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Equivalence-preserving first-order 
unfold/fold transformation 
systems* 

Sate, T., Equivalence-preserving first-order unfold/fold transformation systems, Theoretical Com- 

puter Science 105 (1992) 57-84. 

Two unfoldjfold transformation systems for first-order programs, one basic and the other extended, 

are presented. The systems comprise an unfolding rule, a folding rule and a replacement rule. They 

are intended to work with a first-order theory d specifying the meaning of primitives, on top of 

which new relations are built by programs. They preserve the provability relationship durtG ’ 
between a call-consistent program F and a goal formula G such that F is strict with respect to G. 
They also preserve the logical consequence relationship in three-valued logic. 

1. Introduction 

The unfold/fold transformation has been widely recognized as a powerful program 

transformation technique. In particular, in logic programming, it has been applied not 

only to program optimization (as it has been the case with functional programming) 

but to program derivation as well. Take, for instance, the following first-order 

specification r,, for all-nonzero( which states that every element in the list L is 

nonzero. 

Example 1.1. 

f,: all-nonzero(L)+-+VY(mem( Y, L)+ YZO) 

mem(Y, CYIZI) 

mem(Y, [U 1 V])+mem( Y, V) 
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First, unfold the underlined formula using the iff definition [19] of mem’ and label 

mem( Y, V) by u to indicate that it was introduced by unfolding. 

l-r: all-nonzero(l)++VY,Z(L=[Y/Z]+Y#O) 

AVU, V(L=[UI v]-vY(mem”(Y, V)+Y#O)) 

Seeing that all of the atomic formulae concerned are labeled u, we fold the underlined 

part by the definition for all-nonzero (see Section 4 for folding conditions) and have 

rz: all-nonzero(l)uVY,Z(L=[YIZ]+Y#O) 

AVU, V(L= [U 1 V]+all-nonzero( V)) 

which is equivalent in the Herbrand universe to 

r3: all-nonzero(l)tt(~Y,Z(L#[YIZ])V3Y,Z(L=[Y~Z]A YfO)} 

A (VU, V(L#[cI V])V3U, I/(L=[Ul V] 

A all-nonzero( V)) I\ 

Note that we already have succeeded in the derivation of an executable program up 

until this stage, as r3 is actually a definite program2 (written in the form of an iff 

definition). However, seeking for a more efficient program, we factor out the common 

subformulae, VY,Z(L#[ Y(Z]) and VU, V(L#[CJ VI), to get 

l-4: all-nonzero(l)ttVY,Z(L#[YiZ])V (3Y,Z(L=[YlZ])A Y#O 

A all-nonzero 1_ 

Later we see that r4 has the same logical consequence relationship as To w.r.t. literals 

(Theorem 4.1). 

Looking back, by the way, it is apparent that the crux of the whole derivation 

process lies in the elimination of negation by folding done between rI and Tz 

(compare the negative occurrence of mem( Y, V) in rI and the positive occurrence of 

all-nonzero( V) in T2 in their right-hand sides). To see the potential of unfold/fold 

transformation for negation elimination, let us consider the negation of 3 Ymem( Y, L), 

i.e. 13 Ymem( Y, L) (L has no elements) and derive a program for it. We start with 

empty(L)HVY(mem( Y, L)-+f), where f stands for falsity. 

Example 1.2. 

r;, : empty(l)*VY(mem( Y, L)+f) 

’ Generally speaking. unfolding means the replacement of a procedure call with the procedure body. 

whereas folding is the reverse operation. As for the present case. the iff definition becomes mem( I’, IL)* 

3Z(L=[ YIZ])V3U. I~(L=[C’I C’] Amcm(Y. I’)). We consider the left-hand side (right-hand side) as 

a procedure call (procedure body). 

’ In this paper. we mean by a clause a formula of the form H +B, where H is an atom. When B, the body, 

is a conjunction of atoms, WC call it a definite clause. A delinite program is a finite set of definite clauses. 



The same (an isomorphic) transformation process as Example 1.1 leads to 

l-A: empty(L)~VY,Z(L#[YIZ])V(3Y,Z(L=[YIZ])AfAempty(Z)} 

Simplification using A A f t-f f and A V f H A gives 

l-i: empty(l) - V Y, Z(L # I YI Zl) 

By Theorem 4.1 again, this is guaranteed to calculate the finite failure set of 

3 Ymem( Y, f.). 

These examples suggest that an unfold/fold approach offers a quick way to 

program derivation from first-order specifications and enables one to take the nega- 

tion of programs containing internal (local) variables3 (see, for example, [2] for the 

problem with internal variables). It is conceptually simple and easy to implement. 

Above all, a derived program P is always sound, meaning that any answer computed 

by P satisfies the original specification S because P is nothing more than a logical 

consequence of S. Unfortunately, the very same fact might cause P to be incomplete; 

P might be weaker than S as a logical theory. Hence, if we wish P to hold the same 

proof-theoretic strength as S, it is necessary to place some restrictions on their form or 

on the transformation process. 

Here we introduce a class of formulae calledjrst-order programs with a view toward 

treating uniformly both specifications, such as To, and programs, such as f4. They are 

defined as logic programs allowing an arbitrary first-order formula in the clause body. 

They are straightforward generalizations of definite programs and seem to encompass 

most of the useful first-order specifications met in daily programming. Some first- 

order programs are not executable, and can only be considered as specifications. 

However, many of these are transformable into an executable form by completely 

mechanical unfold/fold transformation [28]. 

In this paper, based on the recent results on three-valued semantics for first-order 

programs, we present general unfold/fold transformation systems, a basic one and an 

extended one. They preserve the proof-theoretic strength of first-order programs 

under certain conditions. We say general firstly because an arbitrary algebraic 

structure can be a domain of discourse, not to speak of the Herbrand universe (the 

algebra of finite trees). Secondly because, although they are equivalence-preserving, 

our systems allow an arbitrarily complex formula as the body of a predicate definition, 

even if it becomes negatively recursive. 

Section 2 gives a brief overview of related work on unfold/fold transformation of 

logic programs. In Section 3, we describe properties of three-valued logic. A basic 

transformation system will be presented in Section 4 and the extended one in 

Section 5. Section 6 contains concluding remarks. Since this paper is more of 

a theoretical nature, examples are small and implementation issues are not discussed. 

The reader is assumed to be familiar with logic programming, unfold/fold transforma- 

tion and elementary logic [6, 19, 311. 

3 A variable in a clause is said IO be internal if it is fret and occurs only in the body. 
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2. Related work 

The technique of unfold/fold transformation emerged during the mid seventies and 

was immediately transplanted to logic programming [4,7,25]. Since then, two lines of 

development have been observed. One pursues equivalence-preserving (w.r.t. canoni- 

cal models) unfold/fold transformation of definite or general programs4 The other is 

primarily aimed at the synthesis of definite programs from arbitrary first-order 

specifications, and does not assume any specific models. Both approaches, however, 

are intertwined in many ways. 

The first approach began with the introduction of unfolding to logic programming 

by Komorowski [15]. It was proved that unfolding preserves procedural semantics of 

definite programs. Folding was introduced by Tamaki and Sato [31]. They clarified 

syntactic conditions under which any combination of folding and unfolding preserves 

the success set of definite programs. Their system was considerably reinforced later by 

the introduction of multilayered definitions [32] and also by that of counters [12]. 

These systems permit recursive clauses to define new predicates. Both of them, 

however, focused on the preservation of the success set. It remained unknown what 

condition preserves finite failure. 

In 1987, Maher formulated a transformation system which is somewhat restrictive 

(“the folding clause comes from the current program” and “no unfolding on direct 

recursion”) but can preserve finite failure as well as success of definite programs [22]. 

Then he extended it to the one for general programs (though unfolding was kept 

restricted to positive goals) and proved the preservation of the perfect model seman- 

tics of locally stratified programs [24]. Independently, Seki [29] proposed a trans- 

formation system which preserves not only the success and finite failure sets of definite 

programs but also those of stratified programs. In his system, a new predicate is 

introduced by a definite clause and the unfolding of negative goals is not permitted. In 

a recent paper, he revealed the preservation of the well-founded semantics and stable 

model semantics of general programs by unfold/fold transformation [30]. 

