR, written in C++, which uses FDR as a shared library for
manipulating CSP processes and the state-of-the-art incremental SAT-solver MiniSAT 2.0.
Experiments with BMC indicate that in some cases, especially in complex combinatorial
problems, SymFDR significantly outperforms FDR and even copes with problems that are
beyond FDR’s capabilities. SymFDR in k-induction mode works reasonably well for small
test cases, but is inefficient for larger ones as the threshold becomes too large, due to
concurrency.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Model checking [10,5,3] is a powerful automatic formal verification technique for establishing correctness of systems. It
requires a finite-statemodel of a system, capturing all its possible behaviours, and a specification property, usuallymodelled
as a formula in some kind of temporal logic. The model checker performs analysis based on exhaustive exploration of the
state space of the system to either confirm or refute that the system meets its specification. In the latter case, the model
checker provides a counterexample trace for reproducing and fixing the bug. Model checking is complete and, therefore,
reliable when pronouncing a system correct.

The main challenge in applying model checking in practice is the so-called state-space explosion problem which tends to
be evenmore severe in the context of concurrent systems. The state-space of a concurrent system grows exponentially with
the number of its concurrent components and the number and size of its data values. This puts restrictions on the size of
systems that can be tractably analysed.
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To alleviate the state-space explosion problem, a significant number of techniques have been proposed. Methods for
decreasing the size of the generated state space and enhancing the model checking algorithm include CEGAR [9], partial-
order reductions [10,26], bounded model checking [1], etc. Regarding state-space representation, the major dichotomy
is between explicit and symbolic [2,1] model checking. Explicit model checking is based on explicit enumeration and
examination of individual states. Symbolic model checking relies on abstract representation of sets of states, generally as
Boolean formulae, and properties are validated using techniques such as BDD manipulation or SAT-solving.

The recent advances of efficient SAT-solvers have significantly broadened the horizons of symbolic model checking.
SAT-based bounded model checking [1] has proven to be an extremely powerful technique, mainly suited, due to its
incompleteness, to falsification of properties. Approaches for making BMC complete include calculating completeness
thresholds [11,12] or augmenting BMC with k-induction [38,16] or Craig interpolation [25] techniques.

Both bounded and unbounded SAT-based model checking have been mainly investigated in the context of hardware
and sequential software systems. In this paper, we address applying BMC and temporal k-induction [16] to asynchronous
concurrent systems.

The general problem we investigate is refinement checking in process-algebraic settings and, more specifically, in the
context of CSP [19,31,33].

In process algebras, systems are modelled as interactions of a collection of processes, communicating with each other
and with the outer world via message passing, as opposed to shared variables. Using a high-level language, processes are
defined compositionally and compiled into a hierarchical structure, starting with atomic process constructs and combining
those using operators such as choice, parallel and sequential composition, hiding, etc. This allows for a way of describing
reactive systems that is usually very concise and much more economical in state space than shared-variable languages.

Unlike in conventionalmodel checking, where specifications are generally defined as temporal-logic formulae, in process
algebras specifications are defined as abstract designs of the systems, i.e. as processes, which allows for a step-wise
development process. The refinement checking procedure decides whether the behaviours of the system are a subset of the
behaviours of the specification, i.e. whether the system refines the specification. Hence, the verification problem reduces to
checking for reverse containment of behaviours and, therefore, to reverse language inclusion.

Developed in the late 1970’s by Hoare, CSP is one of the two original process algebras. It allows for the precise description
and analysis of event-based concurrency. An advantage of the CSP framework is that it offers a well-developed syntax,
algebraic and operational semantics, a hierarchy of congruent denotational semantic models, as well as a formal theory
of refinement and compositional verification. In terms of syntax and semantics, among other differences with existing
formalisms for modelling concurrent systems, CSP supports the usage of broadcast communication, recursion, as well as
hiding and renaming of events, both of which are powerful mechanisms for abstraction.

FDR [30,17] is acknowledged as the primary tool for CSP refinement checking and has been widely used for analysing
safety-critical systems. The core of FDR is refinement checking in each of the semantic models, which is carried out on
the level of the operational representation of the CSP processes and is implemented using explicit state enumeration
supplemented by hierarchical state-space compression techniques. When deciding whether an implementation process
Impl refines a normalised specification process Spec , FDR follows algorithms exploring the Cartesian product of the state
spaces of Spec and Impl in a way comparable to conventional model checking. Although until now FDR has followed the
explicit model checking approach, there has been some work on the symbolic model checking of CSP resulting in the BDD-
based refinement checker ARC [27] and the model checker PAT [37], both of which exploit a fully compositional encoding
of CSP processes. PAT verifies systems defined in a version of CSP enhanced with shared variables and, within the BMC
framework, it uses specifications defined as reachability properties on the values of the shared variables, which requires a
different model checking algorithm based on reachability and not on language containment.

This paper reports our attempts to integrate SAT-based BMC and temporal k-induction into FDR. The former technique
is incomplete and as such is only suitable to detecting bugs. k-induction, however, is complete and can also be used for
establishing the correctness of systems. Hence, to the best of our knowledge, this is the first attempt to apply unbounded
SAT-based refinement checking to CSP.We propose an alternative Boolean encoding of CSP processes based on FDR’s hybrid
two-level approach for calculating the operational semantics using supercombinators [18]. As we deal with a problem that
reduces to language inclusion instead of to reachability and due to the presence of invisible hidden actions in process
algebras, the original syntactic translation of BMC to SAT cannot be applied directly and we adopt a semantic translation
algorithm based on watchdog transformations [28]. Essentially, this involves reducing a refinement check into analysing
a single process which is constructed by putting the implementation process in parallel with a transformed specification
process. The latter plays the role of awatchdog thatmonitors andmarks violating behaviours.Within the scope of this paper,
we only consider the translation of trace refinement to SAT checking.

The result is a prototype tool SymFDR1 which, when combined with state-of-the-art SAT-solvers such as MiniSAT 2.0
[15,14], sometimes outperforms FDR by a significant margin in finding counterexamples. We compare the performance of
SymFDR with the performance of FDR, FDR used in a non-standard way, PAT [36] and, in some cases, NuSMV [7], Alloy
Analyzer [20] and straight SAT encodings tailored to the specific problems under consideration.

1 SymFDR’s binaries are expected to be online shortly.
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The remainder of the paper is organised as follows. In Section 2, we set out the necessary background on CSP and
FDR’s two-level strategy for performing refinement checks. We briefly describe the ideas underlying SAT-based BMC and
k-induction. In Section 3, we show how to adapt the watchdog approach [28] to BMC and, hence, to k-induction, while in
Section 4, we summarise the methods we use to translate FDR’s supercombinator representation of a state machine into
input for a SAT-solver. Section 5 gives details of how SymFDR is built on top of this, and Section 6 offers experimental
evaluation.

2. Preliminaries

2.1. CSP and FDR

In this section,we give a brief overviewof CSP and FDR. The interested reader is referred to [31,33,17] formore details.We
restrict our focus to the traces model exclusively, intentionally omitting information about other more expressive models
of CSP.

2.1.1. CSP syntax
In CSP, processes interactwith each other and an external environment by communicating events.More than one process

mayhave to cooperate in theperformance of an event, i.e. handshake on it. It is standard to distinguish betweenvisible events
that might need the cooperation of other processes or the environment and invisible internal actions that occur silently, are
not observable or controllable outside a process and model an internal computation such as nondeterminism, unfolding of
a recursion, abstraction of details.

Let Σ be a finite alphabet of visible events with τ ,X ∉ Σ . τ denotes the invisible silent action and X – a successful
termination of a process – a special action which is visible but uncontrollable from outside and can only occur last. In what
follows, we assume that a ∈ Σ , A ⊆ Σ and B ⊆ ΣX

= Σ ∪ {X}. R ⊆ Σ ×Σ denotes a renaming relation onΣ . For a given
process P , we denote by αP ⊆ Σ

X the set of all visible events that P can perform. We recall the core syntax of CSP.

Definition 2.1. A CSP process is defined recursively via the following grammar:

P = STOP | SKIP | DIV | x : A −→ P(x) | P1 � P2 | P1 ⊓ P2 |
P1 ∥

B
P2 | P1 # P2 | P \ A | PJRK | µ P • F(P)

STOP represents a deadlocked process, i.e. a process that is not capable of communicating any visible or τ actions. The
prefixed process x : A −→ P(x) initially offers the environment to perform any event a from A and subsequently behaves
like P(a).DIV denotes a livelock, i.e. a process that is engaged in performing an infinite loop of internal τ actionswithout ever
communicating with the external environment. The process SKIP denotes successful termination and is willing to perform
X at any time. P1 � P2 and P1 ⊓ P2 denote, respectively, external and internal choice of P1 and P2. In the former case the
choice is resolved by the environment while in the latter — nondeterministically. The parallel composition P1 ∥

B
P2 can

communicate an event from B only if both P1 and P2 are ready to do so — P1 and P2 need to handshake (synchronise) on the
events in B, but can perform independently on all other events. In practice, it is common to synchronise P1 and P2 on their
shared events, i.e. use B = αP1 ∩ αP2 . The sequential composition P1 # P2 behaves like P1 until P1 terminates successfully, at
which point it silently evolves into P2. P \ A behaves like P except that all events from A are being hidden, i.e. turned into
internal τ actions. Hence, the A events in P become invisible and uncontrollable by other processes or the environment by
means of synchronisation. PJRK behaves like P , except that, whenever P can perform an event a, PJRK can perform any event
b, such that aRb. µ P • F(P) denotes a recursive process.

FDR supports the language CSPM which extends core CSP with several further operators and an extensive functional
language. Our prototype tool SymFDR supports the full CSPM syntax, except that it cannot at present handle scripts using
the function chase.

