
Theoretical Computer Science 105 (1992) 57-84

Elsevier

57

Equivalence-preserving first-order
unfold/fold transformation
systems*

Sate, T., Equivalence-preserving first-order unfold/fold transformation systems, Theoretical Com-

puter Science 105 (1992) 57-84.

Two unfoldjfold transformation systems for first-order programs, one basic and the other extended,

are presented. The systems comprise an unfolding rule, a folding rule and a replacement rule. They

are intended to work with a first-order theory d specifying the meaning of primitives, on top of

which new relations are built by programs. They preserve the provability relationship durtG ’
between a call-consistent program F and a goal formula G such that F is strict with respect to G.
They also preserve the logical consequence relationship in three-valued logic.

1. Introduction

The unfold/fold transformation has been widely recognized as a powerful program

transformation technique. In particular, in logic programming, it has been applied not

only to program optimization (as it has been the case with functional programming)

but to program derivation as well. Take, for instance, the following first-order

specification r,, for all-nonzero(which states that every element in the list L is

nonzero.

Example 1.1.

f,: all-nonzero(L)+-+VY(mem(Y, L)+ YZO)

mem(Y, CYIZI)

mem(Y, [U 1 V])+mem(Y, V)

Correspondence to: T. Sato, Electrotechnical Laboratory, Umezono, Tsukuba, Ibaraki, Japan 305.

*This paper is an expanded version of the one presented at the 2nd Algebraic and Logic Programming
Conference held in Nancy, 1990, and the title has been changed a little.

0304-3975/92,/$05.00 $_’ 1992-Elsevier Science Publishers B.V. All rights reserved

58 T. Strfo

First, unfold the underlined formula using the iff definition [19] of mem’ and label

mem(Y, V) by u to indicate that it was introduced by unfolding.

l-r: all-nonzero(l)++VY,Z(L=[Y/Z]+Y#O)

AVU, V(L=[UI v]-vY(mem”(Y, V)+Y#O))

Seeing that all of the atomic formulae concerned are labeled u, we fold the underlined

part by the definition for all-nonzero (see Section 4 for folding conditions) and have

rz: all-nonzero(l)uVY,Z(L=[YIZ]+Y#O)

AVU, V(L= [U 1 V]+all-nonzero(V))

which is equivalent in the Herbrand universe to

r3: all-nonzero(l)tt(~Y,Z(L#[YIZ])V3Y,Z(L=[Y~Z]A YfO)}

A (VU, V(L#[cI V])V3U, I/(L=[Ul V]

A all-nonzero(V)) I\

Note that we already have succeeded in the derivation of an executable program up

until this stage, as r3 is actually a definite program2 (written in the form of an iff

definition). However, seeking for a more efficient program, we factor out the common

subformulae, VY,Z(L#[Y(Z]) and VU, V(L#[CJ VI), to get

l-4: all-nonzero(l)ttVY,Z(L#[YiZ])V (3Y,Z(L=[YlZ])A Y#O

A all-nonzero 1_

Later we see that r4 has the same logical consequence relationship as To w.r.t. literals

(Theorem 4.1).

Looking back, by the way, it is apparent that the crux of the whole derivation

process lies in the elimination of negation by folding done between rI and Tz

(compare the negative occurrence of mem(Y, V) in rI and the positive occurrence of

all-nonzero(V) in T2 in their right-hand sides). To see the potential of unfold/fold

transformation for negation elimination, let us consider the negation of 3 Ymem(Y, L),

i.e. 13 Ymem(Y, L) (L has no elements) and derive a program for it. We start with

empty(L)HVY(mem(Y, L)-+f), where f stands for falsity.

Example 1.2.

r;, : empty(l)*VY(mem(Y, L)+f)

’ Generally speaking. unfolding means the replacement of a procedure call with the procedure body.

whereas folding is the reverse operation. As for the present case. the iff definition becomes mem(I’, IL)*

3Z(L=[YIZ])V3U. I~(L=[C’I C’] Amcm(Y. I’)). We consider the left-hand side (right-hand side) as

a procedure call (procedure body).

’ In this paper. we mean by a clause a formula of the form H +B, where H is an atom. When B, the body,

is a conjunction of atoms, WC call it a definite clause. A delinite program is a finite set of definite clauses.

The same (an isomorphic) transformation process as Example 1.1 leads to

l-A: empty(L)~VY,Z(L#[YIZ])V(3Y,Z(L=[YIZ])AfAempty(Z)}

Simplification using A A f t-f f and A V f H A gives

l-i: empty(l) - V Y, Z(L # I YI Zl)

By Theorem 4.1 again, this is guaranteed to calculate the finite failure set of

3 Ymem(Y, f.).

These examples suggest that an unfold/fold approach offers a quick way to

program derivation from first-order specifications and enables one to take the nega-

tion of programs containing internal (local) variables3 (see, for example, [2] for the

problem with internal variables). It is conceptually simple and easy to implement.

Above all, a derived program P is always sound, meaning that any answer computed

by P satisfies the original specification S because P is nothing more than a logical

consequence of S. Unfortunately, the very same fact might cause P to be incomplete;

P might be weaker than S as a logical theory. Hence, if we wish P to hold the same

proof-theoretic strength as S, it is necessary to place some restrictions on their form or

on the transformation process.

Here we introduce a class of formulae calledjrst-order programs with a view toward

treating uniformly both specifications, such as To, and programs, such as f4. They are

defined as logic programs allowing an arbitrary first-order formula in the clause body.

They are straightforward generalizations of definite programs and seem to encompass

most of the useful first-order specifications met in daily programming. Some first-

order programs are not executable, and can only be considered as specifications.

However, many of these are transformable into an executable form by completely

mechanical unfold/fold transformation [28].

In this paper, based on the recent results on three-valued semantics for first-order

programs, we present general unfold/fold transformation systems, a basic one and an

extended one. They preserve the proof-theoretic strength of first-order programs

under certain conditions. We say general firstly because an arbitrary algebraic

structure can be a domain of discourse, not to speak of the Herbrand universe (the

algebra of finite trees). Secondly because, although they are equivalence-preserving,

our systems allow an arbitrarily complex formula as the body of a predicate definition,

even if it becomes negatively recursive.

Section 2 gives a brief overview of related work on unfold/fold transformation of

logic programs. In Section 3, we describe properties of three-valued logic. A basic

transformation system will be presented in Section 4 and the extended one in

Section 5. Section 6 contains concluding remarks. Since this paper is more of

a theoretical nature, examples are small and implementation issues are not discussed.

The reader is assumed to be familiar with logic programming, unfold/fold transforma-

tion and elementary logic [6, 19, 311.

3 A variable in a clause is said IO be internal if it is fret and occurs only in the body.

60 T. Sufo

2. Related work

The technique of unfold/fold transformation emerged during the mid seventies and

was immediately transplanted to logic programming [4,7,25]. Since then, two lines of

development have been observed. One pursues equivalence-preserving (w.r.t. canoni-

cal models) unfold/fold transformation of definite or general programs4 The other is

primarily aimed at the synthesis of definite programs from arbitrary first-order

specifications, and does not assume any specific models. Both approaches, however,

are intertwined in many ways.

The first approach began with the introduction of unfolding to logic programming

by Komorowski [15]. It was proved that unfolding preserves procedural semantics of

definite programs. Folding was introduced by Tamaki and Sato [31]. They clarified

syntactic conditions under which any combination of folding and unfolding preserves

the success set of definite programs. Their system was considerably reinforced later by

the introduction of multilayered definitions [32] and also by that of counters [12].

These systems permit recursive clauses to define new predicates. Both of them,

however, focused on the preservation of the success set. It remained unknown what

condition preserves finite failure.

In 1987, Maher formulated a transformation system which is somewhat restrictive

(“the folding clause comes from the current program” and “no unfolding on direct

recursion”) but can preserve finite failure as well as success of definite programs [22].

Then he extended it to the one for general programs (though unfolding was kept

restricted to positive goals) and proved the preservation of the perfect model seman-

tics of locally stratified programs [24]. Independently, Seki [29] proposed a trans-

formation system which preserves not only the success and finite failure sets of definite

programs but also those of stratified programs. In his system, a new predicate is

introduced by a definite clause and the unfolding of negative goals is not permitted. In

a recent paper, he revealed the preservation of the well-founded semantics and stable

model semantics of general programs by unfold/fold transformation [30].

