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The genome of the virus that causes salivary gland hypertrophy in Musca domestica (MdSGHV) was
sequenced. This non-classified, enveloped, double stranded, circular DNA virus had a 124,279bp genome. The
G + C content was 43.5% with 108 putative methionine-initiated open reading frames (ORFs). Thirty ORFs had
homology to database proteins: eleven to proteins coded by both baculoviruses and nudiviruses (p74, pif-1,
pif-2, pif-3, odv-e66, rrl, rr2, iap, dUTPase, MMP, and Ac81-like), seven to nudiviruses (mcp, dhfr, ts, tk and

three unknown proteins), one to baculovirus (Ac150-like), one to herpesvirus (dna pol), and ten to cellular

Keywords:

Salivary gland hypertrophy virus
Insect viruses

Insect salivary gland

Musca domestica

SGHV

Genome sequence

proteins. Mass spectrum analysis of the viral particles' protein components identified 29 structural ORFs,
with only p74 and odv-e66 previously characterized as baculovirus structural proteins. Although most of the
homology observed was to nudiviruses, phylogenetic analysis showed that MASGHV was not closely related
to them or to the baculoviruses.

© 2008 Elsevier Inc. All rights reserved.

Introduction

Presently, three different dipterans are known to harbor salivary
gland hypertrophy viruses (SGHV). These include the house fly Musca
domestica (Coler et al., 1993), the narcissus bulb fly Merodon equestris
(Amargier et al., 1979), and various tsetse fly species Glossina spp.
(Gouteux, 1987; Jaenson, 1978; Minter-Goedbloed and Minter 1989;
Otieno et al,, 1980; Shaw and Moloo, 1993). Comparisons among
different virus-host fly interactions have demonstrated that the
different viruses share several morphological and pathological
properties (Amargier et al., 1979; Coler et al., 1993; Ellis and Maudlin,
1987; Jaenson, 1978; Kokwaro et al., 1990, 1991; Odindo et al., 1986).
Electron microscopy of virus particles in hypertrophic salivary glands
showed heterogeneous, elongate (650 by 75 nm), enveloped rod-
shaped virions (Geden et al., 2008). In all three fly hosts, the virus
replicated in the nuclei of salivary gland cells, resulting in nuclear and
salivary gland hypertrophy (SGH) that is easily visualized when the
insects are dissected. Infected adults do not exhibit any external
disease symptoms, but viral infection is known to inhibit reproduction
(Lietze et al., 2007).

The best-studied SGHVs are those associated with the tsetse fly
complex that were detected over sixty years ago in feral flies (Burtt,
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1945; Whitnall, 1934). SGHV infection in tsetse flies, in addition to
causing SGH, results in testicular degeneration and ovarian abnor-
malities (Feldmann et al.,, 1992; Jura et al., 1988; Sang et al., 1998,
1999). The tsetse SGHV can infect the female milk gland, resulting in
maternal transmission to larvae in this viviparous, hematophagous
insect. Venereal transmission between infected and healthy tsetse
flies has been reported (Jura et al., 1989). The natural incidence of the
tsetse SGHV is low; only 0.4 to 5% of the field-collected flies display
SGH (Ellis and Maudlin, 1987; Jaenson, 1978; Jura et al., 1988; Odindo,
1982; Odindo et al., 1981). In colonized G. morsitans, incidence of
symptomatic SGH ranges from 1.1% (Jura et al., 1993) to 4.0% (Kokwaro
et al., 1990). However, in recent years, the tsetse SGHV has been
reported to infect and sometimes decimate the tsetse fly colonies
being used for sterile insect release programs. Recently, the develop-
ment of a diagnostic polymerase chain reaction (PCR) has demon-
strated that the tsetse SGHV can exist in an asymptomatic state in host
flies (Abd-Alla et al., 2007). Insect colonies displaying low levels (< 5%)
of SGH symptoms produce a 100% tsetse SGHV PCR-positives.

The SGHV from M. domestica (MdSGHV) is orally transmitted by
adult feeding on contaminated substrates and is capable of inducing
the symptomatic SGH within days. Like the tsetse SGHV, infection by
MdSGHV acts to rapidly and completely inhibit egg production in
viremic females (Lietze et al., 2007). Examination of the translational
and transcriptional products has demonstrated that the infection
blocks hexamerin and yolk protein synthesis. In addition, infection
with MdSGHV disrupts house fly mating behavior in that symptomatic
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Fig. 1. Transmission electron micrograph of MdSGHV particle purified on Nycodenz
gradients and stained with uranyl acetate.

females refuse to copulate with healthy males and symptomatic males
show reduce avidity to initiate courtship with healthy females. Thus,
the MdSGHV-induced mechanisms underlying the inhibition of house
fly reproduction appear to function on both physiological and
behavioral levels (Lietze et al., 2007).

Comparisons reveal that MASGHV possesses biological properties
that are distinct from the tsetse SGHV. The house fly is highly
susceptible to the virus. Injection of an estimated 100 virions results in
100% SGH of test flies (Lietze et al., 2007), whereas injection with
millions of virions results in ~ 20% SGH in colony-reared adult tsetse
flies (Abd-Alla, personal communication). The SGHVs in tsetse flies
have been reported to be transmitted vertically from mother to
offspring, whereas the MdSGHV has been shown to be only orally
transmitted (Lietze et al., 2007). The incidence of symptomatic SGH,
reported to be as high as 34% in feral house fly populations (Geden
et al, 2008), is much greater than the 0.4 to 5.0% in tsetse fly
populations (Jaenson, 1978; Otieno et al., 1980; Odindo et al., 1981;
Odindo, 1982; Ellis and Maudlin, 1987; Jura et al., 1988).

The MdASGHV, as well as the tsetse SGHV, share general
characteristics with the non-occluded insect nudiviruses, such as
being insect-pathogenic, having an enveloped, rod-shaped morphol-
ogy, and possessing a circular dsDNA genome (Wang et al., 2007a).
Members of this group were once placed within subgroup C of the
Baculoviridae but have since been placed in the unassigned nudivirus
group and classified as sedis incertae. Analyses of complete genome
sequences of over 40 baculoviruses have shown the presence of a core
of 29 conserved genes (Garcia-Maruniak et al., 2004; Lauzon et al.,
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2004). The Heliothis zea nudiviruses 1 and 2 (HzNV-1, HzNV-2), the
Gryllus bimaculatus nudivirus (GbNV), and the Oryctes rhinoceros
nudivirus (OrNV) have been shown to contain 15 core baculovirus
genes (Cheng et al., 2002; Wang et al., 2007a,b,c). Analysis of selected
nudivirus sequences has indicated that they form a monophyletic
sister group that apparently diverged from a common ancestor of the
baculoviruses (Wang et al., 2007b). Whether the SGHV fits within this
monophyletic nudivirus group is unknown. Preliminary studies on
both the tsetse fly and housefly SGHVs have demonstrated that they
possess structural and biological properties that are distinct from the
insect nudiviruses (Coler et al., 1993; Abd-Alla et al., 2007). During
submission of this manuscript, the complete genome sequence of the
related GpSGHV became available (Abd-Alla et al., 2008). In order to
determine the genetic basis for the SGHV group classification and to
further understand the MdSGHYV, its genome has been sequenced. The
results of this effort are presented in this manuscript.