2.1.2. Running example: Milner’s scheduler
Given a fixed N ∈ N, a scheduler must arrange two classes of events a.i and b.i for i ∈ {0, . . . ,N − 1}. There are two

requirements — the a.i-s should occur in strict rotation, i.e. a.0, a.1, . . . , a.N − 1  , a.0, a.1. . . . , a.N − 1  , . . ., and there

should be precisely one b.i between each pair of a.i-s.
In CSP, Milner’s scheduler can be modelled as a ring of cell processes synchronised using extra events c.i, as illustrated

on Fig. 1. An abstracted CSP script for Milner’s scheduler establishing the rotation specification is presented on Fig. 2. i⊕ 1
denotes (i+1)%N and, likewise, i⊖1— (i−1)%N . For each process Cell(i), we extend its alphabetαCell(i) = {a.i, b.i}with extra
events c.i and c.i⊕1 to use for synchronisingwith its neighbouring processes Cell(i⊖ 1) and Cell(i⊕ 1), respectively. Cell(0)
is defined in a slightly different way as the a-sequence should start with a.0. The scheduler is constructed by composing all
the cells in parallel and hiding all c-events on top as they have been introduced solely for synchronisation purposes. Within
Scheduler , the operator ∥ corresponds to synchronising the two argument processes on the set of their common events and
is fully associative. Hence, a cell can perform an event only if all other cells that have the same event in their alphabet are
also offering to do so. {| c |} is a shorthand for {c.i | i ∈ N}.
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Fig. 1. Milner’s scheduler for N = 5.

Cell(0) = a.0 −→ c.1 −→ b.0 −→ c.0 −→ Cell(0)
Cell(i) = c.i −→ a.i −→ c.i⊕ 1 −→ b.i −→ Cell(i) if i > 0
Scheduler = (Cell(0) ∥ Cell(1) ∥ . . . ∥ Cell(N − 1)) \ {| c |}
ASpec(i) = a.i −→ ASpec(i⊕ 1)
Spec = ASpec(0)
assert Spec ⊑T Scheduler \ {| b |}

Fig. 2. CSP syntax — Milner’s scheduler.

We give a rough idea of how Scheduler works andwhy it preserves the rotation specification (modelled as Spec). The only
process that can initially perform an event is Cell(0) — for all i > 0, Cell(i) is blocked as it needs Cell(i− 1) to also offer c.i.
After Cell(0) communicates a.0, the only thing that can happen next is Cell(0) and Cell(1) synchronising on c.1, thus enabling
Cell(1) to perform a.1. Concerning the sequence of a-s, the same process is repeated around the ring as, synchronising on
c.i⊕1, Cell(i) passes a token to Cell(i⊕ 1) to signify that it is Cell(i⊕ 1)’s turn to contribute an a.i⊕1. Obviously, the second
requirement for the scheduler is captured as well, also in the most general way.

2.1.3. Denotational semantics
Traditionally, the primary means of understanding CSP descriptions has been to use denotational (behavioural) models,

whereby a process is identified with the set of observable behaviours it can exhibit.
CSP supports a hierarchy of several such denotational semantic models. Different models describe different types of

behaviours, providing more or less information about a process, with the natural trade-off between the amount of details
recorded for a process and the complexity of working in the model. All denotational models are compositional in the sense
that the denotational value (the set of possible behaviours) of each process can be computed in terms of the denotational
values of its subcomponents. The value of a recursive process is obtained using standard fixed-point theory in the style of
Scott and Strachey.

In the simplest of allmodels, the tracesmodel, a process P is identifiedwith the set of its finite traces, denotedby traces(P).
Intuitively, a trace of a process is a sequence of visible actions that the process can perform. Naturally, the set of traces of a
process is non-empty and prefix-closed. For example, going back to the scheduler described on Fig. 2, a trace of Cell(0) is any
prefix of (a.0 c.1 b.0 c.0)∗. The traces model records information about what a process may do and is, therefore, sufficient
for verifying safety properties.

There are two different approaches for obtaining the set traces(P)— either by constructing it inductively from the traces
of its subcomponents, or by extracting it from the operational representation. Refer to [31] for the rules underlying the first
approach. Just to give a flavour of it in terms of Milner’s scheduler:

• traces(Spec) = {⟨⟩} ∪ {⟨a.0⟩t | t ∈ traces(ASpec(1))},
• traces(Scheduler) = {t � (Σ \ {| c |}) | t ∈ traces(Cell(0) ∥ . . . ∥ Cell(N − 1))}.

Since denotational values of processes are rather complex and often infinite, FDR calculates the behaviours of a process
from its standard operational representation which is justified by standard congruence theorems, presented and proven in
[31,29].

2.1.4. Operational semantics
The operational semanticsmodels CSP processes as labelled transition systems (LTSs), with nodes denoting processes and

labels denoting visible events or τ actions. Since the LTS representation is not unique, in terms of the operational semantics,
two processes are considered equivalent if they are strongly bisimilar [31]. The operational semantics can generally be
calculated by repeatedly applying a set of SOS-style inference rules, called firing rules. Firing rules provide recipes for
constructing an LTS out of a CSP description of a process. The recipes define how processes can evolve by calculating the
initial actions available at each node and the possible results after performing each action. The firing rules are presented
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below.We use an auxiliary process termΩ to denote any process that has already terminated successfully. If F is a CSP term
with a free process variable X and Q is a CSP process, F [Q/X] represents the process obtained by substituting every free
occurrence of X in F with Q . The last three rules reflect the fact that termination is distributive — P1 ∥

A
P2 terminates when

both P1 and P2 do. The reader is referred to [31] for more information.

SKIP
X
−→ Ω

(SKIP)

x : A→ P(x)
a
−→ P(a)

(a ∈ A) (
a
−→)

P1 ⊓ P2
τ
−→ P1 P1 ⊓ P2

τ
−→ P2

( ⊓ )

µ P • F(P)
τ
−→ F [(µ P • F(P))/P]

(µ P • F(P))

P1
τ
−→ P ′1

P1 � P2
τ
−→ P ′1 � P2

P2
τ
−→ P ′2

P1 � P2
τ
−→ P1 � P ′2

(�τ )

P1
b
−→ P ′1

P1 � P2
b
−→ P ′1

(b ∈ ΣX)
P2

b
−→ P ′2

P1 � P2
b
−→ P ′2

(b ∈ ΣX) (�ΣX )

P1
τ
−→ P ′1

P1 # P2
τ
−→ P ′1 # P2

(#τ )

P1
a
−→ P ′1

P1; P2
a
−→ P ′1; P2

(a ∈ Σ)
∃ P ′1.P1

X
−→ P ′1

P1; P2
τ
−→ P2

(#ΣX )

P
τ
−→ P ′

P \ A
τ
−→ P ′ \ A

(\Aτ )

P
X
−→ P ′

P \ A
X
−→ Ω

(\AX)

P
a
−→ P ′

P \ A
τ
−→ P ′ \ A

(a ∈ A)
P

a
−→ P ′

P \ A
a
−→ P ′ \ A

(a ∈ Σ \ A) (\AΣ )

P
τ
−→ P ′

PJRK
τ
−→ P ′JRK

(JRKτ )

P
X
−→ P ′

PJRK
X
−→ Ω

P
a
−→ P ′

PJRK
b
−→ P ′JRK

(aRb) (JRKΣX )

P1
τ
−→ P ′1

P1 ∥
A
P2

τ
−→ P ′1 ∥

A
P2

P2
τ
−→ P ′2

P1 ∥
A
P2

τ
−→ P1 ∥

A
P ′2

(∥
A
τ )

P1
a
−→ P ′1

P1 ∥
A
P2

a
−→ P ′1 ∥

A
P2
(a ∈ Σ \ A)

P2
a
−→ P ′2

P1 ∥
A
P2

a
−→ P1 ∥

A
P ′2
(a ∈ Σ \ A) (∥

A
Σ1 )

P1
a
−→ P ′1, P2

a
−→ P ′2

P1 ∥
A
P2

a
−→ P ′1 ∥

A
P ′2

(a ∈ A) (∥
A
Σ2 )

P1
X
−→ P ′1

P1 ∥
A
P2

τ
−→ Ω ∥

A
P2

P2
X
−→ P ′2

P1 ∥
A
P2

τ
−→ P1 ∥

A
Ω

(∥
A

X1 )

Ω ∥
A
Ω

X
−→ Ω

(∥
A

X2 )



H. Palikareva et al. / Science of Computer Programming 77 (2012) 1178–1197 1183

b

a

Fig. 3. Operational semantics — Milner’s scheduler.

Extracting behaviours from operational semantics. We now present how behaviours, in our case — traces, can be retrieved
from the operational semantics of a process. Intuitively, a trace of a process is obtained by trimming the invisible τ actions
from an execution of the LTS underlying the operational representation.

Formally, a labelled transition system is a quadruple M = ⟨S, s0, L, T ⟩, where S is a finite set of states, s0 ∈ S is the
initial state, L is a finite set of labels, T ⊆ S × L× S is the transition relation. For convenience, we write s

l
−→ s′ instead of

(s, l, s′) ∈ T . Furthermore, we write s
l
−→ if there exists s′ ∈ S, such that s

l
−→ s′. An execution of M is a finite or infinite

alternating sequence of states and events π = s0l1s1l2 . . . lnsn . . ., such that s0 is the initial state and for all i ≥ 0, si
li+1
−→ si+1.

Going back to our example, the LTSs of Cell(0) and Cell(1) are depicted on Fig. 3(b).
Let P be a finite-state process and OSP = ⟨SP , sP0, L

P
= Στ ,X, T P

⟩ be the LTS underlying the operational semantics of P .
We write Σ∗X to denote the set of finite words over Σ which might end with X, and similarly, (Στ )∗X. For p, q ∈ SP , we
use the following notation:

• initials(p) = {l ∈ ΣX
| p

l
−→}, i.e. initials(p) is the set of visible events that can be communicated from the state p.

• For t = ⟨xi | 0 ≤ i < n⟩ ∈ (Στ )∗X, we write p
t
−→ q if there exists a sequence of states p0, p1, . . . , pn, such that p0 = p,

pn = q and pk
xk
−→ pk+1 for k ∈ {0, . . . , n− 1}.