In connection with finite failure. Sato and Tamaki presented a transformation

algorithm called “negation technique” in [27]. When applied to a definite program

without internal variables, it produces one that mimics the finitely failed computa-

tions of the original program. The point is that it makes possible, in an indirect

manner though, the synthesis of definite programs for universally quantified goals

[27]. Kanamori and Horiuchi [I31 have shown. however, that the same could be

done, more directly, by using their generalized unfold/fold rules incorporating the

unfolding of negative goals. The negation technique itself was subsequently refined by

Barbuti et al. [2] so as to be able to cope with definite programs with internal

variables.

’ A general program is a finite set of clauses of the form H +B, with B being a conjunction of liter& 1191.

Each literal in E is called a goal. A general program with no recursion through negative goals is called

a stratified program [I].

To return to unfold/fold transformation for program synthesis, after its initial

success [7,25], the viability of this approach was extensively investigated by Hogger

[111. A more deterministic approach was taken by Dayantis [9] for a certain class of

first-order specifications (programs). Sato and Tamaki [28] completely mechanized

the synthesis process for a wider class of first-order programs by introducing universal

continuation. It automatically synthesizes auxiliary predicates and can take the

negation of definite (and general) programs with internal variables. Lugiez [21]

specified a deduction procedure for first-order programs with an algorithm for

treating formulae including inequalities.

Despite the progress, however, the question of logical equivalence among the

synthesized programs was left unanswered. A clue was supplied by Kunen in his

investigation of logic programming semantics based on three-valued logic [16, 181.

He proved a theorem which enables us to compare “relative strength” between

first-order programs and, hence, facilitates the design of an unfold/fold transforma-

tion system that preserves the equivalence of programs. Our transformation systems

presented here are just examples. While they belong to the line of synthetic unfold/fold

transformation, and cover all first-order programs, their folding conditions, when

applied to stratified programs, have direct correspondence with the ones proposed by

Seki [29].

3. Preliminaries

3. I. First-order progrum

We assume that all syntactic objects are in a fixed countable language of first-order

predicate calculus with equality =. Terms and formulae are defined in the usual way.

We use F [x] to emphasize that F has free variables among x=x1, . . . , x,. For terms

f = tI , . , t,, F [t/x] means the result of simultaneous substitution of ti for xi (1 < i d n)

in F. When no confusion occurs, we write F [t] instead of F [t/x]. We extend this

notation to formulae. For instance, F [E/G] denotes a formula F whose subformula

G is replaced by E. We assume that variable name clash is implicitly avoided by

suitable renaming. A formula without free variables is called a sentence.

A predicate dejnition about p is a formula of the form p(x,, . , xR)- F, in which

x1, . . . , x, are distinct variables and F a formula whose free variables are among

x 1, , Y,. It is a generalization of the iff definition of a definite program [19].

P(Xl , . . . , x,) is called a head and F a body. x 1, . . . , x, are implicitly universally

quantified at the front. Note that negative self-recursion is allowed in a predicate

definition.

A j&-order program is a finite set of predicate definitions, one for each predicate.

We use r as a metavariable ranging over first-order programs. In what follows,

p(x,, , x,)- F is written as p(x) -F, with x possibly subscripted.

The purpose of first-order programs is to allow a user to define new predicates on

top of old ones. It is, therefore, convenient to think that there is a fixed base language

LH, a first-order language with equality appropriate for defining primitive predicates

and functions, and that a first-order program r= (pi(xi)++Fil 1 <i< Nj (N>O) be-

longs to an expanded language LIs + (p1 , pN), i.e., an expansion of LR with new

predicate symbols (p 1, , pN) not in LH. We call each pi a user predicate.

Since primitives such as =, <, < are to be the building blocks of new predicates,

they are prohibited from appearing at the head of a predicate definition. We assume

that their meanings are axiomatically determined by a consistent set of sentences in

f+. We call it a base throry and use d for base theories. d depends on our choice. For

instance, it can be Clark’s equational theory 1161, Presburger arithmetic and Peano

arithmetic to list a few. Even the empty set and the set of true sentences over natural

numbers are among the options.

Although one might naturally question the consistency of duT, where f is a pro-

gram and LI a base theory, we may say that for most programs, AuT is consistent;

call-consistent programs (those having no recursion through an odd number of

negative goals. see Section 3 for their definition) and order-consistent ones (the ground

version of call-consistent programs) are consistent” [IS, 261. In the rest of this section,

we restate some results in [16, IS] for the sake of self-containedness.

Semantically. we work with Kleene’s three-valued logic [141, as far as user predi-

cates are concerned. It allows a predicate to be undefined at some values of its

arguments. It has three truth values it, f, u), where t stands for true, f for false and u for

undefined, respectively. The truth table behaves as usual w.r.t. t and f. For instance,

lt=f,lf=t.AVB=tiffeitherAorBistandAVf3=fiffbothAandBaref.Butfor

u being undefined. we have 1 u = u, and A V B = u iff either A or B is u and neither

A nor B is t. A A B is defined as ~(1 A V 1 B). l.uA is treated as an infinite disjunction

and V’rA as an infinite conjunction. Finally. we define A+B as 1 A V B and A-B as

A+B and B+A.

According to the last rule, however, u ++u gets the value II, not t, a fact which causes

some awkwardness. Another logical connective A o B is, therefore, introduced with

a definition such that A e B = t iff A = B, and f otherwise. With the introduction of 0,

we redefine a predicate definition to be a formula of the form p(x) o F [xl, where p(x)

is an atomic formula and F a formula containing no occurrences of o. We stipulate

that o always appears as the top level biconditional of predicate definitions and

nowhere else, and further that when we talk about predicate definitions in the context

of two-valued logic, o implicitly stands for *. As a result of this modification, every

program, even (polpJ, has a three-valued model (defined later).

5 Call-consistency [IS, 261 and order-consistency [XI] are defined only for gcncral programs. It is

obvious. however. that every first-order program is reducible to a general program which is a delimtlonal
cxtcnsion of the original one. bq Introducing new predicates as many as necessary [XI]. BehIdes. the

reduction will be done without destroying the signed dependency relation (see Section 3.5) among the

original predicates. Hence. the results in [26] and 116. 181 apply to lirst-order programs a\ well.

Suppose a program r = { pi(Xi) 0 Fi 1 16 i < N $ is given. We assume here that there

are three propositional constants {t, f, u) available corresponding to the truth values

{t, f, u} (we use the same symbols), and further assume that t and fare in LR, but that

u is a new symbol.

A three-vulued relational structure (or a structure in short) M for LB+ {u} +

{PI,FN} (N30). IS a pair (D, I) such that D, called M’s domain, is a non-empty set

and I an interpretation over D, which is two-valued for LB and three-valued for each

user predicate symbol in (p, , , pN >. I must take t, f, u as true, false and undefined,

respectively, and = as the identity relation in D.

Let a = ul, , a, be elements (may be repeated) of D and suppose that a formula

F has free variables among x=.x1, , x,. Then we designate the truth value of F [a/x]

in I by val(F [a/x], I), where a/x means that ai is assigned to Xi (1 <i<n). We write

F [a] instead of F [a/x] provided the context allows. The truth value of F [a] in

a structure M is designated by val(F [a], M).

We say M satisjes a sentence F or, equivalently, M is a model of F iff val(F, M) = t.
Accordingly, M satisfies a predicate definition p(x)oF [x] iff val(p(a), M) =

val(F [a], M) for any a in M’s domain. When M satisfies every sentence in a set Y, we

call M a model of Y, or say that M satisfies Y. In parallel with two-valued logic, we

use b3 to designate the three-vulued logical consequence relationship. Namely,

Y k=3 F iff val(F, M)=t for every model M of Y.

We use kz for the two-valued logical consequence relationship which is identical, by

the completeness of first-order logic, to the provability relationship in two-valued

logic designated by t-.

3.3. Generutive chain und generutice extension

Having defined terminology, we proceed to investigate a special model-theoretic

relationship between first-order programs and their three-valued models. Let

T={pi(Xi)OFiI 1 <idNj be a program and A a base theory in LB.
Introduce a partial ordering V<\V over (t, f, u}, which is defined by

u<t and u<f.

We use u d w for v < w or v= M’. For formulae F [x] and G[x] in LB + (u} +
{pI, . , p,,, }, define a transitive relation “F [x] <d G [x]” by

F [x] & G [x] iff val(F [a], M) d val(G [a], M) holds for any structure

MforL,+{u}+{p 1, . . , pN) which is a model of A, and

at any a in its domain.

