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Abstract 

This paper studies the asymptotic properties of the kernel probability density estimate of 
stationary sequences which are observed through some non-linear instantaneous filter applied ~o 
long-range dependent Gaussian sequences. It is shown that the limiting distribution of the kernel 
estimator can be, in quite contrast to the case of short-range dependence, Gaussian or non- 
Gaussian depending on the choice of the bandwidth sequences. In particular, if the bandwidth 

for sample of size N is selected to converge to zero fast enough, the usual N V / ~  h(N) rate 
asymptotic normality still holds. 

Keywords: Long-range dependence; Central limit theorem; Non-central limit theorem; Kernel 
density estimator; Instantaneous filter 
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I.  Introduction 

For years, the issue of  smoothed nonparametric probability density estimation has 
been discussed quite extensively (see, e.g., Silverman, 1986 and reference therein). 

Most of  the discussion has been formulated under the settings where the data are 

collected from iid sequences or, more generally, stationary sequences of  short-range 

dependence such as ARMA models, Markov processes, and stationary sequences satis- 
fying certain mixing conditions (see, e.g., Robinson, 1983; Hart, 1984; Roussas, 1969; 

Rosenblatt, 1970; Chanda, 1983; Castellana and Leadbetter, 1986 and for a review, see 

Gy6rf  et al., 1989 and Rosenblatt, 1991). Considerable evidence has indicated, how- 
ever, that correlations of  many empirical time series are seen to decay at rates much 

slower than that of  short-range dependence (for a review, see Beran, 1992; Robinson, 

1990). Stochastic processes showing this type of  dependence feature constitute the ha- 
sic model of  this paper. Let {Xn} be a stationary Gaussian sequence with zero mean, 
unit variance and covariance function 

r(n) =EXoXn = [nl-~L(n), 0 < ~ < 1, (1.1) 

where L(x) is a slowly varying function. Such a sequence is said to exhibit long-range 
dependence in the sense that the sum of  covariances r (n) ' s  diverge to positive infinity. 
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Suppose that observations {Y,} are made by an instantaneous filter G(X ) applied to 

{Xn}, i.e., 

Yn = G ( X n ) .  ( 1 . 2 )  

Let f ( y )  be the common density of  {Yn}, which is to be estimated. In this article, we 
investigate the asymptotic properties of  the kernel estimator of  f (y ) ,  

1 
fN(Y) -- Nh(-N-)n =I K h(N) ] '  

where {h(N)} is the bandwidth sequence of positive numbers converging to zero, and 

the kernel function K(x) satisfies K(x)>~O and f K(x)dx = 1. 
As a result of  the persistent dependence displayed in (1.1), it is possible that the Nth 

partial sums of { Yn } will, after being normalized by a factor greater than root N rate, 
converge in distribution to a random variable which may not be Gaussian (Rosenblatt, 
1961; Dobrushin and Major, 1979; Taqqu, 1979). This non-Gaussian domain of attrac- 
tion phenomenon or non-central limit theorem is naturally expected to take place as 
one examines the limiting distributions for the kernel estimatorfN(y ). Theorems 1-3 in 
Section 2 confirm this conjecture by showing that under long-range dependence both 
Gaussian and non-Gaussian limits are possible for the centered and normalized kernel 

estimate Z(BN,h(N),y)=-BN(fN(Y)-  EfN(Y)). The theorems also contain some in- 
teresting properties which contrast noticeably to the short-range-dependent cases. First, 

the central limit theorem for Z(BN, h(N),y) may hold with various choices for the 
norming factor BN; BN can be the usual v/Nh(N) (Theorems 1 and 3) or some posi- 
tive regularly varying function of N not depending on h(N) (Theorem 2). Moreover, 
the limiting laws may shift from Gaussian to non-Gaussian even as the values of  y 
differ. A more striking result given by Theorem 3 says that even when Z(BN, h(N), y) 
converges to a non-Gaussian limit with some norming factor other than v ~ N ) ,  one 
can still choose a new set of  "narrower" bandwidth sequences {h'(N)} satisfying 

N 
lim h'(N)~-~ Ir(n)[ -- 0 (1.3) 

N----~ c~ n = l  

to assure that the limit for Z( ~ , h ' ( N ) ,  y) as N ~ oo is Gaussian. Notice that 
as if(N) --~ 0, condition (1.3) will be satisfied by short-range dependent sequences 
with absolutely summable covariances. 

Hart and Hall (1990) studied another class of  long-range dependent sequences that 
are modeled as infinite moving averages: Yn = I t q - ~ - ' ~ j a j e n - j ,  in which ~'~ [aj[ =- 

o o , ~ a  2 < c~, and {¢j} is lid and square-integrable. They computed the mean in- 

tegrated square error of fN and discovered an interesting "ceiling rate" phenomenon 
which is in spirit very close to part (A) of  Proposition 2 below. 

Under the same model as specified by (1.1) and (1.2), Rosenblatt (1991) focuses in 
his Lecture 9 on the case where the transformation G(x) is continuously differentiable 
and monotone, and derives that the random vector (Z(N~/2,h(N),yi),i = 1,2 . . . . .  m) 
converges in distribution to a Gaussian vector with covariance matrix [a(yi)a(yj)], i, j = 
1 . . . . .  m, for some function a(y), provided that h(N)N 1-~ ~ cx~ as N ~ oo. Assuming 



H.-C Ho / Stochastic Processes and their Applications 63 (1996) 153 174 155 

G(x) = x, Robinson (1987) gave results of marginal limit distribution as well as MSE 

under long range dependence. With more general G(x), including two-dimensional non- 
instantaneous filters, Cheng and Robinson (1991) extend Robinson's (1987) results and 

obtain a broader class of  limiting distributions. Studies mentioned above did not ad- 
dress, however, the question as to what if  values of the abscissa variable y of f ( y )  
are in {G(x)[G'(x) = O, x in ~}. The present paper fills this gap by assuming that 
the set {x in 3?lG'(x) = 0} is finite. Our main results are summarized in Theorems 
1 3, and stated in Section 2. An example to express these theorems is also given in 
Section 2. Proofs are all given in Section 3. 

2. Main theorems 

We start with a list of conditions which we throughout assume most frequently. 
(C1) The probability density function of any finite-dimensional joint distribution of 

{Y,,,n C Z} is continuously differentiable. Moreover, for each fixed y = (yl . . . . .  Y m )  

E ?t~ m, the joint density fi,,...,i°,(y) is uniformly bounded over all integral m-tuples 
( i l  . . . . .  ira) with distinct coordinates. 

(C2) The instantaneous filter G(x) is continuously differentiable, and the set { x  G'(x) 
= 0} is finite. 

1C3) The nonnegative kernel function K(x) is bounded, has compact support and 
satisfies J" K(x) dx = 1. 

