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Abstract

In this paper, we develop a formalism for working with representations of vertex and

conformal algebras by generalized fields—formal power series involving non-integer powers of

the variable. The main application of our technique is the construction of a large family of

representations for the vertex superalgebra VL corresponding to an integer lattice L: For an

automorphism #s : VL-VL coming from a finite-order automorphism s : L-L we find the

conditions for existence of twisted modules of VL: We show that the category of twisted

representations of VL is semisimple with finitely many isomorphism classes of simple objects.
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0. Introduction

One of the most fascinating features of vertex algebras is their ‘‘sensitivity’’ to
finite-order automorphisms. This is best illustrated by the construction of Moon-
shine representation of the Monster simple group [2,12].

In general, vertex algebras are represented by formal power series, also called
vertex operators, of the form

aðzÞ ¼
X
nAZ

aðnÞz�n�1; aðnÞAglðVÞ;

with coefficients in the algebra of linear operators on some space V : In this case V is
a module over the vertex algebra. Having a finite-order automorphism on a vertex
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algebra A means that there is a grading A ¼ "lAG Al on A by a finite cyclic group
G: Assume that GCC=Z; then it is tempting to represent the vertex algebra A by the
so-called twisted or generalized vertex operators, involving non-integer powers of z;

so that an element aAAl is represented by series of the form

aðzÞ ¼
X

n�l mod Z

aðnÞ z�n�1; aðnÞAglðVÞ:

This indeed could be done, and then V becomes a twisted module over A: In fact this
construction works for any group GCC=Z:

The idea of twisted realizations of vertex algebras goes back to the work of
Lepowsky and Wilson [20], who introduced the so-called twisted vertex operators.
These operators were systematically studied in [12,17,19]. Twisted modules of vertex
algebras were defined in [5,10], see also [7,17,22]. Closely related is the theory of
orbifolds—the invariant subalgebras of vertex algebras under an action of a finite
group of automorphisms. Twisted representations of the vertex algebra yield
ordinary (non-twisted) representations of its orbifold, see e.g. [1,3].

In this paper, we develop a formalism for working with generalized vertex
operators and use it to construct generalized representations of conformal and vertex
algebras in a very general setting. Then we consider two applications of this
techniques.

First, we study realizations of conformal algebras by twisted formal series.
Conformal algebras were introduced by Kac [15], see also [16,27,28]. They
proved to be a valuable tool in studying vertex algebras, the relation between the
former and the latter is somewhat like the relation between Lie and associative
algebras.

The second application is the construction of generalized representations of the
vertex (super)algebra VL corresponding to an integer lattice L: Our result is similar
to that of Dong and Lepowsky [7], but we use different techniques and get a slightly
more general construction. Lattice vertex algebras were extensively studied in
[4,6,12,15,24]. They play a very important role in different areas of mathematics and

physics, in particular the Moonshine vertex algebra Vy; mentioned above, is closely
related to the lattice vertex algebra of certain even unimodular lattice of rank 24,
called the Leech lattice. In fact, one needs to consider a twisted representation of the
vertex algebra of the Leech lattice in order to construct the Moonshine vertex
algebra.

An automorphism s : L-L of the lattice can be extended (in a non-unique
way) to an automorphism #s : VL-VL of the lattice vertex algebra. Our construc-
tion of generalized VL-modules yields all reasonable twisted modules of VL

corresponding to the grading by the root spaces of #s: It turns out that sometimes
there is no twisted representation for either continuation of s: In this case the

representations of the orbifold vertex algebra V #s
L do not come from the twisted

representation of VL:
For an automorphism #s : VL-VL as above we define a category O #s of twisted

representation, analogous to the category O of representations of Kac–Moody Lie
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algebras. All reasonable twisted VL-modules, including those that satisfy a
traditional definition of a module over a vertex operator algebra as in [10,12],
belong to O #s: We prove that the category O #s is semisimple with finitely many
isomorphism classes of simple objects, that is, every module VAO #s is decomposed
into a direct sum of irreducible submodules, and there are only finitely many
irreducible modules, up to an isomorphism. This result has been also obtained
recently by Bakalov et al. [1]. Some special cases were known before, for example
the case when s ¼ �1 was studied by Dong [5] and Dong and Nagatomo [9],
the case when L is a simply laced root lattice and s is an element of the Weyl
group of corresponding affine Kac–Moody algebra was studied by Kac and
Peterson [17].