In connection with finite failure. Sato and Tamaki presented a transformation 

algorithm called “negation technique” in [27]. When applied to a definite program 

without internal variables, it produces one that mimics the finitely failed computa- 

tions of the original program. The point is that it makes possible, in an indirect 

manner though, the synthesis of definite programs for universally quantified goals 

[27]. Kanamori and Horiuchi [I31 have shown. however, that the same could be 

done, more directly, by using their generalized unfold/fold rules incorporating the 

unfolding of negative goals. The negation technique itself was subsequently refined by 

Barbuti et al. [2] so as to be able to cope with definite programs with internal 

variables. 

’ A general program is a finite set of clauses of the form H +B, with B being a conjunction of liter& 1191. 

Each literal in E is called a goal. A general program with no recursion through negative goals is called 

a stratified program [I]. 



To return to unfold/fold transformation for program synthesis, after its initial 

success [7,25], the viability of this approach was extensively investigated by Hogger 

[ 111. A more deterministic approach was taken by Dayantis [9] for a certain class of 

first-order specifications (programs). Sato and Tamaki [28] completely mechanized 

the synthesis process for a wider class of first-order programs by introducing universal 

continuation. It automatically synthesizes auxiliary predicates and can take the 

negation of definite (and general) programs with internal variables. Lugiez [21] 

specified a deduction procedure for first-order programs with an algorithm for 

treating formulae including inequalities. 

Despite the progress, however, the question of logical equivalence among the 

synthesized programs was left unanswered. A clue was supplied by Kunen in his 

investigation of logic programming semantics based on three-valued logic [16, 181. 

He proved a theorem which enables us to compare “relative strength” between 

first-order programs and, hence, facilitates the design of an unfold/fold transforma- 

tion system that preserves the equivalence of programs. Our transformation systems 

presented here are just examples. While they belong to the line of synthetic unfold/fold 

transformation, and cover all first-order programs, their folding conditions, when 

applied to stratified programs, have direct correspondence with the ones proposed by 

Seki [29]. 

3. Preliminaries 

3. I. First-order progrum 

We assume that all syntactic objects are in a fixed countable language of first-order 

predicate calculus with equality =. Terms and formulae are defined in the usual way. 

We use F [x] to emphasize that F has free variables among x=x1, . . . , x,. For terms 

f = tI , . , t,, F [t/x] means the result of simultaneous substitution of ti for xi (1 < i d n) 

in F. When no confusion occurs, we write F [t] instead of F [t/x]. We extend this 

notation to formulae. For instance, F [E/G] denotes a formula F whose subformula 

G is replaced by E. We assume that variable name clash is implicitly avoided by 

suitable renaming. A formula without free variables is called a sentence. 

A predicate dejnition about p is a formula of the form p(x,, . , xR)- F, in which 

x1, . . . , x, are distinct variables and F a formula whose free variables are among 

x 1, , Y,. It is a generalization of the iff definition of a definite program [19]. 

P(Xl , . . . , x,) is called a head and F a body. x 1, . . . , x, are implicitly universally 

quantified at the front. Note that negative self-recursion is allowed in a predicate 

definition. 

A j&-order program is a finite set of predicate definitions, one for each predicate. 

We use r as a metavariable ranging over first-order programs. In what follows, 

p(x,, , x,)- F is written as p(x) -F, with x possibly subscripted. 

The purpose of first-order programs is to allow a user to define new predicates on 

top of old ones. It is, therefore, convenient to think that there is a fixed base language 



LH, a first-order language with equality appropriate for defining primitive predicates 

and functions, and that a first-order program r= (pi(xi)++Fil 1 <i< Nj (N>O) be- 

longs to an expanded language LIs + ( p1 , . . . . pN ), i.e., an expansion of LR with new 

predicate symbols ( p 1, , pN) not in LH. We call each pi a user predicate. 

Since primitives such as =, <, < are to be the building blocks of new predicates, 

they are prohibited from appearing at the head of a predicate definition. We assume 

that their meanings are axiomatically determined by a consistent set of sentences in 

f+. We call it a base throry and use d for base theories. d depends on our choice. For 

instance, it can be Clark’s equational theory 1161, Presburger arithmetic and Peano 

arithmetic to list a few. Even the empty set and the set of true sentences over natural 

numbers are among the options. 

Although one might naturally question the consistency of duT, where f is a pro- 

gram and LI a base theory, we may say that for most programs, AuT is consistent; 

call-consistent programs (those having no recursion through an odd number of 

negative goals. see Section 3 for their definition) and order-consistent ones (the ground 

version of call-consistent programs) are consistent” [IS, 261. In the rest of this section, 

we restate some results in [16, IS] for the sake of self-containedness. 

Semantically. we work with Kleene’s three-valued logic [ 141, as far as user predi- 

cates are concerned. It allows a predicate to be undefined at some values of its 

arguments. It has three truth values it, f, u), where t stands for true, f for false and u for 

undefined, respectively. The truth table behaves as usual w.r.t. t and f. For instance, 

lt=f,lf=t.AVB=tiffeitherAorBistandAVf3=fiffbothAandBaref.Butfor 

u being undefined. we have 1 u = u, and A V B = u iff either A or B is u and neither 

A nor B is t. A A B is defined as ~(1 A V 1 B). l.uA is treated as an infinite disjunction 

and V’rA as an infinite conjunction. Finally. we define A+B as 1 A V B and A-B as 

A+B and B+A. 

According to the last rule, however, u ++u gets the value II, not t, a fact which causes 

some awkwardness. Another logical connective A o B is, therefore, introduced with 

a definition such that A e B = t iff A = B, and f otherwise. With the introduction of 0, 

we redefine a predicate definition to be a formula of the form p(x) o F [xl, where p(x) 

is an atomic formula and F a formula containing no occurrences of o. We stipulate 

that o always appears as the top level biconditional of predicate definitions and 

nowhere else, and further that when we talk about predicate definitions in the context 

of two-valued logic, o implicitly stands for *. As a result of this modification, every 

program, even ( polpJ, has a three-valued model (defined later). 

5 Call-consistency [IS, 261 and order-consistency [XI] are defined only for gcncral programs. It is 

obvious. however. that every first-order program is reducible to a general program which is a delimtlonal 
cxtcnsion of the original one. bq Introducing new predicates as many as necessary [XI]. BehIdes. the 

reduction will be done without destroying the signed dependency relation (see Section 3.5) among the 

original predicates. Hence. the results in [26] and 116. 181 apply to lirst-order programs a\ well. 



Suppose a program r = { pi(Xi) 0 Fi 1 16 i < N $ is given. We assume here that there 

are three propositional constants {t, f, u) available corresponding to the truth values 

{t, f, u} (we use the same symbols), and further assume that t and fare in LR, but that 

u is a new symbol. 

A three-vulued relational structure (or a structure in short) M for LB+ {u} + 

{PI, . . ..FN} (N30). IS a pair (D, I ) such that D, called M’s domain, is a non-empty set 

and I an interpretation over D, which is two-valued for LB and three-valued for each 

user predicate symbol in ( p, , , pN >. I must take t, f, u as true, false and undefined, 

respectively, and = as the identity relation in D. 

Let a = ul, , a, be elements (may be repeated) of D and suppose that a formula 

F has free variables among x=.x1, , x,. Then we designate the truth value of F [a/x] 

in I by val(F [a/x], I), where a/x means that ai is assigned to Xi (1 <i<n). We write 

F [a] instead of F [a/x] provided the context allows. The truth value of F [a] in 

a structure M is designated by val(F [a], M). 

We say M satisjes a sentence F or, equivalently, M is a model of F iff val(F, M) = t. 
Accordingly, M satisfies a predicate definition p(x)oF [x] iff val(p(a), M) = 

val(F [a], M) for any a in M’s domain. When M satisfies every sentence in a set Y, we 

call M a model of Y, or say that M satisfies Y. In parallel with two-valued logic, we 

use b3 to designate the three-vulued logical consequence relationship. Namely, 

Y k=3 F iff val(F, M)=t for every model M of Y. 

