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Abstract 

 It is necessary to develop non-destructive detection techniques of kiwi fruit because machine injury could lower the 
quality of fruit and incur economic losses. Owing to the special physical properties of kiwi fruit peel, the bruises are not 
visible externally. Its could not be effectively inspected using conventional non-destructive detection technology. We 
proposed the hyperspectral imaging technique to inspect the hidden bruises on kiwi fruit in this work. The Vis/NIR 
(408-1117 nm) hyperspectral image data was collected. The top four component images were obtained from the data 
which ranged from 600 to 1000 nm using principal component analysis, and the bruise regions were extracted from the 
component images using parallelepiped classification. The experimental results show that the error of detecting hidden 
bruises on fruits with hyperspectral imaging was 14.5 %. 
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1.Introduction 

Kiwi fruit, which is nutritious and sweet in flavor, is one of the most favourite fruits for population. As 

the origin of kiwi fruit, the planting area and production in china rank first in the world. However, excessive 

mechanical loading and stress cause injuries to kiwi fruits during the processes of harvesting, transport, 

handling, and storage. The bruises lower the quality of the fruits and cause significant economic losses 

because such fruits easily ferment, rot, or get mildewed, and infect other normal fruits during the storage. 
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So, it is necessary to develop a detection technique for distinguishing the bruised kiwi fruits from the 

normal fruits. 
In the past two decades, a number of techniques for an automated non-destructive detection of fruits and 

vegetable quality have been reported, such as machine vision for shape classification and defect 
detection[1-3], X-ray imaging for inspection internal quality[4,5], and near infrared (NIR) spectroscopy for 
prediction internal indicators[6,7]. However, to our knowledge, no research has been conducted for the 
non-destructive detection of hidden mechanical bruises on kiwi fruits. Because of the toughness and taupe 
of kiwi fruit peel, the bruises can’t be expressed on the peel. It is difficult to be detected by human 
inspectors or visible imaging. The fruit juice quickly gathers in the bruises regions after the fruit tissue has 
been damaged. Because the water content of kiwi fruit is high, the qualitative difference between the 
bruises regions and normal regions is not sufficient to distinguish the defective fruits using X-ray imaging. 
As a point source detection technique, NIR spectroscopy can’t be used to collect spatial information of 
fruits quality.  

The hyperspectral imaging combines conventional spectroscopy and imaging techniques to acquire both 
spectral and spatial information from an object. It can meet the demands of non-destructive detection for 
fruits bruises. In the recent years, hyperspectral imaging has been investigated for bruises and bitter pit in 
apple[7-12]. Cai et al. studied hyperspectral imaging for detecting rust in citrus[13]. The overall objective 
of this research was to investigate the potential of using hyperspectral imaging in visible and near-infrared 
(Vis/NIR) region for detection of bruises on kiwi fruit. The hyperspectral image data was collected. The top 
four images were obtained from the data using principal component analysis, and the bruise regions were 
extracted from the component images using parallelepiped classification. 

2.Materials and Methods 

Sample Preparation. The kiwi fruit tested in this study was ‘Zhonghua’ kiwi fruit, which produced in 

Zhouzhi County, Shaanxi Province, China. Two hundred non-bruise kiwi fruits were manually selected 

through visual and touch inspection, and purchased from a local Zhenjiang supermarket in October, 2008. 

The kiwi fruits were randomly divided into two groups of 100 samples in each of them. The first group was 

used as control (normal kiwi fruits); another one contained bruise kiwi fruits damaged artificially. Samples 

of both two groups were stored at room temperature (25 1 ) for 24 h before being measured. There were 

no obvious bruise features on the kiwi fruits surface detected by visual inspection. When hyperspectral 

image data were collected, all fruits were peeled to detect the presence of bruises. Color images of bruised 

kiwi fruit before and after peeling are shown in Fig. 1. 