Results and discussion
Virus morphology and SDS-PAGE analysis

Injection of the filtered homogenate from MdASGHV infected
salivary glands into healthy houseflies resulted in 100% infection.
Gradient purification on osmotically stabililized Nycodenz gradients
produced a uniform population of enveloped rod-shaped virus
particles measuring 65 by 550 nm (Fig. 1). Previous attempts involving
sucrose gradient purification resulted in preparations consisting of
partly enveloped nucleocapsids (Coler et al., 1993). Negative staining
of the Nycodenz-purified virus revealed enveloped particles posses-
sing a unique braided, bead-like surface topography not observed with
other rod-shaped insect viruses (Fig. 1). Furthermore, the ends of the
virus particle were rounded and not blunt-ended as observed with the
nudiviruses. The length of the enveloped MdSGHYV, although shorter
than the Glossina pallipedes GpSGHV (1.0 um in length) (Odindo et al.,
1986), was significantly longer than the enveloped forms of GbNV and
OrNV (100 by 200 nm, Wang et al., 2007a).

SDS-PAGE of purified MdSGHV produced a complex of Coomassie
R-250 blue-stained bands ranging from 10 to >150 kDa (Fig. 2). The
presence and distribution of the two major-stained (bands b and h)
and moderately-stained bands agreed with the protein profile
previously reported (Coler et al., 1993) and those results obtained
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Fig. 2. SDS-PAGE of MdSGHYV stained with Coomassie blue. Molecular masses (kDa) of the Bio-Rad markers are denoted on the left side of the gel. The letters represent the excised gel
sections that were subjected to GeLC-MS/MS analysis. Adjacent numbers represent the different ORFs that were detected in the denoted gel sections. The numbers in the parentheses

represent the number of unique peptides that identified the designated ORFS.
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with various other (putative) nudiviruses (Boucias et al., 1989; Payne,
1974). However, the low molecular bands (< 20kDa) were not resolved
in a previous analysis (Coler et al., 1993) that utilized a non-gradient
12% separating gel. In addition to the 16 bands, multiple light-stained
bands were detected throughout the gel, suggesting proteolysis had
occurred during sample storage and/or preparation.

Genome sequence analysis

A total of 60.5pug of DNA was extracted from a sample containing an
estimated 2.5mg of purified virus. End-labeling of undigested
MdSGHV DNA was unsuccessful, suggesting a circular genome
structure. This result was further confirmed when the genome was
completely sequenced, showing that the double-stranded circular
DNA of MdSGHV was 124,279bp in size, somewhat smaller than the
originally described 137 kbp, estimated by restriction endonuclease
analysis (Coler et al., 1993). The end-labeled fragments of the digested
DNA showed this viral preparation, to be more homogeneous (derived
from a single gland) than the virus extracted from the pooled glands
preparation previously analyzed (Coler et al., 1993). The sequence
analysis, however, confirmed that our viral preparation was still
polymorphic. At least 66 bases were found to be different when
sequences from several DNA fragment clones were aligned. The
differences at a given nucleotide position were always found to be
nucleotide transitions. The most abundant base (present in the
majority of the clones sequenced) was chosen as the consensus. The
location of each polymorphic base was mapped in the genome (data
not shown) as potential targets for assessing polymorphism of field-
collected viral samples. The MASGHV genome is smaller than the 185

kbp estimated for GpSGHV (Abd-Alla et al., 2007). It should be noted
that the estimated genome sizes reported among the nudiviruses
range from 96 to 228kb (Wang et al., 2007a). The G + C content of
MdASGHV was 43.5%, which is very similar to several baculoviruses,
HzNV-1 and OrNV, but it is higher than GbNV, which has only a 28%
G + C content (Cheng et al., 2002; Wang et al., 2007b,c). The computer
generated EcoRI digestion of the MdSGHV genome resulted in 52
fragments ranging from 10,219bp (EcoRI-A) to 30bp (EcoRI-z). From
those, 47 fragments have been cloned, resulting in the construction of
90% of the MdSGHV EcoRI genome library. The physical map is shown
in Fig. 3.

Nucleotide 1 of the MdSGHV genome was considered to be the A of
the ATG initiation codon for the DNA polymerase gene (dnapol). This
gene was chosen as the start site in an effort to find a common gene
present in all DNA viruses, so that other unclassified DNA viruses could
be easily compared. A total of 108 putative ORFs were identified in the
MdASGHV genome (Table 1, Fig. 3). There were 53 ORFs (49%)
transcribed in the clockwise direction and 55 (51%) in the opposite
direction. Interestingly, there were several clusters of ORFs transcrib-
ing in one direction. A balance in transcriptional direction is often
found in baculoviruses and nudiviruses. A total of 22 ORFs overlapped
adjacent ORFs with a maximum of 158 nucleotides between ORFs 105
and 106. These two ORFs had opposite transcriptional orientations
and were over 240aa in size. No biological activity could be assigned to
ORF 105, since there was no protein homology, nor known motifs,
while ORF 106 had homology to the baculovirus pif-3 gene.
Elimination of ORF 105 just to avoid overlapping was considered
unsupported at this stage in a poorly known virus, so it was accepted
as a putative ORF.
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Fig. 3. Linear representation of the MdSGHV genome and EcoRI physical map. The genome location, relative size and transcriptional direction of each putative ORF is indicated by the
arrows. Arrow patterns and color indicate homology to organisms found in the current protein database. Dark boxes indicate location of direct repeats.
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Table 1
MdSGHV putative ORFs
ORF* Position Intergene Size Best BlastP match Motifs
distance (bp)°
nt. aa kDa ORF or protein encoded Species aa E-value
identity®
1 1>2934 153 2934 977 114 DNA Polymerase Retroperitoneal 27% 5.00E-60 DNA_pol_B, DNA_pol_B_exo
fibromatosis-associated (766)
herpesvirus 1013
2 3088 < 3669 -10 582 193 23
S3 3660 <4130 26 471 156 19 ™
4 4157 <4552 231 396 131 15
5 4784>4993 547 210 69 8
6 5541 <5759 -1 195 72 8
7 5759 < 5920 390 162 53 6
8 6311 <6562 -30 252 83 10
B 6533>6787 703 255 84 10 SP
10 7491 < 8261 -16 771 256 29 Mitochondrial carrier protein  Oryctes rhinoceros nudivirus  38% 7.00E-46 5TM, SP, Mito_carr
(261)
262
11 8246 < 8758 64 513 170 20 Dihydrofolate reductase Heliothis zea nudivirus 1 26% 2.00E-09 SP, Dihydrofolate Reductase
(163)
264
12 8823>9707 106 885 294 34 Thymidylate synthase Oryctes rhinoceros nudivirus 53% 9.00E-88 Thymidylat_synt
(293)
321
S13 9814 < 11748 185 1935 644 75
S14 11934>12683 73 750 249 29 Molybdopterin oxidoreductase Mycobacterium sp 28% 7.00E-02
(194)
743
15 12757>13656 95 900 299 35
S16 13752>15251 271 1500 499 58
17 15523 > 17184 -4 1662 553 64 TM, SP
18 17181 < 17882 -22 702 233 26
19 17861>18538 65 678 225 26 SP
S20 18604>18918 264 315 104 11 2TM
21 19183>21117 10 1935 644 72
S22 21128>22159 -40 1032 343 40
S23 22120>22890 -1 771 256 29
24 22880>23266 27 387 128 16
S25 23294>24424 -8 1131 376 41 Hypothetical repeat containing Tetrahymena thermophila 26% 6.00E-04 2TM
protein (120)
2640
26 24417>24599 112 183 60 7
27 24712 < 25221 39 510 169 20
S 28 25261>26406 5 1146 381 42
29  26412>28346 28 1935 644 74 Per os infectivity factor (pif-1) Neodiprion abietis NPV 24% 1.00E-08 TM, SP
(357)
537
30 28375 < 30453 43 2079 692 79
31 30497 < 30697 12 201 66 7 TM/SP
S$32 30710 < 31891 101 1182 393 45
S33 31993 < 33486 95 1494 497 56 Putative vacuolar sorting Candida albicans 26% 1.00E-12 AAA ATPASE
ATPase (268)
439
34 33582>33776 44 195 64 7 TM, SP
35 33821 < 34549 15 729 242 27 TM, SP
36 34565 < 35155 9 591 196 23 Matrix metalloproteinase Invertebrate iridescent virus 34% 1.00E-07 TM, SP, metalloproteases
(MMP) 6 (101) (ZnMc_MMP)
264
37 35165 < 36049 9 885 294 33 TM, SP
S 38 36059 < 36811 8 753 250 29
S39 36820 < 38943 53 2124 707 82 p74 protein Heliothis zea nudivirus 1 22% 1.00E-07 TM, Baculo_p74_N
(316)
682
S40 38997>40823 31 1827 608 69
41 40855 < 42180 -17 1326 441 52
42 42164>44047 12 1884 627 72
43 44060 < 45169 -52 1110 369 44
S44 45118>46053 -24 936 311 36 SP
45 46030 < 47172 -61 1143 380 45
46 47112>48299 128 1188 395 46 Hypothetical protein Bradyrhizobium sp. 28% 2.00E-05
(140)
457
S47 48428>50530 465 2103 700 81 Occlusion-derived virus Glossina pallidipes SGHV 35% 7.00E-42 TM, SP, Baculo_E66
envelope protein (ODV-E66) (346)
346