By definition, u <A G holds for arbitrary G and A. In the case of F [x] <A G [x] and

G[x] &, F [xl, we write G[x] =d F [x]. It means that in an arbitrary model of A, and

at any a in its domain, G[a] and F [a] take the same truth valueg(t,f,u}, whatever

64 T. Suto

three-valued interpretation we may assign to (pl, . , pN}. Obviously, G [x] o F [x] iff

G [x] =o F [x] and G [.y] =d F [s] for any d if G [s] o F [xl.

Call a series of formulae co [xl. crl [.u], . an increasiny ckuin w.r.t. d if it holds that

Do [r] <A 0 1 [s] & . . . The most typical increasing chains are those generated from

programs. For a program I‘= (pi(Si) o Fi 1 1 d i< N }, define a series of formulae

p~“‘[.ui] (1 <i<N, n=O, l,...) by

p;o’[“,] = u

pl”‘l’[.ui]=Fi[pl~‘,...,p~!‘] for n>O

Here (and henceforth) F [p:)l), . , pg)] stands for the result of simultaneous substitu-

tion of pj”[tjr] for pi(f) (1 <i< N) in a formula F.

To return, note that the pi”‘[.~i]‘s are formulae in the language LB+ {u), and

check that they indeed form an increasing chain u =pj”‘[xi] GA pil’[Xi] <A ...

<A py’[.ui] <d irrespective of the choice of A (this is proved by induction on n using

the monotonicity of logical connectives’). We call each py’ [-Xi] (n = 0, 1, . . .) a generat-

ive ckain,fbr pi by r. Let us calculate an initial part of a generative chain. The chosen

program, even the program below, is intended to define even numbers and

AN= (s(X)=s(Y)+X= Y, s(X)#O, s(....s(X)...)#X, (N=O)VIX(N=s(X))j is as-

sumed as a base theory.

Example 3.1.

even(N)o(N=O)V3X(N=s(X)Aieven(X))

even”’ [N] = u

even”‘[N]=(N=O)VZIX(N=s(X)Aiu)

=dx(N=O)V~

even’2’[N]=(N=O)V3X(N=s(X)Ai((X=O)V3X’(X=s(X’)Alu))~)

=,JN=O)WX(N=s(s(X))Au)

even’3)[N]=,,s(N=O)V3X(N=s(X)Al ((X=O)V3X’(X=s(s(X’))Au)),)

=,V(N=O)V(N=s(.~(0))V3X(N=s(s(X))Au)

The substitution of generative chains in a formula yields another increasing chain. Let

G [x] be a formula in L13 + (II) + i p,, , pN 1.. Define the appro.uimating chain of G by

r as

Gj”‘=G[p:“‘,..., p;‘], n=O. I ,...

’ It is immediate from the definition of 6, that F[v] <,,G[.x] implies ~F[.x] <,,~G[Y] and

A V F[u] <, A V G[.Y]. and that F[\-, J,] <A G[.Y. \,] implies 3\-b-[\-.y] <A 3uG[z,~].

Equivalence-prrserring unfold/fold tran.$ormation systems 65

It is straightforward to verify that G’,“’ (n = 0, 1, . , .) becomes an increasing chain w.r.t.

any base theory A.

In addition to approximating chains, there is a more fundamental application of

generative chains. It is an extension of a structure M for LB + {u} to an enriched

structure Mr for LB+ {u) +(pi,pN). More precisely, let {py’[Xi] 11 <id N,

n=O, 1, } be the generative chains by r. Mr has the same domain D as M and agrees

with M on the interpretation of symbols of LB + {II}. For each pi(a) (1 ,< i d N), where

LED, if val(~$“‘[a], M) gets defined at some n, Mr takes that value as the value of pi(U).

That is, for LIE it, f} we define Mt. by

val(pi(a), Mr)=c iff val(py’[a], M)= L’ for some n.

If there is no such n, we put val(p,(a), Mt.)=u. We specifically call Mr the generative

extension of M by r. Or in other words, it is a structure generated by o times iteration

on M of Tr, a mapping over three-valued interpretations associated with the program

r [16].

Generally speaking, for M arbitrary, one can hardly expect Mr to become a model

of r. However, as we shall see in Section 3.4, there is a way to extend M to a larger

structure M’ for LB + {u> for which M; gives a model of r; hence, the closure ordinal

of Tr does not exceed LI) there. This should contrast with the two-valued case where

it might go as high as Church-Kleene wr, the least nonconstructive recursive

ordinal [3].

3.4. Elementar~~ extension

Let M and M’ be two structures for LH + {u} with domains D and D’, respectively.

We say that M’ is an elementary extension of M if D’z D and it holds that, for an

arbitrary formula F [x] in LH + {u},

val(F[a],M)=z’ iff val(F[a],M’)=v for any UED and uE(t,f,u}.

It is fortunate that ultraproduct construction carries over to three-valued logic. In

particular, ultrapower construction [6] provides us with Lemma 3.2.

Lemma 3.2. Let M he a structure ,for LB + {u) and r a program. Then there exists

a three-valued elementary extension M’ of M with domain D’ such that, for a ,formula

G [x] in LH + {u} + { pl, . . , pN) and elements CI in D’,

val(G[a],M;)=v @ val(G~)[a],M’)=vfor some n,

where ve{t, f}, M;. is the generative extension qf M’ by r and Gp’ the approximating

chain of G by r. Moreover, Mk becomes u model of r.

Proof. Take an o-incomplete filter F over an appropriate set 1 and construct an

ultrapower M’= M’/F [6, Theorem 6.1.11. M’ then becomes an elementary extension

66 T. Strro

of M which is o1 -saturated w.r.t. true and false, and M;. has the required property (see

also [16]). n

Theorem 3.3 (Kunen [16, Theorem 6.31). Let A he a base theory in LH. Also let

r = (pi(Xi) o Fi / 1 < i < N) be a proyram und G a sentence in LH + [pl, . . . , pN $, respec-

tively. Then

AurkJ G $j” A +3 Gyj?W some n,

+vhere Gj!” (n = 0, 1, . .) is the upproxinzutiny chain qf’ G hq’ r.

Proof. The “if” part is straightforward. So, we prove the “only if” part. Let M be

a structure for LIs+ (u) which is a model of A. Consider its elementary extension M’

and the generative extension M; of M’ by r mentioned in Lemma 3.2. M;. is a model

of r and, hence, a model of G as well. Thanks to Lemma 3.2, we see that there exists

such an IZ that val(GF’, M’) = t. But M’ being an elementary extension of M, we have

val(G)“‘, M)= t as well. Since M was chosen arbitrarily, we are done. 0

This theorem teaches us how to compare the relative strength under A of two

first-order programs, say f, and Tz, in three-valued logic. To do so, we have only to

compare their generative chains. Let r, =(pi(.~~)oF~,~) 1 <i<N) and r2 =

{ pi(.Ui) o Fi. 2 (1 <id N) be programs having the same user predicates and pfr’, [pi]

and py\[.ui] (1 <i<N, II = 0, 1, . .) their generative chains, respectively. Let

(ql ,..., qabfj be a subset of (p, ,..., P.~}. We say that rI and r2 are chain-equivalent

W.r.t. (ql , . . , q, j under a base theory A if, for every j (I <j d M),

When M=N, i.e.. {q, ,..., qMj=(pl ,..., ~‘~1, we say that rl and Tz are chain-

equivalent under A.

Proposition 3.4. Suppose rl and I z are chain-equicalent under a base theory A. For

a sentence G in LH + [pl, , pN I,

AuT, k3G iff Au~‘~+~G.

Proof. From the chain equivalence, we have Vn3mGr1 ,d (“) < Giy’ and t/m 3n GE’ &, GF:

(this is proved by induction on the complexity of G). The rest follows from

Theorem 3.3. 0

Our equivalence-preserving unfold/fold transformation systems, which will be

presented in Sections 4 and 5, respectively, are based solely on this proposition.

3.5. Relationship hrt,~ven ttc,o-valued C. nd three-culued logic

We investigate the relationship between three-valued logic and two-valued logic for

later use. First we introduce classes of consistent programs (in two-valued sense).

Equicalenc,r-presert,;n~ unfold,!fold transformation systems 67

For a program r= { pi(Xi) 0 Fi 1 1 bi< N >, define the signed dependency among

{PI,pNf Cl& 261, d enoted by p>+ q (p depends on q positively) and p>- q (p

depends on q negatively), respectively, as the least relation satisfying

p>+ q iff pi+ q, or for some r, p++ r and Y>+ q, or P%- r and r>- 4,

p>_ q iff p+_ q, or for some Y, p%+ r and rxq, or pk r and r>+ q,

where p$+ q (p% q) is defined as

pi+ q (pi_ q) iff there is a predicate definition pi(Xi)oFi in I- such that

p = pi and q occurs positively (negatively) in Fi.

