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Inverse Inequalities for Chebyshev Approximations in L” Norms 
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Abstract. Inverse inequalities in the space of polynomials, relating the maximum norm in [-1,1] 
and weighted Sobolev norms, an shown. 

Statement of the problem. We first introduce the following norms in the space of 
continuous functions: 

]I~]]o = (J_: m2-dx) 1’2 , 

lldlll = (11~11~ + ll&ll~)“2, 4 E CO([-l, 1117 

where w(z) = -$=-J is the Chebyshev weight. It is well-known that it is possible to find 

two constants Ci, Cs > 0 such that: 

Gll9llo 5 ll6llca L C2ll4lll, v4 E c”([-ll 11). (1) 

On the other hand, if we denote by PN the space of polynomials whose degree is less or 
equal to N, the following inverse inequali2ie.s hold (see [l] and [4]): 

114111 5 GN3’*ll~llc.z L C2N2114110, Vd E PN, (2) 

where Cl, C2 > 0 do not depend on N. 

Besides, denoting by x:~) = cos $, j = 0, . . . . N the Chebyshev Gauss-Lobatto nodes in 

[-l,l], we can consider the norms in PN: 

IldJll N,w = mat O<j<Nl4jl , 

lldllN;l = (IldllN.0 + ll’$~(lN,O)~‘~ t 4 E PN, 

where 4j = +(xiN’) and the symbol C” indicates that the first and the last terms in 

the summation are halved. Let us remark that these norms are those actually used in 
computations. 
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In [2] it is shown that discrete and continuous Sobolev norms are uniformly equivalent; 
i.e., we can determine Ci, C’s > 0 such that: 

This does not apply anymore for the maximum norm. Actually we have: 

where u is an increasing function of N which grows at least like log(N) (see [5], p.13). 
Here we shall show the exact equivalent of (2) for the discrete norms; more exactly we 

can prove the existence of two constants Ci, Cs > 0 such that: 

~~6~~N,l 5 C1N3'*11dllN,m 5 C2N*lldllN,o , vd E PN. (5) 

We remark that (5) cannot be trivially obtained by (2), (3) and (4). 

Proof. The right hand side inequality in (5) is easily obtained by noting that: 

To prove the left hand side inequality, we first note that: 

112 

= 6 IldllN,ce t vd’ E PN. (6) 

Afterwards, we define FIN’ = cos %$7r , i = 1, . . . . N ; therefore we have the quadrature 
formula (see [5]): _. 

I 
1 

-1 
$wdx = $ 5 $(<jN’) , ‘dll, E P2N-1. 

j=l 

In [4] it is shown that for any 4 E PN we have: 

Thus, one gets by (3): 
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Now, recalling that sinr 1 %, z E [O, $1 we obtain the estimates: 
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N 

c 1 

j=1 1 -(BIN’)’ 
(8) 

Combining (6), (7) and (8), we can easily conclude. 
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