(continued on next page)
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Table 1 (continued)
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ORF* Position Intergene Size Best BlastP match Motifs
distance (bp)°
nt. aa kDa ORF or protein encoded Species aa E-value
identity®
48 50996 < 52168 16 1173 390 43 Hypothetical protein LNTAR Lentisphaera araneosa 26% 1.00E-03 SP
25495 (246)
794
49 52185 < 52688  -147 504 167 19 Ac ORF 150-like Autographa californica NPV 30% (98) 3.00E-06 Chitin binding perotrophin A
99 domain (CBM-14)
S50 52542>53756 31 1215 404 46 Aminoacylase 1 Sus scrofa 28% 2.00E-37 AMINOACYLASE-1, Zn-
(413) dependent exopeptidases
407
51 53788 < 54741 86 954 317 36
S52 54828>55280 1 453 150 16 dUTPase Grouper iridovirus 51% 7.00E-33 dUTPase
(141)
159
53 55392 < 55832 -46 441 146 18
54 55787 < 56272 118 486 161 19
55 56391 < 57641 36 1251 416 49 Hypothetical protein Lentisphaera araneosa 36% (84) 6.00E-04
LNTAR_10481 234
56 57678 < 58025 178 348 115 13
57 58204 < 58425 71 222 73 8 TM/SP
58 58497 < 58892 309 396 131 16
59  59202>59399 173 198 65 7 SP
60  59573>59728 905 156 51 6
61 60634>60957 21 324 107 12
62 60979>62010 102 1032 343 40 Ribonucleoside diphosphate Lymantria dispar NPV 72% 4.00E- TM, Ribonuc_red_sm (RNRR2)
reductase small subunit (rr2) (337) 142
348
63 62113 < 62385 205 273 90 10
64 62591>64018 974 1428 475 52 Zinc finger protein Danio rerio 44%(49) 4.00E-03 zinc finger (C3HC4), RING
450
65 64993 < 67350 303 2358 785 89 Ribonucleoside diphosphate Spodoptera litura NPV 61% 0 Ribonuc_red_IgC (RNR_1)
reductase large subunit (rr1) (786)
770
66  67654>69393 -12 1740 579 64 Sodium/nucleoside Aedes aegypti 24% 4.00E-32 13TM, Sodium/Nucleoside
cotransporter (451) cotransporter (Nucleos_tra
602 2.0)
67 69382 < 69870 79 489 162 19
68  69950>70348 388 399 132 15 2TM
69 70737 < 71348 71 612 203 24 Thymidine kinase (tk) Spodoptera frugiperda 29% 1.00E-12 Deoxynucleoside kinase (dNK)
ascovirus (195)
210
70  71420>74323 3 2904 967 111
S71 74327>75328 57 1002 333 37
S72 75386 <75796 42 411 136 16 ™
73 75839 < 77011 23 1173 390 46
74 77035 < 79131 46 2097 698 79 Galactose-binding domain-like
75 79178 < 79504 20 327 108 12
76 79525 < 80673 881 1149 382 OrNV ORF C3 Oryctes rhinoceros nudivirus 38% 6.00E-63 PIN domain-like
(386)
448
77 81555 < 82451 24 897 298 33
78 82476 < 82904 52 429 142 17 Inhibitor of apoptosis (iap) ORF MSV248 Melanoplus 33% 2.00E-19 IAP, BIR
sanguinipes entomopoxvirus (140)
150
79  82957>83325 265 369 122 14 TM, SP
80  83591>83875 259 285 94 11
81 84135 < 84419 192 285 94 10
82 84612>85691 63 1080 359 43 Integrase/recombinase protein Sulfolobus acidocaldarius 24% 4.00E-02 Phage_integrase, DNA breaking
(153) & rejoining (INT_REC_C)
287
83 85755 < 91097 156 5343 1780 206
S84 91254>92783 60 1530 509 60
S 85 92844>94055 154 1212 403 46
S86 94210>95355 70 1146 381 43
87 95426 < 97060 42 1635 544 64
88 97103 < 97642 25 540 179 21 2TM, SP
89 97668 < 98807 56 1140 379 42 Per os infectivity factor 2 Ecotropis obliqua NPV 26% 3.00E-10 TM, SP, Baculo_44
(pif-2) (186)
392
S90 98864 <100882 -59 2019 672 78
S91 100824>102095 125 1272 423 48
92 102221>102442 126 222 73 8 TM, SP
93 102569>103420 64 852 283 32 TM, SP
S94 103485>103820 -4 336 111 13 ™
95 103817<104239 20 423 140 16
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Table 1 (continued)

ORF* Position Intergene Size Best BlastP match Motifs
distance (bp)°
nt. aa kDa ORF or protein encoded Species aa E-value
identity®
S96 104260>108681 37 4422 1473 165
S97 108719>110167 162 1449 482 57
98  110330>111544 -18 1215 404 47 9TM
99 111527 < 113365 18 1839 612 68
100 113384>114751 6 1368 455 50
101  114758>115354 -42 597 198 23
S102 115313 <116086 30 774 257 30
103 116117 < 116320 161 204 67 8
104 116482>118794 -14 2313 770 89 Helicase-like Parabacteroides 34% (72) 8.00E-02 p-loop containing triphosphate
708 hydrolases
105 118781 <119506 -158 726 241 28 T™, SP
106  119349>120077 1 729 242 28 Per os infectivity factor 3 Spodoptera litura GV 25% 5.00E-03 TM, SP, DUF666
(pif-3) (153)
215
107 120079>123456 188 3378 1125 131
108  123645<124262 16 618 205 24 AcORF 81-like Neodiprion lecontei NPV 32% 1.00E-03 2TM
(108)
175

2 S corresponds to ORFs identified as structural proteins. See Table 2 for details.
b " indicates number of nucleotides overlapping between adjacent ORFs.

€ % of amino acid identity (number of aa used in the identity comparison) total number of aa from the compared protein.

MdSGHV gene content analysis

From the putative 108 ORFs found in MdSGHV, only 30 had
significant homology to proteins from the current database (Table 1,
Fig. 3). From those, 11 had homology to proteins coded by both
baculovirus and nudivirus genes, seven to nudivirus, one to baculo-
virus, one to herpesvirus, and ten to cellular genes. From the 12 ORFs
homologous with proteins encoded by baculovirus genes, only five
were from the conserved core of 29 genes (Garcia-Maruniak et al.,
2004). The highest number of homologous ORFs was found with the
nudiviruses (18 in total), although just seven of those are present in all
of the nudiviruses completely sequenced to date: HzNV-1 virus
(Cheng et al., 2002), GbNV (Wang et al., 2007b), and HzNV-2 virus
(information obtained from Wang et al., 2007a).