• For t ∈ Σ∗X, we write p t
=⇒ q if there exists t ′ ∈ (Στ )∗X, such that p

t ′
−→ q and t = t ′ � ΣX, i.e. t is t ′ with all the τ ’s

removed.

Then, we define traces(P) = {t ∈ Σ∗X | ∃ q ∈ SP .sP0
t
=⇒ q}.

2.1.5. Operational representation in FDR — the two-level approach
The SOS notation for operational semantics allows the creation of many operators that do not fit in the denotational

world of CSP. Any CSP operator can be described using less general combinator operational rules instead and, conversely,
any operator that can be given combinator operational semantics can be derived and given denotational semantics in CSP
[33]. Combinator-style semantics can be generalised to supercombinator operational semanticswhich is the one used in FDR.
We give details about both combinator and supercombinator semantics below.
Combinator rules. As with SOS, there are several combinator rules for each CSP operator and these allow us to infer the initial
actions available at each process node out of its top-level operator and the initial actions available at its immediate process
arguments. The crucial difference compared to SOS rules originates from the fact that process arguments can be viewed as
switched on or off, depending on the context they are used in. Given a compound CSP process P = ⊗(P1, . . . , Pn), a process
argument Pi is considered switched on if its initial actions are immediately relevant for the initial actions of P and switched
off if⊗ does not need its initial actions to deduce the resulting initial action of P . For example:

• in P1 9 P2 = P1 ∥
∅

P2, both P1 and P2 are switched on

• in P1 # P2, P2 is initially switched off until P1 performs X, at which point P1 becomes switched off and P2 switched on
• in a −→ P , P is initially switched off but gets switched on when a is communicated
• in P1 ⊓ P2, P1 and P2 are initially switched off as the nondeterministic choice is only resolved after a τ is performed, at

which point precisely one of the two processes becomes activated.

Combinator rules keep track of which processes are switched on at every given moment and restrict SOS by allowing
only two types of rules:

• rules enforcing that whenever a switched-on process argument performs a τ , this is promoted to a τ of the compound
process that does not change its structure.
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• rules combining visible events of switched-on process arguments (if any) into a resulting action of the compound process.
In those rules, a switched-on process can participatewith either a visible event or not be involved at all, the latter ofwhich
we denote with the symbol ϵ.

Combinator rules also need to indicate the structure of the successor term. In many instances, the structure is the same
as the initial one and so does not have to bementioned explicitly in the rules.When the structure does change (i.e. processes
become switched fromon to off or conversely), this is indicated by a CSP term inwhich the various arguments of the operator
may appear. In every case, the successor state contains the original argument if the latter has not participated in the action,
or the state that the argument has moved to if it did.

Now formally [32], let P be a compound process with a top-level operator ⊗, switched-on arguments P1, . . . , Pn (for
some n ≥ 0) and switched-off arguments Q = ⟨Pλ | λ ∈ Λ⟩.

Having any switched-on process argument Pi that can go via a τ to a state P ′i , the τ -promotion rule takes the form:

⊗(P1, . . . , Pi, . . . Pn,Q )
τ
−→ ⊗(P1, . . . , P ′i , . . . Pn,Q ).

As this rule holds universally for any switched-on argument of any CSP operator, τ -promotion rules do not need to be added
explicitly to the combinator operational semantics as they were in the SOS rules �τ , #τ , \Aτ , JRKτ , ∥

A
τ .

Rules combining visible events take the general form ((x1, . . . , xn), y, T ), where xi ∈ ΣX
∪ {ϵ}, y ∈ Στ ,X and T is a

piece of CSP syntax specifying the structure of the successor term. The idea is that whenever all Pi’s that have xi ≠ ϵ can
perform xi and go to states P ′i , they can synchronise to make the compound process P perform y and enter a state T . The
successor state T is either Ω , if y = X, or is specified by an open CSP term in which the free variables are indices drawn
from {1, . . . , n} ∪ {-λ | λ ∈ Λ}, which get substituted according to the following rules:

• For i ∈ {1, . . . , n}, we distinguish different cases. If xi = ϵ or xi ∈ Σ , i is replaced by Pi or P ′i , respectively. If xi = X, i
does not appear in the successor term T any more as Pi becomes switched off.
• An index -λ for λ ∈ Λ indicates that the process Pλ has become switched on and is replaced by Pλ.

We list the combinator rules below. In some of them, e.g. #Σ \AΣ , JRKΣ , ∥
A

X1 and ∥
A

X2 , the structure of the successor

term does not change, i.e. the resulting state is ⊗(P ′′1 , . . . , P
′′
n ,Q ), where P ′′i = Pi if xi = ϵ and P ′′i = P ′i if xi ∈ Σ . In those

cases, we omit T from the rules for simplicity. In rules SKIP ,
a
−→ and ⊓, there is no switched-on argument initially which we

indicate by−.Ω is naturally switched off as it represents successful termination. Hence,Ω ∥
A
and ∥

A
Ω are viewed as unary

operators.

((−),X,Ω) (SKIP)

((−), a, -1) (
a
−→)

((−), τ , -1) and ((−), τ , -2) ( ⊓ )
((X, ϵ),X,Ω) and ((ϵ,X),X,Ω) (�X)
((a, ϵ), a, 1) and ((ϵ, a), a, 2) (�Σ )
((a), a) and ((X), τ , -2) (#ΣX )

((X),X,Ω) (\AX)
((a), τ ) if a ∈ A and ((a), a) if a ∈ Σ \ A (\AΣ )
((X),X,Ω) and ((a), b)when aRb (JRKΣX )
((a, ϵ), a) and ((ϵ, a), a) if a ∈ Σ \ A (∥

A
Σ1 )

((a, a), a) if a ∈ A (∥
A
Σ2 )

((X, ϵ), τ ,Ω ∥
A
2) and ((ϵ,X), τ , 1 ∥

A
Ω) (∥

A
X1 )

((a), a) if a ∈ Σ \ A and ((X), τ , SKIP) (Ω ∥
A
, ∥
A
Ω)

Supercombinator operational semantics. Combinator operational semantics captures precisely CSP-definable operators
[33,32]. However, actions of compound processes need to be calculated recursively on-the-fly out of the actions of their
subterms. Furthermore, successor states are presented as pieces of syntax which does not prove to be efficient when
analysing large systems.

Supercombinator operational semantics is less general but more efficient version of the combinator operational
semantics [33]. Supercombinator rules take the form of combinator ones, but are generalised to combine together actions of
subprocesses nested under an arbitrary number of applications of CSP operators. As there is no combinator rule for recursion,
the only constraint is that any process argument should be a closed CSP term, i.e. should have all the recursion unwound.
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Based on this assumption, all process arguments have combinator semantic rules which can be composed together to obtain
rules for the outermost CSP operator. Hence, it transforms a combination of CSP operators into a single one. Furthermore,
this can be implemented efficiently in a single run before the state-space exploration phase rather than on-the-fly when
needed using recursive calls.

We illustrate the approach by example. Let P = ⊗1(⊗2(P1, P2),⊗3(P3, P4)) and let us assume for simplicity that all
⊗1,⊗2 and ⊗3 have their two arguments switched on and their application does not result in successor terms with a
different structure (format). Considering the τ -promotion rules, if ⊗2 or ⊗3 have a rule that generates a τ , this τ gets
promoted by ⊗1. For instance, if ⊗2 has the rule ((a, b), τ ), then we create a supercombinator rule ((a, b, ϵ, ϵ), τ ) for the
compound process⊗1. The other type of supercombinator arises when we can match all input requirements of one of⊗1’s
combinators using combinators of ⊗2 and ⊗3 that produce visible results. For example, if ⊗1,⊗2 and ⊗3 have the rules
((a, b), c) , ((ϵ, a), a) and ((b, d), b), respectively, then the composition will have ((ϵ, a, b, d), c).

Supercompiling — the process of associating supercombinator-style operational semantics to a CSP process, follows a
hybrid high-/low-level approach for calculation and representation [33]. It identifies all true recursions and compiles them
on a low level, generating explicit LTSs using the combinator rules. What remains for the high level are closed processes
combined typically using parallel composition, hiding and renaming, although the dividing line is somewhat more complex
and is drawn where sensible. For example, the choice operators and sequential composition can also be lifted to the high
level as long as their arguments are all closed terms.

The result of supercompilation is a high-level structure which consists of two parts. The first one is a process tree
with leaves – low-level compiled LTSs, and internal nodes – CSP operators compiled on the high level, usually hiding,
renaming or parallel composition. Each node, even if internal, represents a process and can be interpreted as an LTS with its
behaviours deducible on-the-fly from the behaviours of its children. The second part of the high-level structure is a set of
supercombinators mapping actions of a number of leaf processes to an event-outcome of the composite root process [31].
In what follows, we use the notions of supercombinators and rules interchangeably. We note that the list of leaf processes
togetherwith the set of supercombinators is a complete characterisation of the high-level process as the semantics of all CSP
operators corresponding to the internal nodes in the process tree is captured by the supercombinator rules. The structured
process tree can be used, though, for making the whole high-level process completely explicit.

The set of combinators is partitioned with respect to the existing formats — the different configurations of switched on
and switched off leaf processes. In the worst case, the number of formats can be exponential in the number of leaves, but in
practice this is rarely the case and quite often, there is just a single format, especially when composing processes in parallel
on the top level.

Within a supercombinator, each process can participate with a visible event, a silent action τ , or not be involved at
all, the latter of which we again denote by ϵ. As with combinator rules, the supercompiler generates two types of rules
[31,18,34]:

• a rule for a leaf process willing to perform a τ which promotes a τ action of the root process,
• rules using visible actions.

Note that the visible actions that the leaf processes perform need not be the same if hiding or renaming is involved in
the combination being modelled. For example, if P = a −→ P and Q = b −→ Q , then if P performs a and Q performs b,
P ∥
{a}

Q Ja/bK can perform a, where Q Ja/bK is the process Q with the event b being renamed to a. Hence, ((a, b), a) is a valid

rule for the root process P ∥
{a}

Q Ja/bK with leaves P and Q .