Organization of the manuscript: We start with giving formal definitions of
conformal and vertex algebras. For more details the reader can consult the books
[6,12,15]. Then, in Sections 1.2–1.7 we discuss some properties of these algebras in
the context of generalized formal series. In Section 1.3 we derive a nice formula for
the products of generalized series, which is probably new. In Section 1.5 we prove
that conformal and vertex algebras are exactly the algebraic structures formed by
generalized series with coefficients in a Lie algebra and generalized vertex operators,
respectively. For vertex algebras this was proved by Li [22] in a slightly less general
setting and using different methods. For the non-twisted case this result is well
known [15,23].

In Section 2 we show how the approach developed in Section 1 works for
conformal algebras. As in the non-twisted case, there is a universal realization of a
conformal algebra L with coefficients in a certain Lie algebra CoeffG L: This Lie
algebra can be constructed explicitly from L: In Section 2.2 we illustrate this by the
example of an affine conformal algebra. Similar ideas appeared also in [16].

In Section 3 we study generalized representations of lattice vertex superalgebra
VL: After some preliminary information on representations of Heisenberg algebras
(Section 3.1) and Fock spaces (Section 3.2) we define in Section 3.3 the twisted vertex
operators, first introduced by Lepowsky [19]. In Section 3.4 we show that these
operators generate a representation of the lattice vertex algebra.

In Section 3.6 we show that we have in fact constructed all reasonable generalized
representations of lattice vertex algebras. The argument uses an idea of Lepowsky
and Wilson [21], which was also used in [4,5,12,24].

Finally in Sections 3.7–3.8, we study the twisted representations of VL; i.e.
generalized representations, which are homogeneous with respect to the grading
induced by an automorphism #s of VL: In Section 3.7 we find the conditions on
generalized VL-module, constructed in Section 3.4, to be #s-twisted, while in Section
3.8 we define the category O #s of twisted VL-modules and prove that this category is
semisimple with finitely many isomorphism classes of simple objects.

The key idea is to show that the category O #s is equivalent to the category of graded
representations of certain graded associative algebra A; which turns out to be graded
semisimple. This idea is similar to the idea of Zhu algebra, introduced by Zhu [29]
and then generalized for the twisted case by Dong et al. [8]. However, our algebra A

is quite different from the Zhu algebra of VL:
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1. Vertex algebras

In this section, we give an abstract definition of the main objects of this paper—
conformal and vertex algebras, and then show how they can be represented by
generalized formal power series. Conformal algebras were defined by Kac [15,16], see
also [27,28]. The first axiomatic definition of vertex algebras is due to Borcherds [2],
see also [11,12,15]. We recall here some basic properties of these algebras and
develop some techniques that will be used in Sections 2 and 3.

All algebras and spaces are over a ground field k of characteristic 0.

1.1. Definitions of conformal and vertex algebras

A Conformal algebra is a vector space L equipped with a sequence of bilinear
products n : L#L-L; nAZþ; and a linear operator D : L-L; such that the
following axioms hold for all a; b; cAL and nAZþ:

(C1) (Locality) a n b ¼ 0 for nb0:
(C2) Dða n bÞ ¼ ðDaÞ n b þ a n ðDbÞ ¼ �na n � 1 b þ a n ðDbÞ:
(C3) (Quasisymmetry)

a n b ¼ �
X
iX0

ð�1Þnþi 1

i!
Diðb n þ i aÞ:

(C4) (Conformal Jacoby identity)

ða n bÞ m c ¼
Xn

i¼0

ð�1Þi n

i

 !
ða n � i ðb m þ i cÞ � b m þ i ða n � i cÞÞ:

Example. The Virasoro conformal algebra Vir is generated over k½D� by elements u
and c; such that Dc ¼ 0 (and therefore all products with c are 0 due to (C2)) and the
products of u with itself are

u 0 u ¼ Du; u 1 u ¼ 2u; u 3 u ¼ c: ð1Þ

The rest of the products are 0.

A vertex algebra can be defined axiomatically as follows. Let A be a linear space
endowed with a sequence of bilinear operations n : A#A-A; nAZ; and a

distinguished element 1AA: Let D : A-A be a linear map given by Da ¼ a �2 1:
Then A is a vertex algebra if it satisfies the following conditions for any a; b; cAA

and m; nAZ:

(V1) (Locality) a n b ¼ 0 for nb0:
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(V2) (Identity) 1 n a ¼ dn;�1a; a n 1 ¼ 0 if nX0;
1

ð�n�1Þ! D
�n�1a if no0:

�
(V3) (Associativity)

ða n bÞ m c ¼
X
iX0

ð�1Þi n

i

 !
a n � i ðb m þ i cÞ

�
X
ipn

ð�1Þi n

n � i

 !
b m þ i ða n � i cÞ:

(V4) (Commutation)

a m ðb n cÞ � b n ða m cÞ ¼
X
iX0

m

i

 !
ða i bÞ m þ n � i c:

This is not the shortest possible list of axioms. See the references cited above for
other equivalent definitions.