We use kz for the two-valued logical consequence relationship which is identical, by 

the completeness of first-order logic, to the provability relationship in two-valued 

logic designated by t-. 

3.3. Generutive chain und generutice extension 

Having defined terminology, we proceed to investigate a special model-theoretic 

relationship between first-order programs and their three-valued models. Let 

T={pi(Xi)OFiI 1 <idNj be a program and A a base theory in LB. 
Introduce a partial ordering V<\V over (t, f, u}, which is defined by 

u<t and u<f. 

We use u d w for v < w or v= M’. For formulae F [x] and G[x] in LB + (u} + 
{pI, . , p,,, }, define a transitive relation “F [x] <d G [x]” by 

F [x] & G [x] iff val(F [a], M) d val(G [a], M) holds for any structure 

MforL,+{u}+{p 1, . . , pN) which is a model of A, and 

at any a in its domain. 

By definition, u <A G holds for arbitrary G and A. In the case of F [x] <A G [x] and 

G[x] &, F [xl, we write G[x] =d F [x]. It means that in an arbitrary model of A, and 

at any a in its domain, G[a] and F [a] take the same truth valueg(t,f,u}, whatever 
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three-valued interpretation we may assign to (pl, . , pN}. Obviously, G [x] o F [x] iff 

G [x] =o F [x] and G [.y] =d F [s] for any d if G [s] o F [xl. 

Call a series of formulae co [xl. crl [.u], . an increasiny ckuin w.r.t. d if it holds that 

Do [r] <A 0 1 [s] & . . . The most typical increasing chains are those generated from 

programs. For a program I‘= ( pi(Si) o Fi 1 1 d i< N }, define a series of formulae 

p~“‘[.ui] (1 <i<N, n=O, l,...) by 

p;o’[“,] = u 

pl”‘l’[.ui]=Fi[pl~‘,...,p~!‘] for n>O 

Here (and henceforth) F [ p:)l), . , pg)] stands for the result of simultaneous substitu- 

tion of pj”[tjr] for pi(f) (1 <i< N) in a formula F. 

To return, note that the pi”‘[.~i]‘s are formulae in the language LB+ {u), and 

check that they indeed form an increasing chain u =pj”‘[xi] GA pil’[Xi] <A ... 

<A py’[.ui] <d irrespective of the choice of A (this is proved by induction on n using 

the monotonicity of logical connectives’). We call each py’ [-Xi] (n = 0, 1, . . . ) a generat- 

ive ckain,fbr pi by r. Let us calculate an initial part of a generative chain. The chosen 

program, even the program below, is intended to define even numbers and 

AN= (s(X)=s(Y)+X= Y, s(X)#O, s(....s(X)...)#X, (N=O)VIX(N=s(X))j is as- 

sumed as a base theory. 

Example 3.1. 

even(N)o(N=O)V3X(N=s(X)Aieven(X)) 

even”’ [N ] = u 

even”‘[N]=(N=O)VZIX(N=s(X)Aiu) 

=dx(N=O)V~ 

even’2’[N]=(N=O)V3X(N=s(X)Ai((X=O)V3X’(X=s(X’)Alu))~) 

=,JN=O)WX(N=s(s(X))Au) 

even’3)[N]=,,s(N=O)V3X(N=s(X)Al ((X=O)V3X’(X=s(s(X’))Au)),) 

=,V(N=O)V(N=s(.~(0))V3X(N=s(s(X))Au) 

The substitution of generative chains in a formula yields another increasing chain. Let 

G [x] be a formula in L13 + (II) + i p,, , pN 1.. Define the appro.uimating chain of G by 

r as 

Gj”‘=G[p:“‘,..., p;‘], n=O. I ,... 

’ It is immediate from the definition of 6, that F[v] <,,G[.x] implies ~F[.x] <,,~G[Y] and 

A V F[u] <, A V G[.Y]. and that F[\-, J,] <A G[.Y. \,] implies 3\-b-[\-.y] <A 3uG[z,~]. 
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It is straightforward to verify that G’,“’ (n = 0, 1, . , . ) becomes an increasing chain w.r.t. 

any base theory A. 

In addition to approximating chains, there is a more fundamental application of 

generative chains. It is an extension of a structure M for LB + {u} to an enriched 

structure Mr for LB+ {u) +(pi, . . ..pN). More precisely, let {py’[Xi] 11 <id N, 

n=O, 1, } be the generative chains by r. Mr has the same domain D as M and agrees 

with M on the interpretation of symbols of LB + {II}. For each pi(a) (1 ,< i d N), where 

LED, if val( ~$“‘[a], M) gets defined at some n, Mr takes that value as the value of pi(U). 

That is, for LIE it, f} we define Mt. by 

val(pi(a), Mr)=c iff val(py’[a], M)= L’ for some n. 

If there is no such n, we put val(p,(a), Mt.)=u. We specifically call Mr the generative 

extension of M by r. Or in other words, it is a structure generated by o times iteration 

on M of Tr, a mapping over three-valued interpretations associated with the program 

r [16]. 

Generally speaking, for M arbitrary, one can hardly expect Mr to become a model 

of r. However, as we shall see in Section 3.4, there is a way to extend M to a larger 

structure M’ for LB + {u> for which M; gives a model of r; hence, the closure ordinal 

of Tr does not exceed LI) there. This should contrast with the two-valued case where 

it might go as high as Church-Kleene wr, the least nonconstructive recursive 

ordinal [3]. 

3.4. Elementar~~ extension 

Let M and M’ be two structures for LH + {u} with domains D and D’, respectively. 

We say that M’ is an elementary extension of M if D’z D and it holds that, for an 

arbitrary formula F [x] in LH + {u}, 

val(F[a],M)=z’ iff val(F[a],M’)=v for any UED and uE(t,f,u}. 

It is fortunate that ultraproduct construction carries over to three-valued logic. In 

particular, ultrapower construction [6] provides us with Lemma 3.2. 

Lemma 3.2. Let M he a structure ,for LB + {u) and r a program. Then there exists 

a three-valued elementary extension M’ of M with domain D’ such that, for a ,formula 

G [x] in LH + {u} + { pl, . . , pN ) and elements CI in D’, 

val(G[a],M;)=v @ val(G~)[a],M’)=vfor some n, 

where ve{t, f}, M;. is the generative extension qf M’ by r and Gp’ the approximating 

chain of G by r. Moreover, Mk becomes u model of r. 

Proof. Take an o-incomplete filter F over an appropriate set 1 and construct an 

ultrapower M’= M’/F [6, Theorem 6.1.11. M’ then becomes an elementary extension 
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of M which is o1 -saturated w.r.t. true and false, and M;. has the required property (see 

also [16]). n 

Theorem 3.3 (Kunen [ 16, Theorem 6.31). Let A he a base theory in LH. Also let 

r = ( pi(Xi) o Fi / 1 < i < N ) be a proyram und G a sentence in LH + [ pl, . . . , pN $, respec- 

tively. Then 

AurkJ G $j” A +3 Gyj?W some n, 

+vhere Gj!” (n = 0, 1, . . ) is the upproxinzutiny chain qf’ G hq’ r. 

Proof. The “if” part is straightforward. So, we prove the “only if” part. Let M be 

a structure for LIs+ (u) which is a model of A. Consider its elementary extension M’ 

and the generative extension M; of M’ by r mentioned in Lemma 3.2. M;. is a model 

of r and, hence, a model of G as well. Thanks to Lemma 3.2, we see that there exists 

such an IZ that val(GF’, M’) = t. But M’ being an elementary extension of M, we have 

val(G)“‘, M)= t as well. Since M was chosen arbitrarily, we are done. 0 

This theorem teaches us how to compare the relative strength under A of two 

first-order programs, say f, and Tz, in three-valued logic. To do so, we have only to 

compare their generative chains. Let r, =(pi(.~~)oF~,~) 1 <i<N) and r2 = 

{ pi(.Ui) o Fi. 2 ( 1 <id N ) be programs having the same user predicates and pfr’, [pi] 

and py\[.ui] (1 <i<N, II = 0, 1, . .) their generative chains, respectively. Let 

(ql ,..., qabfj be a subset of (p, ,..., P.~}. We say that rI and r2 are chain-equivalent 

W.r.t. (ql , . . , q, j under a base theory A if, for every j (I <j d M ), 

When M=N, i.e.. {q, ,..., qMj=(pl ,..., ~‘~1, we say that rl and Tz are chain- 

equivalent under A. 