Going back to our running example, after supercompiling Scheduler \ {| b |}, we obtain the process tree depicted on
Fig. 3(a). The simple recursive cell processes are compiled as leaves and their LTSs generated explicitly. The root process
contains just a single format with three types of supercombinators:

• if Cell(i) and Cell(i⊕ 1) perform c.i⊕ 1, Scheduler \ {| b |} performs a τ
• if Cell(i) performs a.i, Scheduler \ {| b |} also performs a.i
• if Cell(i) performs b.i, Scheduler \ {| b |} performs a τ

Supercombinator operational representation can be considered an implicit LTS because it gives an initial state and
sufficient information to calculate all the transitions of the system on-the-fly. Given a root high-level process, we refer
to tuples of the current states of its leaf processes as configurations. When running the root process, FDR computes its initial
actions by checking which supercombinators are enabled from the current configuration and the current format of the root.
A supercombinator might be disabled if not all leaf processes are currently able to communicate the event that they are
responsible for within the supercombinator. Hence, the operational semantics of the root process can be considered an
implicit LTS, whose transitions can be switched on and off. The states are represented by a pair of a configuration and a
format of the root. Transitions are modelled by supercombinators. For example, the supercombinator ((c.1, c.1, ϵ, ϵ, ϵ), τ )
(see Fig. 3(b)) would be enabled iff Cell(0) is in its state s1 and Cell(1) is in its state s0, independent of the current states of
the other three cells. If this rule is enabled and the transition taken, Cell(0) will go to state s2, Cell(1) will go to state s1, the
other three cells will not progress and Scheduler \ {| b |}will perform a τ .
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To summarise, supercombinators canbe viewedas implicit state-space representations. They are generatedbymimicking
the SOS or combinator rules, but yield more compact storage and more efficient algorithms. Therefore, FDR is most efficient
when manipulating processes with relatively simple sequential leaves composed in parallel or applied hiding or renaming
upon. Of course, high-level processes can be explicated, i.e. transformed into explicit LTSs, paying a potentially exponential
price. This is quite logical as explication breaks down the hierarchical structure of a system composed of concurrent
processes and makes it sequential.

2.1.6. Refinement checking
Given two CSP processes Spec and Impl, the refinement check Spec ⊑ Impl reduces to checking for reverse containment

of possible behaviours. For the traces model, Spec ⊑T Impl iff traces(Impl) ⊆ traces(Spec).
FDR carries out the refinement check on the level of the LTS representations OSSpec = ⟨Ss, ss0, L

s, T s
⟩ and OS Impl =

⟨S i, si0, L
i, T i
⟩. The algorithm is similar to the standard one for deciding language containment L(A) ⊆ L(B) of

nondeterministic automata A and B, which reduces to checking whether L(A) ∩ L(B) = ∅ and requires that B be
determinised a priori. In a similar fashion, as a preprocessing step, FDR normalises OSSpec , so that OSSpec reaches a unique
state after any trace. The normalisation procedure requires as a precondition that OSSpec be explicated and therefore Spec
sequentialised. Essentially, the normalisation procedure transforms OSSpec into the unique equivalent τ -free deterministic
bisimulation-reduced LTS. We remark that any finite-state CSP process can be normalised, although potentially incurring
an exponential blow-up. After normalising OSSpec , FDR traverses the Cartesian product of OSSpec and OS Impl in a breadth-first
manner, checking for compatibility of mutually-reachable states. For the traces model, a pair of states (ss, si) is compatible
if initials(si) ⊆ initials(ss). If the property is violated, the breadth-first mode of search guarantees that the counterexample
generated is of minimal length.

2.2. SAT-based model checking techniques

In this section, we give a brief summary of SAT-based bounded model checking [1] and temporal k-induction [16].

2.2.1. Bounded model checking
Bounded model checking is a sound but generally incomplete technique that focuses on searching for counterexamples

of bounded length only. The underlying idea is to fix a bound k and unwind the implementation model for k steps, thus
considering behaviours and counterexamples of length at most k. In practice, BMC is conducted iteratively by progressively
increasing k until one of the following happens: (1) a counterexample is detected, (2) k reaches a precomputed threshold
called completeness threshold [11,12], which indicates that the model satisfies the specification, or (3) the model checking
instance becomes intractable.

Different notions of completeness threshold exist, mainly based on the properties of the underlying graph of the system,
e.g. diameter (the longest shortest path between any two states), recurrence diameter (the longest simple path between
any two states), forward and backward radius versions of both, the size of the state space, etc. [1,11,12,3]. A simple path is
a path along which all states are different and, in general, the recurrence diameter of a graph can be arbitrarily longer than
its diameter (the same holding for radii) — if we consider a clique of size n, it’s diameter would be 1, while the recurrence
diameter would be n − 1. We remark that this problem is exacerbated when modelling concurrent systems due to the
exponential blow up of the state space.

It is important to note that without knowing or reaching a completeness threshold, the BMC procedure is incomplete
since we do not know at what step it is correct to stop iterating and declare that the system preserves the desired property.
Therefore, BMC is mostly suitable for detecting bugs rather than for full verification, i.e. proving the absence of bugs.

The problem with completeness thresholds is two-fold. On one hand, calculating the exact completeness threshold can
be as hard as the model checking problem itself [12] and, therefore, sound overapproximations of it are usually used in
practice. On the other hand, in some cases those overapproximations can be too large to handle efficiently.

SAT-based BMC [1] reduces the model checking problem to a propositional satisfiability problem. The idea is to construct
at each step k a Boolean formula which is satisfiable if and only if there is a counterexample of length k. This formula is fed
into a SAT-solver which decides the model checking problem in question and produces a counterexample, if any. Due to the
DFS-nature of the SAT decision procedure, this technique allows for fast detection of counterexamples. Moreover, due to the
iterative nature of the BMC framework, the counterexample generated is of minimal length.

In the original syntactic [1] and the subsequent semantic [11,12] translation of BMC to SAT, the implementation is
modelled by a Kripke structure M and verified against a specification f defined as an LTL formula. The BMC instance at
each step k is translated to a Boolean formula ϕk = JMKk ∧ J¬f Kk, where JMKk encodes all paths ofM of length k and J¬f Kk
represents all paths of length up to k that violate f .

Generally, having a Boolean encoding of the state space (e.g. a binary or a one-hot encoding [21]), the Kripke structure
M can be represented symbolically by a pair of Boolean functions ⟨I(s), T (s, s′)⟩ defined as the characteristic functions of
the set of initial states and the transition relation, respectively. We use s and s′ as a shorthand for the vectors of Boolean
variables necessary for encoding states of M . We replicate a separate copy of state variables si for each time step i. Then
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Fig. 4. Encoding paths of length k.

Basek = I(s0) ∧
 

0≤i<k (P(si) ∧ T (si, si+1))

∧ ¬P(sk)

Stepk =  
0≤i<k+1(P(si) ∧ T (si, si+1))


∧ ¬P(sk+1)

Simplek = 
0≤i<j≤k(si ≠ sj)

Fig. 5. k-induction ingredients [16].

JMKk = I(s0) ∧
k−1

i=0 T (si, si+1) (see Fig. 4). We illustrate the structure of the entire formula ϕk with a simple example in
case f = Gp, where p represents a state predicate with Boolean encoding P:

ϕk = I(s0) ∧
k−1
i=0

T (si, si+1) ∧
k

i=0

¬P(si).

2.2.2. Temporal k-induction
Temporal k-induction [38,16] is a complete SAT-based technique for verifying safety properties. As opposed to BMC, it

can be used also for establishing correctness of systems. Given amodel ⟨I(s), T (s, s′)⟩ and a safety property P(s), themethod
checks if all reachable states of the model preserve P . k-induction builds upon BMC and is also conducted iteratively, as
presented in Algorithm 1. It provides two conditions for termination in case the property is not violated — k-inductiveness
of P for some k ∈ N or reaching the backward recurrence radius of themodel with respect to P . The property P is k-inductive
if it can be proven that if P holds along all paths of the system of length k, then it cannot be violated on a path of length k+1.
The backward recurrence radius is the length of the longest simple path from any state to a state violating P and is a valid
completeness threshold.

Algorithm 1 Temporal k-induction [16]
1: for k = 0 to∞ do
2: if satisfiable(Basek) then
3: return property violated and a counterexample trace
4: end if
5: if unsatisfiable(Stepk ∧ Simplek) then
6: return property holds
7: end if
8: end for

For each step k, the temporal induction proof consists of two parts — a base case and an induction step. The base case
Basek is similar to a BMC instance — we check if, starting from an initial state, there is a path of length k that violates P (see
Fig. 5). In the base case, we assume that we have already checked all base cases of shorter length and strengthen the BMC
instance by stating that P holds along all initial paths of length up to k − 1. If the base case is satisfiable, we have found a
counterexample. Otherwise, we proceed with the induction step Stepk which is designed to prove that P is k-inductive. The
induction step is strengthened and made complete by a constraint Simplek requiring that all states on the (k + 1)-path be
different. Hence, k-induction terminates with a positive answer when reaching the backward recurrence r radius even if the
property P has not manifested itself as k-inductive for any k ≤ r .

We remark again that, in many cases, the backward radius of the model — the longest shortest path from any state to a
state violating P , can be considerably smaller than its backward recurrence radius. However, the translation of shortest paths
between two states to SAT involves plenty of existential quantifiers and is mostly suitable to using a QBF engine instead of
a SAT solver.

As we are dealing with safety properties, we can also carry out the k-induction algorithm backwards, starting from states
that violate P and trying to prove that initial states are never reachable. This can be implemented by redefining Basek and
Stepk as depicted in Fig. 6. This algorithm guarantees termination upon reaching the forward recurrence radius — the longest
simple path to any state starting from an initial state.