Analysis of structural proteins

A total of 29 MdSGHV ORFs encoding structural proteins were
identified from the GeLC-MS/MS analysis of the SDS-PAGE gel of the
purified virus preparation (Fig. 2; Table 2). The number of proteins
detected was less than that detected in enveloped baculovirus
(Braunegel et al., 2003; Perera et al., 2007). For example, Perera and
colleagues, using the GeLC-MS/MS approach, identified 44 structural
proteins in the nucleopolyhedrovirus of Culex nigripalpus. In many
cases in our analysis, the calculated molecular mass of the gel band
contained peptide data that corresponded to an ORF(s) that encoded
for a similar-sized peptide. For example, the major band b (~ 145kDa)
contained peptides that accounted for 67% coverage of ORF 96
(165kDa), whereas band h (~ 38kDa) contained peptides that
accounted for 61% and 70% coverage of ORF 86 (43 kDA) and ORF 22
(40kDa) respectively. Additionally, the LC-MS/MS analysis identified
peptide fragments that originated from an array of ORFs that had
molecular masses different from the calculated values of the gel
fragments. For example, similar motifs identified from ORFs 96 and 86
were found in all gel fragments, suggesting a breakdown of certain
protein complexes. Alternatively, motifs from ORF 94 (13kDa) were
detected in bands h (43kDa) and i (35kDa), suggesting an incomplete
solubilization of the structural peptides. Of the 29 structural ORFs,
only five ORFs (13, 16, 39, 50, and 91) had less than 10% coverage.
Fourteen ORFs had 10-50% coverage, and ten ORFs had coverage
greater than 50% (Table 2). It should be noted that all 29 ORFs

identified as bona fide structural peptides contained unique peptide
fragments, ranging from 6 to 27 amino acids that had a 100% match to
the translated MdSGHV putative ORFs. The structural ORFs appeared
to be clustered loosely on the genome; a total of 17 structural ORFs
were located between MdSGHV013 and MdASGHV052, and eight
structural ORFs were located between MdSGHV084 and MdSGHV097.

MdASGHYV proteins homologous to proteins involved in DNA replication

Two ORFs, MdSGHV001 and MdSGHV104, had homology to the
DNA polymerase and helicase enzymes, respectively (Table 1), and
both are known to be involved in DNA replication. The best match of
MdSGHVO001 to viral genes was to a herpesvirus DNA polymerase with
22.8% amino acid identity. No significant BLASTP matches were
obtained with either the baculovirus or nudivirus DNA polymerases,
even when the comparison was done with the local database
containing only nudiviruses ORFs. The DNA polymerase of MdSGHV
had homology to a delta 1 catalytic subunit similar to the DNA-
directed DNA polymerase type B family that has a DNA binding
polymerase and a 3’-5’ exonuclease activity (Shamoo and Steitz,
1999). The conserved nucleotide binding site K(3%)NSxYG(2x)G motif
at the C terminus was found almost intact in the MdSGHV DNA
polymerase putative peptide (KLCANAIYGLLG starting at aa 631). In
order to asses the relationship of MASGHYV to other DNA virus families,
a phylogenetic analysis was done on the DNA polymerase gene. The
results show that MASGHV DNA polymerase was closer related to the
baculovirus DNA polymerase than to the nudivirus DNA polymerase
(Fig. 4A). MdSHGVO0O01 clustered close to Herpesviridae, iridoviruses
and ascoviruses. The baculovirus, poxvirus and herpesvirus families
appeared to have monophyletic DNA polymerase lineages. Without
additional family members, viruses such as iridescent virus, ascov-
iruses, densoviruses, shrimp white spot syndrome virus (SWSSV),
nudiviruses and MdSGHV do not show direct descent and origins of
their DNA polymerases.

The best match of MASGHV104 was to a Parabacteroides helicase-
like protein, although the homology was low. Helicase is one of the 29
conserved baculovirus core genes, and ORFs with homology to
helicase-2 have been described in HzNV-1, HzZNV-2 and OrNV (Wang
et al., 2007a). MdSGHV104, however, presented no significant
homology to either the baculovirus or the nudivirus peptides. The
viral replication genes from MdSGHV seem to be distinct from other
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Table 2
Structural proteins identified from MdSGHV by mass spectrum analysis

MdSGHV MdSGHV Number of unique peptide Coverage of total

ORF predicted fragments with 100% identity to MdSGHV predicted
peptide length (aa) MdSGHV predicted proteins protein (%)
3 156 5 33
13? 644 13 5
14 249 18 76
16° 499 3 7
20 104 3 20
22 343 25 70
23 256 16 75
25 376 4 14
28 381 7 20
32 393 4 11
33 497 25 64
38 250 11 60
39° 707 5 7
40 608 29 65
44 311 10 34
47 700 30 55
50° 404 2 4
52 150 3 27
71 333 6 19
72 136 5 43
84 509 5 10
85 403 5 16
86 381 29 70
90 672 10 19
91? 423 3 9
94 111 8 47
96 1473 82 71
97 482 19 59
102 257 8 30

The percent coverage and number of unique fragments represents the pooled amino
acid sequence attained from all gel slices analyzed using the GeLC-MS/MS analysis.
¢ Indicates MASGHV ORFs with protein coverage of less than 10%.

insect DNA viruses. Interestingly, no baculovirus transcriptional
regulator gene homologues were found in the MdSGHV genome.
Also, there was no homology to any of the early transcriptional genes,
to the late transcriptional activators, nor to the genes encoding for
known viral RNA polymerases. Analysis of the DNA replication and
transcriptional genes of other SGHVs could help decipher the strategy
used by these viruses.

MdASGHV proteins homologous to baculovirus structural proteins

Six MdSGHV ORFs had homology to known baculovirus structural
proteins (Table 1): MdSGHV029 (pif-1), MdSGHVO039 (p74),
MdSGHV047 (odv-e66), MdSGHV049 (Ac150), MdSGHV089 (pif-2)
and MdSGHV106 (pif-3). While pif-1, pif-2, pif-3 and the p74 genes
belong to the core of conserved baculovirus genes and are present in
all completely sequenced nudiviruses, odv-e66 is present only in the
nucleopolyhedrovirus (alphabaculovirus) and granulovirus (betaba-
culovirus) that infect Lepidoptera hosts (Jehle et al., 2006) and in OrNV
(Wang et al., 2007c). On the other hand, Ac150-like is present in all
GVs but not all NPVs and is not present in nudiviruses. The per os
infectivity factor (pif) proteins seem to be associated with the
baculovirus occlusion-derived viruses (ODVs), are released from
occlusion bodies by the alkaline environment of the insect midgut,
and have been reported to be responsible for both oral infectivity and

host-to-host dispersal of these viruses. It has been shown that p74
(Kuzio et al., 1989), pif-1 (Kikhno et al., 2002), pif-2 (Pijlman et al.,
2003), and pif-3 (Ohkawa et al., 2005) are essential proteins for oral
infection. The phylogenetic analysis of the combined p74, pif-1, pif-2
and pif-3 proteins showed a distant relationship between MdSGHV
and the baculoviruses (Fig. 4B), and that there is no common ancestor
with the nudiviruses with the current number of viruses with pif
proteins analyzed. There appears to be a monophyletic relationship
amongst the baculovirus combined pifs including lepidopteran,
hymenopteran and dipteran viruses. The HzNV-1 and GbNV pifs
appear to branch together, but the MdSGHV pifs are basal, as are the
nudiviruses to the baculovirus pif proteins.