For n;mX0; associativity (V3) is exactly the conformal Jacoby identity (C4).
Among other properties of vertex algebras are formulas (C2) as well as the
quasisymmetry identity (C3), which holds for all integer n: So vertex algebras are a
special case of conformal algebras.

There is an additional axiom which is often imposed on vertex algebras, see
[6,11,12,23]. A vertex algebra A is called a vertex operator algebra if

(V5) A ¼ "nAZ An is graded so that 1AA0 and Ai n AjCAiþj�n�1:

(V6) There exists an element uAA2 generating the Virasoro conformal algebra
VirCA; so that relations (1) hold, where c ¼ c1 for some cAk: Also,

u 0 a ¼ Da; u 1 a ¼ ðdeg aÞa for all homogeneous aAA: The number 2c is
called the conformal charge of A:

In Section 1.5 we show that conformal and vertex algebras are precisely the
algebraic structures formed by certain formal infinite series.

1.2. Formal series and locality

Let L be a Lie algebra. Denote by Lfzg the k-linear span of all series of the formX
nAlþZ

aðnÞz�n�1; aðnÞAL; lAk:

For a linear space V ; let vofVgCðgl VÞfzg be the space of all such series with
coefficients in the Lie algebra gl V with the property that aðnÞv ¼ 0 for nb0 for any
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fixed vAV : We call vofVg the space of generalized vertex operators. It contains the
space voðVÞ of ordinary vertex operators, that involve only integer powers of z:
Denote by 1AvoðVÞ the vertex operator with the only non-zero coefficient being
1ð�1Þ ¼ id:

The space Lfzg ¼ "½l�Ak=Z Lfzg½l� is graded by the group k=Z so that Lfzg½l�

is the space of all series of the form z�lalðzÞ; alðzÞAL½½z71�� ¼ Lfzg½0�: The space of

vertex operators FfVg is a homogeneous subspace of ðglVÞfzg and voðVÞ ¼
vofVg½0�:

A pair of series a; bALfzg are said to be local of order NAZþ [6,15] if ðz �
wÞN ½aðwÞ; bðzÞ� ¼ 0; or, equivalently,

XN

s¼0

ð�1Þs N

s

 !
½aðn � sÞ; bðm þ sÞ� ¼ 0 8m; nAk:

The same applies for a; bAvofVg: It is easy to see that if series a ¼
P

l z�lal; b ¼P
l z�lblALfzg are local of order N; then any two homogeneous components

al; bmAL½½z71�� are local of the same order.

Remark. The space voðVÞ of vertex operators over V is a linear space over the field
F ¼ kððzÞÞ of formal power series in z: Let E*F be the field extension of F

generated by zl for all lAk: Both F and E are differential fields, and E is a
differential Galois extension of F : Then vofVg is a linear space over E; and in fact
vofVg ¼ voðVÞ#F E: We observe that the multiplication by the elements of E does
not affect the locality of vertex operators.

It is possible to consider a more general extension E of kððzÞÞ; for example
involving log z: Most of the results in this paper can be generalized to this more
general setting.

1.3. The products of formal series

Recall that for two ordinary vertex operators a; bAvoðVÞ; one can define products

a n bAvoðVÞ; nAZ; in the following way. Let iw;z : kðw; zÞ-kððw�1; zÞÞ and

iz;w : kðw; zÞ-kððw; z�1ÞÞ be the expansions of a rational function into Laurent

series at ðw; zÞ ¼ ðN; 0Þ and ðw; zÞ ¼ ð0;NÞ; respectively, so that

iw;zðw � zÞn ¼
X
iX0

ð�1Þnþi n

i

 !
wn�izi;

iz;wðw � zÞn ¼
X
iX0

ð�1Þi n

i

 !
wizn�i: ð2Þ
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Of course, if nX0 then iw;zðw � zÞn ¼ iz;wðw � zÞn: We define

ða n bÞðzÞ ¼ ReswðaðwÞbðzÞiw;zðw � zÞn � bðzÞaðwÞiz;wðw � zÞnÞ: ð3Þ

The mth coefficient of a n b is given by

ða n bÞðmÞ ¼
X
sX0

ð�1Þs n

s

 !
aðn � sÞbðm þ sÞ

�
X
spn

ð�1Þs n

n � s

 !
bðm þ sÞaðn � sÞ: ð4Þ

If nX0 then the products a n b make sense for formal series a; bAL½½z71�� as well.
In this case (4) simplifies to

