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In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, 
Rc , on super-horizon scales is one of the assumptions necessary to derive the consistency condition 
between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. 
However, the conservation of Rc holds only after the perturbation has reached the adiabatic limit 
where the constant mode of Rc dominates over the other (usually decaying) mode. In this case, the 
non-adiabatic pressure perturbation defined in the thermodynamic sense, δPnad ≡ δP − c2

wδρ where 
c2

w = Ṗ/ρ̇ , usually becomes also negligible on superhorizon scales. Therefore one might think that the 
adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, 
thermodynamic adiabaticity is not a sufficient condition for the conservation of Rc on super-horizon 
scales. In this paper, we consider models that satisfy δPnad = 0 on all scales, which we call global 
adiabaticity (GA), which is guaranteed if c2

w = c2
s , where cs is the phase velocity of the propagation of 

the perturbation. A known example is the case of ultra-slow-roll (USR) inflation in which c2
w = c2

s = 1. In 
order to generalize USR we develop a method to find the Lagrangian of GA K-inflation models from the 
behavior of background quantities as functions of the scale factor. Applying this method we show that 
there indeed exists a wide class of GA models with c2

w = c2
s , which allows Rc to grow on superhorizon 

scales, and hence violates the non-Gaussianity consistency condition.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A period of accelerated expansion during the early stages of the 
evolution of the Universe, called inflation [1–3], is able to account 
for several otherwise difficult to explain features of the observed 
Universe such as the high level of isotropy of the CMB [4] radiation 
and the small value of the curvature. Some of the simplest infla-
tionary models are based on a single slowly-rolling scalar field, and 
they are in good agreement with observations. It is commonly as-
sumed in slow-roll models that adiabaticity in the thermodynamic 
sense, δPnad ≡ δP −c2

wδρ = 0 where c2
w = Ṗ/ρ̇ , implies the conser-

vation of the curvature perturbation on uniform density slices ζ , 
and hence the conservation of the curvature perturbation on co-
moving slices Rc , on super-horizon scales.

In [5] it was shown that there can be important exceptions, i.e. 
in some cases thermodynamic adiabaticity does not necessarily im-
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ply the super-horizon conservation of Rc and ζ , and that they can 
differ from each other. This can happen even for models in which 
c2

w = c2
s . Here cs is the speed of propagation of the curvature per-

turbation. It turns out that it may be defined as c2
s ≡ (δP/δρ)c , 

where the suffix “c” means a quantity evaluated on comoving 
slices defined by δT i

0 = 0 (or equivalently slices on which the 
scalar field is homogeneous). An example is ultra-slow-roll (USR) 
inflation [6,7], in which the flat potential V (φ) = V 0 yields exact 
adiabaticity δPnad = 0 on all scales. USR inflation could in prin-
ciple last for 60 e-folds, but then it would be difficult to make 
it consistent with observation. Alternatively, one can study mod-
els in which a USR phase is followed by a conventional slow-roll 
phase [8], at which stage Rc becomes conserved. In USR inflation, 
both Rc and ζ exhibit super-horizon growth but their behavior 
is very different from each other. As it has been stressed in [8], 
the non-freezing of Rc has important phenomenological conse-
quences. Since the freezing of Rc on superhorizon scales is a 
necessary ingredient [9] for Maldacena’s consistency relation [10]
to hold, models that do not conserve Rc can actually violate that 
consistency condition. We note as well that another consequence 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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of superhorizon growth of Rc is that it should be evaluated at the 
end of inflation, instead of just after horizon crossing [7].

In this paper focusing on K-inflation, i.e., Einstein-scalar mod-
els with a general kinetic term, we explore in a general way other 
single field models which have c2

w = c2
s , hence satisfy δPnad = 0 on 

all scales which we call globally adiabatic (GA), but which may not 
conserve Rc . We find a generalization of the USR model. A dif-
ferent generalization without imposing the condition c2

w = c2
s was 

discussed in [11,12].
The method we adopt is based on establishing a general con-

dition for the non-conservation of Rc in terms of the dependence 
of the background quantities, in particular the slow-roll parameter 
ε ≡ −Ḣ/H2 and the sound velocity cs , on the scale factor a.