MdSGHV049 had homology to the Autographa californica NPV
(AcMNPV) ORF 150 (Ac150). Transmission electron microscopy
coupled with immunogold labeling of Ac150 show this protein is
associated mainly with enveloped virions before and after they had
been occluded within the nuclei of infected Sf-21 cells, and it is also
found in budded virus (Lapointe et al., 2004). Deletion of Ac150
decreases oral infectivity, but has no effect when the budded viruses
(BV) are injected into the insect hemocoel indicating that Ac150, can
be considered a per os infection factor that mediates, but is not
essential for oral infection (Zhang et al., 2005). The C terminus of
MdSGHV049 (from aa 98 to 152) had a chitin-binding peritrophin-A
(CBM-14) domain similar to Ac150. This domain is found in many
chitin-binding proteins including peritrophic matrix proteins of
insects and animal chitinases (Tellam et al., 1999).

MdSGHYV does not produce occlusion bodies, so there is no ODV
form of the virus. Although six putative genes were found in the
MdSGHV genome that had significant amino acid identity to known
structural genes (Table 1), the mass spectrometry analysis of the
structural proteins separated by an acrylamide gel found only two
genes coding for the p74 (MdSGHV039) and odv-e66 (MdSGHV047)
proteins associated with the enveloped MdSGHV (Table 2). Possibly,
the MdSGHYV pif proteins either could be produced in nondetectable
quantities as reported for Spodoptera littoralis NPV (SpliNPV) pif-1
(Gutierrez et al., 2004), or may not be structural proteins. If pif-1, pif-2,
pif-3 and Ac150-like proteins are expressed and are important in
the oral infection of MdSGHV they may be delivered in the sali-
vary secretions to the next host. The predicted transmembrane do-
mains of the MdSGHYV pif-1, pif-2, pif-3 and odv-e66 were localized in
the N-terminal region, while the p74 transmembrane motif was found
in the C-terminus of the putative peptides, similar to those proteins in
the baculoviruses.

Although pif-1, pif-2, pif-3 and p74 have been described in the
genomes of other nudiviruses (Wang et al., 2007a), there was no
significant amino acid homology between MdSGHV pif-3 and the
nudiviruses pif-3. MdSGHV odv-e66 had the best amino acid
homology (35% identity) with GpSGHV. This gene has also been
found in the genome of OrNV (Wang et al., 2007c), but not in the other
two nudiviruses (HzNV-1 and GbNV).

MdSGHV proteins homologous to auxiliary and undefined baculovirus
proteins

MdSGHVO036 is homologous to the zinc-dependant matrix metal-
loproteinase (MMP) of several viruses including the granuloviruses,
HzNV-1, entomopoxvirus and the insect iridescent virus. MMPs are
responsible for pericellular proteolysis of extracellular matrix and cell
surface molecules and, in many instances, they are anchored to cell

Fig. 4. Phylogenetic analysis of selected MASGHV putative proteins: A. DNA Polymerase; B. combined analysis of p74, pif-1, pif-2 and pif-3; C. thymidylate synthase. The trees were
inferred using neighbor-joining in PAUP*, and a bootstrap analysis with 1000 replicates was performed to measure support for the branches. Organisms included in this analysis with
abbreviated names: Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV), Autographa californica MNPV (AcMNPV), Choristoneura biennis entomopoxvirus (CbEPV), Culex
nigripalpus NPV (CuniNPV), Cydia pomonella granulovirus (CpGV), Gryllus bimaculatus nudivirus (GbNV), Helicoverpa armigera NPV (HearNPV), Heliothis zea nudivirus 1 (HzNV1),
Lymantria dispar MNPV (LAMNPV), Musca domestica salivary gland hypertrophy virus (MdSGHV), Neodiprion lecontei NPV (NeleNPV), Neodiprion sertifer NPV (NeseNPV), Orgyia
pseudotsugata MNPV (OpMNPV), Oryctes rhinoceros nudivirus (OrNV), Plutella xylostella GV (PxGV), Shrimp white spot syndrome virus (SWSSV), Spodoptera exigua MNPV (SeMNPV),

Trichoplusia ni SNPV (TnSNPV), Xestia c-nigrum GV (XcGV).
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membranes via trans-membrane domains (Baumann et al., 1993).
MdSGHVO036 had a transmembrane domain in its N-terminus (Table 1),
although it had not been detected by the mass spectrum analysis of
MdASGHYV as a structural protein. In granuloviruses this protein is
believed to disrupt the peritrophic matrix or the basement membranes
that help hold tissues together thus assisting in virus dissemination
(Ko et al., 2000).

MdSGHV052 had a high homology to a dUTP pyrophosphatase
(dUTPase) of the iridovirus (51% aa identity). This gene, also present in
several baculoviruses and in HzNV-1, is involved with nucleotide
transport and metabolism. UTPase hydrolyzes the triphosphate DNA
polymerase substrate dUTP to non-substrate monophosphate (dUMP)
to prevent incorporation of uracil into the DNA while providing the
substrate for thymidine synthesis (Harris et al., 1999). The protein
coded by MdSGHV052 was detected by mass spectrometry to be a
structural protein (Table 2).

The highest amino acid homology was found for MdSGHV062 and
MdSGHVO065 to Lymantria dispar NPV (LAMNPV) and Spodoptera litura
NPV (SpltNPV) ribonucleotide reductase small (rr2) and large (rr1)
subunits, with 72% and 61% aa identities, respectively (Table 1). These
two MdSGHV ORFs were separated by almost 3 kbp and had opposite
transcriptional orientations. The genes coding for rr1 and rr2 are
present in viruses including nudiviruses and baculoviruses, as well as
eukaryotes and many prokaryotes.

MdSGHV078 encoded an inhibitor of apoptosis (iap) homologue.
The iaps were first discovered in baculoviruses and are present in
various animal species (Clem, 1997; Uren et al., 1998). They have one to
three consensus amino-terminal regions named BIR (baculoviral iap
repeat) domains, essential to inhibit apoptosis by acting as a direct
inhibitor of the caspase family of protease enzymes (Miller, 1999). The
iaps also have a carboxy-terminal zinc-binding motif named ring
finger, which appears to be involved in ubiquitination of the iap itself
and potentially, any caspase bound to it (Wilson et al., 2002). The
MdSGHVO078 encodes a 142aa peptide that is smaller than the majority
of the baculovirus iaps, but very similar in size to the Melanoplus
sanguinipes entomopoxvirus iap which had the highest homology to
MdSGHV078, although baculoviruses and nudiviruses iap-3 also
had significant homology. MdSGHV078 had only one BIR motif in its
N-terminus with the three conserved cysteines (aa position 46, 49 and
73) and one histidine (aa 66) in the expected conserved locations, but
did not have the zinc finger domain at its C-terminus. Other bacu-
loviruses have iap proteins with only one BIR motif, and since not all
iap are capable of preventing cell death (Maguire et al., 2000), the
function of this ORF will need to be confirmed experimentally.

A homologue of AcCMNPV ORF 81(Ac81) present in all the baculo-
viruses and nudiviruses was found in the MdSGHV genome. The best
homology was found with the Neodiprion lecontei NPV Ac-81 like protein.
MdSGHV108 has two transmembrane domains at its C-terminus.
Although this gene belongs to the core of baculovirus conserved genes,
its functions has not been defined (Slack and Arif, 2007).