(C4) The positive bandwidth sequence {h(N)} satisfies h(N) ---+ 0 and Nh(N) -+ 
~ as N ~ v o .  

(C5) The covariance function r(n) satisfies r(n) -+ 0 as n ---+ ~;. 
Let X be an N(0, 1) random variable. Set 

k ( y - G(X) - G(X) ~ ( y - G(X) 
h ( ~  ) = K ( Y ~ ( - ~  / - EK ~ ( ~  ) 

and expand K ( ( y -  G(X))/h(N)) in terms of the Hermite polynomials Hj(X) 's  as 

i~ ( y G(X) ) °C a/h<N)(y ) , 
= ~ 5; H/(A ). (2.1) 

The Hermite polynomials are defined by 

Hi(x ) = (_l)JeX2/z dJ e-X2~2 
dx/ " 

The first few are Ho(x) = 1, Hi(x) = x and H2(x) = x 2 - 1. The coefficient ajhiN)(y)'s 
in (2.1) are given by 

ajh<N>(y)= f R (Y--G(x)) h(N) J Hj(x)(a(x) dx, (2.2) 

where 4~ is the standard normal density. Write 

ZNh(N)(T) ~ / N ( T )  -- E / N ( Y )  
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1 N ( y _ C ( x o ) )  
-- Xh(N) ~_l K _ -h(--N-) ] 

=~ajh(N)(y)  ( 1  Nn~=1 ) 
j=l j!h(N) ~ _ Hj(X,)  . ( 2 . 3 )  

We shall see later that the first index j0 in (2.1) with ajoh(N)(y ) ~ 0 plays a key role in 
determining the norming factor for ZNh(N)(y). This property is slightly different from a 
direct analogy to what is noted by Dobrushin and Major (1979) and Taqqu (1979) as 
they deal with the partial sums of G(X,) 's ,  because, under current situations, there is 

the bandwidth sequence {h(N)} involved. Prior to giving our main theorems we need 

Proposition 1. Under (C1)-(C3) ,  the limit 

ajh(N)(Y) 
lim ---- 9j(Y) 

U---+oo h ( N )  

exists for each j and y, and the funetion gj(y)  satisfied, for fixed y 

9j(y)=O V j>11 ~ f ( y ) = O .  

(2.4) 

(2.5) 

Eq. (2.5) validates the following definition. 

Definition. Fix G(. ) and K(.). For each y with f ( y )  > 0, define kK, G,y ~ min ( j  >~ 1 [ajh(N) 

(y)  is nonzero infinitely often as N ~ cx~ for some sequence {h(N)} converging to 
zero}. We shall call kK, c,y the Hermite rank of (K(.), G(.),y), and occasionally abbre- 
viate it by k if no confusion will be created. 

Example 1. Suppose G(x) = x and K(x) is symmetric, bounded, and has compact 
support. It is easy to see that the Hermite rank kK, 6,y for each y is 

2 if y = 0 .  
kK, c,y = 1 if y=p O. 

Accordingly, the functions defined by (2.4) is gj (y )=-Hj(y )O(y) ,  j>~ 1. 

Remark 1. Let k0 be the Hermite rank of (K(.),G(.),yo). Clearly, (2.5) gives k0 < 
cx~, and by the definition of the Hermite rank k0, there exists an e > 0 such that V j ,  

1 <~j<~ko - 1, ajh(N)(Yo) = 0 if  Ih(N)l < e. The expansion for ZNh(N)(Yo) in (2.3) 
should be modified as 

ZNh(N)(Yo) = ~ ajh(N)(Yo) 1 N 
j=ko j !h (N)  ~ n j (xn)  , I h ( g ) l  < e. (2.6) 

Remark 2. Let F(x) be the distribution function of Yn, and let FN(X) be the empirical 
distribution function of the observations Y1 . . . . .  YN, i.e., 

1 N 
FN(X) ---- -~ ~ I{6(Xo)<x}. 

n=l 
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Expand I(G(X,,)<~x ) - -F(x)  as 

I{c(xo)~x} - F ( x ) =  .~ ~ H j ( X n ) ,  
.I ~ m  

where m = inf{j>>.l[Aj(x) is nonzero for at least one x} [see Dehling and Taqqu, 
1989]. Then, formally, integration by parts gives 

l f (y-x)h~ Z~h(N)(Y)-- h(N) K d[F,v(x ) -  F(x)] 

j=m k N I] j !h(N) h ~  " 

The integral fAj(x)dK((y- x)/h(N)) is exactly the function we have denoted by 
agh(N)(y) (cf. (2.6)). By arguments used in Example 3 of Dehling and Taqqu (1989), 
we see that for any i~> 1 there are G(.)'s such that the Hermite rank kK, G,y is greater 
than i. 

As the first step toward finding the norming factor for ZNh(N)(y), we compute in the 
following proposition the variance of ZNh(N)(T ) under various circumstances. Set 

m 

R(j ,m) = £ r(n) j and ]R](j,m)= )2 [r(n)] j. 
n 1 n 1 

Proposition 2. Assume (C1)-(C5). Given y with its Hermite rank k, then we have 
the following: 

(A) As N -~ oo 

(g2(y)  + B~ + o(1 ))  (2.7) e(zNh(N)(y)) 2 = O(N-  1 [Rl(k, N))  \ - -~.  . 

where gk(Y) is as defined in (2.4), and the term BN is bounded by one and is o( 1 ) i f  
l i m N ~  IR](k,N) : oo. 

(B) I f  the sequence {h(N)} satisfies 

lira h(N)IR](k,N ) ---- O, (2.8) 
N ~ o o  

then 

2 f ( Y )  / lim E ( ~ Z u h ( x ) ( y ) )  = K2(u)du (2.9) 
N ~ o c  2 - -  / 

(note that under h(N)=o(1), (2.8) follows automatically i f  l imN~,~lRl(k,N) 
O O  ) .  