We first derive the necessary condition for the comoving cur-
vature perturbation Rc to grow on superhorizon scales. Next we 
determine ρ(a) and P (a) by solving the continuity equation. Then 
using the equivalence between barotropic fluids and K -inflationary 
models which satisfy the condition c2

w = c2
s [13,14], we determine 

the corresponding Lagrangian for the equivalent scalar field model. 
Using this method we obtain a new class of GA scalar field models 
which do not conserve Rc .

Throughout the paper we denote the proper-time derivative 
by a dot (˙ = d/dt), the conformal-time derivative by a prime 
(′ = d/dη = a d/dt) and the Hubble expansion rates in proper and 
conformal times by H = ȧ/a and H = a′/a, respectively. We also 
use the terminology “adiabaticity” for thermodynamic adiabaticity 
δPnad = 0 throughout the paper.

2. Conservation of Rc and global adiabaticity

We set the perturbed metric as

ds2 = a2
[
−(1 + 2A)dη2 + 2∂ j Bdx jdη

+
{
δi j(1 + 2R) + 2∂i∂ j E}dxidx j

}]
. (1)

In [5] it was shown that independently of the gravity theory 
and for generic matter the energy–momentum conservation equa-
tions imply

δPnad =
[(

cw

cs

)2

− 1

]
(ρ + P )Ac . (2)

In the case of general relativity, the additional relation Ac = Ṙc/H
gives an important relation for the time derivative of Rc

δPnad =
[(

cw

cs

)2

− 1

]
(ρ + P )

Ṙc

H
. (3)

The non-adiabatic pressure perturbation is given according to 
its thermodynamics definition

δPnad ≡ δP − c2
wδρ. (4)

This definition of δPnad is important because it is gauge invari-
ant and δPnad = δPud , where δPud is the pressure perturbation on 
uniform density (δρ = 0) slices. It appears in the equation for the 
curvature perturbation on uniform density slices ζ ≡Rud obtained 
from the energy conservation law [15],

ζ ′ = −HδPnad

(ρ + P )
+ 1

3

(3)

	
(

v − E ′)
ud (5)

where v is the 3-velocity potential (v = δφ/φ′ for a scalar field). 
In general, the curvature perturbations on uniform density and co-
moving slices are related as
ζ = Rc + δPnad

3(ρ + P )(c2
s − c2

w)
. (6)

A common interpretation of these equations (see for example [16,
17]) is that when δPnad ≈ 0 with c2

w �= c2
s , ζ and Rc are ap-

proximately equal because of eq. (6), and they are both approxi-
mately conserved on super-horizon scales because of eq. (3). This 
is in agreement with the well-known coincidence of ζ and Rc

on super-horizon scales for slow roll-models in general relativity, 
since in this case cs �= cw and δPnad ≈ 0 on superhorizon scales.

The equation (3) is the key relation to understand how Rc de-
pends on the non-adiabatic pressure δPnad . First of all let us note 
that this equation is valid on any scale. The advantage of it with 
respect to eq. (5) is that it does not involve gradient terms, so it 
allows us to directly relate δPnad to Ṙc if c2

w �= c2
s , while in eq. (5)

ζ̇ depends on spatial gradients, which in the case of USR are not 
negligible on super-horizon scales [5]. This explains why in USR 
in which c2

w = c2
s = 1, both Rc and ζ are not conserved despite 

δPnad = 0.
It should be noted here that for slow-roll attractor models 

c2
w �= c2

s in general, and Rc is time-varying on sub-horizon scales. 
This implies that the non-adiabatic pressure perturbation δPnad on 
sub-horizon scales is not zero. In other words, the attractor mod-
els are adiabatic only on super-horizon scales, and we call these 
models super-horizon adiabatic (SHA).

From eq. (3) we can immediately deduce that in general rel-
ativity there are two possible scenarios for the non-conservation 
of Rc ,

(1) c2
s = c2

w , δPnad = 0 ,

(2) c2
s �= c2

w , δPnad �= 0 . (7)

The second case was studied in [11,12]. Here we focus on the first 
case. It is trivial to see that because of the gauge invariance of 
δPnad the condition c2

w = c2
s automatically implies δPnad = 0. The 

models satisfying the condition c2
s − c2

w = δPnad = 0 are adiabatic 
on any scale, and because of this we call them globally adiabatic 
(GA). In GA models an explicit calculation can reveal the super-
horizon behavior of Rc , and ζ , as was shown in [5] in the case of 
USR. Below, we develop an inversion method to find a new class 
of models that violate the conservation of Rc without solving the 
perturbations equations.