(a)                           (b) 

Fig. 1. Color images of bruises kiwi fruit obtained before (a) and after (b) peeling of skin 
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Hyperspectral Imaging System. The scheme of the hyperspectral imaging system, developed for this 

study, is shown in Fig. 2. The system is composed of three major units. The imaging unit has a 

complementary metal oxide semiconductor (CMOS) camera (BCi4-U-M-20-LP, Vector International, 

Leuven, Belgium), and an imaging spectrograph (ImSpector V10E, Specim Spectral Image Ltd., Oulu, 

Finland) coupled with a 23 mm focal length C-Mount zoom lens. The ImSpector spectrograph has a 

fixed-size internal slit to define the field of view for the spatial line and a prism-grating-prism (PGP) system 

for the separation of the spectra along the spatial line. The lighting unit is a DC regulated light source from 

a 150W tungsten halogen lamp (DC-950A, Dolan-Jenner Industries Inc., Massachusetts, USA) delivered 

through dual fiber optic light lines (QDF3948, Dolan-Jenner Industries Inc., Massachusetts, USA). The 

conveyer unit consists of a motorized translation stage (TSA200-A, Zolix Instruments Co., Beijing, China), 

and a motion controller (SC300-1A, Zolix Instruments Co., Beijing, China). The spectral range of the 

hyperspectral camera is from 408 nm to 1117 nm with 0.69 nm spectral intervals, which resulted in 1024 

spectral bands. 

Software. For hyperspectral image acquisition, SpectralCube (AutoVision Inc., California, USA) was 

used. All data processing and analysis procedures described above were performed using Environment for 

Visualizing Images (ENVI) V.4.5 (Research Systems Inc., Colorado, USA) and MVTec Halcon 8.0 

(MVTec Software GmbH, München, Germany) for windows XP. 

Hyperspectral Image Data Acquisition.The hyperspectral imaging system is a push broom and 

line-scan based imaging system. The kiwi fruit was put on the translation stage in this system to begin data 

acquisition. The CMOS camera is a linear array detector with a 1280 by 1 pixel resolution in a scanned line. 

The camera and spectrograph were used to scan the fruit line-by-line as the translation stage moved the fruit 

through the field of view of the optical system. After finishing the scans on one entire kiwi fruit, the 

spatial-by-spectral matrices were combined to construct a three-dimensional (3D, 1280 × 500 × 1024) 

spatial and spectral data space. 
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Fig 2. Sketch of hyperspectral imaging system 

Image Calibration. The hyperspectral images of the kiwi fruits were first calibrated with a white and a 

dark reference using the following equation: 
I BR

W B
                                                                       

(1)
Where R  is the relative corrected reflectance image, I  is the original hyperspectral image of kiwi fruit, 

B  is the dark image (approximately 0% reflectance) recorded by turning off all light sources and covering 

the lens with a black cap, and W  is the white image obtained by a reference panel (Spectralon, Labsphere 

Inc., New Hampshire, USA) with approximately 99% reflectance. The representative calibrated reflectance 

spectra (408 – 1117 nm), which were obtained from this hyperspectral imaging system, are demonstrated in 

Fig. 3. 
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Fig. 3. Spctral profiles (408 nm-1117 nm) of bruises kiwi fruit 

3.Results and Discussion 

Data Preprocessing. Fig. 3 shows the average spectral profiles of different regions (50×50 pixels, three 

normal regions (No.1-3), and three bruise regions (No.4-6)) of a single sample. According to Fig. 3, the 

spectral profiles of kiwi fruit were very close in the spectral regions below 600 nm, and there is a high noise 

level over 1000 nm. Therefore, the spectral region of 600-1000 nm was used in the next analysis, and thus 

there were 580 spectral bands in the spectral region. 

In order to remove noise and redundant data, the average of every five pixels after calibration in the 

spectral dimension was used in the succeed analysis. 520 pixels from 281 to 800 were selected in the 

horizontal (X-axis) direction to ensure kiwi fruit image integrated, thus the 3D data cube was 520 × 500 × 

116, which greatly decreased dataset. Before doing further data processing, the background of the image 

was removed by the simple thresholding method. A mask was built from the image at 650 nm when the 

threshold was set 0.09. The mask was applied to get the area of kiwi fruit from the hyperspectal image data. 

The resultant images were further processed by principal component analysis (PCA) and parallelepiped 

classification.

Principal Component Analysis(PCA). PCA is a very effective data reduction technique for 

spectroscopic data[14,15]. It summarizes data by forming new variables, which are linear composites of the 

original variables. In this study, PCA was performed to reduce spectral dimensionality and enhance image 

features. There was large amount of hyperspectral images, so PCA was used to find several dominant 

spectral band images (i.e. optimal band images) in order to minimize the amount of data without sacrificing 

detection results. 

