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Offshore Wind has become the most profitable renewable energy source due to the remarkable devel-
opment it has experienced in Europe over the last decade. In this paper, a review of Structural Health
Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic
as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been
reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition,
Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model
Development. It is expected that optimizing each stage, SHMS can contribute to the development of
efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of
OWTs' inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve
the availability of power production while preventing wind turbines' overloading, therefore, maximizing
the investments' return. In the forthcoming years, a growing interest in SHM technologies for OWT is
expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing effi-
ciency in operational management will contribute towards achieving UK's 2020 and 2050 targets,
through ultimately reducing the Levelised Cost of Energy (LCOE).
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Over the past 15 years, Wind Energy has experienced a
remarkable growth in the European Union (EU). While in 2000
wind energy contributed 2.4% of the EU's electricity demand, by
2015 this percentage raised to 11.4%, or in absolute numbers,
12.9 GW of installed capacity became 141.6 GW. This rapid
development is not only due to the targets set by the EU in 2006
for all Member States [1], but also due to the scalability of wind
energy with units of larger capacity been deployed in larger
farms, further offshore [2]. According to Renewable UK, Offshore
Wind (OW) has officially become the most profitable renewable
energy source since, it can produce more renewable energy than
all of the other sources combined [3]. In Europe, including sites
under construction, there are 84 Offshore Wind Farms (OWF) in
11 countries as of the end of 2015. Furthermore, 3,230 turbines
are now installed and operational, reaching a cumulative instal-
led capacity of 11,027 MW. In 2015 only, a grid-connected capa-
city of 3,019 MW, was added, accounting for almost double of the
capacity added in 2014 [4]. Moreover, due to the increased
deployment of 4–6 MW turbines in 2015, the average Offshore
Wind Turbine (OWT) size became 4.2 MW, constituting a 13%
increase over 2014.

Considering wind energy as a mature technology, allows
developers and operators to gain confidence to include this
energy technology within their mainstream portfolios. Increasing
availability of farms and reliability of units, decreasing
unscheduled maintenance and eliminating unexpected cata-
strophic failures, are the targets that attract focus towards
deploying the next generation of wind farms. Structural Health
Monitoring Systems (SHMS) can contribute significantly towards
enhancing OWT's profitability, reliability and sustainability
through more systematic operational management approaches.
SHM represents the procedure of implementing a damage
detection strategy for engineering infrastructures related to
aerospace, civil and mechanical engineering [5], being damage
referring to the variations in material and/or geometric proper-
ties of these systems [6]. Some of the most known structural
damage roots are: moisture absorption, fatigue, wind gusts [7],
thermal stress, corrosion [8], fire and lightning strikes [9].
Usually, there are two critical aspects that influence SHMS
development: the sensing technology (and the associated signal
analysis), and the interpretation algorithm [10].

Damage identification is performed through five similar dis-
ciplines [11]: SHM, Condition Monitoring (CM) [12], Non-
Destructive Evaluation [13], Statistical Process Control [14], and
Damage Prognosis [15,16]. Apart from the CM of rotating
machines, SHM for OWT remains a research topic which is slowly
getting into the field deployment stage. This is due to the early
stage of the technology's deployment, the additional challenge
that offshore environments pose to these technologies, and asso-
ciated costs to operators for hardware installation and data
processing.

Farrar and Sohn [17] were the first to introduce the Statistical
Pattern Recognition Paradigm in the SHM field. This methodology
follows four stages:

) Operational evaluation: This stage tries to set the boundaries of
the problem by replying to four questions concerning the
implementation of the Damage Identification Facility. Questions
are related to: the motivation and economic justification for
implementing the SHMS, the different Systems’ damage defi-
nitions, the Environmental and Operational Conditions (EOC) in
which the SHMS are used, and the data acquisition limitations
in the operational environment.

) Data acquisition, normalization and cleansing: Data Acquisition
refers to the selection of the excitation methods, type, quantity
and location of sensors, and the Data Acquisition/Storage/
Transmittal Hardware [18]. Data Normalization is another
crucial aspect for the Damage Identification Process, as there
are numerous conditions in which measurements can be taken
[19]. Therefore, this Normalization constitutes the procedure of
separating variations in sensor readings produced by damage,
from those produced by the variation in EOC. Data Cleansing is
the procedure of selecting data which is passing on to or
rejecting from the Feature Selection procedure [11]. Two exam-
ples of Data Cleansing processes are filtering and resampling,
which constitute Signal Processing Techniques [20].

) Feature extraction and information condensation: This is the
aspect of the SHMS that attracts most attention, as these fea-
tures allow the distinction between damaged and non-damaged
structures [21,22]. Data Condensation is essential when analo-
gue feature sets acquired along the structure's lifetime are
envisioned. Due to the extraction of data from a structure
during long periods of time, robust data reduction techniques
have to be developed to preserve feature sensitivity to the
changes of interest.

) Statistical model development: It is related with the imple-
mentation of the algorithms that work with the extracted fea-
tures and calculate the extent of the damage to the structure.
These algorithms can be divided into the two categories that are
shown in Fig. 1 [23–25]. All of these algorithms assess statistical
distributions of the measured or derived features, to enhance
the damage identification process.



Fig. 1. Algorithms classification for Statistical Model Development.
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This paper constitutes a comprehensive review of SHMS of OWT
following the process of the Statistical Pattern Recognition Paradigm.
The paper has been divided in eight sections. In Section 2, a com-
prehensive review of the SHMS for OWTs is carried out, presenting
the history and evolution of SHMS and the different technologies that
can be employed to OW. Each one of the framework's stages
abovementioned has been reviewed in greater detail focusing on
OWTs applications (Sections 3–6). Discussions of the capabilities and
limitations of SHMS, the most used methods in the OW Industry and
current technology gaps are presented in Section 7, followed by
conclusions in Section 8.
2. Structural health monitoring systems for offshore wind
turbines

2.1. History and evolution

The identification of changes in the dynamic response of sys-
tems has been carried out qualitatively, since practice has intro-
duced tools by employing acoustic techniques [26,27]. Lately the
emergence of SHM techniques has come together with the evo-
lution, miniaturization and cost reduction of digital computing
hardware [11]. Depending on the sector, this evolution took place
sooner or later. For example, CM Systems for rotating machines
constituted one of the first developed systems, whilst SHMS for
the OW industry are currently an emerging research topic.

Nowadays, CM of rotating machines constitutes the most
prosperous application of SHM Technology in terms of profit-
ability, reliability and level of development. The failure identifi-
cation process is based on pattern recognition related to dis-
placement, velocity or acceleration time histories, commonly
located at one point on the housing or shafts of the machinery
during standard-operating conditions and start-up or shut-down
transients [28]. Commercial software integrated with measure-
ment hardware is marketed to help the user systematically apply
this technology to the operating equipment [11]. These facts
mentioned above, supposed the transition of SHMS in this field
from a research topic to a common industry practice. A good
example of this is the US Navy's Integrated Condition Assessment
System [29].