A program is cull-consistent [18,261 if we never have p > _ p for any p in the program,

i.e. no predicate calls itself through an odd number of negative goals. Note that

call-consistent programs allow recursion through an even number of negative goals

(whereas strut$ed programs prohibit any recursion through negative goals Cl]).

A program is said to be strict [1 S] if for no two predicates p and q, we have p >+ q and

px q at the same time. It is clear that strictness implies call-consistency. Thus,

a program (a ai b, b-1 u> is strict (and, hence, call-consistent), while {sob V 1 b,

bob} is not strict (though call-consistent). It is proved that call-consistency guaran-

tees the consistency in two-valued logic [18, 261.

We need one more definition. A program I- is said to be strict w.r.t. a goal G if, for c,

a newly introduced predicate symbol, a program Tu{coG} has no predicate on

which c depends both positively and negatively [18]. According to this definition,

a strict program {sol b, b-1 u) fails to be strict w.r.t. b V 1 b, for {sol b, b-1 a,

cobV1 b) is not strict. By the way, if a program is strict, it is so w.r.t. any literal as

well. Now we are ready to state Theorem 3.5.

Theorem 3.5 (Kunen [lS, Theorem 3.61). Let A be u base theory in LB, r= { pi(xi)o

Fi 1 1 d i < N } a cull-consistent program, and G a sentence in LB + { p,, . . , pN}. If r is

strict \v.r.t. G, we have

Aur~,G iff Au~/=~G.

Proof. See [18]. q

Proposition 3.6. Let A be a base theory in LB. Also let rI and r2 be cull-consistent

progrums in LB + { pl, . , pN). If rl and r2 are chain-equivalent under A and strict w.r.t.

a sentence G in LH+{pl,...,pN], we have

AuI-,t-G $f AuT2t-G.

68 T. Sara

Proof.
duT,I-G iff AuT, k=2 G (by the completeness of first-order logic)

iff AuT, +=3 G (by the assumptions on rI and G, Theorem 3.5)

iff Aurz k3 G (by the chain equivalence, Proposition 3.4)

iff Aur2 k2 G (by the assumptions on r2 and G, Theorem 3.5)

iff AuT2k-G. 0

We end this section with a proposition that helps us check folding conditions (see

Section 4) in terms of two-valued logic. Here we need a notation which makes

a distinction between positive and negative occurrences [6] of the symbol u in

a formula F [x] in LB + {u). So, write F [x] = F [II+, u-, x] and let u+ (u-) refer to all

positive (negative) occurrences of u in F [xl. Define F [f/u+, t/u-, x] to be a formula

obtained from F [x] by substituting f (t) for all positive occurrences (negative occur-

rences) of u in F[x]. Take R[u+, u-,x] =(u’ +(x#OVu2 Viu3)) as an example.

Then u+ refers to u2 and u- to u1 and u3, and R[f/u+, t/u-,x]=(t+(x#OVfVlt)).

Proposition 3.7. Let A he a base theory in LB, F [x] and G[x] @mulae in LB+ {u},

respectively.

F[.x]=~u lfl AEVulF[f/u+, t/u-,x] and AtV’xF[t/u+,f/u-,.x1,

AkVx(lF[t,‘u+,f/u-,x]+lG[t/u+,f/u-,x]).

Proof. Let M be a structure for LB+ (II) satisfying A with domain D and F[x]

a formula in LH + (u). We first prove that for any elements 4 in D

(1) val(F[a],M)=t iff val(F[f/u+,t/u-,a],M)=t,

(2) val(F[a],M)=f iff val(F[t/u+,f/u-,a],M)=f.

The proof is by induction on the complexity of F. Suppose F is an atom. If F is u, both

sides of (1) and (2) are false (F [f/u+, t/u-, a] = f and F [t/u’, f/u-, a] = t). Otherwise,

they are identical. For a composite F, we prove only the case of negation. Suppose

F =l G and the claim holds for G. Then we have

val(F[u],M)=t iff val(G[u],M)=f,

iff val(G[t/u+,f/u-,u],M)=f,

iff val(lG[t/u+,f/u-,u],M)=t,

iff val(F[f/u+,t/um,u],M)=t

Equivalence-preserciny unfold/fold transformation systems 69

and, similarly, for val(F [a], M)=f. So, we conclude (1) and (2). Now, for formulae

F [x] and G [x] in LB + {u}, we see that

F [x] & G[x] iff for any structure M for LB + {u) which is a model of A

and for any a in its domain,

val(F [a], M) = t implies val(G [a], M) = t and

val(F [a],M)=f implies val(G[a],M)=f,

or, equivalently, using (1) and (2),

val(F [f/u+, t/u-, a], M) = t implies

val(G[f/u+,t/u-,u],M)=t and

val(F[t/u+,f/u-,a], M)=f implies

val(G[t/u+ ,f/U_,u],M)=f.

Recalling that F [f/u+, t/u-,x], G [f/u+ , t/u-, x], F [t/u+, f/u-, x], and G[t/u+, f/u-,x]

are all two-valued formulae, we have

F[x]<,G[x] ill’ Vx(F[f/u+,t/u-,x]+G[f/uf,t/uP,x]) and

Vx(lF[t/u+,f/u-,x]+lG[t/u+,f/u-,x])

are true for every two-valued model of A

The rest follows from the completeness of first-order logic. The remaining case of

F [x] =d u is obtained similarly from val(F [a], M)= u iff val(F [f/u+, t/u-, a], M) = f

and val(F [t/u+, f/u-, a], M)= t. 0

4. Basic unfold/fold transformation system

Now we present a first unfold/fold transformation system for first-order programs.

It preserves chain equivalence and, hence, by Proposition 3.4, is equivalence-preserv-

ing in the sense of three-valued logic. We call it the basic system here. The basic system

is applicable, not only to the three-valued case but also to the two-valued case by

virtue of Proposition 3.6, thereby giving us a transformation system which preserves

the proof-theoretic strength (in the usual sense) of call-consistent programs. In

particular, it preserves the set of literals provable from strict programs. An extended

transformation system will be presented in Section 5.

4.1. Transformation rules

The basic system has three rules: the unfolding rule, the folding rule and the

replacement rule. The unfolding rule labels user predicate occurrences with a label

u whereas the folding rule erases it. A folding operation is allowed only when every

70 T. Safe

user predicate in the folded formula is labeled u. Hence, for notational convenience,

we introduce a notation F[p,p”] for a formula F to make it clear that F’s user

predicates are among the nonlabeled p = pr , . , pN and those labeled p” = p;, . . , pk.

F [p”], therefore, indicates that all of F’s user predicates, if any, are labeled u. We also

use F [u] to denote F in which every atom containing a user predicate, be it labeled or

not, is replaced by u.

Let A be a base theory in LH and TO = (pi(Xi)O Fi, o 1 1 <i < N } an initial first-order

program in which no user predicate symbol is labeled u.

Suppose To has been transformed to rk = (pi(.Ui)o Fi,k 1 1 d i < N }. Choose a predi-

cate definition I~(.Y)oB~ from rli and transform Bk into Bk+ I by applying one of the

following rules below, and put

r ~+,=(rk\(h(.~)oBk))~(h(.~)oBk+,).

(mfoldiny)

Select an atom d(t) from the body Bk which contains a user predicate d. Whether d is
labeled u or not is irrelevant. Let d(~)oD,[~] be a predicate definition about d in TO

and D,[p”, t] the formula D,[~/J,] such that all user predicates are labeled u.

Substitute D,[p”, t] for d(t) in Bk. Take the result as B,, , Bk+, is written as

B ,+,=BkC~~C~“,tll~~(~)l.

(folding)
Folding operation requires two conditions, Fl and F2 below, to be satisfied. Select

a subformula DO [t] from Bk for which there exists a predicate definition d(y)-D,[y]
in TO. If

(Ft) every user predicate in Do[t] is labeled u,

substitute d(r) for D,,[t] in B,. Do not mark d(t) with u. Write the result as

Bk[d(t)/Do[p”,t]]. Let h(u)oBo be a predicate definition about h in TO. Put

B k+, =BkCd(f)lDoCp”> fll

provided

(F2) Bo Cul GA B, + 1 Cul.

We call h(x)oBk the folded definition, d(y)oD,[y] the folding definition,

respectively.

(replmetnettt)

Take as Bk+ , any formula such that

&+,=A&

holds even when we consider the pi‘s and the py’s appearing in B,, 1 =A Bk as
independent predicate symbols.