(C) Suppose IRl(k,N) : LI(N) is slowly varying and diverges to +oe. Assume 

1LmocLll(N)R(k, N)  
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exists. Then, with h(N) satisfying limN~oo h(N)L l (N)= co, 

(x /N 7 ( ) ( ~)2 co2(Y)k, ' (2.10) lim E __L,1/2.N.ZNh(N).y~ -- 
N - * o o  

where 
N 

c---- lim (NLI(N)) -1 ~ r k ( m - n ) .  (2.11) 
N---+ oo m, n =  1 

(D) Assume (1.1). I f  kc~ < 1 and limu__,~h(N)Nl-k~Lk(N)= oc, then 

292(y) (2.12) lim E(N~/2L-k/2(N)ZNh(N)(y)) 2 = k[(1 - k~)(2 - k~)" 
N - - * o o  

Remark 3. From the right-hand side of  (2.7), we see that there are two rates com- 
peting with each other, N-I[R[(k,N) and (Nh(N)) -1. The central idea upon which 

the following three theorems are based is to carefully control the bandwidth sequences 
{h(N)} to have one rate dominate the other. More specifically, (2.8) is equivalent to 
N-I[R[(k,N) -< (Nh(N)) -1, and condition limN_~o~h(N)lR[(k,N ) -- c~ in (C) and 
(D) of Proposition 2 holds if and only if (Nh(N)) -1 -< N-I[RI (k ,N) (A  -~ B means 

A/B = o(1)). The former case leads to Theorem 1 and 3, and the later case is ex- 
ploited in Theorem 2. Also interesting is the possibility that the two rates may be 
equally competitive, in other words, the ratio [R](k,N)/h(N) is bounded away from 
zero and infinity. The asymptotics under this circumstance will be discussed in a sub- 

sequent paper. 

We now present below our main theorems conceming limiting distributions. Each of 
the theorems is, as pointed out in Remark 3, in relation to certain part of  Proposition 2. 
In fact, the norming factors employed in Theorems 1 and 3, Case (a) of  Theorem 2, and 
Case (b) of  Theorem 2 are derived, respectively, in (B), (C) and (D) of Proposition 2. 
Throughout the following three theorems, we let y/'s, 1 ~< i ~< m, be distinct real numbers 

such that f (Y i )  > 0, and let k = min{kl . . . . .  km}, where ki denotes the Hermite rank 
of (K(.), G(.), y/). 

Theorem 1. Assume conditions (C1) (C5) are satisfied. I f  (2.8) holds, then as 
N---+ oo 

~ (  ZNh(N)(Yl ) . . . . .  ZNh(N)(Ym ) ) 

N O, K:(u)du d iag{ f (y l )  . . . . .  f (Ym) • (2.13) 

Theorem 2. Assume (C1) - (C5)  hold, and the bandwidth sequence {h(N)} satisfies 

lim h(N)IR](k,N) = cx~. 
N----*oo 

Suppose either one of  the cases below holds. 
Case (a): Let [RI(k,N ) = LI(N) be the same as in (C) of  Proposition 2. Assume 

lim Ll l (N)R(k ,N)  
N ~ o o  
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exists. Choose AN = vrNLil /2(N) and let the random variable Z be N(0,o-~) with 

N 
~r~ = k! lira (NLI(N))  -I  ~ rk(m - n). 

N ----+ cxD m, n = l  

Case (b): Suppose (1.1) holds and kct < 1. Choose AN = Nk~/2L-kI2(N) and let 
the random variable Z be represented through a k-foM multiple Wiener-It6 inte.qrat 

z __ [2F(=)cos (2 ) ] -k /2 f  ei(x'++xk) -- 1 
7:- x;) 

[xi ""  xk 1(~- 1)/Zd W(xl ) . . .  d W(xk ). (2.14) 

W(x) is the complex Gaussian white noise (cf. Major, 1981). Then 

AN (ZNh(N)(y,) . . . . .  ZNh(N)(Ym) d Cgk(Yl) gk(Ym)~ Z. (2.15) >\ k~ . . . . .  ~ ) 

(Note that 9k(Yi)= 0 if kx, c,y, > k.) 

Remark  4. In Case (b) of  Theorem 2, instead of  a weaker condition 

[R[(k,N) = N)'Lz(N), 0 < )~ < 1, (2.16) 

for some slowing varying function LEO), we assume (1.1). This is because (2.16) does 

not guarantee the existence of  the limiting random variable Z (Dobrushin and Major, 
1979, Remark 4,2). The limiting random variable Z as shown in (2.14) is non-Gaussian 

for k >/2 (Major, 1981, p. 68). 

Theorem 3. Assume conditions ( C 1 ) - ( C 5 )  hold. Suppose IRI(1,N) ~ N~L3(N) is 
reyularly varyin9 with exponent/7, 0<<./7<<. 1. When/7 = 1 we further assume L3(N) , 
0 as N ---+ oo. I f h ( N )  satisfies h(N)IRI(1,N ) = o(1), then (2.13) still holds. 

Remark  5. In Theorem 3, the condition on IRI(1,N ) is given mainly to assure that 

(C4) and h(N)IRI(1,N ) = 0 can simultaneously hold for some {h(N)}. Also note 

that, when /7 = 1, (C5) implies L3(N) = o(1). Theorem 3 has the advantage that 
one can assure the asymptotic normality (2.13) without needing to know the Hermite 
rank. This property is more useful, especially under non-parametric settings, when the 

instantaneous filter G(x) is unknown and the calculation of  the Hermite rank cannot 

be executed. Even when the decaying rate c~, under (1.1), is not given, (2.13) remains 
to hold, if  the bandwidth sequence h(N) is chosen properly so that the conditions 

(C4) and h(N)IRI (1 ,N)= o(1) are both satisfied, e.g., h ( N ) =  La(N)/N. The slowing 
varying function Ln(N) tends to oo as N ---+ exp. 

Example 2. Under (1.1), let G(x) and K(x) be the same as given in Example 1. Re- 
call that the Hermite rank kx, c,y = 1 if y @ 0 ,  and 2 if y = 0. If  the bandwidth 

sequence {h(N)} satisfies limn~oo h(N)NI-~L(N)  = oo, then by Case (b) of  Theorem 
2, N~/2L-1/2(N)ZNh(N)(y) tends to ( - H l ( y ) ( 9 ( y ) ) Z  with y ¢ 0, where Z is Gaussian 

l and limN.-+ooh(N)N: 2~L(N) as shown in (2.14) with k = 1. Suppose 0 < e < : 
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= oe. By Case (b) o f  Theorem 2 again, N~L-I(N)ZNh(N)(O) converges in distribution 
to (2x /2~) -1Z  '. Z '  is as specified in (2.14) with k = 2 and is thus non-Gaussian 
(see Remark 3). We have just demonstrated that the limiting distribution of  prop- 
erly normalized ZNh(U)(y) may, under long-range dependence, change dramatically as 

y moves from 0 to any non-zero real number. When g = ½,1RI(2,N) = Ls (N)  is 

slowly varying, and by Case (a) o f  Theorem 2, x/NL51/2(N)ZNh(N)(O) is asymptoti- 

cally (2 !x /2~) - lN(0 ,  0 "2)  with 

N 
0 "2 = 2! lim (NLs(N)) -1 ~ r2(m - n), 

N ~ o o  m,n=l  

provided 

lira h(N)Ls(N) = oo. 
N--+oo 

In the case of  1/2 < c~ < 1, Theorem 1 gives under (C4) that v/Nh(N)ZNh(N)(O) 
converges in distribution to N ( O , ( v / ~ ) - l f K 2 ( x ) d x ) .  Without considering the 
Hermite rank kx, G,y, we still have from Theorem 3 that the limit of  

(ZNh(N)(Y!) . . . . .  ZNh(N)(Ym )) for distinct yi's is N(0,  fK2(x) dx d i a g { f ( y l  ) . . . . .  f (Ym)} ), 
if  

lim h(N)N~-~L(N) = O. 
N--~oo 

R e m a r k  6. We may in above theorems consider the kernel functions which take neg- 

ative values. A kernel function is said of  high order m/> 2, if  

f uJK(u)du=O,l<.j<.m-1, and /umK(u) du#O. 
Suppose f ( y )  C C m, and the kemel  K( . )  is o f  high order m, then 

(-h(N))m f(m)(Y) . i  umK(u) du. 
E?N(Y) -- f ( Y )  "~ m! 