The aerospace sector started studying the use of vibration-
based Damage Identification during the late 70 s and early 80 s in
conjunction with the development of the space shuttle programs
[11]. That effort carried out on other applications that are being
investigated for the National Aeronautics and Space Administra-
tion's Space Station [5]. Some of the most widely used technolo-
gies in this field are: fastener monitoring [30], blade tip clearance
[31], and fatigue monitoring [32]. The Civil Engineering commu-
nity has researched on vibration-based Damage Identification of
bridges and buildings since the 80 s [33,34]. This research is cur-
rently being applied to offshore structures due to the similarities
across industries.

During the 70 s and 80 s, the Oil and Gas industry carried out
extensive research to develop vibration-based Damage Identifica-
tion Techniques for offshore platforms [35]. Related to this tech-
nique, one of the research objectives was the detection of near-
failing drilling equipment and the prevention of expensive oil
pumps from becoming inoperable [36]. Unfortunately, most efforts
were not successful, as this problem is fundamentally different to
that of the rotating machines due to the impossibility of predicting
where damage will occur and the structure's inaccessibility for
data acquisition purposes. Besides, numerous practical issues were
found apart from measurement acquisition difficulties, occasioned
by platform noise, instrumentation difficulties in hostile environ-
ments, changing mass caused by marine growth, varying fluid
storage levels, temporal variability of foundation conditions and
the inability of wave motion to excite higher vibration modes [11].
However, different applications could finally overcome these
issues and be implemented. For example, fatigue gauges are
commonly employed for fatigue monitoring by measuring the
crack-growth proportional to the cumulative fatigue damage for
welded joints [37]. This approach was reviewed by [38] and [39].
Another example is presented in [40], where different techniques
for corrosion monitoring are introduced and the application of
flexible ultrasonic thin-film piezoelectric transducer arrays is
described. Lastly, [41] suggests a methodology to enhance the
reliability of SHM for flexible risers, which are widely used in
offshore oil exploration facilities and are essentially composite
structures consisting of several metal armours and polymeric
layers.

Most of the Wind Farms (WF) are either at the beginning or in the
middle of their service life and, currently, the trend is to build these
WFs much further offshore. Therefore, special consideration due to
extreme weather conditions and complex dynamics, such as sensor
tolerance and endurance, data acquisition and transmission, among
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others, have to be accounted for [42,43] and [44]. As this sector
grows, business economics currently demands management of OPEX
and CAPEX costs [45]. For example, considering a 750 kW turbine
with an expected 20-year service life, the operations and main-
tenance (O&M) costs account for between 25% and 30% of the overall
energy generation cost or 75–90% of the investment costs [46].

Some of the technologies employed in OW differ from those
employed by the Civil or the Oil and Gas Industries in aspects of
accessibility, severity of the environmental conditions and more
complex loading due to excessive operational loads. Due to these
differences, further development and research in these technolo-
gies has been prioritized in the past years aiming to adapt them to
OW applications. In order to make wind power competitive with
other sources of energy, some of the performance indicators, such
as availability, reliability, efficiency and integrity of turbines, still
have to be improved [45]. In the following section, a review of the
current SHM techniques used in the OW Industry is presented.

2.2. SHM technologies

SHMS of OWTs are becoming very much in demand now that
machines are growing in size and OWF are being developed fur-
ther from the coasts. In order to decrease the power generation
costs and, therefore, the Levelized Cost of Energy, WT mass of
components need to be optimized without compromising the
structure's integrity. This can be achieved through making the
turbines more structurally flexible, which directly affects their
modal parameters, i.e. the resonance frequency [47]. Another
important aspect is that OWTs' inspection and maintenance is
considerably more expensive than onshore turbines’. Therefore,
SHMS which are able to predict structural changes are becoming
crucial to diminish operation and maintenance (O&M) costs and to
assess the remaining lifetime of these structures. An example of a
good application of SHMS to an onshore WT is presented in [48],
where a life-cycle management framework for online monitoring
and performance assessment is applied to WT.

SHMS have become a useful method to enhance Operational
Management (OM) and optimize maintenance activities of modern
infrastructure [35], as the information gathered can be employed
in the development of a tailored, condition-based maintenance
program [49]. This program aims to reduce the necessary down-
time due to components inspection, prevent unnecessary repla-
cements and failures, and increase availability. Furthermore, due
to the capacity of monitoring the structure's integrity, design
improvements can be implemented such as selection of lighter
blades that will enhance performance with less conservative
margins of safety [50] and which will adapt quicker to the wind's
variability, capturing more energy [51].

General reviews of SHM can be found in [52] and [26,53] where
assessment of the different methodologies was carried out. SHM
techniques for WT were reviewed by [7], however, the majority of
that review was based on bridges and civil infrastructures. A wide
overview of how the EOC affects SHM techniques and the nor-
malization of the data that needs to be carried out for compen-
sating these variations is given in [24]. A discussion between SHM
and CM costs can be found in [54].

Within this section, the different SHM techniques and espe-
cially those suitable for OWT blades, tower and foundation, are
explained.

2.2.1. Acoustic emission monitoring
Failure mechanisms such as cracking, excessive deformation,

debonding, delamination, impacts, crushing, among others, all
provoke transient changes in stored elastic energy in particular
points of a structure. This energy release can be effectively used to
monitor WTs and, particularly, their blades. As Ciang mentioned in
[5], Acoustic Emission (AE) is a very effective technique that
detects failure mechanisms up to the microscale. However, this
technique is less effective when it comes to damage character-
ization and assessment in the case that an appropriate algorithm is
not available. Complex damage mechanisms in WT blades have
been better understood since AE monitoring was carried out in a
blade during loading, enhancing the ability to assess damage
during testing [55–57]. Also during a certification test, the
damaged area due to cracking in the blade was located due to the
sound of the cracking mechanism [56]. Fatigue tests can also be
monitored, as [58] presents; such as the sound produced due to
stress released waves or energy dissipation using piezoelectric
sensors [59,60].

AE signals are defined by their amplitude and energy [61]. As
[59] explains, AE events will occur around a particular point, at a
structure under certain loading. That particular point will be the
one at which the structure will fail at some point, being the feature
extremely useful in locating the failure. Even though most of the
relevant literature is related to tests in WT blades, a few cases
explain how the technique has been applied to a WT blade during
operation [62], by using a broadband radio to send the AE data
from the rotating frame to the ground with no signal resolution
loss. Even though the previously collected data had acceptable
levels of noise in low to moderate wind speeds, verification of the
fact that the noise does not increase with wind speeds and the
feasibility of those signals to be filtered, has to be assessed.