The hyperspectral data were preprocessed as described above: reflectance calibration, data reduction, 

and background removal. Afterwards, PCA was performed on the hyperspectral data (600-1000 nm) of 
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each kiwi fruit, and hence the large amount of hyperspectral data of each fruit was represented by several 

principal component images. The top four principal component images (PC1 to PC4) are shown in Fig. 4. 

According to visual inspection, the PC1 mainly represents the grey value of the kiwi fruit, while the PC3 

demonstrates more sufficient information about the fruit quality. The bruise region could be clearly 

identified in the PC3 image. 

(a)PC1                                       (b)PC2                                     (c) PC3                                     (d)PC4 

Fig. 4. Top 4 principal component images 

Parallelepiped Classification. Parallelepiped classification is a widely used decision rule based on 
simple Boolean logic[14,15]. Training data in n spectral bands are used in performing the classification. 
Brightness values from each pixel of the multi-spectral imagery are used to produce an n-dimensional mean 

vector,
c

M . Where  
1 2 3

( , , , , )
c c c c cm

M  with 
ck

, being the mean value of the training data 

obtained for class c  in band k  out of m  possible classes. 
ck

S  is the standard deviation of the training 

class c  in band k out of m  possible classed. Using one standard deviation threshold, a parallelepiped 

algorithm decides 
ijk

BV   is in class c , if 

ck ck ijk ck ckS BV S (2)

Where 1, 2,3, ,c m  number of classes, 1, 2,3, ,k n  number of bands; thus the low and high 

decision boundaries are defined as 

ck ck ckLow S  (3) 

and

ck ck ckHigh S                                                                              (4) 

The parallelepiped algorithm becomes 

ck ijk ckLow BV High  (5) 

These decision boundaries form an n-dimensional parallelepiped in future space. If the pixel value lies 
above the lower threshold and below the high threshold for all n bands evaluated it is assigned to that class . 
If the pixel value does not meet any of the rules, it is assigned to the unknown class. 
In order to segement the bruise regions from the top four component images of kiwi fruit using 
parallelepiped classification, regions of interest (ROIs) in bruise area were generated as training data for 
bruises, and its mean values and standard devations in all four component images were obtained. After 
several trails, the performence of the algorithm was best when the standard devation threshold was set at 4. 
The binary image of bruise region obtained using parallelepiped classification was shown in Fig. 5a. There 
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were some small noise regions in Fig.5a. Bruise regions obtained using morphology processing such as 
hole filling and size filtering are shown in Fig.5b. 

(a)                                (b) 
Fig. 5 Results after (a) parallelepiped classifying and (b) morphology processing 

Bruise Detection. The proposed system (included the hardware and the algorithm) has been used to test 
‘zhonghua’ kiwi fruits. The results obtained by the system are given in Table 1. The total error rate reached 
14.5%, the positive error (normal fruits were classified as bruise fruits) was 16.2%, and the false error 
(bruise fruits were classified as normal fruits) was 12.6%. The transmission and reflection of peel were 
inconsistent because of the existence of the spot and rust on the surface of kiwi fruit. So the rust and spot 
area was segmented as bruise, which was the main reason of positive error, and the main reason of false 
error was the artificial injury on kiwifruit that was too light to segment. 

Table 1. Results of hidden bruises detection on kiwi fruits 

Sample Number Detection results 
Normal(95) Bruises(105) 

Normal 100 83 17 
Bruise 100 12 88 

Classification error (%)  12.6 16.2 
Total 200 14.5 

4.Conclusion 

A Vis/NIR hyperspectral imaging system was developed to detect hidden bruises on kiwi fruits in 
wavelength range from 408 nm and 1117 nm. This system can acquire both spatial and spectral information 
from an object simultaneously. An image processing algorithm using PCA and parallelepiped classification 
for the component images of multiple waveband images was developed for determining whether kiwi fruit 
was normal or bruises. The total detection error rate was 14.5%. This study laid a foundation for further 
development of an in-line inspection system using hyperspectral imaging technique for bruise detection on 
kiwi fruits.
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