Let the estimatorfN(y ) be centered at the true density f ( y )  instead of  EfN(y), and set 
Z~Ch(N)(Y) = f u ( Y ) - - f ( Y ) "  The same conclusions as in Theorem 1, Case (b) of  Theorem 
2, and Theorem 3 are still true for ANZ~ch(N)(y ) (A u the norming factor), because there 
allows the bandwidth to be selected to satisfy hm(N)AN ---+ 0 as N ~ oc. 

3. Proofs 

During the course of  our proofs, we use C, for convenience, to denote generic 
positive constant whose value may differ from one place to another. 

P roo f  of  Proposit ion 1. I f  the set E = {x t G'(x) = 0} is empty, the assertion holds 

trivially. Suppose E = {xl . . . .  ,xa},xi < xi+l. Set B0 = ( -oC,Xl] ,Bl  = [xl,x2] . . . . .  and 
Ba = [:ca, +oo) .  Define 

I x  if  y e G(Bi) and G(x)= y,x e Bi, aFt(Y) = '1. o if y ~ G(Bi), 



H.-C Ho / Stochastic Processes and their Applications 63 (1996) 153-174 161 

and #(B) = JJ3 ~b(x)dx, for all Borel B E ~ ( ~ ) .  Clearly, 

f ( y ) d y  = ~#(GT~(A)) ,  VA E ~ ( ~ ) .  (3.1) 
i = 0  

Let Iy,~ denote the interval ( y , y + A )  i f A  > 0, or ( y + A , y )  i f A  < 0. Then, with 
)q(y, A) =- g (Gi  1 (Iv,~ N G(Bi))), the limit 

f,.(y) - ~limo IAI-' 2~(Y, A ) 

exists, for otherwise (3.1) leads to the fffllowing contradiction: 

Z f ( y )  = ~lir~lAI ' f ( u )du  = 2~imoinf lAl- '2 i (y ,A)  
, .  I i=  [ 

f < ~ l i m s u p l A l - , ) q ( y , A  ) = ~im0lAi L f ( u ) d u  = f ( y ) .  
i = 1  A ---+0 ,. i 

Moreover, the functions f i (y) ,O~<i ~<d, defined above satisfy 

d 

f ( y )  ~'~f~(y), y E ~ ,  (3.2) 
i 0 

and 

{ q ~ ( G ~ ' ( y ) ) [ [ G ~ ' ( y ) ] '  t, y E Int G(Bi), 
Ji(Y) 0 y ~ G(Bi). (3.3) 

From (3.3) and (C2) we see that each f / ( y )  is continuous on !1~ - 8G(Bi). We are 
going to show that f i ( y )  is continuous on ~. Taking lim SUpy~y c and lira infv.~,.,, on 
both sides of  (3.2) proves the limits 

lim Ji(Y) 
v ~  Yo 

exist Vy0 ~ ~ and O<~i<.d. In particular, by (3.3), 

lira .[i(Y) = O, yi E (]G(Bi), O<~i~d. (3.4) 
y~+ V 

(set, if  A = [c,o~) or (-oo,  c],~A = {c}). For any fixed y, define J (y )  to be the 
subset o f  {0, 1 . . . . .  d} such that i E J ( y )  if  and only if y ~ Int G(Bi). Use (3.2) to 
obtain 

[ f ( y  + b ) -  f ( y ) ]  - ~ [fi(y + a ) -  J}(y)] = ~ [fi(y + b ) -  j i (y)] .  (3.5) 
iCJ(y)  i•.](y) 

Let b ---+ 0 on both sides of  (3.5). The left-hand side is clearly zero due to the continuity 
of  f ( y )  and J}(y) with i C J(y) .  For the right-hand side, 

lira ~ f ~ ( y + 6 ) = 0  
6 4 0  i([J(y) 

by (3.3) and (3.4). Hence, f i (Y) = 0 Vi ~ J(y) ,  and, in particular, Ji(Y) - 0 if 
y ~ OG(Bi). This implies f i ( y )  is continuous Vy E !£ and O<~i<~d. Define 

gji(Y) = Hj(GFI(Y))fi(Y),  O<~i<~d. 
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Since J ] (y)  is continuous and j~(y) -- 0 Vy ~ Int G(Bi),gji(Y) is continuous on ~ at 
least for l<~i<<.d- 1. When i = 0 or d, gji(Y) is continuous on Int G(Bi) by (3.3). 

We now show that 9ji(') is also continuous on ~G(Bi, i -- 0 or d)  and need only to 
focus on the case that y = c for some finite number c is the asymptotic line of  the 

graph of  G(x), i.e., 

lim G(x) = c,(x* = +cx~ or - cx~). 
X----~X ¢r 

For convenience, set x* -- +cx~ (i.e. i -- d, the case o f  i -- 0 is similar). First, 

gja(c) -- 0. Recall (3.3) and by change of  variable, 

lim Igja(y)l = lim Hj(x)[49(x)]' = 0 =  lim gja(y). 
v ~ c  X---+C~3 ~ y ~ c  

y C G(Ba ) yf[G(Bd ) 

Thus, gjd(Y) is continuous on the whole ~. Observe that 

d 
ajh(N)(Y)h_~ -- i~_of K(u) gJi(Y - h(N)u)du 

d 
~ gji(Y) as h(N) --+ O. (3.6) 
i=0 

The interchange of  the integral and the limit is valid because gji(Y) is continuous and 

K(u) has compact support. Set 9j(Y) -- ~]~=0 9ji(Y) to conclude (2.4). To show (2.5), 
recall that 

d d 
9j(Y) = ~Hj(Gi-I(Y))fi(Y) and f (Y )  = ~ fi(Y). 

i :0  i=O 

The if  part o f  (2.5) is obvious. Conversely, we construct a function H(x) such that 

H(x) > 0, Vx E ~, and the Fourier-Hermite expansion 

H(x) = ~ bjH](x) 
j:l 

converges absolutely. Sum up gj(y)bj  o v e r  j~> 1, f ( y )  = 0 follows immediately. [] 

