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The author has previously shown that there are exactly nine complex 
quadratic fields of class-number one. Here we show that the proof rests on 
some extremely interesting identities in modular functions which also 
provide a connection with the work of Heegner. 

1. Introduction. In [3], a’ complete determination of all complex 
quadratic fields of class-number one was made. Nevertheless, many 
obvious questions arise upon reading [3]; here we will discuss some of 
these questions and their answers. 

2. The method of [3] and the Questions that Arise. Let d = -A < 0 
denote the discriminant of a complex quadratic field and h(d) the class- 
number of the field. Further let k denote the discriminant of a real quad- 
ratic field such that (k, d> = 1, let x(n) = x,(n) = (k/n) be the real primitive 
character associated with this field and let q, denote the fundamental unit 
of this field. Let Q = (a, b, c) denote the positive definite quadratic form 
U-X’ + bxy + cy’ of discriminant d, Q’ = (a, -b, c), and r denote a complex 
number with positive imaginary part. Set 

where the principal value of zs = es log ’ is used. We have 

12UL x, Q, r> 
nik gk (1 -F2> 

=f&)+f&F)- 2y$) (2) 

l This research was done while the author held an O.N.R. postdoctoral research 
associateship. 
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where 

0 if k is not a power of a prime 
24 

+kzg(l-p-2,jle 

Zninr 
k .$ Y-’ jil x<QC.L y>,eFs (3) 

and p denotes primes only. Generalizations for all s of (2) are derived in [4] 
for r = (b+Jd)/2u but there is no need for such a restriction on r; indeed 
we may even derive (2) with -i; replaced by r’ such that Im r’ > 0 and 
Re(r + r ‘) = 0. When b = a and Re r = 3, 

&(r) =jg(-F)-2F. 

Thus, thanks to the connection between L(s, 2, Q, (b +,/d)/2u) and 
ordinary Dirichlet L-functions when h(d) = 1, we have for h(d) = 1 and 
d odd, 

12coh( kd)h( k) log E,, 

(wherew={:~:~~I~). (4) 

This leads us to the idea of exponentiatingf. Set 

F*(r) = F&r) = e/Q(‘). (5) 

In [3] we considered the following function for A = 3 (mod 8) and 
k=8: 

$[F&r) 2- FQ(r)-2] -&[R-“‘Fp(r) +R1’2FQ(r)-‘], 
A+1 
-z l(mod8) 

4 
*[F&r)‘- FQ(r)-2] + &[R1”Fp(r) +R-“2FQ(r)- ‘1, 

A+1 
-- 3(mod 8) 

3[FQ(r)2 - Fo(r)-2] +&[R-lizFp(r) +R1/2tQ(r)-1], 
(6) 

A+1 
-=5(mod8) 

4 

lf[FQ(r)2-Fo(r)-2]-&[R1/2FQ(r)+R-1’2FQ(r)m1], 
A+1 
- = 7(mod 8) 

4 
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where 

Q = (l,l,*+) and R = l+J2. 

In the notation of [3], 

ZZN+l-4yN 

A+1 
--G 1 (mod8) 

4 

z2N+1+4YN+1 
A+1 
c_ z 

4 
3 (mod 8) 

Z2N+l+4YN 

A+1 
__ E 

4 
5 (mod 8) 

I zZN+l-4YN+l 

A+1 
---7(mod8) 

4 

We also considered for k = 12 and A E 19 (mod 24), the function 

$ [~~(r)-~~(r)-‘] + 1, *G = 1 (mod 4) 

aQ(r> = 
+2 

(7) 
[FQ(r)-FQ(r)-‘]- 1, *+ 2 3 (mod 4) 

where Q = (1, 1, (A + 1)/4). Thanks to certain congruence conditions on 
h(kd), we found in [3] that for A 3 19 (mod 24) and h(d) = 1, 
HQ((l + JW) and a~((1 + JdlP) are rational integers and that further 
if A 2 200 then 

aQtrj3 -k3, 
A+1 
-=l(mod4) 

HQ(r) = 
4 

aQ(r)'-% 
A+1 
--3(mod4) 

(r=v). (8) 

4 

Equation (8) is a Diophantine equation which was solved in [3]; there 
are seven solutions, four of which correspond to d = - 19, -43, - 67, 
- 163, and the other three are extraneous solutions which can’t correspond 
to any d 5 -200. The use of A 2 200 was governed by the necessity of 
showing that the two sides of (8) differ by less than one, and hence, being 
rational integers, are equal. 