Proposition 3.4. Suppose rl and I z are chain-equicalent under a base theory A. For 

a sentence G in LH + [ pl, , pN I, 

AuT, k3G iff Au~‘~+~G. 

Proof. From the chain equivalence, we have Vn3mGr1 ,d (“) < Giy’ and t/m 3n GE’ &, GF: 

(this is proved by induction on the complexity of G). The rest follows from 

Theorem 3.3. 0 

Our equivalence-preserving unfold/fold transformation systems, which will be 

presented in Sections 4 and 5, respectively, are based solely on this proposition. 

3.5. Relationship hrt,~ven ttc,o-valued C. nd three-culued logic 

We investigate the relationship between three-valued logic and two-valued logic for 

later use. First we introduce classes of consistent programs (in two-valued sense). 
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For a program r= { pi(Xi) 0 Fi 1 1 bi< N >, define the signed dependency among 

{PI, . . ..pNf Cl& 261, d enoted by p>+ q (p depends on q positively) and p>- q (p 

depends on q negatively), respectively, as the least relation satisfying 

p>+ q iff pi+ q, or for some r, p++ r and Y>+ q, or P%- r and r>- 4, 

p>_ q iff p+_ q, or for some Y, p%+ r and rxq, or pk r and r>+ q, 

where p$+ q (p% q) is defined as 

pi+ q (pi_ q) iff there is a predicate definition pi(Xi)oFi in I- such that 

p = pi and q occurs positively (negatively) in Fi. 

A program is cull-consistent [ 18,261 if we never have p > _ p for any p in the program, 

i.e. no predicate calls itself through an odd number of negative goals. Note that 

call-consistent programs allow recursion through an even number of negative goals 

(whereas strut$ed programs prohibit any recursion through negative goals Cl]). 

A program is said to be strict [ 1 S] if for no two predicates p and q, we have p >+ q and 

px q at the same time. It is clear that strictness implies call-consistency. Thus, 

a program (a ai b, b-1 u> is strict (and, hence, call-consistent), while {sob V 1 b, 

bob} is not strict (though call-consistent). It is proved that call-consistency guaran- 

tees the consistency in two-valued logic [ 18, 261. 

We need one more definition. A program I- is said to be strict w.r.t. a goal G if, for c, 

a newly introduced predicate symbol, a program Tu{coG} has no predicate on 

which c depends both positively and negatively [18]. According to this definition, 

a strict program {sol b, b-1 u) fails to be strict w.r.t. b V 1 b, for {sol b, b-1 a, 

cobV1 b) is not strict. By the way, if a program is strict, it is so w.r.t. any literal as 

well. Now we are ready to state Theorem 3.5. 

Theorem 3.5 (Kunen [lS, Theorem 3.61). Let A be u base theory in LB, r= { pi(xi)o 

Fi 1 1 d i < N } a cull-consistent program, and G a sentence in LB + { p,, . . , pN}. If r is 

strict \v.r.t. G, we have 

Aur~,G iff Au~/=~G. 

Proof. See [18]. q 

Proposition 3.6. Let A be a base theory in LB. Also let rI and r2 be cull-consistent 

progrums in LB + { pl, . , pN ). If rl and r2 are chain-equivalent under A and strict w.r.t. 

a sentence G in LH+{pl,...,pN], we have 

AuI-,t-G $f AuT2t-G. 
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Proof. 
duT,I-G iff AuT, k=2 G (by the completeness of first-order logic) 

iff AuT, +=3 G (by the assumptions on rI and G, Theorem 3.5) 

iff Aurz k3 G (by the chain equivalence, Proposition 3.4) 

iff Aur2 k2 G (by the assumptions on r2 and G, Theorem 3.5) 

iff AuT2k-G. 0 

We end this section with a proposition that helps us check folding conditions (see 

Section 4) in terms of two-valued logic. Here we need a notation which makes 

a distinction between positive and negative occurrences [6] of the symbol u in 

a formula F [x] in LB + {u). So, write F [x] = F [II+, u-, x] and let u+ (u- ) refer to all 

positive (negative) occurrences of u in F [xl. Define F [f/u+, t/u-, x] to be a formula 

obtained from F [x] by substituting f (t) for all positive occurrences (negative occur- 

rences) of u in F[x]. Take R[u+, u-,x] =(u’ +(x#OVu2 Viu3)) as an example. 

Then u+ refers to u2 and u- to u1 and u3, and R[f/u+, t/u-,x]=(t+(x#OVfVlt)). 

Proposition 3.7. Let A he a base theory in LB, F [x] and G[x] @mulae in LB+ {u}, 

respectively. 

F[.x]=~u lfl AEVulF[f/u+, t/u-,x] and AtV’xF[t/u+,f/u-,.x1, 

AkVx(lF[t,‘u+,f/u-,x]+lG[t/u+,f/u-,x]). 

Proof. Let M be a structure for LB+ (II) satisfying A with domain D and F[x] 

a formula in LH + (u). We first prove that for any elements 4 in D 

(1) val(F[a],M)=t iff val(F[f/u+,t/u-,a],M)=t, 

(2) val(F[a],M)=f iff val(F[t/u+,f/u-,a],M)=f. 

The proof is by induction on the complexity of F. Suppose F is an atom. If F is u, both 

sides of (1) and (2) are false (F [f/u+, t/u-, a] = f and F [t/u’, f/u-, a] = t). Otherwise, 

they are identical. For a composite F, we prove only the case of negation. Suppose 

F =l G and the claim holds for G. Then we have 

val(F[u],M)=t iff val(G[u],M)=f, 

iff val(G[t/u+,f/u-,u],M)=f, 

iff val(lG[t/u+,f/u-,u],M)=t, 

iff val(F[f/u+,t/um,u],M)=t 
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and, similarly, for val(F [a], M)=f. So, we conclude (1) and (2). Now, for formulae 

F [x] and G [x] in LB + {u}, we see that 

F [x] & G[x] iff for any structure M for LB + {u) which is a model of A 

and for any a in its domain, 

val(F [a], M) = t implies val(G [a], M) = t and 

val(F [a],M)=f implies val(G[a],M)=f, 

or, equivalently, using (1) and (2), 

val(F [f/u+, t/u-, a], M) = t implies 

val(G[f/u+,t/u-,u],M)=t and 

val(F[t/u+,f/u-,a], M)=f implies 

val(G[t/u+ ,f/U_,u],M)=f. 

Recalling that F [f/u+, t/u-,x], G [f/u+ , t/u-, x], F [t/u+, f/u-, x], and G[t/u+, f/u-,x] 

are all two-valued formulae, we have 

F[x]<,G[x] ill’ Vx(F[f/u+,t/u-,x]+G[f/uf,t/uP,x]) and 

Vx(lF[t/u+,f/u-,x]+lG[t/u+,f/u-,x]) 

are true for every two-valued model of A 

The rest follows from the completeness of first-order logic. The remaining case of 

F [x] =d u is obtained similarly from val(F [a], M)= u iff val(F [f/u+, t/u-, a], M) = f 

and val(F [t/u+, f/u-, a], M)= t. 0 

4. Basic unfold/fold transformation system 

Now we present a first unfold/fold transformation system for first-order programs. 

It preserves chain equivalence and, hence, by Proposition 3.4, is equivalence-preserv- 

ing in the sense of three-valued logic. We call it the basic system here. The basic system 

is applicable, not only to the three-valued case but also to the two-valued case by 

virtue of Proposition 3.6, thereby giving us a transformation system which preserves 

the proof-theoretic strength (in the usual sense) of call-consistent programs. In 

particular, it preserves the set of literals provable from strict programs. An extended 

transformation system will be presented in Section 5. 