P roof  of  Proposition 2. (A) As EI-Ii(Xm)Hj(Xn) = 6(i - j)j!rJ(m - n) (cf. Taqqu, 
1977, Lemma 3.2), we get from (2.3) 

oo 2 ^r~ / U x 

E (ZNh(N)(y)) 2 = (Nh(N))-2E a'Jh(~ (y) [ ]~ r;(m - n) ) j :k  J. \m,n:l 

= N - 1  {a2h(N)(Y)~ ( I + 2 N - 1 N ~ : I l R ( k , n ) )  

oo a)2h(N)(y) 2 oo ajh(N)(y ) t / _IN--I  
+(Uh(N)) -1 ~ - -  + U -1 ~ ~2N n~l R(j,n) 

j=k+l J! h(N) j=k+l J! h2(N) ] 
= N-1S1 + (Nh(N))-Is2 + N-1S3. 
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Note that 

[akh(N)(y) 1 

and 

2 

(Nh(N))-IS2+N-'S3 =E [ ~ ajh(N)(Y) ( 1 N )]  
j=x-+~ j!h(N) N ,E  H/(X~) 

As h(N) ~ O, 

$2 = . f K 2 ( x ) f ( Y  - h(N)x)dx 

by (2.1) and (2.4), and 

(g2(y) ) 
$1 = O(IRI(k,N)) \~-~--.  + o(1) 

azh(N) (y ) / '  K2(x) 
k!h(N) ~ f (y ) .  dx (3.7) 

(3.8) 

1970, by (2.4). For Hermite polynomials Hi(x), the following upper bound (Lukacs, 
p.78) 

[H/(x)]<~eX2/22J/2~-'/2F (J-21-- ) (3.9) 

and the recursive relation (Major, 1981, p. 38) 

xHj(x) = Hj+l(X) + jHj_l(x) 

jointly imply 

sup ,Hj(x)[O(x)]' I <.~-I2J/2jF (2  ) . (3.10) 
xC~ 

We are now ready to provide an asymptotic bound for $3. First, by relation (3.6), 

ajh(N)(y ) <~h(N)~ K(u) Igii(Y - h(N)u)] du. (3.11 ) 
i=0 

For each i, 0 < i < d, let GTl(-) be as defined in the beginning of Proof of Proposition 
1, then supu~  [G71(u)[ < oo, and by (3.9) and St/fling's formula 

1 f 
J K(u),qji(y - h(N)u)du 

~ < - -  K(u) I/-/j(G?~(y - h(N)u))f~(y - h(N)u) t du (3.12) ,/?.' 

<~ C(j + 1) -1/4. 



164 H. - C, Ho / Stochastic Processes and their Applications 63 (1996) 153 174 

Suppose, when i = 0 or d, supue~ [G/-l(u)[ = oc. Set, for convenience, i = d. Then 
(3.10) and Stirling's formula assure 

v ~ f . / K ( u ) g j a ( Y - h ( N ) u )  du 

1 t t j ( G d ' ( y  - h (N)u ) )  [~b(G~-l(y - h(N)u) )] '  
~ - - ~ . / K ( u )  du (3.13) 

I(G2~(y - h(N)u)) I 
<~ C ( j  + 1 )1/4. 

Note that 

N--1 U--1 ( N )  
N -1 ~ R ( j , m ) =  ~ 1 -  rJ(n). 

n=l n=l 

Applying (3.12) and (3.13) to relation (3.11), we obtain 

N 
1831 ~ c ~ ~ j,/4 ir(n)l j 

n=l j=k+l 

0(3 N jl/4 
= c ~ Ir(n)l k ~ Ir(n)l j-~ 

n=l j=k+l 

= BN O(IRI(/,N)) (by (C5)), 

(3.14) 

where BN is bounded by one and is o(1) if l i m N ~  ]RI(k,N) -- oc. Note that (C5) 
implies supn¢0[r(n)[ < 1. Relation (2.7) then follows by (3.7), (3.8) and (3.14). 

(B) (2.8) implies N -1 [RI (k ,N)= o ( N h ( N ) )  -1. This and (2.7) give (2.9). 
(C) First, with h(N)  satisfied lim~__.oo h(N)]R](k,N) = co, 

(Nh(N) )  - I  = o (N - I  IRl(k,N)) (3.15) 

We then have (2.10) from 

lim E R[-1/Z(k,N)ZNh(N)(y 

akh(N)(y ) 2  / N \ 2 
1 E ~ H k ( X n ) )  (by (2.7)and (3.15)), = limN___+~ k!hZ(N) (NIRI(N'N))-~ k! ,=1 

_ cg~(y) 
k! (by (2.4) and (2.11)). (3.16) 

(2.11) is justified by the assumption that the limit l i m u - ~  ]RI - I (k ,N)R(k ,N)  exists. 
(D) For kc~ < 1, we can apply Karamata's theorem (Feller, 1971, p. 281) to (1.1) 

and get as N ~ oc 

Nl-k~Lk(N)  (3.17) 
R ( k , X )  = [RI(k,N) ~ 1 - kc~ 

X 2N2-k~Lk(N) 
rk(m - n) ~ (3,18) 

m,,=l (1 - kc0(2 - kc 0 '  
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CN ~ C} means that CN/C~v --~ 1 as N --+ oc. We also have the same asymptotic 

relation as (3.15) from (3.17) and the condition l i m N ~  h(N)NI-k~Lk(N) = oc. (2.12) 

then follows by 

l i r a  E(Nk~/ZL k/2(N)ZNh(N)(y))2 
N ~ o c ,  

- 2 

= lim akh(N)(Y)] 

2g~(y) 

k!(1 - k~)(2 - k~) 

• /21 k k.,,=, Hk(xn) 

(by (2.4) and (3.18)). 

(by (2.7) and (3.15)), 

(3.19) 

and 

Q*(p) = {t = (tl . . . . .  tj) C Q(p), 1 <~j<~ p lti>~2, 1 <~i <~j }. 