2.2.2. Thermal imaging method
This method aims to detect defects or anomalies in the material

beneath the surface and it is based on the subsurface's tempera-
ture gradients. Thermal imaging can be applied to a WT blade by
installing infrared cameras [63]. Irregularity of or damage to
material is detected due to a change in the thermal diffusivity.
Moreover, this technique can be divided in two categories
depending on the thermal excitation method used: active or
passive. The passive thermal imaging method aims to investigate
materials at different temperatures, other than the ambient, and
therefore, it is not normally used in SHMS of OWTs; the active
approach has an external stimulus source (i.e. optical flash lamps,
or heat lamps).

A particular type of active thermal imaging method is called
the thermoelastic stress method and it is based on the thermo-
elastic effect, which consists of the change in temperature of an
elastic solid produced by a change of stress [64]. As explained in
[65], in the damaged or abnormal region, different heat conduc-
tion, higher acoustical damping, and stress concentration take
place. This technique has been proven to be useful in WT blades
fatigue tests [61,66], as stress concentrations during the test can be
observed before damage in the surface can be appreciated. A
promising variation of this methodology involves applying high
power ultrasounds [67], or oscillating stresses with a mechanical
shaker, to the surface that is being tested [65]. This technique is
called vibro-thermographic and is able to locate and assess crack
dimensions, as [67] states. Furthermore, it can be used for asses-
sing voids and stress concentration in composites. Nevertheless,
this method has the potential to become a promising SHM tech-
nique for WTs, and more research needs to be carried out in order
to reduce the sensitivity to temperature variations [61].

2.2.3. Ultrasonic methods
Ultrasound is a method commonly used for assessing the inner

structures of solid objects [68]. It has also turned out to be very
useful with composite structures. The basic principle of this
technique is that ultrasonic waves, emitted by a transmitter, pass
through the tested material and are reflected and/or mode con-
verted by a flaw or anomaly. This modified signal is picked up by a
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receiver once it has passed through the material (if not reflected).
In the simplest arrangement, transmitter and receiver are placed
on opposite surfaces of the material [69]. The aim of this technique
is to reveal planar cracks that take place perpendicularly to the
sound wave propagation direction [70]. An advantage of this
method is that it can detect cracks of just a few millimeters.

2.2.4. Fatigue and modal properties monitoring
Fatigue and Modal Properties Monitoring are among the most

important SHM techniques for OWT structures, as the con-
sequences of structural damage may be catastrophic. These
methods are very simple to implement on structures of any size as
they are based in another CM technique, which is the most mature
and successful methodology for rotating machinery monitoring;
the vibration-based inspection method [35,71].

Modal Properties Monitoring is based on the principle that
modal parameters, such as resonance frequency, damping coeffi-
cient and modal curvatures, among others, experience certain
variations due to a change in different physical properties (i.e.
reduction in mass or stiffness) [72,73]. Due to these changes, the
structure is considered to be damaged; that damage being iden-
tifiable by comparison between the structure's modal parameters
before and after an event. In other words, due to the fact that
modal properties changes are considered as damage indicators,
this SHM technique is categorised as a pattern recognition pro-
blem [53].

In order to be able to analyze the structure's dynamic response
by studying its mode shapes, several accelerometers must be
installed. Other analyses that can be carried out are curvature
mode shapes and wavelet maps. These analyses are particularly
relevant when they are carried out in service conditions [74].
However, performing these analyses accurately to a full scale OWT
during operation is extremely difficult due to the high number of
uncertainties which the offshore environment presents [47] and,
therefore, special effort has been given to solve this issue in the
past years [75]. One reason that makes this analysis difficult is the
fact that wind and wave loading applied to the structure cannot be
measured accurately in a continuous manner. This introduces the
difficulty of having to employ Operational Modal Analysis (OMA)
for calculating the modal parameters based on the assumption
that the structure is subjected to unknown random loads [76–79].
OMA methods are based on the principle that in the analyzed time
interval, the system is linear and does not vary with time. One
issue pointed out in [80], is that most of the research regarding
data variability due to changes in EOC was carried out in labora-
tories, where basic signal processing techniques were enough to
solve the damage detection problem [81]. Unfortunately, these
techniques are not considered enough to be employed in an OWT
during operation.

Scour effect on the natural frequency of OWT was studied in
[82], where it was proved that while scour increases, the natural
frequencies of the support structure, and therefore the WT,
decreases. This phenomenon represents a threat for the turbine as
the natural frequency gets closer to the rotor's frequency of rota-
tion [47]. Therefore, continuous monitoring of WTs’ dynamics
variations due to scour is recommended as it is expected to be a
useful tool for developing maintenance plans regarding scour
protection [82].

Another type of modal monitoring called resistance-based
damage detection method has been found to be revolutionary
due to the fact that it has the capability of detecting local damage.
It uses piezoelectric materials which, by monitoring their electrical
impedance, can detect the presence of structural damage.
According to [83], only local response of the structure will be
transmitted to the sensor in case the excitation frequency is big
enough. Damage detection using this monitoring technique has
been proven to be effective in different types of structures,
including composite structures [84,85].

2.2.5. Strain monitoring
Strain monitoring is the technique that detects microscopic

length variations in a component at pre-established locations,
which does not necessarily mean damage detection. However,
these length variations are known to be directly related to stresses
and loads applied to the material [86]. Due to the fact that total
deformations of large components, i.e. WT blades, are large
because they are the sum of all the local deformations, they give
no indication of local damage. For that reason, strain sensors have
to be positioned at points of particular interest, where large
deformations are expected. This limits their applicability to overall
component damage sensing applications [87]. Strain monitoring
has been proven to be useful in continuous operational WT
monitoring as it was successfully employed in a 4.5 MW turbine
[88]. However, in order to predict WT failures in blades, tower and
foundation, prior knowledge of their component's stress field is
required so that sensors can be mounted in critical areas.

Another SHM technology for strain monitoring is the Strain
Memory Alloys Method, which relies on an irreversible crystal-
lographic transformation for their smart properties. The transfor-
mation consists of the change, due to the strain, from one crystal
state to another. The parent austenitic crystal structure is para-
magnetic, while the product martensitic phase is ferromagnetic.
Any SHMS related to this group of smart materials is considered as
a passive system, as both full-time power supply and data storage
facilities are not necessary. Instead, power is only needed during
the sensor's interrogation, being the actual reading stored within
the sensor element itself [89].
3. Operational evaluation

3.1. Offshore wind turbines damage definition and detection

Damage definition constitutes a very important stage of the
Statistical Pattern Recognition Paradigm as the boundaries of the
problem are defined within it. Moreover, damage features have
high variability among fields and structures. Therefore, identifi-
cation of damage causes, consequences and features must be
carried out at the beginning of any SHMS design phase. Several
risk analysis techniques can be employed, Failure Mode, Effects
and Criticality Analysis (FMECA) being considered one of the most
relevant for this particular case [90] [91]. Different reviews of OWT
failure modes have been made in [5,46,92].