3. Bounded trace refinement framework

In this section, we present our iterative bounded refinement checking algorithm. Our approach for establishing trace
refinement is based on watchdog transformations [28]. Our objective is the following. We are given two CSP processes Spec
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Basek = ¬P(s0) ∧
 

0≤i<k (¬I(si) ∧ T−1(si, si+1))

∧ I(sk)

Stepk =  
0≤i<k+1(¬I(si) ∧ T−1(si, si+1))


∧ I(sk+1)

Simplek = 
0≤i<j≤k(si ≠ sj)

Fig. 6. Backward k-induction ingredients.

a b

Fig. 7. τ actions in bounded trace refinement.

and Impl and an integer k. We aim at checking whether Spec ⊑k
T Impl, i.e. whether all executions of the implementation of

length at most k agree with the specification. Similarly to BMC and k-induction, we carry out the analysis on the level of the
operational representation of Spec and Impl. We point out that executions of length k can correspond to traces of smaller
length if having τ actions entangled within, as defined in Section 2.1.4.

3.1. Challenges

As the LTSs underlying the operational semantics of processes are event-based models, we need to also handle events
in our encoding. Let OSSpec = ⟨Is(s), T s(s, l, s′)⟩ and OSImpl = ⟨I i(t), T i(t, l, t ′)⟩ be the models of Spec and Impl, respectively.
At first glance, the most natural approach for encoding bounded execution refinement would be to try to directly mirror
the original translation of BMC to SAT. We would need to similarly construct the Boolean formula ϕk as a conjunction of
two formulae to model all executions of Impl of length k that are not executions of Spec — ϕk = JOSImplKk ∧ J¬OSSpecKk.
Hence, we would be looking for an instantiation of the vectors of Boolean variables l1, . . . , lk, such that JOSImplKk =

I i(t0) ∧
k−1

i=0 T i(ti, li, ti+1) is satisfiable and JOSSpecKk = Is(s0) ∧
k−1

i=0 T s(si, li, si+1) is not. Due to the implicit universal
quantification of s0, . . . , sk in the unsatisfiability check of JOSSpecKk, this analysis is mostly suitable to a QBF engine. Using
a SAT-solver in this case would mean that we would need to extinguish all possible satisfying assignment of l1, . . . , lk in
JOSImplKk and to prove the unsatisfiability of JOSSpecKk over each one of them.

Furthermore, invisible τ actions can be arbitrarily interleaved in the executions of Impl and, therefore, syntactically
different executions can produce semantically equivalent traces. This can lead to reporting spurious counterexamples. To
illustrate this, consider the executions ⟨a, τ , τ , b, τ , c⟩ of Impl and ⟨a, b, c⟩ of Spec as depicted on Fig. 7(b). Even though
they correspond to the same trace ⟨a, b, c⟩, they do not match pointwise and ⟨a, τ , τ , b, τ , c⟩ would be falsely reported as
a violation of Spec. However, bookkeeping the possible sequences of τ -s stuttered in between visible events does not seem
to be trivial and computationally justifiable on the level of Boolean functions.

3.2. The watchdog approach

As explained in Section 2.1.6, FDR performs the refinement check by normalising the specification and looking for the
existence of behaviours that the implementation allows and the specification does not.

As an alternative, the watchdog approach [28,33] reduces the refinement check to analysing a single process constructed
by composing the implementation in parallelwith a transformed specificationprocess. The latter plays the role of awatchdog
that monitors the implementation and flags any behaviours that are considered violating with respect to the specification.

In our settings, usingwatchdog transformations allows us to actually reduce bounded execution containment to bounded
reachability which is already amenable to SAT. The watchdog transformation phase is performed by means of FDR.

3.3. Preprocessing phase using FDR

Our implementation is intended as an alternative back-end for FDR, orthogonal to the standard explicit method of
performing trace refinement. Currently, we use a shared library version of FDR formanipulating CSP processes andwemimic
FDR up to the point of the final state-space exploration phase. Therefore, SymFDR reuses FDR’s compiler and supercompiler
and the data structures underlying the hybrid two-level operational representation of processes, consisting of a process tree
and a set of supercombinators, as defined in Section 2.1.5.

At present, we use FDR to supercompile and normalise Spec and to retrieveOSSpec representing the operational semantics
of Spec.

Without loss of generality, we assume that the implementation Impl comprises the interaction of c sequential processes
P1, . . . , Pc running in parallel, possibly using hiding, renaming or other CSP operators other than recursion. We write
Impl = P1 ∥ P2 ∥ . . . ∥ Pc to actually denote a high-level process Impl with leaf processes P1, . . . , Pc , as defined in
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Section 2.1.5. This form of representing concurrent systems after supercompilation is of no limitation and, as mentioned
in Section 2.1.1, we can handle the entire CSPM syntax and functionality apart from the function chase. We use FDR to
supercompile Impl and to retrieve both the set of supercombinators and the set {OSPi | i ∈ {1, . . . , c}}.

3.4. Watchdog bounded refinement-checking algorithm

In a nutshell, the main steps of our algorithm are the following:

1. We transform Spec into a processWatchdog which allows the behaviours of both Spec and Impl and, in fact, many others,
but marks those that do not conform to Spec. The transformation is carried out on the level of the LTS and not on the
higher CSP description of Spec. It is most easily defined if the specification process is normalised so that it reaches a
unique state after following any trace. The LTS of Watchdog is then obtained as an extension of OSSpec — we add a fresh
state sink and make OSSpec total with respect to the alphabet αSpec ∪ αImpl by directing all non-existing transitions to sink.
Formally, having OSSpec = ⟨Ss, ss0, T

s, Ls = αSpec⟩, OSWatchdog = ⟨Sw = Ss ∪ {sink}, ss0, T
w, Lw = αSpec ∪ αImpl⟩, where the

transition relation Tw is defined as follows:

Tw = T s
∪ {(sink, l, sink) | l ∈ αSpec ∪ αImpl} ∪ {(s, l, sink) | s ∈ Ss, l ∈ αSpec ∪ αImpl, s

l9}

The resulting process Watchdog operationally passes through sink whenever executing a trace that is not allowed by
Spec.

2. We construct a process Refinement = Watchdog ∥
αImpl∪αSpec

Impl = Watchdog ∥
αImpl∪αSpec

(P1 ∥ P2 . . . ∥ Pc). Refinement

captures precisely the behaviours of Impl, but those behaviours that do not conform to Spec force Watchdog to bark, i.e.
pass through its sink state. Hence, Refinement can be used as an indicator whether Impl can behave in a way incompatible
with Spec.Watchdog becomes just one of the sequential leaf processes of Refinement . It is evident then that:
(a) Spec ⊑T Impl⇐⇒Watchdog never reaches its sink state in any execution of Refinement .
(b) All executions of Refinement forcingWatchdog to pass through its sink state constitute valid counterexamples of the

assertion Spec ⊑T Impl.
3. We check whetherWatchdog can reach its sink state within k steps of the execution of Refinement .

4. Boolean encoding of CSP processes

In this section we present our encoding of CSP processes into Boolean formulae. First, we show how to encode sequential
or explicated processes, corresponding to leaf processes in the operational representation. Then, we show how to glue
together sequential processes with supercombinators to obtain an encoding of a high-level process. In what follows, we
call a high-level process a concurrent system.

For illustrating the Boolean encoding in this section, we use the following notation. ⌈X⌉(Vars) denotes the Boolean
encoding of X with respect to the vector(s) of Boolean variables Vars.

Generally, to encode a finite set of elements S, we use an injective mapping encS : S → {0, 1}m to associate each
element s ∈ S with a unique bit vector b = (b1, . . . , bm) of certain size m. To represent elements of S as Boolean functions,
we introduce an ordered vector of m distinct Boolean variables x = (x1, . . . , xm). Each variable xi uniquely identifies the
corresponding bit bi and for each s ∈ S, ⌈s⌉(x)|x=b = 1 iff encS(s) = b. Typically, binary or one-hot [21] encoding of sets are
used in practice. The basic idea behind binary encoding is to enumerate the elements of S in binary notation and represent
them as Boolean functions over m = ⌈log2 |S|⌉ Boolean variables. In one-hot encoding, each s ∈ S is represented by a bit
vector of size |S| inwhichprecisely onebit is set to 1. To illustrate the twoencodings, let us consider the set S = {s0, s1, s2, s3}.
If we consider the binary encoding s0 = (00), s1 = (01), s2 = (10), s3 = (11), a vector of just two variables x = (x0, x1)
suffices and ⌈s1⌉(x) = ¬x0∧x1, for example. For the one-hot encoding s0 = (1000), s1 = (0100), s2 = (0010), s3 = (0001),
we need a vector x = (x0, x1, x2, x3) of four variables and ⌈s1⌉(x) = ¬x0 ∧ x1 ∧ ¬x2 ∧ ¬x3. Alternatively, we can use
⌈s1⌉(x) = x1, but in this case we need to add global constraints enforcing that precisely one bit is set to true at a given time
instance. Those constraints can be expressed by a formula of size linear in |S|.

4.1. Encoding a sequential process

As explained in Section 3.3, for each sequential leaf process P , we obtain the explicit operational representation of P using
FDR. Let OSP = ⟨S, s0, L = Στ ,X, T ⟩ be the LTS associated with the finite-state leaf process P communicating over a finite
alphabet of eventsΣ . Using either binary or one-hot encoding of sets, we introduce vectors of Boolean variables x and y for
encoding the set of states S and the set of labels L, respectively. We define ⌈I⌉(x) = ⌈s0⌉(x).

In order to represent the transition relation T , we employ a copy x′ of x. x serves to represent the source states of
transitions and x′ — the destination states. Then, for t = (ssrc, l, sdest) ∈ T , ⌈t⌉(x, y, x′) = ⌈ssrc⌉(x) ∧ ⌈l⌉(y) ∧ ⌈sdest⌉(x′). For
any s ∈ S, we write ⌈s⌉(x′) to denote ⌈s⌉(x)[x′ ← x], i.e. we represent s with respect to the variables x and then substitute
the variables xwith x′. The encoding of the entire transition relation is the following: ⌈T⌉(x, y, x′) =


t∈T⌈t⌉(x, y, x′).
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We can now represent a sequential process P implicitly by the pair of Boolean functions ⟨⌈T P
⌉(x, y, x′), ⌈IP⌉(x)⟩.