3. Globally adiabatic K-essence models

The condition c2
w = c2

s has been studied in the context of K-
inflation [13] described by the action (X ≡ −gμν∂μφ∂νφ/2)

S = 1

2

∫
d4x

√−g
[

M2
Pl R + 2P (X, φ)

]
, (8)

and it was shown that it is satisfied by scalar field models with 
the Lagrangian of the form,

P (X, φ) = u(X g(φ)) ≡ u(Y ) (9)

where u and g are arbitrary functions. These models are equiva-
lent to a barotropic perfect fluid, i.e. a fluid with equation of state 
P (ρ). See also [18–21]. We note again that these models are adi-
abatic on any scale (GA), contrary to the slow-roll attractor models, 
which are adiabatic only on super-horizon scales (SHA). The fact that 
they are mutually exclusive can be readily seen by considering the 
hypothetical case of δPnad = 0 and c2

w �= c2
s . In this case eq. (3)

which is valid on any scale would mean Rc should be frozen on 
all scales. In contrast, the condition c2

w = c2
s allows for the curva-

ture perturbation to evolve both on sub-horizon and super-horizon
scales.
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In [13] it was shown that it is possible to associate any 
barotropic perfect fluid with an equivalent K-inflation model ac-
cording to

2

P∫
du

F (u)
= log(Y ) , (10)

where F (P ) = ρ(P ) + P and Y = g(φ)X . These models are the 
ones which could violate the conservation of Rc for adiabatic per-
turbations, since they satisfy c2

w = c2
s . It is noted of course that 

the global adiabaticity is not the sufficient condition for the non-
conservation of Rc . Not all GA models violate the conservation of 
Rc on super-horizon scales.

4. General conditions for super-horizon growth of Rc

From the equation for the curvature perturbation on comoving 
slices,

∂

∂t

(
a3ε

c2
s

∂

∂t
Rc

)
− aε	Rc = 0 , (11)

we can deduce, after re-expressing the time derivative in terms of 
the derivative respect to the scale factor a, that on superhorizon 
scales there is (apart from a constant solution) a solution of the 
form,

Rc ∝
a∫

da

a
f (a) ; f (a) ≡ c2

s (a)

Ha3ε(a)
, (12)

where we have introduced the function f (a) for later convenience. 
In conventional slow-roll inflation c2

s and ε are both slowly vary-
ing, hence the integral rapidly approaches a constant, rendering 
Rc conserved. The time dependent part of the above solution cor-
responds to the decaying mode.

The necessary and sufficient condition for super-horizon freez-
ing is that there exists some δ > 0 for which

lim
a→∞aδ f (a) = 0. (13)

By definition of inflation, H must be sufficiently slowly varying; 
ε = −Ḣ/H2 � 1. So we may neglect the time dependence of H in 
eq. (12) at leading order, while ε and c2

s may vary rapidly in time. 
For models for which ε ≈ a−n and c2

s ≈ aq we get

f ∝ aq+n−3 , (14)

hence the condition for freezing is

q + n − 3 < 0 . (15)

If this condition is violated, i.e. q + n − 3 ≥ 0, then the solution 
(12) will grow on super-horizon scales. This happens for exam-
ple in USR, which corresponds to c2

s = 1 and ε ∝ a−6, i.e. q = 0, 
and n = 6. (The super-horizon growth of Rc in USR can also be 
understood as a direct consequence of the non-attractor nature 
of USR [22].) In general, we expect that q would not become 
very large. This implies ε should decrease sufficiently rapidly. Con-
versely, if ε decreases sufficiently rapidly, then the growth of Rc
on superhorizon scales will follow.

5. Barotropic model

We have shown that GA models could violate the super-horizon 
conservation of Rc , so now we will look for GA K-essence mod-
els which do indeed violate it, based on the freezing condition in 
eq. (13). Inspired by the equivalence between barotropic fluids and 
GA K-essence models [13] we will first look for barotropic fluids 
that can give the growing curvature perturbation on superhorizon 
scales. From the very beginning we will set c2

w = c2
s .