Equiralence-preserving ut$old/jbld transformation systems 71

The replacement rule is primarily intended for simplification of transformed pro-

grams. To apply it, we must treat the pi’s and the py’s as independent predicate

symbols. It means that, while we may shorten p1 (x) V p1 (x) V py (x) to p1 (x) V p’; (x), we

are not allowed to further replace the latter with pi(x) or p;(x). Furthermore, we have

to consider the equivalence in the light of three-valued logic. Actually, however,

almost all basic logical equivalences familiar in two-valued logic, such as the asso-

ciativity and commutativity of logical connectives, are available. The following is

a (short) list of useful equivalence schemata: A A A-A, A V B-B V A, A A (B V C)o

(AAB)V(AAC), (AVB+C)o(A+C)A(B+C), (AAB+C)o(A-b(B+C)), 3x(x=

t A F [x])oF [t] provided t is free for x in F. Note that we cannot replace 1 A V A

with t, nor can we replace 1 A A A with f, except for the two-valued case such as

X=OVX#O.

In practice, replacement peculiar to a specific d is more interesting and more

important. For example, under Clark’s equational theory [16, 171, we may use

(s = t) =d f if s and t are not unifiable and so on.

4.2. Folding conditions

For folding to be validated, the folding conditions, Fl and F2, must be met. Fl is

easy to check. So, we comment on F2. Let h(x)*& be a folded definition and

h(x)o& a predicate definition about h in TO.

First keep in mind that, despite the somewhat complicated appearance of F2, we

can ignore it if BO is built up from user predicates and logical connectives, as in

3x3(p(x1, x3) Alq(x2, x3)). This is so, because in this case, Bo[u] =d u holds for any

base theory d, as seen from 3x3(u/p(xI,xj)A~u/q(xz,xj))03x3(uA~u)ou.

This case is thought to correspond directly to the folding of stratified programs

proposed by Seki [29]. More precisely, in his system, folding takes place as follows.

There are two clauses A+- K, L and Bt K’, where K = K’t3 holds for some substitution

8. Bc K’ is a unique definite clause in the initial program defining a new predicate.

Then if A contains an “old predicate”, or else A contains a “new predicate” and no

atom in K is “inherited” from the initial program, A+ K, L is folded into AeBB, L.

The first type does not happen, as every user predicate is a new predicate in the

current system (the extended system in Section 5 distinguishes between old predicates

and new predicates). For the second case, that no atom in K is “inherited” means that

every atom in K is labeled u in our system, thereby satisfying Fl. F2 being automati-

cally satisfied for the above-mentioned reason, we can conclude that folding of the

second type is legitimate in our basic system.

To return, even if BO contains some primitive predicates, the problem of checking

F2 is reducible to the two-valued case by Proposition 3.7. If, accordingly, A is

a decidable theory, F2 becomes mechanically checkable. If, for example, our universe

of discourse is the Herbrand universe and, hence, is completely axiomatizable by

Clark’s equational theory, a checking algorithm is available [S, 171.

For other cases, we have to take a case-by-case approach. Speaking of Example 1.1,

F2 is satisfied because the calculation of BO[u] comes out to be u as follows:

&[u] =VY(u/mem(Y,L)+Y#O)

4.3. Correctness

The basic transformation system is equivalence-preserving in the following sense.

Theorem 4.1 (Equivalence property). Let A he a base theory in LB and To=

{ pi(xi)o Fi, o 1 1 <i < N 1 a program, respectively. Suppose To hus been trun~formed to

rk = { pi(xi)eFi,, 1 1 <i < N 1. Then To und rk are chain-equivalent under A, and for

u sentence G in LB+ [pl, P.~), we hare

Aur,, k3 G @ AufI, b3 G.

If To and rk are both cull-consistent und strict w.r.t. G,’

Auf,tG $f Auf-&G.

Proof. Suppose we have a transformation sequence To, rI, . . . by the basic system.

Let p$ (1 6 i 6 N, k, n =O, 1, . .) be the generative chain for pi by rk = { pi(.‘Ci)O

Fi k 1 1 <i< N). To prove the theorem, we prove Lemmas 4.2 and 4.4. Since Lemma

4.i implies Corollary 4.3, which says that pjyb <A p$ holds for every i (1 <i < N) and

k, n (>O), and since Lemma 4.4 asserts that Vm3np!r”,’ <A pi”/, holds for every i (1 < i < N)

and k, n (20) we conclude that every transformed program is chain-equivalent to To

under A. The rest follows from Propositions 3.4 and 3.6. 0

Now we prove Lemmas 4.2 and 4.4. In what follows, F[p~m’,p~‘“] denotes

FCP:““,P.$, P:.‘;,p.!;I (k m, n > 0), a formula obtained from F by replacing

every pi(t) in F with p$i[t] and every pY(t’) with pjr:[t’] (1 di<N).

Lemma 4.2. The ,following invariant holds ,for every k.

(INVARIANT-l)

For every i (1 <i<N) and n (>O),

Proof. By induction on k. The case for k =0 is obvious. So, suppose INVARIANT-l

holds for k and rk+ 1 is obtained from ITk by transforming a predicate definition

’ Note that the replacement rule might destroy the call-consistency (strictness) of programs. For example,

it can transform a call-consistent program ’ juou, into a non-call-consistent one (a-0 V(f A7a)J.

h(x)-& in rk into h(x)-Bk+ 1. Let h(x)oBo be a predicate definition about h in To.

We have to prove that, for all n,

Bo[pbn’]~dBk+lCpbn’,pbn’“l and B~[~~+~‘l~~B~+~Cp~~~‘,p~‘“l.

There are three cases.

CUSP 1: mfblding. B, + 1 is obtained by unfolding an atom d(t) in the body Bk

using d(y)oD,[y] in To. We first treat the case of d(t) not labeled u. Write

B,=B,[d(t),p,p”l and Bk+lI~,~“I=Bk[~OC~“, cl/d(t), p,p”l. Let d$” @=(A I,...)
be the generative chain for d by To. Then, for all n,

Bk+lC~(d’~p(on’“l=~~C~~Ip~‘“,~ll~~~~,p~’,p~~”l

=&[db”+“,pb”‘,pb”‘“]

&BBk[d(“) p’“’ p”““] (because d ‘“+l’&d;‘)
0’ 0’ 0 0

&~oCPl 0 (by INVARIANT-l at k),

B,+,CPj;+“. pb”‘“]=B,[D,[p~‘“~]/d(t),pb”+~‘,p~’”]

=Bk[d(o”+l’,pbn+l),pbn’u]

‘43Bo[p;+1’l (by INVARIANT-l at k).

When d(t) is labeled u, we may write B,=B,[d”(t),p,p”] and Bk+’ [p,p”] =

&CDoCP”, ~lP”@)~p>p”l. B k+, [p~‘,p~‘“] & B,[p~‘,p~‘“] is proved similarly to the

nonlabeled case, and we also have, for all n,

Bk+JP:+l’ ,pb”‘“]=Bk[DO[p;‘“, t]/d”(t),p$+“,pb”‘“]

=Bk[d;+I’U,p;+l’,p;‘u]

&B,[db”‘“,pjJC1’ ,pt’“] (because dr+“,>dt’)

&Bocp~+l’l (by INVARIANT-l at k).

Case 2: ,fokding. B,, , is obtained by folding a subformula Do[t] of B, into

d(t) using d(y)-D,[y] in To. Write Bk=Bk[DO[p”,t],p,p”] and Bk+, =

Bk[d(t)/Do[p”, t],p,p”]. Let dt’ (~130) be the generative chain for d by To. First we

have, for all n,

B,+,[pb”+“,pb”‘“]=B,[db”+“(t)/D,[p”,t],p~+”,pb”‘“]

=Bk[DO[p;‘“,t],p;+l’,p~‘“]

+[p(d+I’,p~‘u]

&Bo[g;+l’] (by INVARIANT-l at k).

Hence,

(Al) B,+,Cpb”+1’,pb”+““1,~~,+,Cpb”+1’,pb”’”l,~BoCp~+1’]

holds for all n. On the other hand, folding condition F2 ensures that

(A2) B,+,Cu,u”l&&Cul.

Putting Al and A2 together, we obtain

Bk+ 1 [p~‘,#“] A> B,[p~‘,p~‘“] for all n.