One of the main concerns regarding OWT damage detection is to
identify the best way to detect structural damage. Usually the
change in modal properties is used for this purpose [35]. However
determining the best methodology constitutes a much broader field
than what can be expected at first sight, as numerous different
choices are available. Proof of this is the review of damage detection
methods through the change in modal properties presented in [26].
The relevant method are: Natural Frequency Based Methods [93],
Mode Shape Based Methods [94–98], Mode Shape Curvature Based
Methods [99–103], Strain Mode Shape Based Methods [71,104–
108], Dynamically Measured Flexibility Based Methods [109–111],
and Neural Network Based Methods [112–117].

Damage definition in OWT blades is closely related to the one
that anisotropic reinforced laminated composites have. Delamina-
tion is one of the most common failure modes in composites [118],
which is responsible for causing stiffness reduction, variation in
resonant frequency, and decrease in buckling capacity. Such defects
might be caused by poor process control during manufacturing,
impact loading, or other hazardous service environments [119].
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There are many other failure mechanisms for carbon–fiber com-
posites, such as fiber breakage, matrix cracking, fiber splitting, and
delamination, as listed in [120].

The most probable failure mechanisms that an OWT's tower
and foundation can experience are corrosion and fatigue due to
combined wind and wave loading [121,122]. Failure of these
structures due to the accelerated fatigue produced by the increase
of stresses, when natural frequencies are found to be similar to the
rotor's frequency, can lead to catastrophic consequences which
must be avoided. This phenomenon, known as resonance, has to
be dealt early in the design stage of these structures taking into
account all operation stages through a structure's service life [123].
In the particular case of pile-foundations, scouring and reduction
in the foundation's integrity over time can be problematic. Scour
reduces the fundamental structural resonances of the support
structure. Therefore, it can be considered a damage indicator as it
can be correlated to a change in the natural frequency of the tower
and an increase in the fatigue damage [79,82,124].
3.2. Variation in environmental and operational conditions

According to [125], the system's integrity state is a stochastic
function of the initial system's integrity (quality), influenced by
the acting loads (e.g. extreme loads, cyclic loads, environmental
conditions). Even though a structure is considered to be damaged
when at least one of its physical properties (mass, stiffness, etc.)
varies, changes in EOC might induce variations in these properties
without necessarily meaning that damage exists [80]. In fact, in
the majority of the situations, it is extremely difficult to assess
whether or not EOC cause sensitive variations in the SHMS mea-
surements [126]. For this reason, this topic has been recognized as
an important issue in SHMS and has been identified as a key
concern across the research community [17].

SHMS for OWT are particularly relevant in the design phase,
during shipping, installation and operation. The application of
SHMS in harsh environments is a particularly challenging task. The
reasons are not only because these systems need to be prepared to
withstand the severity of the environment for a long period, and
the ease of installation, ruggedness and reliability of equipment is
essential in providing key information about the tower's structural
integrity, but also because OWFs are being developed further than
ever before from coasts, which is making their Operational Man-
agement critical [127].

The consequences that the variations in the EOC have on the
dynamic behavior of structures were assessed in different studies
[119,128]. For example, a statistical methodology that propagates
variability in measured Frequency Response Function data and
calculates the level of uncertainty of the modal properties is
explained in [129]. A good example of the effect of the variation in
the EOC is presented in [80], where the turbulence suffered by the
rotor affected the operational WT Control System. Other important
factors that strongly influence SHMS signals are extreme events,
such as earthquakes. SHM technologies are known to have an
accurate characterization of input excitations. Seismic excitations
are transient in nature, constituting an issue that limits the per-
formance of most SHMS due to the fact that these technologies are
based on the stationary stochastic-excitation assumption [27].
Further information regarding this issue can be found in [130]. To
conclude, any methodology employed has to be able to distinguish
between EOC that affect signals and damage features in order to
allow the SHMS to detect only damages in the structure.
4. Data acquisition, normalization and cleansing

4.1. Sensors types

As previously mentioned, SHMS for OWT can be used to detect
damage in blades, tower and support structure. This section aims
to introduce the different types of sensors and technologies which
are used and in which subsystem. From the top to the base of the
OWT, blades constitute a difficult element to integrate SHMS due
to the high variety of failure modes that can develop, the high
strains they experience, the fact that they are rotating compo-
nents, and the high variability in their operating conditions [80].
Different sensors can be used in blades, as confirmed by different
reviews [131]. Two approaches are followed: active and passive
sensing technologies, whereby active sensing, but not passive,
needs an external excitation [80].

Tower and Foundation constitute two key elements of OWT as
they are not replaceable unless a significant cost is assumed. These
are components that, once the turbine is installed, should sustain
associated loads and their partial failure would carry catastrophic
consequences. Therefore, early in the design stage, the intended
turbine's service life and the possibility of extending it or repow-
ering it with a new nacelle, must be taken into account [132].
Furthermore, due to the difficulty and sensitivity of fatigue ana-
lysis, SHMS should be installed in order to be able to verify the
accuracy of the design calculations and implement an optimal
Operational Management Strategy. These SHMS will mainly con-
sist of fatigue and modal properties monitoring (such as resonance
frequency or modal curvatures), corrosion and scour monitoring. It
should be noted that regarding SHMS for operating WTs, not much
progress has been made in developing robust applications, espe-
cially for OWT blades [133].

Some of the methods that were introduced in Section 2
[125,133–136] include vibration monitoring-based methods
(accelerometers, piezo or micro-electromechanical systems
(MEMS)), strain (strain gauge or fiber optic cables), ultrasonic
waves which are widely applied in composite structures (piezo-
electric transducer), acoustic emissions (usually barrel sensors),
impedance techniques, laser vibrometry, impedance tomography,
thermography (infrared cameras), laser ultrasound, nanosensors,
and buckling health monitoring. The necessary sensors for
implementation of these techniques are described below.