Using the Friedmann equation we can write the slow-roll pa-
rameter ε as

ε = − Ḣ

H2
= 3

2

ρ + P

ρ
. (16)

In terms of the scale factor and ε the energy conservation equation 
reads

dρ

da
+ 3

a
(ρ + p) = dρ

da
+ 2ερ

a
= 0. (17)

We may now define the quantity b(a) = 2ερ . It appears naturally 
in the continuity equation and plays a crucial role in regards to 
the super-horizon behavior of curvature perturbations because the 
function f (a) can be re-written in terms of it as

f (a) ∝ Hc2
s

a3b(a)
. (18)

Integrating the energy conservation equation we get

ρ(a) = ρ0 exp

⎡
⎣−2

a∫
a0

ε

a
da

⎤
⎦ =

∫
−b(a)

a
da . (19)

Using eq. (16), we then obtain

P (a) =
(

2

3
ε − 1

)
ρ . (20)

The sound velocity is given by

c2
w = c2

s = dP

dρ
= −1 + 1

3

db(a)

dρ

= −1 + 1

3

db(a)

da

/(
dρ

da

)

= −1 − a

3b(a)

db(a)

da
. (21)

We now consider the behavior of f (a) introduced in (12). As 
mentioned before, we consider the case when ε decreases suf-
ficiently rapidly. In this case, ρ = 3H2M2

P approaches a constant 
rapidly. Hence the time dependence of ρ may be neglected com-
pared to that of other quantities that vary far more rapidly. With 
this approximation, assuming ε ∝ a−n , we find

c2
s ≈ n − 3

3
, (22)

which means q ≈ 0, and

f (a) = c2
s (a)

Ha3ε(a)
∝ an−3 , (23)

which satisfies the condition for the growth if n > 3, in accordance 
with the original anticipation. In passing, it is interesting to note 
that the condition n > 3 implies c2

s > 0, a necessary condition to 
avoid the gradient instability of the perturbation. Thus virtually all 
GA models that are free from the gradient instability exhibit su-
perhorizon growth of the comoving curvature perturbation Rc .

6. Scalar field model

Let us now find a scalar field model that corresponds to the 
barotropic model discussed in the previous section. As a warm-up, 
let us consider the USR case, whose fluid interpretation has already 
been studied in [23]. In this case, we exactly have c2

s = 1. From 
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eq. (21), this implies b/2 = ερ
(= 3(ρ + P )/2

) ∝ a−6. Also c2
s = 1

implies ρ = P + const . Inserting this into eq. (10) gives

2dP

2P + const.
= dY

Y
. (24)

Thus up to a constant term P and Y are the same,

P = Y + const. (25)

Absorbing g(φ) in Y into the definition of the scalar field by 
g1/2dφ → dφ, this is indeed the Lagrangian for a minimally cou-
pled massless scalar with a cosmological constant:

L = P (φ, X) = X − V 0 . (26)

This is consistent with ρ + P = 2X ∝ ερ ∝ a−6.
Let us generalize the USR case. As in the previous section, we 

consider models that have the behavior of ερ as

2ερ = b(a) , (27)

where b(a) should decrease faster than a−3 asymptotically at 
a → ∞ but otherwise is an arbitrary function. Then we have

F (P ) ≡ ρ + P = 2H2ε = 2ερ

3
= b(a)

3
, (28)

which gives

dY

Y
= 2

dP

F (P )
= 6

dP

2ερ
= 6

dP

b(a)
. (29)

For dP , using the energy conservation law, we may rewrite it 
as

dP = d (−ρ + F (P )) = −dρ + db(a)

3

= 3
da

a
(ρ + P ) + db(a)

3
= b(a)

da

a
+ db(a)

3
. (30)

Therefore we have
dY

Y
= 6

dP

b(a)
= 6

da

a
+ 2

db

b
. (31)

Hence

Y ∝ a6b2 . (32)

This is consistent with the USR case in which b(a) ∝ a−6 and Y =
X ∝ a−6.

This relation is quite useful since it allows to rewrite the freez-
ing function f (a) as

f (a) ∝ Hc2
s√

Y
, (33)

from which we can deduce that Y (a) determines the super-horizon 
behavior of Rc . In particular, for the models we are considering 
in which cs is constant, we infer that super-horizon growth can 
happen in the limit Y → 0.