Several questions present themselves of which perhaps the most obvious 
is 

Question 1. Is (8) an identity, valid for all r? If so this would eliminate 
the necessity of dealing with A 2 200 in [3], this being the messiest and 
least satisfactory part of [3]. Furthermore, if (8) isn’t an identity, valid for 
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all r, then for sufficiently large A, there could not possibly be equality in 
(8) at r = (1 +dd)/2. In this case, we needn’t have bothered to solve a 
Diophantine equation in [3]. 

Question 2. Are the three extraneous solutions to (8) really extraneous 
or do they somehow correspond to other fields? 

Question 3. In [3] we expanded Ha(r) and aa in powers of q”* and 
4 l/l2 respectively where q = exp [2zi(r-+)J. R. S. Lehman has noted in 
a private letter that these expansions (as far as they were given) are 
considerably simpler if we use q = 64 exp [2ni(r-$)I. Is this true for the 
entire expansions of HQ(r) and c+(r) and if so why? 

Question 4. After (8) has been reduced, the equations that must ulti- 
mately be solved in [3] are the same equations to which Heegner’s equation 
([I], [.5]) reduces. Is this a coincidence or are we dealing with the same 
functions ? 

Question 5. Suppose A E 3 (mod 8). Thanks to the connection with 
ordinary Dirichlet L-functions, we are able to say that 

F(l, 1, (A+1)/4), 8((l +&)/2) 

is a unit in Q(J2) when h(d) = 1. What can we say when h(d) > I? 

3. The method of Siegel. Siegel has noted [2] that (2) is a form of 
Kronecker’s limit formula. The simplest case is with k = 5, (d, k) = 1, 
when we get 

Fp(r) = F,, 5(r) = - 5- x(~Vzr1(5r)-x(“) i [(r +“)I -x(Q(24j~ I)) (9) 

where 
nir co 

q(r) = e= n (1 -e2ninr). 
n=1 

In dealing with h(d) = 1, x5(d) = - 1 for d < - 19 (and this is also true for 
d = - 3, - 7, - 8) and thus it is natural to require x5(d) = - 1. In this case 
we may restrict our attention to F (,, t, lb(r) since the other FQ(r) may be 
obtained from F,,, r, lj(r) by a unimodular transformation. 

One finds easily that for F = F(,, ,, lj(r) and E = (I+ ,/5)/2, 

-d& = [ (5)“2A@-1’2] . 

* [(&F3)1’2-(&F3)-1’2-(&F)“2-(&F)-”2]3 (10) 
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where 

j(r) = 

1 + 240 “$I 6&r) e2xi’r}3 

e2nir nf)l (I_ e2ninr)24 . 

Now we make use of (4) and the fact that wh(5d) = 4N+2 to evaluate 
(10) as 

A+1 
--- l(mod5) 

4 > 
(11) 

where F,, and L,, are solutions of 

x,+2 = x,+1 +x,; F, = 0, F1 = 1; Lo = 2, L1 = 1. 