Structural dynamic responses are usually monitored by
embedded strain gauges, piezoceramics or accelerometers [137].
Accelerometers are relatively simple devices whereby the oper-
ating principle is the comparison of the acceleration they experi-
ence with the acceleration due to gravity. They are commonly
provided as MEMS which are very small devices with computing
capability. These devices are commonly used for modal para-
meters and vibration monitoring of blades, tower and foundation
of the WT. There are various types of accelerometers available,
such as piezoelectric, optical, laser, capacitive, and servo. The
selection of an accelerometer for a specific application depends on
a number of factors, such as amplitude and frequency range of the
response, sensitivity, resolution, etc. [37]. The SHM of civil engi-
neering structures using plastic optical-fiber based accelerometers
for estimating the natural frequencies by measuring the dynamic
response was carried out in [138]. Other types of sensors that can
be used to analyze modal parameters are piezoelectric patches,
which were used in [51] at critical locations with the aim of
comparing their natural frequency. Velocimeters, on the other
hand, operate based on a principle similar to interferometry. In
SHM these devices are primarily used to measure displacement by
integrating acceleration or velocity measurements of the struc-
tural members they are attached to [139].
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Two popular sensor groups exist for the purpose of strain
measurement: traditional electrical and relatively modern fiber
optic [86]. Electrical strain gauges have become so widely applied
that they dominate the entire field except for special applications.
They are, along with electrical resistances, the most popular types
of sensors [140], closely followed by Fiber Bragg Grating (FBG)
sensors, which recently have experienced considerable improve-
ments [141].

Several electrical sensor types exist including capacitance,
inductance, semiconductor and resistance. Each is sensitive to a
differing electrical property [140]. Resistance strain gauges record
the resistance variation of an electrically conductive wire relative to
displacement. This resistance variation occurs due to a change in
the cross sectional area and length of the wire as the specimen is
elongated. Electrical resistances are generally used for identifying
cracks in composite materials and joints. The most suitable material
for monitoring using this method is carbon fiber (CB) polymer-
matrix composites as their electrical properties are affected by
structural damage. This material is commonly used due to its
strong, super-elastic, and piezoresistive properties [142]. These
sensors can also be used for identifying failures in conductive bolted
joints. A novel method for analyzing the structural health of alu-
mina nanocomposites, by the change in electrical conductivities
after indentation, is proposed in [143]. The utility of the electrical
resistance method for locating barely visible impact damage in
carbon fiber composite structures was explained in [144].

Piezoelectric materials, when subjected to stress, produce an
electric field and vice versa when subjected to an electric field.
Furthermore, changes in the fundamental properties of the
structure, such as mass, stiffness and damping, directly make the
mechanical impedance vary, this variation being a clear damage
indicator [145]. Damage detection using changes in the electro-
mechanical impedance of piezoelectric wafer active sensors can
easily be done by attaching them to the structure [146].

Even though piezoelectric materials are the most common
sensor type for stress monitoring, there are many other sensors
that can also be applied to this aim, such as: thin film sensors,
piezoelectric composite materials, rolling sensors, and optic-based
sensors [69]. However, an important drawback this technology
has, is temperature and ambient vibrations effects in the piezo-
electric sensors’ performance in composites, as explained in [27].
Temperature effect in blades must be compensated in the results,
as they are made from this material. In fact, [147] explained how a
rise in temperature and vibrations can jeopardise the detection of
the delamination caused by impacts. Other common drawbacks
that strain gauges might experience are described in [86]: non-
linearity, hysteresis and zero shift due to cold work [140].

Cracks and displacements can also be monitored by fiber-optic
sensors which usually are: spectrometric, interferometric or
intensity-modulated. An optical fiber is a glass or plastic fiber
designed to guide light along its length. Moreover, FBGs were also
proved to be useful as a corrosion transducer and temperature
sensor simply by adding a metal coating to one segment of the
fiber [148]; as a pH-sensitive corrosion detector [149] and good at
delamination identification [150]. Furthermore, fiber-optic sensors
are employed in SHMS for OWT in various forms:

) Plastic fiber-optics can be attached, for example, to the blade of
a WT to measure loads it bears. This measurement is carried out
by the reduction of the light source's power that takes place in
the plastic fiber-optic depending on the strain to which it is
subjected [151]. This concept is used to sense strains in a
structure. When loads increase, the measured optical power is
reduced being damage detectable due to the fact that the
normalized optical power decreases linearly as the strain
increases, and drastically once the crack density in a composite
laminate specimen increases [151].

) FBG is made by illuminating the core of an optical fiber with a
spatially varying pattern of intense Ultraviolet laser lights that
have sufficient energy to break the highly stable silicon–oxygen
bonds, which will raise, to some degree, the refractive index
[152]. Although the main use of FBG consists of measuring
strains crack evolution [151], impact damage can be detected by
distributing FBG over the structure [137,138,153,154].

) Optical fuses transversally positioned in laminated composites
have been proven to be useful in damage detection [155]. For
example, if short length optical fibers are embedded through
the thickness of a graphite/epoxy laminate during the manu-
facturing process, the fibers act as optical fuses, which will
break in areas of low energy impact damage [156].

4.2. Data collection and storage

It is widely recognized that dynamic data acquisition is a
complex, tedious and costly process [157]. The recent develop-
ment of wireless monitoring has brought a big advance in SHM
and Infrastructure Asset Management [34] as it integrates wireless
communications and mobile computing with sensors. The result is
a more economic sensor platform that has three aims: acquisition
of structural response data, local interrogation of collected mea-
surement data, and wireless transmission of that data or analysis
results to a Wireless Sensor Network (WSN), which comprises
other wireless sensing units [34]. As explained in [158], a WSN is
composed of four mean stages: communication, data acquisition,
processing, and fusion stages. Moreover, WSNs encompass many
fields: wireless communication, network technology, integrated
circuits, sensor technology, MEMS, among many others. WSNs are
composed of data acquisition systems which have numerous
design parameters: a number of channels, a maximum sampling
rate, and resolution, among others; a computational core, where
all the data acquired are stored and which possess processing
capabilities; and the wireless communication channel.

A real WSN application is presented in [157], where three WTs
in operation, instrumented with WSN, proved their efficacy in
operational conditions. While in the first turbine instrumented,
the aim was to prove the accuracy in the collection and trans-
mission of vibrational data from the turbine's tower, in the second
turbine instrumented, several strain gauges were also included at
its base. In both, wireless communication channels, performance
was assessed and their data used for offline output-only towers
modal analysis.

The acquired data from WTs contain key features for future
developments in the Wind Energy Industry. For that reason, opera-
tors are starting to appreciate the importance of investing in SHMS
[159]. However, even though monitoring has many proven advan-
tages, it is expensive and its costs are the cause why only a few
operational turbines have extensive sensor instrumentation [157]. An
assumption usually made, is that traditional cable based monitoring
systems are cheaper and easier to install. Nevertheless, this tech-
nology is not only more costly to install, but also introduces diffi-
culties in the installation process due to the cables. On the contrary,
wireless sensors are substantially cheaper and easier to install than
traditional cable-based systems [160]. In the case of turbine blades,
wireless communication eliminates the necessity of moving data
through a slip ring interface, which is difficult and costly.