For a given choice of b(a), eq. (32) can be inverted to give the 
scale factor as a function of Y , a = a(Y ). Also eq. (30) can be inte-
grated to give P = P (a). Combining these two, one can obtain the 
Lagrangian for the scalar field, L = P = P (Y ).

Note that in GA models there is a one-to-one correspondence 
between the scale factor and state variables such as P (a) and 
ρ(a), which is the reason why we can also write a barotropic 
equation of state P (ρ) = P (a(ρ)). Once any of the functions 
P (a), ρ(a), b(a), ε(a), Y (a) is specified, all the others are specified 
too, as well as the equation of state P (ρ) or its scalar field equiv-
alent Lagrangian P (Y ), which is in fact the basis of the inversion 
method that we are developing in this paper.
7. Examples

Here we give a couple of specific K-inflation models that are 
globally adiabatic and violate the conservation of Rc . Given the 
parametric behavior of b ≡ 2ερ , our inversion method allows us to 
deduce the Lagrangian.

7.1. Ex 1: generalized USR

Let us consider a specific case where b(a) is a power-law func-
tion,

2ερ = b(a) = ca−n , (34)

where c is a constant. We assume n > 3 in order to have the 
growth on superhorizon scales.

From eq. (32) we have

a ∝ Y 1/(6−2n) . (35)

Now eq. (30) gives

P =
a∫ (

b(a)
da

a
+ db(a)

3

)

= − c

n
a−n + c

3
a−n + const.

= n − 3

3n
b(a) + const. (36)

Plugging eq. (35) into this, we finally obtain

L = P (Y ) = Y n/(2n−6) − V 0 . (37)

Since this may be regarded as a natural generalization of the USR 
case, which corresponds to the case n = 6, we call it the gener-
alized USR (GUSR) model. Lagrangians involving Y α terms have 
already been studied in [11,24,25], but those models are either 
not exactly globally adiabatic because of the presence of a non-
constant potential or they satisfy the relation ε ∝ a−n only approx-
imately and during a limited time range, while for GUSR ε ∝ a−n

is an exact relation and is valid at any time. As the Lagrangian is 
of the type described in eqs. (9) and (26) (remember that after a 
field transformation Y can be made equal to X), we understand 
that this scalar field model is indeed equivalent to a barotropic 
fluid. Hence we have c2

w = c2
s , and therefore δPnad = 0. Indeed the 

second condition for super-horizon growth of Rc given in eq. (7)
is satisfied. More precisely, we note that for the GUSR model, the 
sound velocity is exactly constant,

c2
w = c2

s = n − 3

3
. (38)

The power spectrum of the comoving curvature perturbation 
can be explicitly computed for this model. One finds [26] that the 
spectral index is a function of n: ns − 1 = 6 − n, in agreement with 
the scale invariant spectrum of the original ultra slow-roll inflation 
in which one has n = 6. Hence, the model can be constrained by 
the observational value. Note as well, from eq. (38), that to have a 
slightly red-tilted spectrum, we need a slightly superluminal speed 
of sound.

7.2. Ex 2: Lambert inflation

As another example, let us consider the case when ε is a 
power-law function,

ε(a) = ε0a−n . (39)
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As before, we assume n > 3. In this case, since d logρ/d log a =
−2ε ∝ a−n , we find

ρ(a) = ρ0 exp

[
2ε

n

]
. (40)

It is clear that ρ approaches a constant ρ0 asymptotically at 
a → ∞.

Inserting eq. (39) and eq. (40) into eq. (21), the sound velocity 
is given by

c2
w = c2

s = −1 − 1

3

(
d logε

d log a
+ d logρ

d log a

)
= n − 3 + 2ε

3
. (41)

Thus c2
s is time dependent, but it rapidly approaches a constant as 

ε decays out. Also from eq. (39) and eq. (40), we find

b(a) = 2ερ = 2ερ0 exp

[
2ε

n

]
. (42)

Thus we have

Y ∝ a6b2 ∝ a6−2n exp

[
4ε

n

]
∝ ε(2n−6)/n exp

[
4ε

n

]
, (43)

which implies

Y n/(2n−6) ∝ 4ε

2n − 6
exp

[
4ε

2n − 6

]
. (44)

To find the Lagrangian, we manipulate eq. (30) as

dP = b
da

a
+ db

3
= −b

n

dε

ε
+ db

3

= −2

n
ρ0e2ε/ndε + db

3
. (45)

Therefore, integrating this we obtain

P = ρ0e2ε/n
(

−1 + 2ε

3

)
+ const. (46)

One can invert eq. (44) to find ε as a function of Y , and then insert 
it into the above to obtain the Lagrangian.