ða n bÞðmÞ ¼
X

s

ð�1Þs n

s

 !
½aðn � sÞ; bðm þ sÞ�:

One can solve these equations with respect to the commutators and thus recover the

bracket in L from the products in L½½z71��:

½aðmÞ; bðnÞ� ¼
X

s

m

s

 !
ða s bÞðm þ n � sÞ ð5Þ

for every mAZþ; nAZ: If a and b are local, then (5) holds for all m; nAZ:

On the other hand, the �1st product is given by a �1 b ¼ a�bþ baþ; where

a7ðzÞ ¼
P

n_0 aðnÞ z�n�1: It is also called the normally ordered product and is

sometimes denoted by : ab : : For any no0; we have a n b ¼ 1
ð�n�1Þ!:ðD�n�1aÞb:;

where D ¼ d=dz : vofVg-vofVg is the operator of differentiation. It follows that
vertex operators satisfy relations (V2).

Now we show how to expand these products to vofVg and Lfzg: For

homogeneous a ¼ zla0 and b ¼ zmb0; where l; mAk and a0; b0 involve only integer
powers of z; we set

a n b ¼
X
jX0

l

j

 !
ða0 n þ j b0Þzmþl�j: ð6Þ

Here

l

j

 !
¼ lðl� 1Þ?ðl� j þ 1Þ

j!
:

Note that the summation in (6) is finite due to the locality of a and b; and hence of a0

and b0: One can easily check that products (3) satisfy identity (6) if we substitute
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a ¼ zla0; b ¼ zmb0 for l; mAZ: We extend the definition of the products n by
linearity to arbitrary a; bAvofVg and a; bALfzg when nX0: Note that

a n bAvofVg½lþm� if aAvofVg½l� and bAvofVg½m�:
It is clear that if a and b are local of order N then a n b ¼ 0 for nXN: It could

also be shown that (5) remains valid for generalized series as well if a and b are
homogeneous and m � deg a mod Z; n � deg b mod Z:

We now write explicitly the formula for the products of twisted vertex operators
a; bAvofVg; analogous to (3). Let N be the order of locality of a and b: Denote

Dðw; zÞ ¼
X
l

XN�n�1

j¼0

�l

j

 !
wlz�l�jðw � zÞj;

where l runs over the set of degrees that appear in a:
Then

ða n bÞðzÞ ¼
X
l

ðz�lalÞ n b

¼
X
l

X
jX0

�l

j

 !
ða n þ j bÞz�l�j

¼ReswððaðwÞbðzÞ iw;zðw � zÞn � bðzÞaðwÞiz;wðw � zÞnÞDðw; zÞÞ: ð7Þ

It is easy to see that identity (V2) holds for every aAvofVg and nAZ:

1.4. The case of finite grading

Of a particular interest is the case when all the degrees of a are rational numbers
with common denominator p; i.e.

aðzÞ ¼
Xp�1

q¼0

z�q=p aqðzÞ; aqAvoðVÞ:

In this case we can rewrite (7) in a different way. Some calculations show that

Dðw; zÞ ¼
Xp�1

q¼0

Xm

j¼0

�q=p

j

 !
wq=pz�q=p�jðw � zÞj ¼ w � z

w1=p � z1=p

� �mþ1

FpðmÞ;

where

FpðmÞ ¼
X1�pþm

l¼1�p

Xp�1

q¼0

X
kX0

ð�1Þlþqþkp �q=p þ k

m

 !
m þ 1

l þ q � kp

 ! !
� wm�lþ1=p�1zl=p�m:
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Using this we get

ða n bÞðzÞ ¼Resw ðaðwÞbðzÞiw;zðw � zÞn � bðzÞaðwÞiz;wðw � zÞnÞ
 

� w � z

w1=p � z1=p

� �N�n

FpðN � n � 1Þ
!
: ð8Þ

We also remark that the polynomial FpðmÞ has the following property:

FpðmÞjw1=p¼z1=p ¼ p�m zðmþ1Þð1�pÞ=p: ð9Þ

1.5. Algebras of formal series

It is well known [15,23] that a subspace ACvoðVÞ of pairwise local vertex
operators such that 1AA and A n ACA for all nAZ is a vertex algebra. Similarly, a

subspace LCL½½z71�� of local formal series such that L n LCL and DLDL is a
conformal algebra. Moreover, all vertex and conformal algebras are obtained in that
way. Now we generalize this result to the case of generalized vertex operators and
series.

Theorem 1. (a) Let ACvofVg be a subspace of pairwise local generalized vertex

operators such that 1AA and A n ADA for all nAZ: Then A is a vertex algebra.
(b) Let LCLfzg be a subspace of pairwise local generalized series with coefficients in

a Lie algebra L, such that DLDL and L n LDL for all nAZ: Then L is a conformal

algebra.