Cusr 3: rrlkcenletz t. II (.u) eBk in fh is replaced with h(x)=B,+, such that

B k+, =A Bk,

where the pi’s and the py’s are regarded as independent predicate symbols. Apparently,

the invariant is preserved, because the above condition ensures that

Bk+ 1 [pb”‘,pl;“‘“] =.J ~k[&‘,f$“‘“l

for every y1 and 111. C

Proof. By induction on II. For each i (I did N),

p;p; = u qj pip;

and

P y’=Fi.&q,P’o”‘“]

6jFi,k[p;),p~)u] (by INVARIANT-l at k)

<d F~, k [pi),&)“] (by the inductive assumption)

=p$?‘. 0

Lemma 4.4. The jdlowiny inmn%mt holds .fbr every k.

(INVARIANT-2)

For every i (1 < i < N), Vdn p:T”,’ <A pir’b.

Proof. By induction on k. The case of k = 0 is obvious. Assuming the invariant at k, we

prove V’m3rz p!“‘) I,k+, <A p$ for every i (16 id N) by induction on 111. Since Gd is

transitive, this establishes the invariant at k+ I.

Suppose Tk + 1 is obtained from r, by transforming a predicate definition h(x)oBk

in r, into h(x)aB,+ 1. Let II(“) and It;;, (n = 0. I, .) be the generative chains for h by

rk and l-k+13 respectively. F&o let ng’, dy’ and 11!J’l 1 (n = 0, 1,) be the generative

chains for d by TO, rk and rk + 1, respectively. Now we assume 31 pjyi+ 1 GA p$ (true for

m = 0) and prove 3n pjr”,::’ GA pirk (). We treat, however, the most complicated case, that

of pi=h (the remaining cases are easy), and prove 3n h~~“,:“<, h:‘.

Since the distinction between labeled and nonlabeled predicates turns out to be

irrelevant in the following proof, we lump them together, and for a formula F, we use

F [pp’] to denote F [p\“fh, . . . , PC\,, the one obtained from F by replacing every pi(t)

(1 did N), be it labeled or not, with pl”: [t]. There are three cases.

Cuse I: unfolding. B, + , is obtained from Bk by unfolding an atom d(t) in Bk using

~Y)-&,CJJI in To. Write &=&CWLpl and Bk+lC~l=BkCDOC~,rlln(t),lll,
respectively. First of all,

&l CPE 1, f] GADo[,$‘, t] for some n by the inductive assumption

&, Do [p!“, t] for some n’ by INVARIANT-2 at k

q+ l’[t]

<All P”“[t] by Corollary 4.3

Thus,

j+“!+l)=B
kfl k+l Pk+l

[(m)]

= 6 [Do [PE, 9 W(~)#~~, 1

GA Bk[dF’+ ‘) [t]/d(t),p:“:,] for some n’ by the above result

& B,[d;“‘[t]/d(t),p;“‘] for some n” (n” > n’, 112) by the

inductive assumption

=/+““f”
k

Case 2:. folding. B, + 1 is obtained by folding a subformula D,[t] of Bk into cl(t). Let

d(y)oD,[~] be the folding definition in To. Write Bk = Bk[DO[t],p] and

Bk+l CP]=Bk[LE(t)lDo[f],P].

/,+“Z+l)=B
k+l k+l Pkfl

[(In) 1

=&Id;?, [tl /Do [dJ-‘E 1 1

~ABk[d~‘[t]/DoCt],p~‘] for some n by the inductive assumption

Gil Bk[d~‘)[t]/Do[t],&“] for some n’ by INVARIANT-2 at k

GA B&lb”‘+ “[t]/Do[t],pb”“]

GA Bk[dr’+” [t]/Do[f],$“] by Corollary 4.3

=&[P~‘)]+“+~).

Cuse 3: r~placemrnt. rk f 1 is obtained from rk by the replacement rule. But this case
is obvious. 0

5. Extended transformation system

Take up the even program in Example 3.1 again, together with d,= [s(X)=

s(Y)+X= Y, s(X)#O, s(. . . . s(X)...)#X, (N=O)V3X(N=s(X))). Consider its un-

fold/fold transformation under d,.

Example 5.1

l-0: even(N)oN=OV3X(N=s(X)Aleven(X)) /foldleven(N) by odd(X)

odd(N)oieven(N)

r,: even(N)oN=OVLlX(N=.s(X)Aodd(X)) /unfold 1 even(N)

odd(N)oleven(N)

rz: even(N)oN=OV3X(N=.s(X)Aodd(X)) /use the replacement rule

odd(N)oljN=OV3X(N=s(X)Aleven(X)))

/under Ay

1-j : even(N=OV3X(N=s(X)Aodd(X))

odd(N)o3X(N==s(X)Aeven(X))

The transformation has resulted in a completely positive program f 3 (“positive” here

means no negation in the definition body). Unfortunately, we cannot consider it

legitimate, as no predicate in the folded definition was labeled u when r1 was

obtained. Nonetheless, it is very apparent that the transition from To to f 1 is valid in

any logical sense, as it is just substitution of equals for equals with the definition of

odd(X) held unchanged. This type of transformation is often seen but is strictly ruled

out by the basic transformation system. In the sequel, we show that by making use of

the basic system, it is possible to build a more powerful system, the extended system,

for which the above transformation process is a legitimate one.

(Initial pr-oyrmi)

An initial program To = (p,(.~~)tjF~,~ / 1 <i< N) is a first-order program in

LH+{pl I$ with (p, P.~) being organized into two layers, old predicates and

ntwl prediccrtrs, in such a way that

(11) the body of a predicate definition about an old predicate

contains no new predicates.

In other words, while new predicates in the initial program To may refer to any

predicates, i.e. the new ones, old ones and primitives, the reference of the old

predicates is confined to the old ones and primitives. In the course of a transformation

process, however, it can happen, by folding, that old predicates start referring to new

predicates. thereby forming mutual recursion with them.

Suppose TO has been transformed to rk. Choose a predicate definition h(x)o&

from rk and transform Bk into Bk+ 1 by applying one of the following rules below,

and put

r ,+,=(T,\(h(x)oB,J)u(h(.u)oB,+,).

(unfolding’)

Select an atom d(t) containing a user predicate d from the body Bk. Whether d is

labeled or not is irrelevant. Let d(y)oDO [Js] be a predicate definition about d in TO.

Unfold d(r) into D,,[t] provided

(Ul) if d is a new predicate, so is 11.

Mark with u all the user predicates introduced by this unfolding. Put

B k+, =~C&Cp”,tll4~)1.

(.folding’)

Select a subformula Do[t] from Bk such that there exists a predicate definition

d(y)oD,[y] in TO. Let hub, be a predicate definition about h in TO. Fold

&C&Ctll into Bk+l =&C4~WoC~ll~ without marking d(t) with u, provided

(Fl’) Either both h and dare new predicates and every user predicate in the DO[t]

is labeled u, or h is an old predicate and d is a new predicate and DO[t]

contains no new predicates.

(F2) & Cul Gil& + , Cul

(replacement’)

Take as Bk+ , any formula such that

&=~Bk+r

holds even when we regard the labeled and nonlabeled predicates as independent

ones.

5.2. Correctness

Theorem 5.2 (Equivalence property). Let A be a base theory in LH and TO=

{ pi(.~i)OFi, 0 / 1 <id N) a program. Suppose TO has been tran&rmed to rk =

{ pi(xi)o Fi k 1 1 < i < N } using new rules. Then TO and rk are chain-equivalent under A,

and ,for a se’ntence G in LR + { pl, . . , pN),

AuT,+,G {jf Aur,+,G.

!f TO and rk are both call-consistent and strict w.r.t. G,

AuTOkG $f AuT,tG

7x T. Strro

Proof. For notational convenience, we use p=p,, p,+, for new predicates and

q=yl, q, for old predicates, respectively, and write To, symbolically, as

Here Fi, 0 [p. q] indicates that the user predicates of Fi, 0 are among puq and those of

Gi, 0 [q] are among q. Prepare fresh predicate symbols q* = qy, , q; corresponding

to q, . , q,. For a formula G, let G * denote the one obtained from G by replacing

each atom of the form c/j(t) with q:(t) with qy(t’) with q,*“(t’) (1 <,j< N), respectively.

We will use q” for y’;, yi and q*” for yy”. $, Now put

Assuming Lemma 5.3, we can see, at any k, by unfolding each q;(s) in GTli into qj(s)

(1 <j< N) to obtain I’ku (YT(.Y,)eLfi(.Yj) 1 I <j< N 1, that r$ is chain-equivalent to Tr,

w.r.t. the Pi’s and 4;s under any base theory A. Since 1-i.19T are all chain-

equivalent by the construction and the chain-equivalence is transitive, we can con-

clude that To and r,, are chain-equivalent under A as well; hence, the theorem. 0

(IN VARIANT-j)

Proof. We construct, by way of the basic transformation system, a transformation

sequence r;.r;. r:, . through which INVARIANT-3 is maintained. Assume

that it holds for k (the case for k=O is obvious by definition). We show it also holds

for k+ I.