We can transform (10) to cover the case of (A+ 1)/4 E 2 (mod 5). We get 

~~~FN+,(&N+I +Ld3, 

A+1 
--z 2(modS) 

4 > 
* (12) 

The field with d= - 8 may even be included by sending F(,, i, lj(r) to 
-e -ni’SFC1, ,-,, 2)(r) and evaluating at r = J-2 : 

j(J-2) = 125FN-1(&N+2i-&+1)3 = 203 (A = 8, N = 0). (13) 

In equations (11) and (12) j((1 +,/q/2) is a perfect cube and since no 
L, is divisible by 5, we are reduced to finding all F. which .are cubes 
with n even, n 2 0 (in fact n 2 2 in (12)). These are F,, = 0, F2 = 1, Fs = 8. 
These values correspond to d = - 3, -43, - 163 in (11) and the last two 
correspond to d = - 7, d = - 67 in (12). 

The hallmarks of Siegel’s method are that only one value of k is necessary 
and the Diophantine equations arise from identities in modular functions. 

4. The cuses k = 8 and 12. We likewise find that FQ, 8(r) and 
F,, 12(r) may be expressed in terms of q functions although the expressions 
are more complicated. In fact we are dealing with ~(r)“~ when k = 8 and 
q(r)“* when k = 12. For k = 8, 

x(a) 
F,, *(r) = CQ * 2-4 ir 

j=O 
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where co is a 16th root of unity and as an example, &r, r, 1) = e2ni’*. 
However, we are able to show that for A E 3 (mod 8), Fp, s(r) is invariant 
under transformations of level 8 and for A E 19 (mod 24), Fh, 12(r) is 
invariant under transformations of level 12. These facts are corollaries of 
more general results on how Fp, Jr) transforms under unimodular trans- 
formations for k = 8 and 12. In fact if we set 

G, dr) = XSWXS rq +ac) exp F[(y)qs(a)]Fo, a(r), 

GQ, dr) = x~~WC-~ 

(14) 
then for k = 8 and A E 3 (mod 8) or k = 12 and A E 19 (mod 24), 

GQ, k = G,,, k@) (15) 

where a, 8, y, 6 are integers, ad-By = 1 and 

Qh-PY, -I- +JY) = Qdx, y)(mod W. (16) 
We can now answer Question 1. 

THEOREM 1. JZquation (8) is an identity in r. 

In particular this means that Ho(r) is invariant under transformations 
of level 4. We also find that 

H 1. I, A4 = 4, I, I (9, 4.1, A4 = Hi, 1, 3(rh 
H 1, 1, 3O9 = -4, 1. k+2). (17) 

These results are proved in the standard way of showing that the differences 
have no poles and are therefore constant. 

We may also find the relation between Hand j: 

THEOREM 2. Set H = H(,, 1, 1)(r). Then 

(H - 3)(H + 1)3 = -&j(r). w 

This result provides the answer to Questions 2 and 3 as well as incidentally 
eliminating the need to deal with k = 12 in [3 1. We see directly from (18) 
that for A s 3 (mod S), h(d) = 1, Hl, 1,1((1+,/6)/2)-3 is a cube if 
(A+1)/4= 1 (mod4) and H,,,,, ((l+J6)/2)+3 is a cube if (A+1)/4 
E 3 (mod 4). Now we see that the remaining three solutions to (8) in [3] 
are not extraneous at all: two of them correspond to d = - 3 and the other 
corresponds to d = - 11; the use of k = 12 kept us from including these 
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fields in the numerical examples of [3]. The answer to Question 3 also 
comes from (16): Ho(r) is a Laurant series in q = 2,/yexp [(2ni/4)(r -$)I 
with rational coefficients. It then follows from (8) that aQ(r) is a Laurant 
series in q113 with rational coefficients. 

5. The Connections with Heegner’s Work. Heegner [l] reduced the 
equation 

024-e-2ni/3 y2(r)08 - 16 = 0, (19) 

where y2(r)3 =j(r) and y2 is real on the imaginary axis, to an equation 

a’2+2[08+2~204-4 = 0, 69) 

and this in turn to the equation 

fP+2a04+2fioZ--2 = 0. (21) 

Further, u and j3 satisfy the equation, 

(j? - 2ay = 24x3 + 1). (22) 

If r = (I+ Jd)/2 where A z 3(mod 8) and 3 J’ A, then this reduction may 
be made in such a way [5] (and in fact uniquely so) that 0: and /3 are in 
Q(j((1 +,/d/2)). It should be noted that we have used e-2”i/3y2(r) instead 
of y2(r) because we are dealing with r = (1 +Jd)/2 instead of the more 
customary (- 3 + Jd)/2. 

The reduction from Equation (19) to (20) may be made in four different 