For each given partition t = (tl .... ,ts) ~i Q(p), set Itl ~ s and, for fixed m and N, 

N(s)=_ {(nl . . . .  ,ns)ll  <~ni<,N and ni's,l <~i<~s, 

are all distinct, i.e., ni @ n~ if i ~ j }, 

Nr(s)=-- {(nl . . . . .  n~.) ~ N(s)]  Ini-- njl > T Vi C j, l <<,i,j~s} 

m(t) =_ {1 = (ll,I . . . . .  ll.t, 12,1 . . . . .  12,,2 . . . . .  l~..i .... l,.t ) I 

l<~li,j<~m for each pair (i ,j)  with 1 <~i<~s and l~j<~ti }. 

and 

Proof of Theorems 1 and 3. Our proof is based upon the method of  moments. Consider 

a linear combination 

biZ, vh(N)(Yi) 
i I 

of  ZNh(N)(Yi)'S. If, for any positive integer p, 

E biZNh(N)(Yi 

N ~  E IN (O,~bZ f ( y i ) )  f K2(u)dulP, (3.20) 

then by the Cram6r-Wold device, (2.13) follows. To show (3.20), we begin with the 
following notations. Fix positive integer p and define 

O ( p )  = t = ( t l  . . . . .  t j) , l<~j~ ~ Z  , ~ t i  = p, ti<~ti+l 
i=1 
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For every element 1 c re(t), the (i, j ) th  component li,j of  ! is denoted by l(i, j). Use 
the notations given above to simplify 

E [ ~ ~.~=l biZNh(N)(Y )] p 

=(Nh(N))-p/2E [n=~l ~=1 bil~ (yi--G(Xn)~] ,]J 

= (Nh(N)) -p/2 ~ c(t) ~ 
t6Q(p) 16m(t)n=(nl,...,nl,i)6N(Itl) 

I t] ti (Yl(i,j) -- G(Xni ) 
xEI-I l-I bt(i,j)I( 

=(Nh(N))-P/2 ( ~  + ~ + 2 ) 
tEQ(p) tEQaX(p)  tCQ(p)_Q~r(p) 
Itp<P/2 I/l=p/2 Itl >~p/2 

---- (Nh(N)) -p/2 (21 + E z  + ~3)" 
c(t) are constants associated with the partition t o f  p. Note that the sum ~ 2  above 
is null for odd p,  and covers only one term with t = (2 . . . . .  2) (p/2 components) 
i f  p is even. It is easy to check that the general formula for coefficient c(t) with 

t = ( h  . . . . .  t~) E Q ( p )  is 

c(t) = (s!h ! . . " ts!)-I p!. 

In particular, when p is even and the partition t is t = (2 . . . .  ,2)  (p/2 terms) 

p~ 
c ( t ) -  2p/2(2~) ! . 

We shall conclude (3.20) by showing as N --~ oo 

(3.21) 

(Nh(N)) -p/2 (~ I  + ~-]~2) 

P! fK;(u)du  b2f(yi) i f  p is even, 
2 2 £ ( p / 2 ) !  i=1  

0 if  p is odd, 

(3.22) 

and 

(Nh(N))-P/2z3 , O. (3.23) 

First o f  all, we show that 

s 

lim N -s 2 f,~ ....... (Yl . . . . .  Ys) = ~If(Y¢). (3.24) 
N---+oo (nh.. . ,n~)EN(s) t = l  

Set It(A) = (Yt - A, yt + /k), ~ > 0. Fix a sufficiently large T so that for each 

(nl . . . . .  ns) C Nr(s) ,  ]EX,,Xnjl<~SUpn>.rlr(n)] =- Or < 1 / ( s -  1), i # j .  Then by 
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Lemma 3.3 of  Taqqu (1977) 

P(Y.,,,, E I t (A) ,  1 < . t < ~ s ) / ( 2 A )  ~ 

= f i  [P(Y,,, E/ t (A)) / (ZA)]  
t = l  

+ ~ ~ EHk, ( X , , ) . . .  Hk~ (X,~) 
q=l  k I ~ . .  +k~=2q 

O <~k~,...,k, <~q 

s / 
x ~ ( 2 A )  -1 H k ' ( X t ) 4 ( x t ) d x  t 

t- I kt! 
/,(A) 

-- Rl (A,  yt, 1 <~t <~s) + R=(nt, yt ,  1 <~t <~s). 

By mean value theorem and continuity of  f ' ( . )  (assumed in (C1))  

s 

RI(A,  yt, 1 <<.t<~s) ---+ l ~ f ( Y t )  (3.25 ~ 
t - -1  

as A- -~  0. Applying similar argument used in (3.12) and (3.13) to the integral in 

R2(nt, Yt, 1 <~ t <~ S), we obtain 

(2A)_1 f/, Hk,(xt)  (A) ~ ~ ( x t l d x ,  = O(k~"4). (3.26) 

For each (nl . . . . .  n~.) E NT(S),  we also have 

IEH~,(X,,,)..- H~,(X,~)I ~ l~I ([0~(s -- 1)]k'k,!) b'2 (3.27) 
t = l  

(see Taqqu, 1977, the second display in p. 214). Then (3.26) and (3.27) jointly imply 

[R2(nt,yt,  l~t<<.s) l  <~ C ( O r ( s - -  1)) j/'2 

= C 1 - ( 0 r ( s - 1 ) ) b ' 2  ' (3.28) 

where the constant C is independent of  7" and any particular s-tuple (nl . . . . .  n~.) c_ N f ( s  t. 

Note that Or --~ 0 as T ---, oc (by (C5)).  Immediately from (3.25t and (3.28) 

S 

lim sup f ....... ,,(Yl . . . . .  Y,.) - H f ( Y t )  = 0. (3.29) 
T ~ o c  (n l , . . . ,n , )CN~(s)  t = l  

Write 

f , ,  ........ (y i  ['] . . . . .  Ys) - f ( Y t )  
(n l , . . . , n , )CN(s )  t--l== 

-- Z + 
(nl , . . . ,n~)GNr(s)  (,,L . . . . .  )6~'~,1 

[ni--n~] <~ T, for some ( i , j ) ,  i ~ j  

=- + 
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It is clear that [Nr(s)[ = O(N s) and I N ( s ) - N r ( s ) l  = O(NS-1). Hence, (3.29) implies 
that for any ¢ > 0 we can find a large T such that limu~o~ N -s ~-'~r < e and, 

using the uniform boundedness of  fnl,...,,,(-) assumed in (C1), hmN-~o~" N-S ~2,r* = 0. 
(3.24) is then evident. Fix t E Q(p) , l  E re(t), and n = (nl . . . . .  nltl) E N(]t]).  With i 
fixed, let l(i) E { l ( i , j ) ,  1 <,j<~ti} be the positive integer such that 

= rain . . ( Y l ( i , j ) ~ ,  Yl(i) 1 ~j<~ti 
and set Al(i, j)  = Yt(i,j) --  Yl(i), ] <~j ~ t i .  Applying mean value theorem to fn,,...,nl d gives 

E(t,t,n) 

Itl ,, ( y , ( i , j ) - G ( X n , ) ~  
= Eli IIb,(~,:)R 

i=1 j=l \ h (N)  ) 

( Itl t, ~ (At(i,)) + ui)  
=(h(N))lt'ili~=lj~lbt(i'j)K , h(N) , } 

× f n,,...,nl, I (Yt(1) -- h(N)Ul . . . . .  Yl(Id) - h(N)Ultl) dUl " "duj t l  

(h(N))ltifn,,...,nl,i (Y/(1) . . . . .  Yj(ItD) 
f I'l r ~ \ 

= x t~_  ~/[bt(i)K(ui)lt 'dui (1 + O(h(N)) )  if  all ZJ/(i,j) = 0, 

o(h Itl (N) )  otherwise. 