4.1. Transformation rules 

The basic system has three rules: the unfolding rule, the folding rule and the 

replacement rule. The unfolding rule labels user predicate occurrences with a label 

u whereas the folding rule erases it. A folding operation is allowed only when every 
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user predicate in the folded formula is labeled u. Hence, for notational convenience, 

we introduce a notation F[p,p”] for a formula F to make it clear that F’s user 

predicates are among the nonlabeled p = pr , . , pN and those labeled p” = p;, . . , pk. 

F [p”], therefore, indicates that all of F’s user predicates, if any, are labeled u. We also 

use F [u] to denote F in which every atom containing a user predicate, be it labeled or 

not, is replaced by u. 

Let A be a base theory in LH and TO = ( pi(Xi)O Fi, o 1 1 <i < N } an initial first-order 

program in which no user predicate symbol is labeled u. 

Suppose To has been transformed to rk = ( pi(.Ui)o Fi,k 1 1 d i < N }. Choose a predi- 

cate definition I~(.Y)oB~ from rli and transform Bk into Bk+ I by applying one of the 

following rules below, and put 

r ~+,=(rk\(h(.~)oBk))~(h(.~)oBk+,). 

(mfoldiny) 

Select an atom d(t) from the body Bk which contains a user predicate d. Whether d is 
labeled u or not is irrelevant. Let d(~)oD,[~] be a predicate definition about d in TO 

and D,[p”, t] the formula D,[~/J,] such that all user predicates are labeled u. 

Substitute D,[p”, t] for d(t) in Bk. Take the result as B,, , Bk+, is written as 

B ,+,=BkC~~C~“,tll~~(~)l. 

(folding ) 
Folding operation requires two conditions, Fl and F2 below, to be satisfied. Select 

a subformula DO [t] from Bk for which there exists a predicate definition d(y)-D,[y] 
in TO. If 

(Ft) every user predicate in Do[t] is labeled u, 

substitute d(r) for D,,[t] in B,. Do not mark d(t) with u. Write the result as 

Bk[d(t)/Do[p”,t]]. Let h(u)oBo be a predicate definition about h in TO. Put 

B k+, =BkCd(f)lDoCp”> fll 

provided 

(F2) Bo Cul GA B, + 1 Cul. 

We call h(x)oBk the folded definition, d(y)oD,[y] the folding definition, 

respectively. 

(replmetnettt) 

Take as Bk+ , any formula such that 

&+,=A& 

holds even when we consider the pi‘s and the py’s appearing in B,, 1 =A Bk as 
independent predicate symbols. 
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The replacement rule is primarily intended for simplification of transformed pro- 

grams. To apply it, we must treat the pi’s and the py’s as independent predicate 

symbols. It means that, while we may shorten p1 (x) V p1 (x) V py (x) to p1 (x) V p’; (x), we 

are not allowed to further replace the latter with pi(x) or p;(x). Furthermore, we have 

to consider the equivalence in the light of three-valued logic. Actually, however, 

almost all basic logical equivalences familiar in two-valued logic, such as the asso- 

ciativity and commutativity of logical connectives, are available. The following is 

a (short) list of useful equivalence schemata: A A A-A, A V B-B V A, A A (B V C)o 

(AAB)V(AAC), (AVB+C)o(A+C)A(B+C), (AAB+C)o(A-b(B+C)), 3x(x= 

t A F [x])oF [t] provided t is free for x in F. Note that we cannot replace 1 A V A 

with t, nor can we replace 1 A A A with f, except for the two-valued case such as 

X=OVX#O. 

In practice, replacement peculiar to a specific d is more interesting and more 

important. For example, under Clark’s equational theory [16, 171, we may use 

(s = t) =d f if s and t are not unifiable and so on. 

4.2. Folding conditions 

For folding to be validated, the folding conditions, Fl and F2, must be met. Fl is 

easy to check. So, we comment on F2. Let h(x)*& be a folded definition and 

h(x)o& a predicate definition about h in TO. 

First keep in mind that, despite the somewhat complicated appearance of F2, we 

can ignore it if BO is built up from user predicates and logical connectives, as in 

3x3(p(x1, x3) Alq(x2, x3)). This is so, because in this case, Bo[u] =d u holds for any 

base theory d, as seen from 3x3(u/p(xI,xj)A~u/q(xz,xj))03x3(uA~u)ou. 

This case is thought to correspond directly to the folding of stratified programs 

proposed by Seki [29]. More precisely, in his system, folding takes place as follows. 

There are two clauses A+- K, L and Bt K’, where K = K’t3 holds for some substitution 

8. Bc K’ is a unique definite clause in the initial program defining a new predicate. 

Then if A contains an “old predicate”, or else A contains a “new predicate” and no 

atom in K is “inherited” from the initial program, A+ K, L is folded into AeBB, L. 

The first type does not happen, as every user predicate is a new predicate in the 

current system (the extended system in Section 5 distinguishes between old predicates 

and new predicates). For the second case, that no atom in K is “inherited” means that 

every atom in K is labeled u in our system, thereby satisfying Fl. F2 being automati- 

cally satisfied for the above-mentioned reason, we can conclude that folding of the 

second type is legitimate in our basic system. 

To return, even if BO contains some primitive predicates, the problem of checking 

F2 is reducible to the two-valued case by Proposition 3.7. If, accordingly, A is 

a decidable theory, F2 becomes mechanically checkable. If, for example, our universe 

of discourse is the Herbrand universe and, hence, is completely axiomatizable by 

Clark’s equational theory, a checking algorithm is available [S, 171. 



For other cases, we have to take a case-by-case approach. Speaking of Example 1.1, 

F2 is satisfied because the calculation of BO[u] comes out to be u as follows: 

&[u] =VY(u/mem(Y,L)+Y#O) 

4.3. Correctness 

The basic transformation system is equivalence-preserving in the following sense. 

Theorem 4.1 (Equivalence property). Let A he a base theory in LB and To= 

{ pi(xi)o Fi, o 1 1 <i < N 1 a program, respectively. Suppose To hus been trun~formed to 

rk = { pi(xi)eFi,, 1 1 <i < N 1. Then To und rk are chain-equivalent under A, and for 

u sentence G in LB+ [ pl, . . . . P.~), we hare 

Aur,, k3 G @ AufI, b3 G. 

If To and rk are both cull-consistent und strict w.r.t. G,’ 

Auf,tG $f Auf-&G. 

Proof. Suppose we have a transformation sequence To, rI, . . . by the basic system. 

Let p$ (1 6 i 6 N, k, n =O, 1, . .) be the generative chain for pi by rk = { pi(.‘Ci)O 

Fi k 1 1 <i< N ). To prove the theorem, we prove Lemmas 4.2 and 4.4. Since Lemma 

4.i implies Corollary 4.3, which says that pjyb <A p$ holds for every i (1 <i < N) and 

k, n ( >O), and since Lemma 4.4 asserts that Vm3np!r”,’ <A pi”/, holds for every i (1 < i < N) 

and k, n (20) we conclude that every transformed program is chain-equivalent to To 

under A. The rest follows from Propositions 3.4 and 3.6. 0 

Now we prove Lemmas 4.2 and 4.4. In what follows, F[p~m’,p~‘“] denotes 

FCP:““, . . ..P.$, P:.‘;, . . ..p.!;I (k m, n > 0), a formula obtained from F by replacing 

every pi(t) in F with p$i[t] and every pY(t’) with pjr:[t’] (1 di<N). 

Lemma 4.2. The ,following invariant holds ,for every k. 

(INVARIANT-l) 

For every i (1 <i<N) and n (>O), 

Proof. By induction on k. The case for k =0 is obvious. So, suppose INVARIANT-l 

holds for k and rk+ 1 is obtained from ITk by transforming a predicate definition 

’ Note that the replacement rule might destroy the call-consistency (strictness) of programs. For example, 

it can transform a call-consistent program ’ juou, into a non-call-consistent one (a-0 V(f A7a)J. 



h(x)-& in rk into h(x)-Bk+ 1. Let h(x)oBo be a predicate definition about h in To. 