ways, giving rise to four modular functions for c. Again, we may go from 
(20) to (21) in four ways so that there are sixteen possibilities for c1 and j?. 
Surprisingly enough, it is not always the same function which gives the 
value in Q(j((1 +dd)/2)). In fact, we have the following results: 

THEOREM 3. [f A E 3 (mod 8) and 3 J’d, then the ,function i which is in 
Q(j(r)) at r = (1+,/4/2 is given by 

A-3 

TM3 = (- 1) 8 Hcl, ,,y)(r)-3, 

the cube root being chosen which is real on Re r = 3. 

COROLLARY. If A s 19 (mod 24), then the proper choice for 5 is 
A-3 

C(r) = (-- 1) 8 

(23) 

(24) 

THEOREM 4. I f  A - 3 (mod 8) and 3 ,t’d then the function CI which is in 
Q(j(r)) at r = (1 +Jd)/2 is given by 
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( 

2+xs 
a(r) = ( 

2-b 

w ifA+ 
~ = 1 (mod 4) 

[R”2F(r)+R-“2F(r)-1] 4 - 

w2 ifA+ 
--=3(mod4) 

[R-‘12F(r)+R”2F(r)-‘] 4 - 

(25) 
where F(r) = F,,, 1, (a+ 1),4), *(r) and C(r) is given by Theorem 3. 

Along these lines, if we reduce the equation 

(CT24 - 1Q3 = 024j(r) 

to a cubic equation in o12 (the constant term being -26), then the four 
possible coefficients of e24 are -4H,, r, l(r+g), g = 0, 1,2,3. There are 
also less obvious relations available in the next reduction of this equation 
to a cubic in a6. These facts help simplify the proofs of Theorems 3 and 4 
considerably. 

We can now answer Question 4. Indeed, the equation following (103) 
of [3] is nothing more than 

a3+l =+o with a =f20, (26) 

while the equation following (105) of [3] is nothing more than 

a3+1=+20 with a=+o, (27) 
with a being given by Theorem 4 in each case. 

Equations (26) and (27) are precisely the equations that arise when we 
attempt to find all rational integral solutions of (22). 

6. Kronecker’s Limit Formula for k = 8. After Theorem 4, it is 
not surprising that we can determine the field containing R-‘12 F,, 8(r). 
In fact we find 

THEOREM 5. If A E 3 (mod S), then R -1’2F(l, 1,(A+1)/4),8((1+Jd)/2) 

is a unit in the jield Q( j(( 1 + Jd)/2), ,/2). 

In actual fact, we first prove that H,,, 1,cA+1),4)((1+Jd)/2) and 
F,,, I, (A+l)/4), ~((1 +&W) are in the proper fields in a manner similar to 
the method of Weber [Cs] in proving that j((1 +,/d)/2) is a cube. It is here 
that the answer to Question 3 is useful since it enables us to say that our 
transformation equations have coefficients in the correct fields. We then 
use these results to prove Theorems 3 and 4. When h(d) = 2, we can make 
the description of Theorem 5 much more precise. 
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THEOREM 6. If h(d) = 2 and A = 3 (mod S), then 

( > 
1+Jd = pgnl 

R-y 1,“qq,* 2 
where E is either the fundamental unit in Q(&p) or its square root (which is 
then in Q(,/p, J2)), p is the unique prime 3 1 (mod 4) dividing A and 

h(8d)-4 
11 = 

8 * 

There are ten known fields to which Theorem 6 applies. Table 1 presents 
the results. 

TABLE 1 

VALUES OF n, 8, AND m IN THEOREM 6 

d *q (mod 8) p 

-35 1 5 0 3+dti 1 

-51 5 11 0 34/2+ ai 1 

-91 7 13 1 5+1/B 1 

-115 5 5 2 3 + m 1 

-123 7 41 1 9+m 1 

-187 7 17 3 342 + l/i7 1 

-235 3 5 2 3 + d/l0 2 

-267 3 89 2 202/T+ 3d\/89 1 

-403 5 13 3 5 + 1/2X 2 

-427 3 61 5 11+Gz 1 

REFERENCES 

I. HEEGNER, KURT. Diophantische analysis und modulfunktionen. Mar/z. 2. 56 (1952), 
227-253. 

2. SIEGEL, C. L. Zum Beweise des Starkschen Satzes. Invenriones Mcth. 5 (1968), 180- 
191. 

3. STARK, H. M. A complete determination of the complex quadratic fields of class 
number one. Mich. Math. J. 14 (1967), l-27. 

4. STARK, H. M. L-functions and character sums for quadratic forms (II). Acru Arith. 15 
(1969). To appear. 

5. STARK, H. M. On the “gap” in a theorem of Heegner. J. Number Theory 1 (1969), 
16-27. 

6. WEBER, H. “Lehrbuch der Algebra”, vol. 3, 3rd ed. Chelsea, New York, 1961. 