For a given integer k, we define Paths(P, k) to be the set of all executions s0l1s1l2 . . . lksk of OSP of length k. In order
to represent Paths(P, k) symbolically, we replicate (k + 1) vectors of Boolean variables x0, x1 . . . xk for encoding the
states s0, s1, . . . , sk and k vectors of Boolean variables y1, y2 . . . yk for the corresponding transitions l1, . . . , lk. Then
⌈Paths(P, k)⌉(x0, x1 . . . xk, y1, y2 . . . yk) = ⌈IP⌉(x0) ∧

k−1
i=0 ⌈T

P
⌉(xi, yi+1, xi+1).

4.2. Encoding a concurrent system

In the setting of FDR, after supercompilation we can view a concurrent system as a high-level process identified by
a process tree and a set of supercombinators. Since a high-level root process can be modelled as an LTS, we now show
how to encode a concurrent system similarly to a low-level sequential process. In what follows, we denote by Sys(c) =
⟨⟨P1, . . . , Pc⟩, SC⟩ the high-level process characterised by a set of supercombinator rules SC and c explicitly compiled leaf
processes P1, . . . , Pc communicating over sets of eventsΣ1, . . . .,Σc , respectively. We defineΣ = ∪c

i=1Σi.
Encoding the sequential leaf processes. For each i ∈ {1, . . . , c}, we retrieve the explicit LTS representation OS i = ⟨S i, si0, L

i
=

Σ
τ ,X
i , T i

⟩ of the leaf Pi from FDR. SinceΣi ⊆ Σ , we actually consider Li = Στ ,X.
Following the ideas from the previous Section 4.1, we introduce vectors of Boolean variables xi , xi′ and yi to generate

the symbolic representation ⟨⌈T i
⌉(xi, yi, xi′), ⌈I i⌉(xi)⟩ of Pi. Hence, each process has its own set of variables for representing

the alphabetΣτ ,X. We further introduce an additional vector of Boolean variables y for encoding the resulting action of the
entire system because, due to the presence of hiding and renaming, it might be different from the contributions of the leaf
processes, as illustrated in Section 2.1.5. In case the system violates the specification, we also use the assignment of the
variables from y to generate a counterexample trace.
Encoding configurations of the concurrent system. Recall that at, every time instance, the state of the entire high-level system,
also called a configuration, is identified by the current states of its sequential leaf components. Formally, the set of states of
the system is a c-ary relation S ⊆ S1 × · · · × Sc , the initial state being s0 = (s10, . . . , s

c
0). Therefore, S can be represented

symbolically using the Boolean variables from x1, . . . , xc . If s = (s1, . . . , sc) ∈ S, then ⌈s⌉(x1, . . . , xc) =
c

i=1(⌈s
i
⌉(xi)). For

clarity, we denote the set of states of the overall system by Configurations.
Supercombinators and formats. As wementioned in Section 2.1.5, supercombinators are rules for combining together actions
of the individual sequential leaf processes into event-outcomes of the overall system [31]. Within a supercombinator, each
process can participate with a visible event, a silent action τ , or not be involved at all. We denote the non-involvement
with the symbol ϵ. For any alphabet Σ , we let Σϵ

= Σ ∪ {ϵ}. In addition, the set of supercombinators is partitioned into
existing formats, i.e., different configurations of switched on and switched off processes among P1, . . . , Pc , which we denote
by Formats.

Formally, the set of supercombinators can be represented as a (c+3)-ary relation SC ⊆ Formats×Στ ,X,ϵ
1 × ...×Στ ,X,ϵ

c ×

Στ ,X
× Formats, or more generally SC ⊆ Formats × (Στ ,X,ϵ)c × Στ ,X

× Formats. (fsrc, a1, . . . , ac, a, fdest) ∈ SC iff from a
certain configuration and a certain format fsrc of the overall system, P1 performs a1, . . . , Pc performs ac and the overall system
performs a switching to a format fdest .

The operational semantics of the concurrent system can be considered an implicit LTS, whose transitions can be switched
on and off:

• set of states – Formats× Configurations
• set of labels – SC
• transition relation – T ⊆ (Formats × Configurations) × SC × (Formats × Configurations). If the system is in a given

configuration and in a given format, the individual processes transition relations determine if the labels are switched on
or off. Formally,

(fi, (s1i , . . . , s
c
i ))

(fi,a1,...,ac ,a,fj)
→ (fj, (s1j , . . . , s

c
j )) iff

(fi, a1, . . . , ac, a, fj) ∈ SC ∧
c
∀

k=1
((ak ≠ ϵ ⇒ (ski , ak, s

k
j ) ∈ T k) ∧ (ak == ϵ ⇒ ski = skj )).

Encoding supercombinators. For a given rule sc = (fsrc, a1, . . . , ac, a, fdest) ∈ SC , let Passive(sc) = {i ∈ {1, . . . , c} | ai = ϵ, i.e.
Pi is not involved in sc}. Let u = (u1, . . . , uc) be a vector of (supercombinator-independent) Boolean variables. We denote:

lit(ui) =


ui if Pi is not involved
¬ui if Pi performs a visible event or a τ

Note that a process might be switched on in a format and still be passive in a certain supercombinator in this format.
Hence, we cannot use the format to conclude which processes are passive in a supercombinator.

Let f and f ′ be two vectors of Boolean variables for encoding the source and destination format of a rule. Let sc =
(fsrc, a1, . . . , ac, a, fdest) ∈ SC . Then, ⌈sc⌉(y1, . . . , yc, y, u, f , f ′) =


i/∈Passive(sc)(⌈ai⌉(yi) ∧ ¬ui) ∧


i∈Passive(sc) ui

∧ ⌈a⌉(y) ∧ ⌈fsrc⌉(f ) ∧ ⌈fdest⌉(f ′).
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Hence, in an encoding of a supercombinator, we indicate a passive process Pi just by affirming a single Boolean
variable ui. We call ui a trigger. For non-passive processes, we also encode the event that the process performs. The
encoding of all supercombinators in all formats now becomes the following: ⌈SC⌉(y1, . . . , yc, y, u, f , f ′) =


sc∈SC⌈sc⌉

(y1, . . . , yc, y, u, f , f ′).
Encoding a transition of the concurrent system. Let for i ∈ {1, . . . , c}, ψi(xi, xi

′
, yi, ui) := if ui then (xi = xi′) else

⌈T i
⌉(xi, yi, xi′), where xi = xi′ is the short for

ni
j=1(x

i
j ⇔ xi

′

j ). The intuition behind a ψi is that, if Pi does not participate
in a transition of the entire system, i.e. Pi is not involved in a supercombinator, Pi remains in the same state within its own
labelled transition system OS i. Otherwise, Pi progresses with respect to its transition relation T i. Expressed as a Boolean
formula, ψi ≡ (ui ∧ (xi = xi′)) ∨ (¬ui ∧ ⌈T i

⌉(xi, yi, xi′)).
We define a predicate T Sys(c) which is true exactly for the transitions of the overall system:

⌈T Sys(c)
⌉(x1, . . . , xc, x1′ , . . . , xc′ , y1, . . . , yc, y, u, f , f ′) =

c
i=1

ψi(xi, xi
′
, yi, ui) ∧ ⌈SC⌉(y1, . . . , yc, y, u, f , f ′)

Encoding fixed length executions of the concurrent system. Within the BMC framework, let k be the maximal bound for the
length of the counterexamples we are looking for. Then:

⌈Paths(Sys(c), k)⌉(
// variables for P1 x10, . . . , x

1
k, y

1
1, . . . , y

1
k, u

1
1, . . . , u

1
k

// variables for P2 x20, . . . , x
2
k, y

2
1, . . . , y

2
k, u

2
1, . . . , u

2
k

. . . . . .
// variables for Pc xc0, . . . , x

c
k, y

c
1, . . . , y

c
k, u

c
1, . . . , u

c
k

// variables for the traces of the system y1, . . . , yk,
// variables for the formats in the rules f0, . . . , fk)
= // processes start from their initial states and the initial format is Format[0]c

j=1⌈I
j
⌉(xj0) ∧ ⌈I

f
⌉(f0) ∧

// supercombinators as transitions at each of the k stepsk
i=1⌈SC⌉(y

1
i , . . . , y

c
i , yi, u

1
i , . . . , u

c
i , fi−1, fi) ∧

// the idea of the ψ formulae – either transitions or wait, depending on supercombinators
j=1,...,c
i=1,...,k

((uj
i ∧ (x

j
i−1 = xji)) ∨ (¬u

j
i ∧ ⌈T

j
⌉(xji−1, y

j
i, x

j
i)))

=

⌈ISys(c)⌉(x10, . . . , x
c
0, f0)∧k

i=1⌈T
Sys(c)
⌉(x1i−1, . . . , x

c
i−1, x

1
i , . . . , x

c
i , y

1
i , . . . , y

c
i , yi, u

1
i , . . . , u

c
i , fi−1, fi)

5. Implementation details

Our prototype tool SymFDR iswritten in C++ and uses FDR as a shared library formanipulating CSP processes. The current
implementation of SymFDR supports refinement checking systemswith a single format only. However, we do not anticipate
any problems generalising the problem to a multi-format setting. Moreover, most practical cases are also single-format or
can be easily rewritten in this form.

5.1. BMC

In our BMC framework, we have threemodes of state space traversal — forward (starting from the initial state), backward
(starting from an error state) and simultaneous forward/backward mode.