MdASGHYV proteins homologous to nudivirus proteins

Seven ORFs (MdSGHV ORFs 10, 11, 12, 26, 48, 69 and 76) had
homology to nudivirus putative proteins not found in any baculovirus
genome (Fig. 3, Table 1). Five of those are cellular genes, the majority
of which have been well studied in eucaryotes (see below).
MdSGHV010 has homology with a mitochondrial carrier protein
present in OrNV (ORF C7). The mitochondrial carrier protein family
comprises a variety of small proteins (28 to 34kDa) that catalyze the
exchange of substrates across the inner mitochondrial membrane
(IMM), and have three tandemly repeated mitochiondria carrier
domains of approximately 100aa each (Walker and Runswick, 1993).
MdSGHVO010 had a predicted molecular weight of 29kDa and two
mitochondria carrier domains at its C terminus (between aa 83-179
and 176-256, respectively).

MdSGHVO011 was homologous to HzNV-1 dihydrofolate reductase
(DHFR). DHEFR is a ubiquitous enzyme that plays a key role in DNA
replication and cell division, since the enzyme is essential in providing
purines and pyrimidine precursors for the biosynthesis of DNA, RNA
and amino acids (Miller and Benkovic, 1998).

MdSGHVO012 was homologous to a putative thymidylate synthase
(TS) found in the genomes of OrNV, HzNV-1, HzNV-2, SWSSV,
herpesviruses and other viruses. The TS is involved in the biosynthesis
of DNA precursors and, hence, it is one of the most conserved enzymes
across species and phyla (Perryman et al., 1986). The phylogenetic
analysis of several viral and cellular TS grouped MdSGHVO012 closer to
OrNV than to HzNV-1 TS (Fig. 4C). The lack of monophyletic structure
in the tree suggested that this gene was acquired from the host at
multiple independent occasions rather than originating from a
common DNA virus ancestor. This is further corroborated by the tree
positions found between HzNV-1 and insects, as well as an
entomopoxvirus and herpesviruses basal with insects and a nema-
tode. In several protozoa, a single polypeptide chain codes for both,
DHFR and TS, forming a bifunctional enzyme (DHFR-TS), possibly
through gene fusion at a single evolutionary point. Interestingly,
MdSGHV ORFs 11 and 12 were adjacent to each other although with
opposite transcriptional directions, and their functions (if confirmed
to be active proteins) are interconnected. The size of both putative
proteins was similar to those of active proteins. As mentioned before,
the DNA polymerase and helicase genes from MdSGHV are distantly
related to those of the baculoviruses and other insect viruses.
Potentially, different genes, not even present in the baculoviruses
are key players in the DNA replication of MdSGHV.

MdSGHV069 was a 203 aa putative protein homologous to the
deoxynucleoside kinase (dNK) family protein. The best match was
found to Spodoptera frugiperda ascovirus 1a thymidine kinase (tk).
This protein is produced by several cellular organisms and viruses
such as HzNV-1 (ORF 70). The are key enzymes in the salvage of
deoxyribonucleosides originating from extra- or intracellular break-
down of DNA (Johansson et al., 2001). MdSGHV069 contained the
conserved substrate-binding sites of this protein family (cd01673).

MdSGHVO026 was a 60 aa long, serine-rich putative protein. This
ORF had homology only to GbNV ORF 73 (Wang et al, 2007b).
MdSGHV048 presented a low homology to a cellular hypothetical
gene and also to HzNV-1 ORF 153. Lastly, MdSGHV076 was homo-
logous to unknown proteins detected in nudivirus genes including
OrNV-C3, GbNV ORF 65, HzNV-1 ORF 68 and HzNV-2 ORF 70 (Cheng
et al., 2002; Wang et al., 2007a,b,c).

MdSGHV ORFs with homology to cellular genes

Ten ORFs had homology to cellular genes (Fig. 3, Table 1).
MdSGHVO014 had a low homology to a molybdopterin oxidoreductase
from Mycobacterium. MdSGHV033, was similar to the putative
vacuolar sorting ATPase from Candida albicans. It had an AAA-ATPase
motif that belongs to the AAA-superfamily of ATPases, associated with
a wide variety of cellular activities, including membrane fusion,
proteolysis, and DNA replication (Patel and Latterich, 1998).
MdSGHV050 was similar to a cellular aminoacylase-1. Mass spectral
analysis showed that these three ORFs code for structural proteins of
MdASGHV (Table 2). MdSGHV064 had a RING-, and a zinc-finger
(C3HC4) motifs. The RING-finger domain is a specialized type of a
Zinc-finger of 40 to 60 residues that binds two atoms of zinc; it is
defined by the 'cross-brace' motif C-X2-C-X(9-39)-C-X(1-3)-H-X(2-3)-
(N/C/H)-X2-C-X(4-48)C-X2-C. This C3HC4 motif was present between
aa 214-251 of MdSGHV064. Proteins carrying this motif have been
identified with a wide range of functions such as viral replication,
signal transduction, and probably are involved in mediating protein-
protein interactions (Saurin et al., 1996). MdSGHVO066 is a 579aa
putative sodium dependent nucleoside transporter protein. The
conserved motif of the nucleoside transporter was in the C-terminal
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Table 3
MdSGH direct repeat (dr) sequences
Name Repeat size (bp)xnumber of copies dr sequence and genomic position AT% Total size (bp)
drl 21x33 4559 CGAGTTTGTCTTTTAATATGAAC 4581 65 72
4582 CGAGTTTG-CTTT-GATGTGTAC 4602
4603 CGAGTTTG-TTTT-AATATGAAC 4623
4624 CGAGTTT 4630
dr2 64243 5933 TGTTTGTGTGTCACTCCGATTTTA--T--TTAATAGACTGTTCCGCCTAGT-CCCATAAGAAATATACA 5996 63 279
5997 TGTTTGTGTGTCACTCCGATTTTATTTGGT TGGTATGGACTATTAGTGGGT-CCCATAAGARATATACA 6064
6065 TGTTTGTGTGTCACTCCGATTTCA--T--TTAATAGACTGTTTCGTTTGGT-CCCATATAARAATATACA 6128
6129 TGTTTGTCTGTCACTCCGATTTTAA-T---TAGTGGACCGTTTCGTTTGGTCCCCATAAGAAATGTACA 6193
6194 TGTTTGTGTGTCACTCCG 6211
dr3 53x23 6912 TGTAATTTGGGAGCAGAACTTGACCGACAGAACTCAGCCTGTATAGTTGTTAG 6964 59 126
6965 TGTAATTTGGGAGCAGAATTTAACCGACAGAACTCAGCCTGCATTGTTGTTAG 7017
7018 TGTAATTTGTGGAAGCAGAA 7037
drd 26x7.4 7173 TTGTTTTTGTAATCCAG-CCTGCATAG 7198 64 192
7199 TTGTTTTTGTACTCTAG-CCTGTATAG 7224
7225 TTG-TTTTGTACTCGAG-CCTGTATAG 7249
7250 TTGTTTTTGTACTCGAG-CCTGCATAG 7275
7276 TTGTTTTTGTACCCATG-TCTGTATAG 7301
7302 TTGTTAGTGTAATTC-G-CTACATGARA 7327
7328 TTGTTTTTGTAATC-AGGCCTGCATAG 7353
7354 TTGTTTTTGTA 7364
drs 24x2.7 35734 GTGGTGCCT-GGGACGGAGCTTCCT 35757 34 64
35758 GTGGTGGTGGGGATGGAGG-TTCCT 35781
35782 GTGGTGCTGGGGATGG 35797
drg 30x26 51725 TTGATCTCCTGGGGCTTCGGTTGGGGCAGA 51754 44 77
51755 TTGATCTCCTGGGGCTTCGGTTGGGGCAGA 51784
51785 TTGATCTTCTGAGGCTT 51801
dr7 54x2.7 51918 TGATCTTCTGGGACTTCGTTAACGGACTGATCTCCTTGGGCCTCGTAARACGGAC 51971 49 148
51972 TGATCTCCTGGGTTTTCGTTAACGGATTGATCTCCTTGGGCCTCGTCAACGGAC 52025
52026 TGATCTCCTGGGTTTTCGTTAACGGATTGATCTCCTTGGG 52065
dr8 43x29 60302 GACGGTCGACAGAGAAAACACTAACAACAAGTACAGGG-TATAT 60344 54 122
60345 GACGGTCGGCAGAGAAAACACTAACAA-AA-TACATGGGGCTTAT 60387
60388 GGTGG-GGGCAGCGAAAACACTAACAACAAGTACAGG 60423
dr9 4434 60422 GGCTTGCGAATATCGACAGCGGGTTACAAAAACAAAATACATGG 60465 62 151
60466 GGCTTGTGGATATCGACAGAGGGTTACAAAAACAAAATATACAG 60509
60510 GCCTTATGAATATCGACAGAGGGTTACAAAAACAAAATATACAG 60553
60554 ACCTTATGAATATCGACAG 60572
dr10 182 62619 AGGAACCAAGTATCCAGG 62636 50 36
62637 AGGAACCAAGTATCCAGG 62654
drl1 59x1.9 64420 TATTTTTCATTTTCATGTTAGTGTATATTTGGACTTAGTATTTTTCAAGTTCGCGAGAA 64478 71 115
64479 TATTTTTCATTTTCATCTTCGCATATATTGGGACTTAGTATTTTTCAAGTTCGCGA 64534
dr12 60%3.0 64704 TTTTCATTTCAGACGAGTAGGATATTTTTT-ATTATCAAGTCCGCATAT-GAC--TTGTGC 64760 67 177
64761 TTTTCATTTTCAGATGAGTAGGGTATTTTTCATTTTCAAGACCACATATTGAGACTTTGTA 64821
64822 TTTTCGTTTCAG-TCAAGTAGGGTATTTTTCATTTTCAAGTCCGCATATTGAGACTTGTG 64880
dr13 23x2.0 70445 ACCCAAGTCCCCATACGAAGAGC 70467 46 46
70468 ACCCAAGTCCCCATACAAAGAGC 70490
dri4 17%2.0 71349 TTTTGGTTTTTGGTTGG 71365 68 34
71366 TTTTGATTTTTGGTTGG 71382
dr15* 149x26 81117 TTCA-AACCAAGTTGAAACCTGGCCAGCGAAAAATGAAAAATTGTCTAGCAAAAATTTCTGARAR 81180 56 380
81265 TTCACAACCAAGTTGAAACCCGGCCAGCGAAAAATGAAAAATTG-CAGAGTAAAAATTTCTGAAR 81328
81409 TTCACAACCAAGTTGAAACCCACCCAGTGAAAAATGAAAAATTGTCGAGCAAAARATTTCTGAAA 81473
81181 AGCAAGCATGATCGGGCATGCACACTCTCTCGTTAGGTATCAGAGGGAGAGGGGTGATGGGGGTG 81245
81329 AACC-GGACATGATCGAGCATGCACACT-T-ACGATA-G-ACTCA-AGGGAG-GGGATGATGGGA 81386
81474 AATCAAGCATGATCGAGCATGCA 81496
81246 AGGAGGGA--T-CGATCTACAA 81264
81387 GAGCGGGGGTTCCGATCCACAA 81408
dr16 12x25 97194 TCATCGTCATCA 97205 57 30
97206 TCATCGTCATCA 97217
97218 TCATCG 97223
dr17 15%2.0 104632 GGTGGAAGTGGTGGA 104646 43 30
104647 GGTGGAAGTGATGGA 104661
TCArepeat  3x15 112083 TCA TCA TCA TCA TCG TCA TCA TCC TCA TCC TCA TCA CCA TCA TCA 112128 58 45
dr18 9x3.8 112519 CATCACCAT 112527 50 34