We have to prove that, for all n, 

Bo[pbn’]~dBk+lCpbn’,pbn’“l and B~[~~+~‘l~~B~+~Cp~~~‘,p~‘“l. 

There are three cases. 

CUSP 1: mfblding. B, + 1 is obtained by unfolding an atom d(t) in the body Bk 

using d(y)oD,[y] in To. We first treat the case of d(t) not labeled u. Write 

B,=B,[d(t),p,p”l and Bk+lI~,~“I=Bk[~OC~“, cl/d(t), p,p”l. Let d$” @=(A I,...) 
be the generative chain for d by To. Then, for all n, 

Bk+lC~(d’~p(on’“l=~~C~~Ip~‘“,~ll~~~~,p~’,p~~”l 

=&[db”+“,pb”‘,pb”‘“] 

&BBk[d(“) p’“’ p”““] (because d ‘“+l’&d;‘) 
0’ 0’ 0 0 

&~oCPl 0 (by INVARIANT-l at k), 

B,+,CPj;+“. pb”‘“]=B,[D,[p~‘“~]/d(t),pb”+~‘,p~’”] 

=Bk[d(o”+l’,pbn+l),pbn’u] 

‘43Bo[p;+1’l (by INVARIANT-l at k). 

When d(t) is labeled u, we may write B,=B,[d”(t),p,p”] and Bk+’ [p,p”] = 

&CDoCP”, ~lP”@)~p>p”l. B k+, [ p~‘,p~‘“] & B,[p~‘,p~‘“] is proved similarly to the 

nonlabeled case, and we also have, for all n, 

Bk+JP:+l’ ,pb”‘“]=Bk[DO[p;‘“, t]/d”(t),p$+“,pb”‘“] 

=Bk[d;+I’U,p;+l’,p;‘u] 

&B,[db”‘“,pjJC1’ ,pt’“] (because dr+“,>dt’) 

&Bocp~+l’l (by INVARIANT-l at k). 

Case 2: ,fokding. B,, , is obtained by folding a subformula Do[t] of B, into 

d(t) using d(y)-D,[y] in To. Write Bk=Bk[DO[p”,t],p,p”] and Bk+, = 

Bk[d(t)/Do[ p”, t],p,p”]. Let dt’ (~130) be the generative chain for d by To. First we 

have, for all n, 

B,+,[pb”+“,pb”‘“]=B,[db”+“(t)/D,[p”,t],p~+”,pb”‘“] 

=Bk[DO[p;‘“,t],p;+l’,p~‘“] 

+[p(d+I’,p~‘u] 

&Bo[g;+l’ ] (by INVARIANT-l at k). 

Hence, 

(Al) B,+,Cpb”+1’,pb”+““1,~~,+,Cpb”+1’,pb”’”l,~BoCp~+1’] 



holds for all n. On the other hand, folding condition F2 ensures that 

(A2) B,+,Cu,u”l&&Cul. 

Putting Al and A2 together, we obtain 

Bk+ 1 [p~‘,#“] A> B,[p~‘,p~‘“] for all n. 

Cusr 3: rrlkcenletz t. II (.u) eBk in fh is replaced with h(x)=B,+, such that 

B k+, =A Bk, 

where the pi’s and the py’s are regarded as independent predicate symbols. Apparently, 

the invariant is preserved, because the above condition ensures that 

Bk+ 1 [ pb”‘,pl;“‘“] =.J ~k[&‘,f$“‘“l 

for every y1 and 111. C 

Proof. By induction on II. For each i (I did N ), 

p;p; = u qj pip; 

and 

P y’=Fi.&q,P’o”‘“] 

6jFi,k[p;),p~)u] (by INVARIANT-l at k) 

<d F~, k [pi),&)“] (by the inductive assumption) 

=p$?‘. 0 

Lemma 4.4. The jdlowiny inmn%mt holds .fbr every k. 

(INVARIANT-2) 

For every i (1 < i < N ), Vdn p:T”,’ <A pir’b. 

Proof. By induction on k. The case of k = 0 is obvious. Assuming the invariant at k, we 

prove V’m3rz p!“‘) I,k+, <A p$ for every i (16 id N) by induction on 111. Since Gd is 

transitive, this establishes the invariant at k+ I. 

Suppose Tk + 1 is obtained from r, by transforming a predicate definition h(x)oBk 

in r, into h(x)aB,+ 1. Let II(“) and It;;, (n = 0. I, . ) be the generative chains for h by 

rk and l-k+13 respectively. F&o let ng’, dy’ and 11!J’l 1 (n = 0, 1, ) be the generative 

chains for d by TO, rk and rk + 1, respectively. Now we assume 31 pjyi+ 1 GA p$ (true for 



m = 0) and prove 3n pjr”,::’ GA pirk ( ). We treat, however, the most complicated case, that 

of pi=h (the remaining cases are easy), and prove 3n h~~“,:“<, h:‘. 

Since the distinction between labeled and nonlabeled predicates turns out to be 

irrelevant in the following proof, we lump them together, and for a formula F, we use 

F [ pp’] to denote F [p\“fh, . . . , PC\,, the one obtained from F by replacing every pi(t) 

(1 did N), be it labeled or not, with pl”: [t]. There are three cases. 

Cuse I: unfolding. B, + , is obtained from Bk by unfolding an atom d(t) in Bk using 

~Y)-&,CJJI in To. Write &=&CWLpl and Bk+lC~l=BkCDOC~,rlln(t),lll, 
respectively. First of all, 

&l CPE 1, f] GADo[,$‘, t] for some n by the inductive assumption 

&, Do [p!“, t] for some n’ by INVARIANT-2 at k 

q+ l’[t] 

<All P”“[t] by Corollary 4.3 

Thus, 

j+“!+l)=B 
kfl k+l Pk+l 

[ (m) ] 

= 6 [Do [PE, 9 W(~)#~~, 1 

GA Bk[dF’+ ‘) [t]/d(t),p:“:,] for some n’ by the above result 

& B,[d;“‘[t]/d(t),p;“‘] for some n” (n” > n’, 112) by the 

inductive assumption 

=/+““f” 
k 

Case 2:. folding. B, + 1 is obtained by folding a subformula D,[t] of Bk into cl(t). Let 

d(y)oD,[~] be the folding definition in To. Write Bk = Bk[DO[t],p] and 

Bk+l CP]=Bk[LE(t)lDo[f],P]. 

/,+“Z+l)=B 
k+l k+l Pkfl 

[ (In) 1 

=&Id;?, [tl /Do [dJ-‘E 1 1 

~ABk[d~‘[t]/DoCt],p~‘] for some n by the inductive assumption 

Gil Bk[d~‘)[t]/Do[t],&“] for some n’ by INVARIANT-2 at k 

GA B&lb”‘+ “[t]/Do[t],pb”“] 

GA Bk[dr’+” [t]/Do[f],$“] by Corollary 4.3 

=&[P~‘)]+“+~). 

Cuse 3: r~placemrnt. rk f 1 is obtained from rk by the replacement rule. But this case 
is obvious. 0 



5. Extended transformation system 

Take up the even program in Example 3.1 again, together with d,= [s(X)= 

s(Y)+X= Y, s(X)#O, s( . . . . s(X)...)#X, (N=O)V3X(N=s(X))). Consider its un- 

fold/fold transformation under d,. 

Example 5.1 

l-0: even(N)oN=OV3X(N=s(X)Aleven(X)) /foldleven(N) by odd(X) 

odd(N)oieven(N) 

r,: even(N)oN=OVLlX(N=.s(X)Aodd(X)) /unfold 1 even(N) 

odd(N)oleven(N) 

rz: even(N)oN=OV3X(N=.s(X)Aodd(X)) /use the replacement rule 

odd(N)oljN=OV3X(N=s(X)Aleven(X))) 

/under Ay 

1-j : even( N=OV3X(N=s(X)Aodd(X)) 

odd(N)o3X(N==s(X)Aeven(X)) 

The transformation has resulted in a completely positive program f 3 (“positive” here 

means no negation in the definition body). Unfortunately, we cannot consider it 

legitimate, as no predicate in the folded definition was labeled u when r1 was 

obtained. Nonetheless, it is very apparent that the transition from To to f 1 is valid in 

any logical sense, as it is just substitution of equals for equals with the definition of 

odd(X) held unchanged. This type of transformation is often seen but is strictly ruled 

out by the basic transformation system. In the sequel, we show that by making use of 

the basic system, it is possible to build a more powerful system, the extended system, 

for which the above transformation process is a legitimate one. 