Wireless sensors are not, exactly, cable-based sensor replace-
ments; without wires, wireless sensors usually depend on intern-
ally stored power for operation. Inefficient use of wireless sensors
will deplete this precious energy source rapidly, making frequent
battery replacement necessary. Among the three different types of
WSN topologies (Star, Cluster tree, and Mesh [158]) there are
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several important issues for WSN use in SHMS. These were sum-
marized in [157]: compatibility issues between different types of
sensors, their sampling frequencies, the problem of transmission
bandwidth and real-time ability variance, the selection of a wireless
transmission frequency, topology choice, data fusion method, and
the contrast between the energy consumption requirements of
different applications to that of each different device.

Even though WSN have been proven to be applicable to OWFs
[80], they have the disadvantage of the high amount of power
needed by the sensors, which had been tried to be diminished
with an increased interest in data telemetry with energy har-
vesting [161,162]. In order to provide enough power to the sensors
without using batteries, piezoelectric, thermoelectric and photo-
voltaic energy harvesting techniques were assessed in [163], on a
cross section of a CX-100 WT blade. The aim was to determine the
feasibility of powering individual nodes that would compose the
sensor network. In another study [164], a 4-channel AE wireless
node was powered by structural vibration and wind energy har-
vesting modules.

4.3. Data normalization and cleansing

The ability to normalize the measured data with respect to
varying EOC is a key aspect of a SHMS in order to avoid false
positive indications of damage [19]. One example of the normal-
ization process is carried out to the measured inputs when modal
parameters are being extracted. Two strategies can be employed
for normalizing these data: when the EOC are available and are not
available.

The most important aspect regarding accuracy of data nor-
malization comes with the damage sensitive features that must be
extracted from these data. Those damage sensitive features must
not be lost or diluted by the normalization process. There are
different data normalization techniques. Some examples are: the
subtraction of the mean value of a measured time history for direct
current off-sets removal from the signal, the division by the
standard deviation of the signal for normalizing varying ampli-
tudes in the signal, curve fitting of analytical forms of the fre-
quency response function to measured frequency response func-
tions in experimental modal analysis, among others. If the struc-
ture is linear, this normalization procedure removes the influence
of the input from the parameter estimation procedure.

Data normalization constitutes a very important part of the
damage identification process as it affects significantly Neural
Network (NN) performance [165]. Even though not all sources of
variability in the data acquisition mechanism can be eliminated,
they need to be identified and minimized as much as possible
[166]. Therefore, appropriate measurements need to be carried out
in order that such sources of variability can be statistically quan-
tified [19]. An example of data normalization in OWT is explained
in [167], where a non-linear regression model to perform data
normalization was used in real-life data obtained from the
monopile of an OWT. Further research on this topic will be carried
out in the future because, in order to achieve successful SHM goals,
data normalization procedures able to discriminate whether
measurement variations are motivated by damage in the structure,
or by changes in the EOCs [168].

Data cleansing is the procedure of selectively choosing data to
pass on or to reject from the feature selection process or, in other
words, is the procedure of selectively discarding data that might
not represent the system's behavior [11]. Data cleansing is a dif-
ficult process due to the fact that it is commonly based on experts’
knowledge gained in previous data acquisition processes. An
example of data cleansing could be when a sensor is discovered to
be loose and, therefore, based on the judgment of the experts; the
measurements carried out by that sensor are not accurate and can
jeopardise the accuracy of the data set. For this reason, the whole
set might be discarded from the feature selection process. Signal
processing techniques, such as filtering and resampling, can also
be thought of as data cleansing procedures [24,34,169,170].
5. Feature extraction and information condensation

Feature extraction constitutes the methodology that refers to
the identification of the damage sensitive physical characteristics.
It is usually determined by the data obtained from the structure
and is application specific [171]. Many methods can be used for
damage feature identification, the most basic one being compar-
ison of SHMS output data with similar data obtained when the
same structure has experienced a damaging event. This metho-
dology is based on the fact that damaging events have already
occurred. Another process for feature identification is the numeric
simulation of the damaged system's response to postulated inputs,
which is currently the most used technique in several industries,
e.g. the automotive industry. Another option for recognizing these
sensitive features would be testing the structure or a representa-
tive specimen in a laboratory, introducing the expected damage.
Damage-accumulation testing, during which structural compo-
nents of the system under study are subjected to a realistic load-
ing, can be used also to identify appropriate features [119]. As
Farrar and Worden explain in [11], this methodology might involve
induced-damage testing, fatigue testing, corrosion growth or
temperature cycling to accumulate certain types of damage. As
such, numerous articles in this theme issue are devoted to the
feature extraction portion of SHM [18,20–22].

Data Condensation constitutes an inherent part of the Feature
Extraction procedure. The different types and quantity of sensors
needed to make any SHMS work efficiently and accurately usually
produce huge amounts of data. Therefore, data condensation is,
most of the time, a necessary stage occurring before the analysis of
the extracted data through the statistical models. One possibility
of data condensation is to summarize all the damage sensitive
features in their adimensional form into feature vectors of small
dimension. This constitutes an accurate way of estimating the
feature's statistical distribution [119]. Moreover, data condensation
is not only beneficial due to the savings in computational power,
but also necessary in case of comparisons of many data sets over
the lifetime of the structure. Even though the more data con-
densation is achieved, the more computational power is saved; the
sensitivity of the chosen features to the structural changes under a
certain level of variability in the EOC has to be ensured by the
employment of robust data reduction techniques (such as, Prin-
cipal Components Analysis [172], Discriminant Analysis [173],
Regression Analysis [174], etc. [175]).

Another option for data condensation in AE is proposed in
several studies [5,176]. This technique is based on the use of
Structural Neural Systems, a highly distributed sensor concept that
mimics the signal processing in the biological neural system [50].
This methodology is employed in situations when a great level of
accuracy in the damage evaluation is needed, as both the number
of sensors and the amount of power needed for condensing and
processing the data increase considerably. Moreover, an
improvement in this technology is presented in [177] by the
connection in series or array pattern of multiple piezoceramic
patches. This connection decreases the amount of channels
necessary for data collection of AEs or high strains.

6. Statistical model development

Statistical Model Development is the Pattern Recognition sec-
tion that addresses the applicability of the algorithms that operate
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on the extracted features, identifying and quantifying damage in a
structure. There are two main types of algorithms: supervised and
unsupervised learning [23–25]. These categories of algorithms
correspond to SHMS that do contain and do not contain data from
the damaged structure, respectively. Supervised learning approa-
ches are preferable, as by their application, damage can be clas-
sified and quantified, while damage identification is the further
level of damage, according to Rytter's Damage States of a System
[178], that unsupervised learning algorithms allow [119].