In the original version of BMC, the system is unwound step by step until the bound k is reached. Despite the recent
advances in SAT-solvers’ learning capabilities and incremental SAT-solving, we have observed that the bottleneck of the
bounded refinement procedure is the SAT-solver. Therefore, we allow unfolding a configurable number i of steps of the
process Refinement before running the SAT-solver. The SAT-solver is then used to check if Refinement can pass through
the sink state in any of its last i unwindings. If so, we have found a counterexample, otherwise we continue iterating until
reaching the configured bound k. We refer to the value of i as SAT-frequency. We believe that this multi-step approachworks
well because the SAT-solver typically finds it much easier to find a satisfying assignment, if there is any, than to prove
unsatisfiability, given CNF formulae with comparable size and structure. Hence, we trade off the shortness of the reported
counterexample for efficiency.
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5.2. k-induction

We have implemented the ‘‘Zig-Zag’’ and ‘‘Dual’’ temporal k-induction algorithms [16]. The difference is that the ‘‘Dual’’
algorithm makes use of separate SAT-solvers for the base case and the induction step, aiming to optimise the incremental
SAT interface. For k-induction, SymFDR supports both forward and backward traversal, yielding four algorithms in total:
‘‘Zig-Zag’’ forward, ‘‘Zig-Zag’’ backward, ‘‘Dual’’ forward and ‘‘Dual’’ backward.

5.3. SAT

SymFDR supports both binary and one-hot encoding of state spaces, though we have observed that for our test cases
binary encoding scales much better. One-hot encoding usually yields CNF instances with smaller number of clauses but
substantially higher number of Boolean variables which seems to burden the SAT solver.We construct the Boolean formulae
directly in negation normal formand, consequently, transform them into equisatisfiable formulae in CNFusing the optimised
one-sided Tseitin encoding [6,3].

Currently, SymFDR supportsMiniSAT 2.0, PicoSAT 846 and ZChaff, all working in incrementalmode. For our test cases, we
have foundMiniSAT to be the most efficient and all quoted results use MiniSAT. We exploit MiniSAT’s incremental interface
in away similar to [16]. For our larger test cases, we also observed thatMiniSAT finds a counterexample faster if we configure
it to keep a smaller number of learned clauses (learntsize factor = 0.2, learntsize inc = 1.02) and restart more frequently
(restart inc = 1.1). We also implemented adding unit learned clauses explicitly, as suggested in [15], in conjunctions of
multiple ones. Using positive polarity in decision heuristics also produced much better results, as well as freezing and then
defreezing state and format variables at each step to avoid variable elimination.

SymFDR also supports strategies for restricting the decision variables to the input ones [35], incorporating PicoSAT’s
restarting scheme and phase saving strategy [4] in MiniSAT, etc.

6. Experimental results

In this section, we investigate the performance of SymFDR on a small number of case studies. We compare it to the
performance of FDR 2.83, FDR used in a non-standard way, PAT 3.2.2 [36], and, in some cases, direct SAT encodings, NuSMV
2 [7] and Alloy Analyzer 4.1.10 [20]. All SAT-based experiments use MiniSAT although SymFDR and the direct SAT encoder
build upon MiniSAT version 2.0, while Alloy and NuSMV exploit the earlier version 1.14. All tests were performed on a 2.6
GHz PC with 2 GB RAM running Linux, except the test marked with a ∗, which was performed on a 4-GB-RAM PC running
Linux.

6.1. Tools we compare against

FDR-Div. Themain search strategy for FDR is BFS [30] because this has the combined advantages of always finding a shortest
counterexample and of enabling implementations that work comparatively well on virtual memory. However, the strategy
for discovering divergences is based on DFS. In test cases where it is likely that there are a good number of counterexamples,
but that all of them occur comparatively deep in the BFS, there is good reason to use a bounded DFS (BDFS) algorithm to
search for them, so that only error states reachable in less than some fixed number N of steps are reached. BDFS will quickly
get to the depth where counterexamples are expected without needing to enumerate all of the levels where they are not.
Provided that the counterexamples have something like a uniform distribution through the order inwhich the DFS discovers
them, we can expect one to be found after searching through approximately S/(C + 1) states, where S is the total number
of states and C is the number of counterexamples.

FDR does not implement such a strategy directly. It was, however, observed a number of years ago by Roscoe and James
Heather that it is possible to use a trick that achieves the same effect using the present version of the tool. That is, arrange
(perhaps using a watchdog) a system P ′ that performs only up to N events of the target implementation process P and then
performs an infinite number of some indicator event when a trace specification is breached. Provided P is itself divergence-
free, we then have that P ′ \ Σ can diverge precisely when P violates the specification. FDR searches for this divergence by
DFS.

This approach is particularly well suited to CSP codings of puzzles, since it is frequently known ab initio how long a
counterexamplewill be, and the usual CSP coding uses the repeatable event done to indicate that the puzzle has been solved.
The columns labelled FDR-Div in Tables 1 and 2 report on the result of using this technique. In several ways this method
is more similar to approach of PAT and SymFDR than the usual FDR approach. As is apparent from the experiments, there
seems to be a large element of luck in how fast this approach is, possibly based on how close the path followed by the DFS
is to a counterexample.
PAT. PAT [36] is a model checker of a version of CSP enhanced with shared variables. Despite the BMC attempt [37], PAT
is at present a fully explicit checker. In addition to LTL model checking, PAT supports CSP refinement checking which it
performs in a way similar to FDR although using DFS (instead of BFS), normalisation of the specification on-the-fly, partial-
order reductions, counter abstraction, symmetry reduction, etc. In the test cases quoted here, the specification is given as
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Table 1
Performance comparison — peg solitaire with N pegs (♯ = N).

N FDR Time (s) SAT ♯

♯ states FDR FDR-Div PAT SymFDR freq.
checked

20 41 703 0 0 5.17 5.75 10 20
18.14 20

23 411 976 5 0 1.83 13.1 12 23
7.69 23

26 4 048 216 72 0 6.23 22.81 13 26
21.47 26

29 28 249 254 581 1 70.64 34.35 15 29
17.35 29

32 > 139 000 000 > 11 700 5 7.08 147.68 16 32
187 000 000∗ 2 640∗ 66.3 32

35 – – 1 485 484.25 214.63 18 35
90.97 35

38 – – 43 3 786.18 182.91 19 38
41 – – 4 358.69 325.59 41 41

Table 2
Performance comparison — chess knight tour on an N × N board (♯ = N2

+ 1).

N FDR Time (s) SAT ♯

♯ states FDR FDR-Div PAT Direct SymFDR freq.
checked SAT

5 508 451 3 0.147 0.53 8.5 8.15 13 26
6 >120 000 000 – 18 17.17 125.3 298.64 19 37
7 – – – 12.86 1 138.0 1 326.18 25 50

a reachability property on the values of the shared variables, as modelled in the benchmarks available with the tool. The
reachability algorithm is based on DFS and state hashing is applied for compact state-space representation.
NuSMV. NuSMV [7] is a symbolic model checker verifying SMV against CTL properties using BDDs. The BMC framework of
NuSMV, which we refer to as NuSMV-BMC, uses specifications written in LTL.
Alloy analyzer. AlloyAnalyzer [20] is a fully-automatic tool for findingmodels of software systemsdesigned in the lightweight
Alloy modelling language. Alloy Analyzer could be considered a BMC checker due to its searching for a model only up to a
certain scope and generating the model, if existing, using SAT-solving techniques.
Direct SAT encodings.We believe that experimentingwith direct SAT encodings of problemswill offer guidance for optimising
the translation of CSP to logic. For example, the chess knight test case suggests that a shorter chain of inference for high-level
actions might be beneficial.

6.2. Test cases

6.2.1. Instances with Counterexamples
In this section, we consider test cases with counterexamples and therefore exploit the BMC framework. The results are

summarised in Tables 1–6. The last column titled ♯ lists the length of counterexamples.
First, we consider the peg solitaire puzzle [31], performing experiments on a chain of soluble boardswith increasing level

of difficulty. In the initial configuration, the board has all slots but one occupied by pegs. The only allowedmove in the game
is a peg hopping over another peg and landing on an empty slot. The hopped-over peg is then removed from the board. The
objective of the game is ending up with a board with a single peg positioned on the slot which had been initially empty. The
length of any solution of the puzzle is equal exactly to the numberN of pegs on the initial board— a hop event for (N−1) pegs
followed by an event done signifying a valid solution of the puzzle. The results are summarised in Table 1. The experiments
indicate that, for N ≥ 26, SymFDR clearly outperforms FDR. The performance of SymFDR and PAT seems to alternate. The
explicit DFS-based tools FDR-Div and PAT seem to perform quite unevenly, signifying the importance of luck. We have also
observed that in cases where a counterexample does not exist, FDR’s BFS strategy outperforms the DFS-based tools PAT and
SymFDR. To give an idea of the size of the SAT instances that SymFDR generates, for N = 32, the instance originally contains
314 567 clauses using 38 034 variables. MiniSAT learns extra 132 451 clauses and finds a satisfying assignment after 132
056 844 propagations. In comparison, FDR finds a solution after traversing 187 000 000 states.

Our second test case is the chess knight tour. A knight is placed at position (1, 1) on an empty chess board of size N ×N .
The objective is covering all squares of the board by visiting each square exactly once. Similarly to peg solitaire, a solution
is generated as a counterexample to a specification asserting that the event done is never communicated. The length of a



1194 H. Palikareva et al. / Science of Computer Programming 77 (2012) 1178–1197

Table 3
Performance comparison—Hamiltonian cycle on anN×M grid (♯ = N×M+1).

N ×M FDR Time (s) SAT ♯

♯ states FDR FDR-Div SymFDR freq.
checked

4× 4 2 518 0 0 0.83 9 17
4× 5 14 368 0 0 1.98 11 21
5× 6 1 219 416 21 33 32.9 16 31

19.27 31
6× 6 18 115 326 243 630 43.54 19 37
6× 7 >115 000 000 >3 600 >3 600 228.88 22 43

Table 4
Performance comparison — lights off puzzle on an N × N board (♯ unpredictable).

N FDR Time (s) SAT ♯

♯ states FDR PAT SymFDR SymFDR SymFDR freq.
checked fw bw fw/bw

2 16 0 0.05 0.05 0.06 5 5
3 382 0 0.16 0.14 0.19 6 6

0.23 0.24 0.32 5
4 2084 0 0.26 0.27 0.33 5 5
5 8 388608 537 >7 600 – 23.45 655.33 8 16
6 – out of mem – – – 15 28

Table 5
Performance comparison — Hanoi towers with N discs (♯ = 2N ).