(3.30) 

Note that as h(N)  ~ 0, 

R'(u)du --+ f K'(u)du. (3.31) 

When t E Q(p)  satisfies Itl < p/2,  by (3.24) and Nh(N)  --. ~ ,  

(Nh(N) )-P/2~I : (Nh(N) ) -(p/2-1tl) [(Nh(N) ) -ItlnGN(Itl)E E(tJ,n) 

--+ 0 as N --~ o~. (3.32) 

Suppose p is even and t = (2 . . . . .  2) (p /2  terms), then, by noting (3.2l) ,  

(Nh(N))-P/2~2 

t A"0,J)=0 

., (I )-" 2p/2(~)! K2(u) du 

+ o(1) (by (3.30)) 
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t' p,,2 ) 
× I ~ I lb~( i ) f (ya i ) )  ( by (3.24) and (3.31)) 

\ l(i,I)=l(I,21 

This and (3.32) gives (3.22). It remains to verify (3.23) which requires a delicate 
analysis of the growth of ~3. The main task to achieve this is to compute E(t, l ,n) 
(defined in (3.30)), n = (t), with respect to the joint p.d.f. ~bt of  (X,, . . . . . .  X~I, ~ ). The 
first step is to split q~t as the product of  the joint p.d.f, of  (Xn,, . . . . .  X~,. ) and the 

joint conditional p.d.f, of  (Xn,, . . . . .  Xn,n_j)  given (Xn, , , . . . ,X~!j) ,  then carry out the 

integration. To this end, we have to introduce another set of  notations. Fix p>_-2 and 

t C Q ( p ) -  Q * ( p )  with [t[>~p/2. Set 

s( I t l )  - { 1,2 . . . . .  It I}, ,~-(Itl) - family o f  all the subsets of  S([tl). 

For each A {il . . . . .  ilA[} E Y(I t j ) ,  its complement is denoted by A ~ = S(It l)  - A - 
{i*, . .  "* .,~IA, I}. Fix T > 0 and A C ~ ( I t l ) ,  and define 

Xr, A(] t ) - -  {n = (nl . . . . .  nl,i) E m(Itl)lVi,  j ~ d , i  ~ j ,  Ini - njl > T; 

for each i E A ¢ ~ j  ¢ S(It I) 9 In~ - nj] ~< T }, 

with the convention 

NT.e(Itl) = {n = (nl . . . .  , nlrl) e N( i t j ) l  lm - nil <~ T Vi<~j, 1 ~ i , j<~  It1} 

and Nr, lAl(Itl) = (3 if IAI = 1. Recall that 

N1(IAI) = { n = ( n i  . . . .  , n L A I ) E N ( l A l ) l l n i - - n j l  > T V i @ j , I < < . i , j < ~ I A I } ,  

and, for any given v ~ NT(IAI), define 

Xr, A(Itl)/v : {n  : (nl . . . . .  nltl) E N'r,A(Itl) [(nit . . . . .  nik n) : v } .  

Clearly, 

N ( I t l ) c  U N~;A(Itl), (3.33) 

N,,A(Itl) = ~ (N~;A(ItI)/v), I A)>~2. (3.34) 

The inclusive relation (3.33) is due to that some members of  N(Itl)  may belong to 

NT:A(It[) for several different A's. The multiplicity of  the overcounts for all n C N(Itl)  
have a uniform upper bound which does not depend on N. For example, j t I = 5, 

T = 2, and n = (6,3,2,4,7) .  T h e n n  E N2,A(5) fo rA  = {1 ,2} ,{4 ,5} ,{1 ,3} ,{2 ,5}  
or{3,5}. Define 

J ( t , I , A , T )  =_ ~ E ( t , t , n ) .  
nEN1, 4(Itl) 
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It is clear  f rom (3.33)  that we  need only to show 

( N h ( N ) ) - P / Z J ( t , I , A , T )  ~ 0 as N --~ co, 

to have  (3.23).  As  ment ioned  before,  the set A for  J ( t , l ,A ,  T)  can only be empty  
or [AI>~2. Recal l  that p~>2,  Iti>~p/2 and t c Q ( p )  - Q * ( p ) .  When  A = ~, f rom 
express ion (3 .30)  

(Nh(N) )  -p/2 [J(t , l ,A, T)I = 0 (Ni -p /2 (h (N) ) I t l -P / ' )  ~ 0 as N ~ co, 

because  t c Q ( p )  - Q * ( p )  assures [t[ -- 2 when  p = 2. Hence ,  it suffices to con- 
centrate on those J ( t , l , A , T ) ' s  with IA]~>2. Fix A = {il . . . . .  ilAI} with IA[>~2 and 

A ~ = {i1" . . . . .  i~¢1}, and for each a = (ni, . . . .  , nil~l) E Nv([AI) and n '  = (nl . . . . .  nit I) C 
Nr, A([t[ )/a, we adopt  the fo l lowing abbreviat ion:  qS,(.), the joint  p.d.f, o f  (X,,, . . . . .  X,,I~ I); 
and ~b,,,~(-), the joint  condit ional  p.d.f, o f  (X,,. . . . . .  X,~< I ) given (X,~ . . . . .  X,,i,i ). Use  

(3 .34)  to see 

J ( t , l ,A ,  T)  

(IAJ tis 

= aGNr(it[) ~ f ~s~j~bt(i'J)R( y'(i~'j)-G(us)'~] 

× q$.,.,, (v, . . . . .  vl.4o I lUl . . . . .  ulAi) d v , . - -  dVlAo I 

, UIAF)dul " " • dulA I 

For  sufficiently large T such that [r(n)[ < ( 1 / ( p  - 1 ) )A(e( IA[- -  1)) l, V n/> T, L e m m a  
3.3 and 3.4 in Taqqu ' s  (1977)  pape r  ensure 

q=l k I +-..,+ks=2 q a=(nil ,...,hi[A[ ) 
O<~kl'""ks<~q GNr(IA[) 

t .  ~ 

x q~,,,, (v, . . . . .  VlAcl]U 1 . . . . .  UlAI) d v l " "  dvlAc I. (3 .35)  

Fix s and ks, 1 ~ s  ~< ]A[, the first integral on the r ight-hand side o f  (3 .35)  is bounded  by  

f - G(u.)h k ) 
<~ Ch(N)x/~fl.(ks + 1 )1/4, (3 .36)  
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which follows by arguments similar to that used to derive (3.12) and (3.13). (The 

product 1-I~!'__1 bl(i~,j)~;(.), instead o f  a single term K(-), inside the integral in (3.36) 

does not make much difference.) For fixed a E NT(IA]) and Nr, A(ltl)/a, we now try to 

bound INT, A(]tI)/a[. Given any decomposition of  A ~ 

I 

A c = Bo + ~ Bi 
i=1  

with [Bzl = 0 or ~>2 ,Vl<~i<~I (set I =-0 i fBo =AC), we define ?~¢(Bo,B1 . . . . .  BI)C  

NT, A(ItI)/a as the collection of  all the n = (nl . . . . .  nit I) C NT, A(Itl)/a such that 
(i) For each b C Bo,3j E A ~ [nb - nil ~;T, and Inb - n,] > TVa C A c - {b}. 