Specifically, we introduce the Lambert function W (x) defined 
by the inverse function of X(z) = zez ,

z = X−1(zez) ≡ W (zez) . (47)

Setting

Y n/(2n−6) = zez ; z = 4ε

2n − 6
, (48)

we have

4ε

2n − 6
= W (y) ; y ≡ Y n/(2n−6) . (49)

Inserting this into eq. (46), we finally obtain

L = P (Y )

= ρ0

(
n − 3

3
W (y) − 1

)
exp

[
n − 3

n
W (y)

]
− V 0 , (50)

where y = y(Y ) is given in eq. (49).
Note that this model has been derived without making any 

approximation, and it gives exactly ε ∝ a−n . However, as we men-
tioned before, in the late time limit, there is no difference between 
ε ∝ a−n and ρε ∝ a−n . Thus the two models discussed above are 
essentially the same at late times. This can be easily checked by 
expanding W (y) around y = 0,

W (y) = y − y2 + · · · . (51)
At leading order in y = Y n/(2n−6), this gives

P (Y ) = n − 3

3
ρ0Y n/(2n−6) − ρ0 − V 0 . (52)

By absorbing the constant coefficient into g(φ) in the definition 
of Y , Y = g(φ)X , and absorbing ρ0 into the constant V 0, eq. (50)
reduces to

P = Y n/(2n−6) − V 0 , (53)

which indeed coincides with the GUSR model, see eq. (37).
Higher order terms in the expansion give an infinite class of 

models of the type

u(Y ) =
∑

i

βi Y
ni , (54)

where βi are appropriate coefficients.
Finally, note that in USR and as well in the two examples con-

sidered here, the shift symmetry in the potential (V (φ) = V 0) is a 
direct consequence of the demand c2

w = c2
s , which in turn follows 

from the global adiabaticity of the model. That is in line with the 
general statement [27,28] that for a k-essence theory to describe a 
fluid, one needs a shift symmetry (i.e., there is no physical clock, 
the model is of the non-attractor type).

8. Conclusions

In conventional slow-roll models, one has c2
s �= c2

w and the 
superhorizon freezing of Rc can be understood as a result 
of δPnad ≈ 0 on superhorizon scales. When c2

s = c2
w , one has 

δPnad = 0 on all scales, but following eq. (3) this does not con-
strain the superhorizon behavior of Rc anymore. This behavior
now follows from Rc ’s equation of motion given in eq. (11), and 
the condition for superhorizon freezing is given in eq. (13). Viola-
tion of this condition leads to superhorizon growth of Rc .

We have developed a method to construct the Lagrangian of a 
K-essence globally adiabatic (GA) model by specifying the behav-
ior of background quantities such as ερ where ε is the slow-roll 
parameter, using the equivalence between barotropic fluids and 
GA K-essence models. We have applied the method to find the 
equations of state of the fluids and derive the Lagrangian of the 
equivalent single scalar field models. Interestingly, we have found 
that the requirement to avoid the gradient instability, i.e., c2

s > 0 is 
almost identical to the condition for the non-conservation on su-
perhorizon scales.

The advantage of our approach is that we did not have to solve 
any perturbation equation explicitly. We have begun from requir-
ing some behavior for ε , or for b ≡ 2ερ , and have then used our 
inversion method to find the Lagrangian that produces that behav-
ior.

We have shown that the main difference between attractor 
models and GA models is that the latter are adiabatic on all scales, 
while attractor models are approximately adiabatic in the sense of 
δPnad = 0 only on super-horizon scales and c2

w �= c2
s .

The detailed study of the new models found in this paper will 
be done in a separate upcoming work [26] but we can already 
predict that they can be compatible with observational constraints 
on the spectral index thanks to the extra parameter n which is 
not present in USR. Furthermore they can violate the Maldacena’s 
consistency condition and consequently produce large local shape 
non-Gaussianity.

In the future it will be interesting to apply the inversion 
method we have developed to other problems related to primor-
dial curvature perturbations, or to develop a similar method for 
the adiabatic sound speed as function of the scale factor.
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