We suppose that Tr+, is obtained from fTk by transforming a predicate definition

h(s)oB, in rr into Il(s)oBk+ 1. Let h(.x)o& be a predicate definition about 11 in To.

We have three cases.

Cusc 1: w$dding’. B, + 1 is obtained by unfolding an atom cl(t) in the body &Cd(t)]

using d(y)oD,[y] in To. We first treat the case in which d is an old predicate. In this

case. DO[~‘] includes only old predicates. and in this unfolding, the body &Cd(t)] is

unfolded into BI, [D,,[q”_ f]]. We show that we can obtain, from r,F by unfolding,

h(x)eBk[DO[q”, t]] if /I is a new predicate, or h(s)oB,*[D,,[q*“, t]] otherwise,

which means that the invariant holds for k + 1.

When h is a new predicate, we have h(x) ~&[d(t)] in Fz by INVARIANT-3 at k.

Therefore, by unfolding &Cd(t)] into Bk[DO[q*“, t]] using d(y)oD,[q*] in rt, and

then successively unfolding it into Bk [Do [q”, t]] using qT(J’j)oqj(yj) (1 <j< N) in

r;, we obtain h(x)a&[D,,[q”, t]] by the basic system. Or else, if h is an old

predicate, we have h(x)oB,* [d*(t)] in mz by INVARIANT-3 at k. Similarly as in the

above case, by first unfolding Bt[d*(t)] into Bt[d”(t)] using d*(y)=d(y) in rt,

and then into B:[D,[q*“,t]] using d(y)-D,[q*] in r$, we obtain h(x)-

B,f [DO [q*“, r]] in the basic system.

In the remaining cases, where d is a new predicate, h must be a new predicate

according to the unfolding condition Ul. So, this unfolding, being concerned only

with h(x)oB,[d(r)] and d(y)~D,[y], which are also included in rc and r:,

respectively, can take place in r:, and the invariant holds for k+ 1.

Case 2: ,folding’. B, + I is obtained by folding a subformula Do[t] of Bk into d(t).

Write B k+l =&[n(r)/D,[t]] and let d(y)oD,[y] be the folding definition in To. We

have two cases depending upon which condition of F I’ is satisfied. If both d and h are

new predicates, we have nothing to prove, as r: has d(y)*D,[y] and r: has

h(x)-& by INVARIANT-3 at k.

Otherwise, d must be a new predicate and h an old predicate, due to the second half

of Fl’. &[u] &,Bk+ 1 [u] holds by F2. Then the invariant at k guarantees that

h(x)-B~[D,!j[t]] is in r:, and the folding condition Fl’ states that, D,,[t] and,

hence, D,*[t] contains only old predicates (and primitives). So, we may write

D,* [r] = 0: [q*, q*“, r]. By unfolding Bz [Dg [q*, q*“, r]] as many times as necessary

in the basic system, using { qj*(~j)Oqj(Yj) 1 1 d j< N) in l-i, we can obtain

Bc [DO [q”, r]], where every user predicate in DO [q”, r] is labeled u, thereby satisfying

Fl in the basic system. Now the folding of B~[DO[q”, r]] into B;[d(r)] using

d(y)-D,[y] in r; gives B f+ 1 = ~9: [d(r)/D; [r]]. From B,* [u] = B, [u] &, Bk [u] =

Bc [u], the folding condition F2 in the basic system is satisfied as well. Thus, we have

obtained qj(xj)oB,*+ 1 from qj(Xj)OBk* by the basic system, and the invariant holds

again for k + 1.

Case 3: replwement’. Obvious and omitted.

So. INVARIANT-3 holds again for k-t 1. 0

5.3. Elimination of negution

Example 5.1 is now legitimate in the extended system (even: old predicate, odd: new

predicate). This example suggests a general method to eliminate negation as follows.

A program is said to be posiriue if no user predicate occurs negatively in the body of

a predicate definition. We prove that a program r = { pi(xi)OFi 1 1 <id N} is trans-

formable to a pair of positive programs, r + and r -, such that their union is

chain-equivalent to r w.r.t. {pI, pN}.

Prepare fresh predicate symbols pi (1 < i < N) whose arity equals that of pi. They are

intended for the negation of the pi’s, Write a formula F in LB+ (pl, pN} as

F[p:, .,p,G ,p;, . ,p,] and let p+ (p,:) refer to all of the positive (negative)

occurrences of the predicate symbol pi (I <i < N) in F. Next define positive formulae

F + and F ~-, respectively, by

F+=F[pT ,..., p,c,ip’,/p; ,.... ip;.jp,;] and

F-=l(F[lp;l:p: ,..., lp~~,pp,‘pp ,...) p,i]).

Now for a program I‘= (pi(.ui)a Fi 1 1 <i < N 1, put, respectively,

ri=(pi(ri)oFifll~i~NJ and r~=(pj(.~i)aFI-I1~i~Ni.

Proof. We use the extended system but do not mention labeling for readability.

Construct an initial program rr=I'u~p~(si)o~p,(xi)~ l<ibNj, in which

i/J,> . ..>P'.) are considered as new predicates and (pl, , pN) old predicates. Replace

each definition pi(.~i)OFi[I):. p,c,pF, p,;] in r’ with pi(s;)GFi[p:,p.c.

11p, llp,~] and fold it intop,(.u,)oF‘i[p: ,..., p,G,lp; ,..., lpk,]. We, thus,

obtain pi(si) (1 6 i 6 N). Next unfold each p:(.K;)Olpi(.Ui) (1 <i< N) in r’ into

p:(.Yi)elFj[P:* ...sp,c>p1 -, __.. p,,], then replace it with p:(.~i)~lFi[llI):

11p.;. PI 3 p,;], and fold into pi(.~i)olFi[lp; ,..., lpX,pl,.... p,v] (=Fi-).

In this way, we obtain r + uT from 1” by the extended system. Since I“ and r are

chain-equivalent w.r.t. (p, , . I),~) under any A. so are r +ul’ and r. For the second

half. we see that

AuTt=,G iff Aur’b3G (G does not contain p’, , , pk)

iff Au/” k3 G + (replace negative occurrences of pl, . ,

py in G with 1~;. 1~;. using

(p;(.~)ol pi(q) 1 1 <i < N))

iff A uT +uT k3 G+ (I“ and I‘ + ul” are chain-equivalent)

iff AuT +uT -EC+ (by Theorem 3.5). 0

Observe that, although positive programs are always strict w.r.t. any literal goal,

this is false for general goals. For example. r= (UOU, I is not strict w.r.t. G = (I V 7 a.

This is why we use G + in AuT +uT -k-G + instead of G. More importantly, quan-

tifiers cannot be eliminated by this method. For instance, if r= (p(X)a3Yq(X, Y),

y(X, Y)oq(X. Y)J, r- will be jp’(X)oVYq’(X. Y), q’(X, Y)oy’(X, Y)). To elimin-

ate VY further, we have to apply unfold/fold transformation; unfold p’(X)-

VYyq’(X, Y) into p’(X)oVYq’“(X. Y), and then fold the latter into p’(X)op’(X).

Nonetheless, when I- takes a special form, the iff definition of a general program

with no internal variables, like the even program, r _ becomes a positive program

with no universal quantifiers quantifying user predicates, if Clark’s equational theory

is assumed as an underlying base theory. In this sense, Proposition 5.4 gives a general-

ization of the negation technique [27], which is applicable only to definite programs

without internal variables.

5.4. Strict programs

Proposition 5.4 states that positive programs form a representative class of first-

order programs in the sense that every program is equivalent to some positive

program as far as the logical consequence relationship is concerned (and the three-

valued logical consequence relationship is reduced to the two-valued one). We prove

here, as another application of the extended system, that strict programs also form

a representative class. Namely, Proposition 5.5.

Proposition 5.5. For ecery jirst-order program r in LB + (p,, . .,pN), there exists

a strict progratn rg in LB+ ipI, PN } + { P; > . . . > ph} which is chain-equivalent to

r w.r.t. (pl, . , pN) under any base theory A. And,for a sentence G in LB + { pl, . . , pN},

we have

Aurk3 G $j‘” AuT: E G,,

where G,=G[p~,...,p~,p~j~~,...,~~/P~l.