(ii) For each b E Bi, 1 <~i 41, 3b ~ C Bi ~ b t @ b and Inb - nb, [ ~< T. 

(iii) For any b and b' such that b E B~ and b' E Bj with i@j , l<~i , j ,<~l ,  then 

In~ - nb, I > r .  

Clearly, 

I~(Bo, B1 . . . . .  BI)l <~ CN ~, 

and for each n E Nr, A(Itl)/a there exists a decomposition (Bo, B l '  ' . . . . .  B1,)~ of  A c such 
that n C ~(B~, B~1 . . . . .  B z,' ). Therefore, 

INr.A( [tl )/a[ <~ C N  [IAcl/2], (3.37} 

since l<~[IAC[/2] and the total number o f  decompositions of  A c depends only on [AC[ 

and is thus bounded for fixed p. The last constant C can be made to be independen! 

of  a and X. For t = (t, . . . . .  tl,i) E Q ( p ) -  Q*(p )  with Itl >~ p/Z, and A = {i~ . . . . .  ilA I }, 
put 

z = number o f  l ' s  in {ti . . . . . .  titA I } c{ t l  . . . . .  tltl} 

/ = the least number of  functions in /(  ~ - ( ~  

whose Hermite rank is no less than k. 

, l ~ s ~ l A I  

Since f ( Y i )  > O, l<~i<~m, all the inverse images of  G l (y i ) , l  <~i<<,m, are interior 
points of  the support of  f ( . )  and thus tinite real numbers. Therefore, by (C2) and 

(C3), f K ( ( y  - G(x)) /h(N))dx  = O(h(N)).  This together with E K ( ( y -  G(x) ) /h(N))  
O(h(N))  and (3 .35)-(3 .37)  imply 

IJ(t , I ,A,T)I  

[(kl + 1)" ' (k[AI  + 1)] 1/'4 OQ 
<~ ChItI(N)N[IACl/2] ~ 

q=kr-[kz/2] ~1 . . . . .  ~[41 .... V ~ I  1. ' '"  
0-<.kl,...,kl 41 ~<q 

(3.38) 
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where the last sum is bounded by (Taqqu, 1977, Lemma 4.5 and its proof) 

(k, ..... ~,Ar , I Z( k' . . . . .  klAI )l NIAI- ~/2(IRI( k ,N ) y/2" (3.39) ~< Cc ~ kl! • • • klAl! 

The positive number e is such that Ir(T)l ~< e < ( 1 / ( p -  1))A (e(IA I - 1)) - l ,  and the 
quantity Z(k~ . . . . .  klA I) satisfies (Taqqu, 1977, Corollary 4.2) 

EHk, (Xn~, ) " " Hki4 (Xn,,4 ) = kl ' " " k,4 'Z( kl . . . . .  klA, ) 

with X standard Gaussian random variable. Combining 

(IAI -- 1)k/2 

" " " ~ s = l  

(Taqqu, 1977, Lemma 3.1) with (3.38) and (3.39), we get by noting (ki + 1) 1/zk' <~e 

IJ(t,I,A,T)I <.C(h(N))ItlNI4-~/2+[~---~]IRI~/2(k,N ) ~ ( e ( I A  I - 1)e)J/2 , 
]=o 

which gives 

(Nh(U) ) -p/2 IJ(t, I,A, T)I 

<~ C(h(N)  )IAq/Z(h(N)IRI(k,N) )~/Z(Nh(N) ) Itl-(p/z)-(IAcl+z)/2 (3.40) 

as IAI is replaced by I t l -  IACl. Denote by ~' the number of  l ' s  in the coordinates of  
t = ( q  . . . . .  tld). Observe that 

I A C l + r / > z ' ,  

Id 
p = ~ t i  >~ 1 . v ' + 2 ( I t  I - v ' ) = z l t  I - ~ ' ,  

i = 1  

and hence 

]A ° ] + ' c  
/> Itl - p/2. 

In turn, this implies by (3.40) and the assumption Nh(N) -~ oo, 

(Nh(N) ) -p/2 IJ(t , l ,A, T)I ~< C(h(N ) ) IAcl/2 ( h(N)lRl(k ,N ) Y/2 

<<, C(h(N))  IAcl/2 (h(N)IRI(1,N)) ~/2 . (3.41) 

Viewing (3.41), we then have, by (2.8) or condition h(N)IRI(1,N) = o(1), 

(Nh(N))  -p/2 IJ ( t , I ,A ,T)  I -+ 0 as N -* oc, 

VA E ~ ( [ t [ )  with IA] ~>2, since [A~[ + ~>  1 always holds if t E Q ( p ) -  Q*(p )  with 
t >1 p/2. The proof is completed. [] 
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Proof  of Theorem 2. Let us consider the finite linear combination ~m biZ~h(N)(Yi) i=l 
and write 

i=l ~ biZNh(N)(Yi)= (i=~ 1 biakh(N)(Yi)~ j~ (~n~_ll N Hk(Yn)) 

+ £ ( bi°jh N,(yi)) 

- -  VN + V~-. 

We, for convenience, denote by AN the norming factor which is understood to be of 
the form as specified in Cases (a) and (b), i.e., 

{v~lRl - l /Z(k ,N)  for Case (a), 
AN = Nk~/2L_k/2(N) for Case (b). 

Under Case (a), we have, by (2.4) and Theorem 1' of Breuer and Major (1983), 

ANVN d > (i~l bigk~(lYi)) N(O'a2) 

with 

N 
a 2 = k !  lim (N[RI(k ,N))  -1 ~ r k ( i - j ) .  

N---+oc i,j= I 

In Case (b), (2.4) and Theorem 1 of Dobrushin and Major (1979) imply 

ANVNd(~bigk(Yi)) k '  

with Z as specified in (2.16). Furthermore, (3.16) and (3.19) individually assure 

lim E(AN V~)2 = O. 

This shows (2.15) after the Cram6r-Wold device is employed. 
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