112528 CATCAACAC 112536
112537 CATCACCAC 112545
112546 CATCACC 112552

“Sequence of each 149 bp direct repeat is presented in 3 different rows.

end of MASGHV066, and a total of 13 transmembrane domains were
found in this ORF. A similar sized protein having 14 transmembrane
motifs, capable of selectively transporting pyrimidine nucleoside and
adenine has been studied in mammal jejunal epithelium (Huang
etal., 1994). MdSGHV082 had homology to an integrase/recombinase
protein that is involved in DNA rearrangements by site-specific
DNA recombination (Grainge and Jayaram, 1999). The conserved

integrase/recombinase motif was found at the C-terminal end of
MdSGHV082. Although GbNV also has an integrase protein (ORF 57)
(Wang et al., 2007b), there was not significant homology to
MdSGHV082. MdSGHV035, MdSGHV046 and MdSGHVO055 had homol-
ogy to functionally unknown cellular proteins. Finally, MdASGHV104 with
low homology to helicase gene has been discussed previously (under
homologues to proteins involved in DNA replication).
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Direct repeats

Eighteen tandem direct repeats (drs) were found distributed
throughout the genome. The size of the repeated sequences ranged
from 149bp (dr15) to only 9bp long (dr18), and the number of copies of
the drs ranged from 1.9 to 7.4, making the total sizes of the drs range
from 30bp to 380bp long (Table 3). Unlike the homologous regions
(hrs) found in large, circular invertebrate dsDNA viruses that have
imperfect palindromic sequences within the repeated region (Cochran
and Faulkner, 1983; Garcia-Maruniak et al., 1996), no palindromes
were found in the MdSGHYV direct repeats. The MdSGHYV drs appeared
similar to those found in HzNV-1, GbNV, and OrNV and Neodiprion
sertifer NPV (NeseNPV) (Cheng et al., 2002; Garcia-Maruniak et al.,
2004; Wang et al., 2007b,c), however the AT percentage was not as
high as GbNV drs. Seven drs (dr5, 6, 7, 10, 16, 17 and 18) were located
inside putative ORFs. Baculovirus hrs are located between genes and
act as transcriptional enhancers (Guarino and Summers, 1986) and/or
origin of DNA replication (Pearson et al., 1992). Another feature of the
hrs is that their sequences have homology within the same genome.
This feature was not present in the MdSGHV drs, as no significant
homology was observed between the 18 drs. A 45bp TCA repeat was
located inside ORF 101, similar to the 3 base repeats reported in GbNV
(Wang et al., 2007b).

In this study, we have determined the complete genome sequence
and provided the first comprehensive analysis of the MdSGHV
genome. Completion of the genome sequence has provided a
foundation to examine the biology of a unique insect virus. This
virus, with the ability to sterilize female flies, has the potential of
being developed into an adult biopesticide. The sequence data will
play an important role in elucidating the mechanisms underlying its
ability to shut down reproductive behaviors and will provide a
platform to engineer improved biopesticides against pest fly popula-
tions. The sequence data will also be used to characterize genetic
variants isolated from feral housefly populations and determine which
polymorphisms are associated with the epizootic or the enzootic
profiles exhibited by this virus in fly populations. Importantly, related
SGHVs have been isolated from tsetse fly vectors of African
trypanosomiasis. These SGHVs have a larger genome than MdSGHYV,
show wider tissue tropism, are vertically transmitted, and are known
to persist asymptomatically in tsestse flies. Comparisons among the
different SGHV sequences will provide opportunities to assign
genotypic profiles to similar and dissimilar viral phenotypes.