N Time (s) SAT ♯

FDR PAT PAT Nu SymFDR SymFDR Alloy NuSMV freq.
short SMV fw fw/bw -BMC

5 0.19 0.21 0.98 0.43 4.9 3.6 11 2.2 16 32
6 0.20 1.18 10.15 0.66 27.3 21.6 327 34.9 32 64
7 0.16 2.18 202.4 0.17 182.7 173.3 21537 1 865 64 128
8 0.18 15.20 — 0.29 3 114.1 2 035.1 – 2 218 128 256

Table 6
Performance comparison — (violated) security protocols.

Protocol Time (s) SAT ♯

FDR FDR SymFDR SymFDR SymFDR freq.
chase no chase fw bw fw/bw

NSPKP3 1 452 93.37 – – 7 14
TMN1 0 0 34.82 36.89 30.73 7 7
Andrew 0 0 4.35 4.03 3.97 8 8

possible solution is N2
+ 1. The results are presented in Table 2. For N = 5, FDR generates a counterexample faster, but,

for N = 6, SymFDR found a solution in approximately 5 minutes, while FDR crashed after an hour and a half of state-space
exploration. For this test case, we have observed that restricting the decision variables inMiniSAT to the input ones enhances
the performance of SymFDR, especially for N = 7 where the reduction factor is over 20. Hence, for N = 7, the performance
of the general tool SymFDR comes close to the performance of the problem-specific SAT encoder for the chess knight tour.

We have observed similar results with the test cases of finding a Hamiltonian path on an N × M grid (Table 3) and the
lights off puzzle (Table 4). The lights off puzzle starts with an N × N board with all lights initially on. The aim is to reach a
configuration with all lights switched off having in mind that upon triggering any light switch, the switch to the right, left,
below and above is also triggered. This test case illustrates the difference that searchmode canmake in SymFDR.We remark
that for every N , if using inductive normal compression, FDR can actually obtain a state space consisting of a single state
which it can verify in 0 seconds.

The fifth test case — the classical puzzle of towers of Hanoi, aims primarily at comparing SymFDR with other SAT-based
bounded checkers such as NuSMV and Alloy Analyzer. The results are summarised in Table 5. NuSMV-BMC and SymFDR
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Table 7
Performance comparison — k-induction.

Test Zig-zag forward Zig-zag backward Dual forward Dual backward

Time k Time k Time k Time k

R/W 100 4.69 5 1.2 2 7.15 4 3.07 2
R/W 200 17.77 5 4.09 2 27.64 4 10.94 2
R/W 300 – – 8.61 2 – – – –
R/W 400 – – 15.95 2 – – – –
R/W 500 – – 25.84 2 – – – –
R/W 600 – – 35.54 2 – – – –
R/W 700 – – 49.00 2 – – – –

Milner 2 0.07 5 0.09 8 0.08 5 0.12 7
Milner 3 0.65 14 1.78 20 0.63 13 1.17 19
Milner 4 559.05 33 2 181.07 50 376.03 32 57.86 49

Milner 2 leaf normal 0.03 3 0.04 4 0.02 3 0.05 4
Milner 3 leaf normal 0.17 9 0.08 6 0.21 8 0.13 6
Milner 4 leaf normal 0.67 13 0.19 8 0.64 12 0.27 8
Milner 5 leaf normal 6.17 20 0.38 10 6.55 19 0.48 10
Milner 6 leaf normal 306.84 29 0.75 12 225.15 28 0.88 10
Milner 10 leaf normal – – 4.84 20 – – 7.13 20
Milner 15 leaf normal – – 27.58 30 – – 21.64 30
Milner 20 leaf normal – – 155.1 40 – – 103.53 40

Bakery 2 (4), SVA hc 0.14 2 0.26 9 0.15 2 – –
Bakery 2 (8), SVA hc 0.29 2 1.86 21 0.29 2 – –
Bakery 2 (16), SVA hc 0.89 2 17.4 45 0.83 2 – –
Bakery 2 (32), SVA hc 2.92 2 – – 2.98 2 – –
Bakery 2 (64), SVA hc 12.9 2 – – 13.53 2 – –
Bakery 3 (4), SVA hc – > 33 – – – – – –

Bully 3 (1, 2, 3) – – 152.95 40 – – – –
Bully 3 (1, 3, 7) – – 151.97 40 – – – –

seem to be competitive, both outperforming Alloy Analyzer. SymFDR working in simultaneous forward/backward mode
outperforms NuSMV-BMC. However, all non-SAT tools – the explicit ones FDR and PAT and the BDD-based NuSMV – are
clearly orders of magnitude more efficient than the SAT-based ones. We remark, though, that all solutions for the puzzle
generated by PAT are longer than 1000 moves, even when N = 5, when the shortest solution is of length 32. When
configuring PAT to report the shortest witness trace, we obtain the results quoted in the column labelled ‘‘PAT short’’. In
this case, the performance of PAT worsens fast, falling behind SymFDR for N = 7 and running out of memory for N = 8.

Our final Table 6 summarises results obtained while running SymFDR on CSP scripts generated by Casper [24] — a well-
known tool for analysing and verifying the correctness of security protocols, underlying the discovery of an attack on the
Needham Schroeder public key protocol in 1995 [22] and the verification of correctness of a fixed version of it in 1996
[23]. Casper takes a big advantage of the partial-order-reduction function chase offered by FDR [31], as is apparent from
the comparison of the performance of FDR with and without it. For the Needham Schroeder public key protocol (NSPK3),
SymFDR is better than FDR without chase but worse than FDR with chase. SymFDR finds those instances particularly hard
because, on one hand, the state-space blow-up is enormous and, on the other hand, probably due to the great number of
τ actions entangled into the state space, there are very few clauses learned and those clauses contain far too many literals
(often over 1000). For these test cases, we have usedMiniSAT configuredwith negative polarity and no decision on auxiliary
variables.

6.2.2. Instances without counterexamples
In this section we focus on the performance of SymFDR using k-induction (see Table 7). For each of the four algorithms,

‘‘Zig-Zag’’ forward, ‘‘Zig-Zag’’ backward, ‘‘Dual’’ forward and ‘‘Dual’’ backward, we record the time in seconds and the step
at which the algorithm terminates.

We consider the readers/writers test case, Milner’s scheduler with and without compression, the Bakery algorithm for
mutual exclusion and the bully algorithm for leader election. Besides manually generated scripts, we have experimented
with scripts translated by Casper and SVA (Shared Variables Analyser) [33] — a front-end for FDR based on modelling
concurrency using shared variables. We have also considered the effect of applying available FDR compression techniques
to the CSP scripts and have analysed the impact of those techniques to the recurrence radii.

In our experience, the backward algorithm, aiming to reach the forward recurrence radius, often scales better than
the forward one. We note that, due to concurrency, the completeness threshold blows up in all cases. Hence, successful
performance mainly depends on whether the property is inductive or not. For the Bakery algorithm and Milner’s scheduler,
applying hierarchical and leaf compression, respectively, has proven to be beneficial and has significantly decreased the
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termination step and, hence, improved the performance. For all four algorithms we have observed that the induction step
is checked much faster than the base one, opposite to what reported in [16,38]. Hence, we also implemented versions of
k-induction starting the iteration process from a step greater that zero, as suggested in [38]. Opposite to what we expected,
though, for our test cases this approach scales worse than the standard one. In case of unsatisfiable instances, we have also
observed that if the length of the longest possible counterexample is known in advance, often iterating the BMC algorithm
up to this length produces better results than k-induction due to tuning the SAT frequency and jumping multiple time steps
at once.

6.2.3. Conclusion
Wecan conclude that SymFDR is likely to outperform FDR in large combinatorial problems forwhich a solution exists, the

length of the longest solution is relatively short (growing atmost polynomially) and is predictable in advance. In those cases,
we can fix the SAT-frequency close to a sizeable divisor of this length and thus spare large SAT overhead. The search space of
those problems can be characterised as verywide (with respect to BFS), but relatively shallow—with counterexamples with
length up to approximately 50–60. We suspect that problems with multiple solutions also induce good SAT performance.
The experiments with the towers of Hanoi suggest that SAT-solving techniques offer advantages up to a certain threshold
and weaken afterwards.

SymFDR in k-inductionmode works reasonably well for small test cases, especially if the property is inductive. However,
for larger test cases, SymFDR does not scale very well as the completeness threshold becomes too large due to concurrency.
In all cases considered in Table 7, FDR is considerably faster.

7. Conclusions and future work

In this paper we have demonstrated the feasibility of integrating SAT-based BMC and k-induction in FDR, and more
specifically, exchanging the expensive explicit state-space traversal phase in FDR by a SAT check in SymFDR. On some test
cases, such as complex combinatorial problems, SymFDR’s performance is very encouraging, coping with problems that
are beyond FDR’s capabilities. In general, though, FDR usually outperforms SymFDR, particularly when a counterexample
does not exist. We plan to further investigate and try to gain insight about the classes of problems that are tackled more
successfully within the BMC framework.

We envision several directions for future work.
We plan to extend the BMC framework in SymFDR to make it applicable to the stable failures and failures–divergences

models as well. This will involve extending the encoding of CSP processes with information about maximal refusals and
divergences.

We are currently implementing McMillan’s algorithm combining SAT and interpolation techniques to yield complete
unbounded refinement checking [25]. Thismethodhas proven to bemore efficient for positive BMC instances (instanceswith
no counterexamples) than other SAT approaches. The completeness threshold in this case is the backward radius of the state-
space which is smaller than its backward recurrence radius, as is the case with temporal induction. Moreover, experimental
results have shown that, in practice, the algorithm often converges substantially faster, for bounds considerably smaller
than the backward radius. In addition, the interpolation algorithm allows jumping multiple time frames at once and hence
allows tuning the SAT-frequency. The BMC framework presented in this paper is the foundation we build upon.

Other avenues for further enhancing FDR’s performance include partial-order reductions [26] and CEGAR [13,8].
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