(Initial pr-oyrmi) 

An initial program To = ( p,(.~~)tjF~,~ / 1 <i< N ) is a first-order program in 

LH+{pl . . . . . I$ with (p, . . . . . P.~ ) being organized into two layers, old predicates and 

ntwl prediccrtrs, in such a way that 

(11) the body of a predicate definition about an old predicate 

contains no new predicates. 

In other words, while new predicates in the initial program To may refer to any 

predicates, i.e. the new ones, old ones and primitives, the reference of the old 

predicates is confined to the old ones and primitives. In the course of a transformation 

process, however, it can happen, by folding, that old predicates start referring to new 

predicates. thereby forming mutual recursion with them. 



Suppose TO has been transformed to rk. Choose a predicate definition h(x)o& 

from rk and transform Bk into Bk+ 1 by applying one of the following rules below, 

and put 

r ,+,=(T,\(h(x)oB,J)u(h(.u)oB,+,). 

(unfolding’) 

Select an atom d(t) containing a user predicate d from the body Bk. Whether d is 

labeled or not is irrelevant. Let d(y)oDO [ Js] be a predicate definition about d in TO. 

Unfold d(r) into D,,[t] provided 

(Ul) if d is a new predicate, so is 11. 

Mark with u all the user predicates introduced by this unfolding. Put 

B k+, =~C&Cp”,tll4~)1. 

(.folding’) 

Select a subformula Do[t] from Bk such that there exists a predicate definition 

d(y)oD,[y] in TO. Let hub, be a predicate definition about h in TO. Fold 

&C&Ctll into Bk+l =&C4~WoC~ll~ without marking d(t) with u, provided 

(Fl’) Either both h and dare new predicates and every user predicate in the DO[t] 

is labeled u, or h is an old predicate and d is a new predicate and DO[t] 

contains no new predicates. 

(F2) & Cul Gil& + , Cul 

(replacement’) 

Take as Bk+ , any formula such that 

&=~Bk+r 

holds even when we regard the labeled and nonlabeled predicates as independent 

ones. 

5.2. Correctness 

Theorem 5.2 (Equivalence property). Let A be a base theory in LH and TO= 

{ pi(.~i)OFi, 0 / 1 <id N ) a program. Suppose TO has been tran&rmed to rk = 

{ pi(xi)o Fi k 1 1 < i < N } using new rules. Then TO and rk are chain-equivalent under A, 

and ,for a se’ntence G in LR + { pl, . . , pN), 

AuT,+,G {jf Aur,+,G. 

!f TO and rk are both call-consistent and strict w.r.t. G, 

AuTOkG $f AuT,tG 
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Proof. For notational convenience, we use p=p,, . . . . p,+, for new predicates and 

q=yl, . . . . q, for old predicates, respectively, and write To, symbolically, as 

Here Fi, 0 [p. q] indicates that the user predicates of Fi, 0 are among puq and those of 

Gi, 0 [q] are among q. Prepare fresh predicate symbols q* = qy, , q; corresponding 

to q, . , q,. For a formula G, let G * denote the one obtained from G by replacing 

each atom of the form c/j(t) with q:(t) with qy(t’) with q,*“(t’) (1 <,j< N), respectively. 

We will use q” for y’;, . . . . yi and q*” for yy”. . . . . $, Now put 

Assuming Lemma 5.3, we can see, at any k, by unfolding each q;(s) in GTli into qj(s) 

(1 <j< N) to obtain I’ku (YT(.Y,)eLfi(.Yj) 1 I <j< N 1, that r$ is chain-equivalent to Tr, 

w.r.t. the Pi’s and 4;s under any base theory A. Since 1-i. . . ..19T are all chain- 

equivalent by the construction and the chain-equivalence is transitive, we can con- 

clude that To and r,, are chain-equivalent under A as well; hence, the theorem. 0 

(IN VARIANT-j) 

Proof. We construct, by way of the basic transformation system, a transformation 

sequence r;.r;. . . . . r:, . through which INVARIANT-3 is maintained. Assume 

that it holds for k (the case for k=O is obvious by definition). We show it also holds 

for k+ I. 

We suppose that Tr+, is obtained from fTk by transforming a predicate definition 

h(s)oB, in rr into Il(s)oBk+ 1. Let h(.x)o& be a predicate definition about 11 in To. 

We have three cases. 

Cusc 1: w$dding’. B, + 1 is obtained by unfolding an atom cl(t) in the body &Cd(t)] 

using d(y)oD,[y] in To. We first treat the case in which d is an old predicate. In this 

case. DO[~‘] includes only old predicates. and in this unfolding, the body &Cd(t)] is 

unfolded into BI, [D,,[q”_ f]]. We show that we can obtain, from r,F by unfolding, 

h(x)eBk[DO[q”, t]] if /I is a new predicate, or h(s)oB,*[D,,[q*“, t]] otherwise, 

which means that the invariant holds for k + 1. 



When h is a new predicate, we have h(x) ~&[d(t)] in Fz by INVARIANT-3 at k. 

Therefore, by unfolding &Cd(t)] into Bk[DO[q*“, t]] using d(y)oD,[q*] in rt, and 

then successively unfolding it into Bk [Do [q”, t]] using qT(J’j)oqj(yj) (1 <j< N) in 

r;, we obtain h(x)a&[D,,[q”, t]] by the basic system. Or else, if h is an old 

predicate, we have h(x)oB,* [d*(t)] in mz by INVARIANT-3 at k. Similarly as in the 

above case, by first unfolding Bt[d*(t)] into Bt[d”(t)] using d*(y)=d(y) in rt, 

and then into B:[D,[q*“,t]] using d(y)-D,[q*] in r$, we obtain h(x)- 

B,f [DO [q*“, r]] in the basic system. 

In the remaining cases, where d is a new predicate, h must be a new predicate 

according to the unfolding condition Ul. So, this unfolding, being concerned only 

with h(x)oB,[d(r)] and d(y)~D,[y], which are also included in rc and r:, 

respectively, can take place in r:, and the invariant holds for k+ 1. 

Case 2: ,folding’. B, + I is obtained by folding a subformula Do[t] of Bk into d(t). 

Write B k+l =&[n(r)/D,[t]] and let d(y)oD,[y] be the folding definition in To. We 

have two cases depending upon which condition of F I’ is satisfied. If both d and h are 

new predicates, we have nothing to prove, as r: has d(y)*D,[y] and r: has 

h(x)-& by INVARIANT-3 at k. 

Otherwise, d must be a new predicate and h an old predicate, due to the second half 

of Fl’. &[u] &,Bk+ 1 [u] holds by F2. Then the invariant at k guarantees that 

h(x)-B~[D,!j[t]] is in r:, and the folding condition Fl’ states that, D,,[t] and, 

hence, D,*[t] contains only old predicates (and primitives). So, we may write 

D,* [r] = 0: [q*, q*“, r]. By unfolding Bz [Dg [q*, q*“, r]] as many times as necessary 

in the basic system, using { qj*(~j)Oqj(Yj) 1 1 d j< N) in l-i, we can obtain 

Bc [DO [q”, r]], where every user predicate in DO [ q”, r] is labeled u, thereby satisfying 

Fl in the basic system. Now the folding of B~[DO[q”, r]] into B;[d(r)] using 

d(y)-D,[y] in r; gives B f+ 1 = ~9: [d(r)/D; [r]]. From B,* [u] = B, [u] &, Bk [u] = 

Bc [u], the folding condition F2 in the basic system is satisfied as well. Thus, we have 

obtained qj(xj)oB,*+ 1 from qj(Xj)OBk* by the basic system, and the invariant holds 

again for k + 1. 