Material and methods
Virus production and purification

As an alternative to cloning the virus (no cell lines are known to
support MdSGHV replication), a single hypertrophic gland was
dissected from an MdSGHYV infected feral adult house fly. This gland
was homogenized in 1ml of phosphate buffered saline (PBS), filter-
sterilized (Ultrafree-MC, Millipore Corp., Billerica, CA), and injected
(2ul/fly) into 200 newly emerged adult house flies. Injected house flies
were placed in cages, provided with food and water, and incubated at
26°C. After 5days, the injected flies were immobilized on ice, and
infected salivary glands were dissected, pooled, and frozen at - 70°C.
Glands from 100 infected flies were homogenized in 5mM Tris-HCI
(pH 7.5) containing 0.2M sucrose, 0.13M NaCl, 3mM KCl, and 3mM
EDTA, subjected to low-speed centrifugation (1500g, 20min) to
remove tissue debris, applied to a 10-50% isotonic linear gradient of
Nycodenz (Accurate Chemicals & Scientific Corp., Westbury, NY), and
centrifuged at 30,000rpm (~ 100,000g) for 90min. The virus band was
collected and subjected to another high-speed centrifugation for
30min to remove residual gradient material. Purified virus was
suspended in TE buffer (10mM TRIS, TmM EDTA), aliquoted and
stored at - 20°C. The quality of the virus fraction was determined

by electron microscopy. A dilute viral preparation was applied to
formvar + carbon-coated grids, fixed with 2% glutaraldehyde in 0.1M
cacodylate, water washed, dried, and stained with aqueous uranyl
acetate and lead citrate. Grids were examined with an Hitachi H-7000
TEM operating at 100kV and images captured with a Soft-Imaging
System MegaView IIl with AnalySIS.

Analysis and identification of viral structural proteins

An aliquot of the purified virus preparation was solubilized in SDS-
» mercaptoethanol and electrophoresed onto a 5 to15% gradient
polyacrylamide gel electrophoresis (PAGE) gel (Laemmli, 1970). The
Coomassie R-250 blue-stained gel was recorded with the Bio-Rad gel
imaging XRS system. Precision Plus Protein unstained standards (Bio-
Rad Laboratories, Inc., Hercules, CA) were used to calculate a standard
curve (R-square = 0.987) and subsequent molecular weights of viral
peptide bands were calculated using the Quantity One software (Bio-
Rad Laboratories, Inc.).

Coomassie R-250 blue-stained protein bands and interband gel
regions were excised and digested in-gel with trypsin (Link et al.,
1999). Capillary reversed-phase HPLC separation of protein digests
was performed on a 15-cm-by-75-um (inner diameter) TARGA C18
column (Higgins Analytical, Mountain View, CA) in combination with
an Ultimate Capillary HPLC system (LC Packings, Sunnyvale, CA)
operated at a flow rate of 200nl/min. Mass spectrometry analysis of
the trypsin-digested peptides derived from the one-dimensional gel
(GeLC-MS/MS) was accomplished by a hybrid quadrupole time-of-
flight MS instrument (QSTAR; Applied Biosystems, Foster City, CA)
equipped with a nanoelectrospray source at the Proteomics Core
Facility from the Interdisciplinary Center for Biotechnology Research,
University of Florida, Gainesville, Florida. Amino acid sequence data
generated by the QSTAR from the MS/MS were searched against the
National Center for Biotechnology Information non-redundant
sequence database using the Mascot (Matrix Science, Boston, MA)
database search algorithm. Mascot was set up to search the MdSGHV
ORF database. Scaffold (version Scaffold-01_06_19, Proteome Soft-
ware Inc., Portland, OR) was used to validate MS/MS based peptide
and protein identifications. Proteins identified by Mascot were
considered significant if individual ion scores exceeded the threshold
value calculated for identity or extensive homology (P < 0.05). The
percent coverage of each protein by peptide fragments identified was
calculated using only the unique peptide fragments with 100% amino
acid identity (i.e., amino acid sequences from recurring peptide
fragments or overlapping amino acid sequences were counted only
once).

MdSGHV genome purification and EcoRI library construction

Virus was treated with 1.5% sarcosyl and 250pg/ml proteinase K
and the DNA was purified by phenol/ether extractions as described by
Garcia-Maruniak et al. (2004). To determine if the genome was
circular or linear, 400ng of undigested DNA was end-labeled with 2uCi
32p_dATP and DNA polymerase I large fragment (Klenow, New England
BioLabs, Beverly, MA). MdSGHV genomic DNA (200ng) digested
separately with EcoRI, HindIll, BamHI and Xhol was also end-labeled
and run in a 0.8% agarose gel. To construct an EcoRI library, 1ug of DNA
was digested, ligated into 350ng pGEM 7Z plasmid (Promega Corp.,
Madison, WI), and used to transform MAX efficiency DH5-«
competent cells (Invitrogen, Carlsbad, CA). Multiple colonies were
screened to confirm fragment size. Fragments not cloned during by
this approach were cut out of the agarose gel and individually cloned.

Genome sequencing and analysis

Both Sanger (Sanger et al., 1977) and pyrophosphate-based (454)
sequencing techniques were used to sequence the MASGHV genome.
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Initially, 192 EcoRI clones were used for cycle sequencing using T7 and
SP6 primers and BigDye terminator cycle sequencing kit (Applied
Biosystems, Foster City, CA) and sent to the University of Florida
Interdisciplinary Center for Biotechnology Research (ICBR). Secondly,
an aliquot of 20ug of total DNA was submitted to 454 sequencing. This
was performed as described in the supplementary material and
methods to Margulies et al. (2005) with slight modifications from the
specifications (454 Life Sciences, Branford, CT). Briefly, high molecular
weight DNA from the RCA reactions was sheared by nebulization to a
size range of 300 to 800bp. DNA fragment ends were repaired and
phosphorylated using T4 DNA polymerase and T4 polynucleotide
kinase. Adaptor oligonucleotides “A” and “B” supplied with the 454
Life Sciences sequencing reagent kit were ligated to the DNA
fragments using T4 DNA ligase. Purified DNA fragments were
hybridized to DNA capture beads and clonally amplified by emulsion
PCR (emPCR). DNA capture beads containing amplified DNA were
deposited in individual lanes of a 40 x 75mm PicoTiter plate and DNA
sequences determined using the GS-FLX instrument. DNA sequence
information from the initial and supplementary runs was combined in
a single assembly using Newbler sequence assembly software. Some
PCR amplifications followed by sequencing of the DNA products were
needed to close every gap of the genome. The contigs assembled by
Newbler and the electropherograms obtained from the EcoRI clones or
PCR products were further aligned using Sequencher 4.8 (Gene Codes
Corp., Ann Arbor, MI). Regions of nucleotide polymorphism were
mapped. Putative open reading frames containing at least 50 amino
acids, ATG start sites, and presenting minimal overlapping in the
genome were identified with ORF finder (http://www.ncbi.nlm.nih.
gov/gorf/gorf.html) and Gene Finding in Viruses program from
SoftBerry (http://www.softberry.com/berry.phtml). The translated
amino acid sequence of each ORF was compared to the GenBank
database by protein BLAST (http://www.ncbi.nlm.nih.gov/BLAST/)
against the default and virus-only databases. A local database with
only the nudivirus protein sequences was created and used to
compare all MASGHV OREFs. Significant homology was arbitrarily set
at a BlastP E-value of 0.01 or less. Conserved domains and putative
functional protein sites were searched for each ORF using Interproscan
(http://www.ebi.ac.uk/interpro/) (Quevillon et al., 2005). Tandem-
repeat sequences were found with the help of Tandem Repeat
software (http://tandem.bu.edu/trf/trf.html) (Benson, 1999).

Phylogenetic analysis

Amino acid sequences were aligned with ClustalX 2.0 (Thompson et
al,, 1997). Alignments were edited, when needed, with MacClade 4.0
PPC (Maddison and Maddison, 2000) and the phylogenetic trees were
constructed using PAUP* 4.0b (Swofford, 2003). Distance analysis with
neighbor joining was done. The robustness of the tree was tested using
bootstrap and 1000 replicates. For the construction of the combined
tree of p74, pif-1, pif-2, and pif-3, a file containing the concatamer of the
four genes was created and analyzed as described before.
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