6.1. Supervised learning

When supervised learning approaches are employed, very high
demand of data is associated with them, as data from every con-
ceivable damage situation must be available [179]. The two pos-
sible sources of damage data come from: physics-based modelling
(i.e. from Finite Element Analysis (FEA)), and experiments. Diffi-
culty in obtaining these data in some fields jeopardises the
applicability of this approach (e.g. aviation). Moreover, to accu-
mulate enough training data, copies of the system of interest that
can be intentionally damaged in different ways, might be neces-
sary. The different analyses that can be categorised as supervised
learning algorithms are introduced below.

6.1.1. Response surface analysis (RSA)
The RSA obtains the approximation relationship between the

resonance frequencies and other damage parameters (i.e. damage
location, and size). An example of this technique is explained in
[180], where damages were satisfactorily identified in beams and
plates made of CB reinforced plastic. The technique was applied to
data simulated in analytical models. Nevertheless, the applicability
of this technique, experimentally, is low as numerous data from
various damage conditions are required.

6.1.2. Fisher's discriminant
This method introduces a linear transformation of the original

multivariate distributions into univariate distributions whose
means are as far apart as possible, while the variances of those
transformed distributions are as small as possible [119]. It was
satisfactorily applied in [6] where linear and quadratic dis-
crimination methodologies were implemented to measurements
taken from a concrete bridge column subjected to static and
dynamic testing. No relevant applications of this methodology
have been found for OW; however in [181] a new co-training
algorithm based on modified Fisher's Linear Discriminant Analysis
was proposed for semi-supervised learning, which is meant to be
very useful in applications such as brain-computer interface
design.

6.1.3. Neural networks (NN)
NN are commonly used in SHMS for identifying, locating, and

quantifying damage in structures. This methodology is nowadays
very well known as substantial textbooks and monograph
accounts exist [182]. NN are the group of statistical learning
models inspired by biological NN. The reason NN are extremely
useful in SHM applications is the fact that they are used to esti-
mate or approximate functions that can depend on a large number
of inputs and are generally unknown [179].

Some of the studies that have employed NN in the past for
assessing structural damage include: the evaluation of two NNs for
damage assessment, namely the Multilayer Perceptron Network
and the Radial Basis Function Network [183]; and the damage
detection and location in a numerical simulation of a two-
dimensional truss structure by using a feed-forward NN [184].
Other studies employed NN for assessing the integrity of bridges
as the auto-associative NN employed in [185] or in [186] where NN
were trained with FEA data of the bridge.

NNs were also used for structural damage detection in plate
truss structures, where damage was assessed by evaluating dif-
ferent learning rates, network types, reduction techniques of
network topologies, and dimension analysis [187]. Different
reports [188–190] assess the benefits and drawbacks of using
sensors and NN to detect impact in composite materials, which
could be a possibility for SHM of OWT blades.

6.1.4. Genetic algorithms
Ruotolo and Surace did most of the research related to this field

between 1996 and 2001 [191–194]. In 1997 they formulated a
problem for choosing the location and depth of cracks in beams
employing measured modal parameters, which afterwards will be
optimized by a genetic algorithm [192,195] and [191]. Never-
theless, there are some practical issues because, as the structure's
complexity increases either size or geometry, the optimization
becomes prohibitive [27]. The same authors carried out a similar
study in 1998 where genetic algorithms, simulated annealing, and
eigensensitivity analyses were compared in order to identify sev-
eral damage scenarios in a FEA of a frame structure [196]. Similar
studies were carried out in [197] for detecting damage in a
composite beam.

6.1.5. Support vector machine (SVM)
The SVM constitutes a powerful framework for general classi-

fication and regression problems; as many different types of dis-
criminant functions, such as linear, nonlinear, neural network, and
radial-basis discriminant functions, can be put in this tool with no
real modifications [198]. While in [199], a SVM is applied to
damage classification problems in ball bearings and truss struc-
tures, in [168], nonlinear principal component analysis based on
the unsupervised support vector machine is introduced and
incorporated for data normalization.

6.2. Unsupervised learning

Unsupervised Learning constitutes an alternative to Supervised
Learning when no damage state data are available. However, the
drawback Unsupervised Learning algorithms have, is that they can
only be used for detection and possibly locating the damage [200].
For that reason, they have perhaps received less attention than
Supervised Learning approaches. A common type of Unsupervised
Learning algorithms is known as novelty detection or anomaly
detection method [201–203]. The idea of novelty detection is that
only training data from the normal EOC of the structure or system
are used to establish the diagnostic. To do so, a model of the
normal EOC is created with the aim of comparing it with the one
made with the newly acquired data. When significant deviations
are detected, the algorithm indicates novelty, which means that
the system has departed from the normal condition and, therefore,
acquired damage. Unsupervised Learning algorithms can be
roughly categorized into three groups, i.e. Control Chart Analysis,
Outlier Detection, and Neural Networks.

6.2.1. Control chart analysis
This methodology continuously monitors the features extracted

from the measurements, for anomalies. When the observations
fluctuate outside the control limits, the monitoring system alarms
the abnormality of the system's condition [27]. In [6], Control
Chart Analysis for monitoring a reinforced concrete bridge column
was used. It has also been frequently used for process control of
chemical plants, manufacturing facilities, and nuclear power
plants.
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6.2.2. Outlier detection
Outlier, or novelty detection, is the primary class of algorithms

applied in unsupervised learning applications. These algorithms
assess statistical distributions of the measured or derived features
to enhance the damage identification process [204]. When applied
in an Unsupervised Learning mode, statistical models are typically
used to answer questions regarding the existence and location of
damage. When applied in a Supervised Learning mode and cou-
pled with analytical models, the statistical procedures can be used
to better determine the type of damage, the extent of damage and
remaining useful life of the structure. The statistical models are
also used to minimize false indications of damage (both false-
positive and false-negative), as these are undesirable.

Outlier Detection Methodologies use changes in the rank of a
matrix as a damage indicator [196]. Firstly, a matrix is composed
by putting the feature vectors in columns, measured during
Table 1
Technology assessment: capabilities and limitations.

Technology Capabilities

Acoustic emission monitoring � Very effective detecting failure mechan
� Allows a simple, rapid and cost-effectiv

of a structure.
� Good response at low frequencies.
� Multifunctional character of piezoelectr

Type of sensors:
- Piezoelectric transducers

Thermal imaging method � Fast.
� Cost effective.
� Trials using drones are currently bei

detect cracks up to 0.3 mm based on te
the necessity of having personnel insid
more cost effective. Moreover, time re
traditional sensors.

Type of sensors:
- Impedance tomography
- Thermography (infrared cameras)

Ultrasonic methods � It is sensitive to both surface and subsu
� The depth of penetration for flaw de

superior to other NDT methods.
� Only single-sided access is needed whe

is used.
� It is highly accurate in determining r

mating size and shape.
� Minimal preparation is required.
� Electronic equipment provides instanta
� Detailed images can be produced with
� It has other uses, such as thickness m

flaw detection.