Case 3: replwement’. Obvious and omitted. 

So. INVARIANT-3 holds again for k-t 1. 0 

5.3. Elimination of negution 

Example 5.1 is now legitimate in the extended system (even: old predicate, odd: new 

predicate). This example suggests a general method to eliminate negation as follows. 

A program is said to be posiriue if no user predicate occurs negatively in the body of 

a predicate definition. We prove that a program r = { pi(xi)OFi 1 1 <id N} is trans- 

formable to a pair of positive programs, r + and r -, such that their union is 

chain-equivalent to r w.r.t. {pI, . . . . pN}. 

Prepare fresh predicate symbols pi (1 < i < N) whose arity equals that of pi. They are 

intended for the negation of the pi’s, Write a formula F in LB+ (pl, . . . . pN} as 

F[ p:, .,p,G ,p;, . ,p,] and let p+ (p,:) refer to all of the positive (negative) 



occurrences of the predicate symbol pi (I <i < N) in F. Next define positive formulae 

F + and F ~-, respectively, by 

F+=F[pT ,..., p,c,ip’,/p; ,.... ip;.jp,;] and 

F-=l(F[lp;l:p: ,..., lp~~,pp,‘pp ,...) p,i]). 

Now for a program I‘= ( pi(.ui)a Fi 1 1 <i < N 1, put, respectively, 

ri=(pi(ri)oFifll~i~NJ and r~=(pj(.~i)aFI-I1~i~Ni. 

Proof. We use the extended system but do not mention labeling for readability. 

Construct an initial program rr=I'u~p~(si)o~p,(xi)~ l<ibNj, in which 

i/J,> . ..>P'.) are considered as new predicates and ( pl, , pN) old predicates. Replace 

each definition pi(.~i)OFi[I):. . . . . p,c,pF, . . . . p,;] in r’ with pi(s;)GFi[p:, . . ..p.c. 

11p, . . . . . llp,~] and fold it intop,(.u,)oF‘i[p: ,..., p,G,lp; ,..., lpk,]. We, thus, 

obtain pi(si) (1 6 i 6 N). Next unfold each p:(.K;)Olpi(.Ui) (1 <i< N) in r’ into 

p:(.Yi)elFj[P:* ...sp,c>p1 -, __.. p,,], then replace it with p:(.~i)~lFi[llI): . . . . . 

11p.;. PI 3 . . . . p,;], and fold into pi(.~i)olFi[lp; ,..., lpX,pl,.... p,v] (=Fi-). 

In this way, we obtain r + uT from 1” by the extended system. Since I“ and r are 

chain-equivalent w.r.t. ( p, , . I),~) under any A. so are r +ul’ and r. For the second 

half. we see that 

AuTt=,G iff Aur’b3G (G does not contain p’, , , pk) 

iff Au/” k3 G + (replace negative occurrences of pl, . , 

py in G with 1~;. . . . . 1~;. using 

( p;(.~)ol pi(q) 1 1 <i < N ) ) 

iff A uT +uT k3 G+ (I“ and I‘ + ul” are chain-equivalent) 

iff AuT +uT -EC+ (by Theorem 3.5). 0 

Observe that, although positive programs are always strict w.r.t. any literal goal, 

this is false for general goals. For example. r= (UOU, I is not strict w.r.t. G = (I V 7 a. 

This is why we use G + in AuT +uT -k-G + instead of G. More importantly, quan- 

tifiers cannot be eliminated by this method. For instance, if r= (p(X)a3Yq(X, Y), 

y(X, Y)oq(X. Y)J, r- will be jp’(X)oVYq’(X. Y), q’(X, Y)oy’(X, Y)). To elimin- 

ate VY further, we have to apply unfold/fold transformation; unfold p’(X)- 

VYyq’(X, Y) into p’(X)oVYq’“(X. Y), and then fold the latter into p’(X)op’(X). 



Nonetheless, when I- takes a special form, the iff definition of a general program 

with no internal variables, like the even program, r _ becomes a positive program 

with no universal quantifiers quantifying user predicates, if Clark’s equational theory 

is assumed as an underlying base theory. In this sense, Proposition 5.4 gives a general- 

ization of the negation technique [27], which is applicable only to definite programs 

without internal variables. 

5.4. Strict programs 

Proposition 5.4 states that positive programs form a representative class of first- 

order programs in the sense that every program is equivalent to some positive 

program as far as the logical consequence relationship is concerned (and the three- 

valued logical consequence relationship is reduced to the two-valued one). We prove 

here, as another application of the extended system, that strict programs also form 

a representative class. Namely, Proposition 5.5. 

Proposition 5.5. For ecery jirst-order program r in LB + ( p,, . .,pN), there exists 

a strict progratn rg in LB+ ipI, . . . . PN } + { P; > . . . > ph} which is chain-equivalent to 

r w.r.t. ( pl, . , pN) under any base theory A. And,for a sentence G in LB + { pl, . . , pN}, 

we have 

Aurk3 G $j‘” AuT: E G,, 

where G,=G[p~,...,p~,p~j~~,...,~~/P~l. 

Proof. Let r = ( pi(xi)oFi 1 1 <i < N } be a given program. Starting from r’ = 

l-u{ pI(.~,)opi(Xi) 1 1 <i< N ), in which {pi, . , pk} are considered as new predicates 

and ( pl, . . , pN) as old predicates, we can reach, through an unfold/fold transforma- 

tion process very similar to the one in the proof of Proposition 5.4, 

~~=(pi(xi)~FiCp~,...,P,~,P~/P~,...,P’,/P~~II1~~~N} 

UjPl(“i)OFiCP;lP:,..., P:,/P;>P;,...>P~;II 1 GidN}, 

which is chain-equivalent to f w.r.t. { pl, . . . , pN) under an arbitrary base theory. To 

see that r: is strict and strict w.r.t. G,, note that each class, the class of new predicates 

and that of old predicates, depends positively on itself and negatively on the other 

class, and they are disjoint. Now 

Auf k3 G iff Aur’b3 G (G does not contain pi,. , pl,) 

iff duT’ /==3 G, (use ( pl(Xi)opi(.Xi) 1 1 did N} in r’) 

iff AuT: b3 G, (r’ and fd are chain-equivalent) 

iff Aur:t-G, (by Theorem 3.2). 0 
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This proposition generalizes Theorem 7 in [lo] which requires the allowedness of 

r (and G). 

Example 5.6. 

r: even(N)oN=OVSlX(N=s(X)Aieven(X)) 

r;: even(N)oN=OV3X(N=s(X)Aieven’(X)) 

even’(N)oN=OV3X(N=s(X)Aieven(X)) 

6. Concluding remarks 

We have presented two unfold/fold systems (the basic system in Section 4 and the 

extended system in Section 5) which preserve the logical strength of first-order 

programs in the sense of Kleene’s three-valued logic (Theorem 4.1 and Theorem 5.2). 

They consist of an unfolding rule, a folding rule and a replacement rule. When applied 

to call-consistent programs, they preserve the proof-theoretic strength of the trans- 

formed programs in two-valued logic. In particular, they preserve the set of literals 

provable from strict programs, thereby preserving the success and finite failure sets of 

definite programs as a special case. 

Our systems bear close resemblance to Seki’s unfold/fold system [29]. They all aim 

at equivalence-preserving transformation. And interestingly, the folding conditions in 

the extended system almost coincide with his when ours are restricted to stratified 

programs. Nevertheless, unfolding is different and the employed semantics is also 

different. The major difference, however, is that our systems are applicable even 

when clauses contain arbitrarily complex formulae in their bodies, a fact which, on the 

other hand, might complicate the task of checking folding conditions in the general 

case. 

We have also revealed that positive programs and strict programs form a represent- 

ative class of first-order programs, respectively, in the sense that the three-valued 

logical consequence relationship first-order programs have with goals is reducible 

to the two-valued one between positive (strict) programs and the corresponding 

goals. 

Since we do not assume any specific theory as an underlying base theory that 

determines the meaning of primitive predicates, our systems can work with any 

first-order theory. Such generality is expected to contribute to expanding the field of 

unfold/fold transformation. 
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