Proof. Let r = (pi(xi)oFi 1 1 <i < N } be a given program. Starting from r’ =

l-u{ pI(.~,)opi(Xi) 1 1 <i< N), in which {pi, . , pk} are considered as new predicates

and (pl, . . , pN) as old predicates, we can reach, through an unfold/fold transforma-

tion process very similar to the one in the proof of Proposition 5.4,

~~=(pi(xi)~FiCp~,...,P,~,P~/P~,...,P’,/P~~II1~~~N}

UjPl(“i)OFiCP;lP:,..., P:,/P;>P;,...>P~;II 1 GidN},

which is chain-equivalent to f w.r.t. { pl, . . . , pN) under an arbitrary base theory. To

see that r: is strict and strict w.r.t. G,, note that each class, the class of new predicates

and that of old predicates, depends positively on itself and negatively on the other

class, and they are disjoint. Now

Auf k3 G iff Aur’b3 G (G does not contain pi,. , pl,)

iff duT’ /==3 G, (use (pl(Xi)opi(.Xi) 1 1 did N} in r’)

iff AuT: b3 G, (r’ and fd are chain-equivalent)

iff Aur:t-G, (by Theorem 3.2). 0

82 T. Sara

This proposition generalizes Theorem 7 in [lo] which requires the allowedness of

r (and G).

Example 5.6.

r: even(N)oN=OVSlX(N=s(X)Aieven(X))

r;: even(N)oN=OV3X(N=s(X)Aieven’(X))

even’(N)oN=OV3X(N=s(X)Aieven(X))

6. Concluding remarks

We have presented two unfold/fold systems (the basic system in Section 4 and the

extended system in Section 5) which preserve the logical strength of first-order

programs in the sense of Kleene’s three-valued logic (Theorem 4.1 and Theorem 5.2).

They consist of an unfolding rule, a folding rule and a replacement rule. When applied

to call-consistent programs, they preserve the proof-theoretic strength of the trans-

formed programs in two-valued logic. In particular, they preserve the set of literals

provable from strict programs, thereby preserving the success and finite failure sets of

definite programs as a special case.

Our systems bear close resemblance to Seki’s unfold/fold system [29]. They all aim

at equivalence-preserving transformation. And interestingly, the folding conditions in

the extended system almost coincide with his when ours are restricted to stratified

programs. Nevertheless, unfolding is different and the employed semantics is also

different. The major difference, however, is that our systems are applicable even

when clauses contain arbitrarily complex formulae in their bodies, a fact which, on the

other hand, might complicate the task of checking folding conditions in the general

case.

We have also revealed that positive programs and strict programs form a represent-

ative class of first-order programs, respectively, in the sense that the three-valued

logical consequence relationship first-order programs have with goals is reducible

to the two-valued one between positive (strict) programs and the corresponding

goals.

Since we do not assume any specific theory as an underlying base theory that

determines the meaning of primitive predicates, our systems can work with any

first-order theory. Such generality is expected to contribute to expanding the field of

unfold/fold transformation.

Acknowledgment

We thank the anonymous referees for valuable comments.

83

References

Cl1

I21

c31

c41

c51

161
171

PI

191

[lOI

I1 11
1121

1131

1141
[I51

1161
,117l

1181
Cl91
PO1

Pll

WI

v31

1241

c251

1261

1271

WI

K.R. Apt, H.A. Blair and A. Walker, Towards a theory of declarative knowledge, in: J. Minker, ed.,

Foundarions of’ Deductire Datahusrs and Logic Programming (Morgan Kaufmann, Los Altos, CA,

1987) X9-148.
R. Barbuti. P. Mancarella, D. Pedreschi and F. Turini, A transformational approach to negation in

logic programming, J. Logic Proyramming 8 (1990) 201-228.

H.A. Blair. The recursion-theoretic complexity of the semantics of predicate logic as a programming

language, Infirm. and Conrrol 54 (1982) 25-47.

R.M. Burstall and J. Darlington, A transformation system for developing recursive programs, J. ACM

24 (1977) 44-67.
L. Cavendon and J.W. Lloyd. A completeness theorem for SLDNF resolution, J. Logic Proyramminy

7 (1989) 177?191.

C.C. Ghan, Mod?/ Tlleory (North Holland, Amsterdam, 1973).

K. Clark and S. Sickel. Predicate logic: a calculus for deriving programs, in: Proc. 5th Inrernat. Cot~fi

on Ar($ciu/ Inrr~lligenw (I 977) 4 19-420.
H. Comon and P. Lescanne, Equational problems and disunification, J. S~mholic Comput. 7 (1989)

371-425.

G. Dayantis. Logic program derivation for a class of first-order logic relations. in: Proc. fOth Inrernat.

Joint Con/. on Alt$cicrl Inrelligcncc~ (1987) 9-14.

W. Drabent and M. Martelli, Strict completion of logic programs. New Gmerution Computing 9 (1991)

69-79.

C.J. Hogger. Derivation of logic programs, J. ACM 28 (1981) 372-392.

T. Kanamori and H. Fujita, Unfold;‘fold logic program transformation with counters, ICOT Tech.

Report TR-179. 1986.
T. Kanamori and K. Horiuchi. Construction of logic programs based on generalized unfold/fold

rules, in: Proc. 4th Intwmr/. Cor~f: on Logic Progrumming (1987) 745-768.

S.J. Kleene. Imroduction ro Metumuthrmatics (North-Holland. Amsterdam, 1971).

H.J. Komorowski, Partial evaluation as a means for inferencing data structures in an applicative

language: a theory and implementation in the case of Prolog, in: Proc. Yth Ann. ACM Symp. on

Principles of Pro<qrmnmingq LUMJUU~JPS (1982) 255-257.

K. Kunen, Negation in logic programming, J. Logic Proyrumminy 4 (1987) 289-308.~ -

K. Kunen, Answer sets and negation as failure, in: Proc. 4th Intrrntrt. Con/: on Logic Progrumming

(1987) 219-228.

K. Kunen. Signed data dependencies in logic programs, J. Logic Proyrumminy 7 (1989) 231-245.

J.W. Lloyd, Foudution of Logic Proyrumminy (Springer, Berlin, 1984).

J.W. Lloyd and R.W. Topor, Making Prolog more expressive, J. Logic Prnyrumminy 1 (1984)
225-240.

D. Lugiez, A deduction procedure for first-order programs, in: Proc. 6th Infrrncrt. Conf: on Logic

Progrwnming (1989) 585-599.

M.J. Maher, Correctness of a logic program transformation system, Tech. Report, IBM T.J. Watson

Research Center, 1987.

M.J. Maher, Complete axiomatizations of the algebras of finite, rational and infinite trees, in: Proc.

3rd AM. Sjwp. 011 Logic in Computrr Science (I 988) 348-357.

M.J. Maher, A transformation system for deductive database modules with perfect model semantics,

in: Prw. Yth Con/: on Foundations of Sofi~~u~~ Twhnology mu/ Thwreticul Computer Science (1989)

89-98.

Z. Manna and R. Waldinger. The automatic synthesis of systems of recursive programs, in: Proc. 5th

Infrrmrf. Joint Con/: 017 Art[fic,ia/ fntr~//igcvzcr (I 977) 405-4 1 1,
T. Sato, Completed logic programs and their consistency, J. Logic Prayrumminy 9 (1990)

33-44.

T. Sato and H. Tamaki, Transformational logic program synthesis, in: Proc. Internut. C’onf: on Fifih

Generation Computer Sysrrms (1984) 195-20 1.

T. Sato and H. Tamaki, First-order compiler: a deterministic logic program synthesis algorithm,
J. Symbolic Comput. 8 (1989) 605-627.

84 7: Sara

[2YJ H. Seki. Unfold;fold transformation of stratified programs, in: PIW. 6//1 I/I(cwN/. Conf: on Lo,q;c

Pro~ww?lir~‘q (1989) 554-568.
1301 H. Seki. A comparative study of the well-founded and the stable model semantics: transformation’s

viewpoint. in: Prw. Workshop OFI f.~qic Proqrcw~miny ant/ Non-Monotonic Logic (1990) 1 15-123.
1311 H. Tamaki and T. Sato. Unfold:fold transformation of logic programs, in: Proc. 2nd b~/cvnur. Lo~;c~

Prc~,qrr/rw,~irr,q Corzf: (I 984) 127-I 37.

1321 H. Tamaki and T. Sato. A generalized correctness proof of the unfold,‘fold logic program transforma-

tion. Tech. Report 86-4. Ibaraki University. 1986.