Type of sensors:
- Piezoelectric transducers

Fatigue and modal properties
monitoring

� High reliability, mature technology
� Easy installation.
� There are many different techniques av
� Recent developments in Operational M

limitations.
� Stable performance.

Type of sensors:
- Accelerometers.
- MEMS.
- Plastic optical-fiber based
accelerometers.

- Velocimeters.

Strain monitoring � Easy installation process once appro
undertaken.

� Mature technology.
� Optical fiber might be the future of str

prone to fatigue, eliminates wiring issue
be monitored with the same cable.

Type of sensors:
- Strain gauge (capacitance, inductance,
semiconductor and resistance).

- Fiber optic cables.
- Fiber Bragg Grating (FBG).
various EOC of a structure, without any damage state. Singular
value decomposition is used to estimate the rank of this matrix.
After that, the same matrix is increased by adding an additional
column containing a new feature vector, this time corresponding
to a potential damage state of the structure. In case this new
feature vector corresponds to a damaged structure, it will be
independent from the previously measured vectors and, therefore,
the rank of the matrix will increase [205].

The basic principle of novelty detection is that a model of the
system is built using training data only acquired from normal EOC
of the structure. While the monitoring of the structure takes place,
newly acquired data are compared with the model. In the case that
significant deviations are found, the algorithm indicates novelty,
which means that the system has deviated from the normal con-
dition and, therefore, is damaged [206]. Three different novelty
indices to detect damage in composite plates where introduced in
Limitations

isms up to microscale.
e inspection or monitoring

ic sensors.

� Limited application offshore
� Variable damage characterization and assessment

effectiveness depending on the algorithm.
� Optimization of data processing needed as it still

takes up much time and computational effort.
� High sensitivity to background noise.
� AE systems can only qualitatively gauge how much

damage is contained in a structure.
� Determining acoustic signature of the structure is

very difficult

ng conducted, which will
chnology limitations, avoid
e the turbine and be even
quired would be less than

� Limited implementation in offshore structures.
� Camera resolution for detecting cracks
� Laborious Image processing
� Cracks detection needs more automation from

footage.

rface discontinuities.
tection or measurement is

n the pulse-echo technique

eflector position and esti-

neous results.
automated systems.
easurement, in addition to

� Surface must be accessible to transmit ultrasound.
� Skill and training required is more extensive than

other methods.
� Coupling medium to promote the transfer of sound

energy into the test specimen is required.
� Difficulty of inspection of rough, irregular, very

small, exceptionally thin or not homogeneous
materials.

� Difficulty of inspection of cast iron and other coarse
grained materials.

� Linear defects oriented parallel to the sound beam
may go undetected.

� Reference standards are required for both equip-
ment calibration and the characterization of flaws.

ailable for this purpose.
odal Analysis solve some

� Difficult analysis in operating conditions.
� High number of uncertainties when applied in the

offshore environment.
� Environmental and Operational Conditions changes

have to be accounted in the results.
� Difficulties in wind and wave loads measuring.

priate training has been

ain monitoring as it is less
s and allows more points to

� Not very robust system.
� The installation is very sensitive to misalignments.
� Reduced service life.
� Distance between the sensor and the Data Acqui-

sition System influences accuracy and limits sensor
location.

� Mechanical properties limitations
� Can be affected by EMI noise.
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[207]. Thus, a stochastic subspace approach to determine damage
existence in a structure was used in [208].

6.2.3. Neural networks
NN in the Unsupervised Learning mode work in the same way

as in the Supervised, apart from the fact that no data from
damaging events are available. A good example is the adaptive NN
model proposed in [209]. In the model, data obtained from FEA
simulations are used to train the NN; being the modal parameters
from the FEA simulations used as inputs. The NN output will
consist of structural parameters. Once modal parameters from the
actual structure become available, the NN is used to calculate the
associated structural parameters. Finally, the FEA model is updated
using these new structural parameters, calculating the associated
modal parameters. Training will stop when the measured modal
parameters are acceptably not so different from those calculated
from the FEA model. In [210] a discussion of delamination detec-
tion within composites applying a similar methodology can be
found. Good agreement between experimental and analytical
results was achieved. In [48], synthetic damage patterns are
introduced in the FEA models. These models’ structural responses
to the damage patterns are calculated, analyzed, and archived in a
“damage catalogue” which was used for posterior deteriorations
and damage assessment of the WT structure, in near real time. The
most recent NN application to WT blades is explained in [81],
where the different NN types that can be used are identified.
7. Discussion

Previous sections have reviewed the different SHM technolo-
gies that could be employed for OWTs. A summary of related
critical aspects, such as cost/effectiveness, capabilities and limita-
tions can be found in Table 1, based on a structured survey aiming
to map current practice within the industry. Responses have
indicated high levels of interest and engagement in this topic
obtaining responses from multiple industrial stakeholders
including sensor providers, equipment providers, consultancies
and designers, and developers/operators.

Some of the conclusions derived from the data collection pro-
cess can be summarized below:

� First generation of wind farms were equipped with sensors after
their deployment. The technologies mostly used were strain and
fatigue and modal properties monitoring.

� The percentage of instrumented turbines within a wind farm is
between 3% and 12%, showing a wide discrepancy in best
practice.

� Strain gauges, accelerometers and inclinometers are the tech-
nologies mostly used for Structural Health Monitoring. LVDTs
(Linear Variable Differential Transducer) are of interest as they
can measure displacements with high reliability and accuracy,
however at the expense of cost.

� To date, natural frequency analysis is considered to be the most
commonly applied practice for detecting deviations from the
design intent in wind turbine foundations, as other techniques
are either very expensive, low maturity or of low accuracy.

� Fiber optics technology for strain measurement is considered a
promising future technology due to the numerous benefits it
brings. However, this option has not been costed or imple-
mented in any case and installation needs to be carefully
assessed.

� A necessity of the development of new methodologies to col-
lect, review, purify and analyze the data collected by CM and
SHM solutions has been pointed out by most of the
interviewees.
8. Conclusions

In this paper, a review of the Statistical Pattern Recognition
Paradigm for SHMS for OWT has been carried out. It is expected
that by the assessment of each one of the stages present in this
paradigm, SHMS can contribute in the development of an appro-
priate Condition Based Maintenance Strategy. The optimization of
this strategy will lead to reducing labor costs of WT inspection,
preventing unnecessary replacement of components, discovering
design weaknesses before failure, improving the availability of
power while preventing WTs overloading, and maximizing return
in wind farm investments [50]. Increasing efficiency in operational
management will contribute towards achieving UK's 2020 and
2050 targets, through ultimately reducing the Levelised Cost of
Energy (LCOE) [211].
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