Proof. We will prove (a), statement (b) is proved in the same way. We have to show
that A satisfies identities (V3) and (V4), since (V1) and (V2) hold by assumption.
These identities are linear combinations of ‘‘vertex monomials’’ of the form
a1 n1 y nl�1 al (with some order of parentheses) where ai’s are either equal to 1 or

are formal variables. We have to show that for any specification aiAA the identity
vanishes. Note that these identities are multilinear.

Let AgrCvofVg be the graded closure of A; i.e. the minimal graded subspace of
vofVg containing A: Since all homogeneous components of the vertex operators

from A are pairwise local, the space Agr satisfies all the assumptions of the theorem,

so we can assume that A ¼ Agr is graded.

Consider all the vertex operators bAvoðVÞ such that zlbAA for some lAk: Every
two such vertex operators are local, so since the theorem is known to be true in the
case of ordinary vertex operators, these b’s generate a vertex algebra BCvoðVÞ:

Let Rða1;y; alÞ ¼ 0 be an identity which we have to check. Since R is multilinear,

it is enough to check it for homogeneous ai ¼ z�li bi; where biAB; liAk; 1pipl:
Sometimes we must set bi ¼ 1 and li ¼ 0: When we substitute these expressions for ai

into Rða1;y; akÞ ¼ 0 and apply (6), we get a linear combination of vertex
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monomials of the form

Pðl1;y; llÞz�l1�?�ll zmðbkð1Þ n1 y nl�1 bkðlÞÞ;

where Pðl1;y; llÞ is a polynomial in l1;y; ll ; mAZ; k is a permutation of
f1; 2;y; lg and the products ni ’s are applied according to some order of

parentheses. We can cancel the common factor z�l1�?�ll : Now we observe that the
only remaining factor in these monomials that depends on li’s is P; therefore, for

fixed b1;y; bl the map ðl1;y; llÞ/Rðz�l1 b1;y; z�ll blÞ is a polynomial map from

kl to vofVg: But when all liAZ this map is equal to 0, because then aiAvoðVÞ
generate a vertex algebra which satisfies the identity R; therefore, since jkj ¼ N; R

must be identically 0. &

Remark. There is a more conceptual argument illustrating Theorem 1. Recall that
voðVÞ is a linear space over the field F ¼ kððzÞÞ; and vofVg is a linear space over the

field E generated over F by zl’s, see Remark at the end of Section 1.2. Let BCvoðVÞ
be the vertex algebra generated over F by all vertex operators b such that bzl belongs
to the graded closure of A for some lAk: Recall that a commutative algebra A with
derivation d can be thought of as a vertex algebra if we set a n b ¼ 0 for nX0 and

a n b ¼ 1
ð�n�1Þ! d

�n�1ðaÞb for no0; so we can treat both E and F as vertex algebras.

Recall also that there is a notion of tensor product of vertex algebras [2,15], which
can easily be generalized for the case of vertex algebras over some ground vertex
algebra, so that one can consider the vertex algebra B#F E: The idea is that A is a
subalgebra of B#F E:

Note that this technique works for a more general field extension E of kððzÞÞ:

Remark. The products of the generalized vertex operators were first introduced by
Li [22]. However, he deals only with generating functions of these products, formulas
(7) and (8) seem to be new. Li also proves Theorem 1(a) using more straightforward
techniques. Realizations of conformal algebras by generalized series were mentioned
by Kac [16].

1.6. Differentiation of vertex operators

Assume that we are given a pair ðV ;DÞ consisting of a linear space V and a linear
map D : V-V : Let D : vofVg-vofVg be the linear operator on the space of

generalized vertex operators defined by Df ¼ d
dz
f� ½D;f�: A vertex operator

fAvofVg is said to be of weight lAk if Df ¼ l z�1f: Denote by vofVgl the space of

all vertex operators of weight l: It is easy to see that if fAvofVgl then

zmfAvofVglþm:

In general, it is not true that any vertex operator can be represented as a sum of
homogeneous vertex operators. However the following is true.
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Proposition 1. Let SCvofVg be a set of pairwise local vertex operators, and let

ACvofVg be the vertex algebra generated by S. If SCvofVg0 then also ACvofVg0

and if SC"lAk vofVgl then also AC"lAk vofVgl:

Proof. First of all we note that D is a derivation of all products:

Dða n bÞ ¼ ðDaÞ n bþ a n ðDbÞ;

because so are both ad D and d
dz
: Therefore if Da ¼ Db ¼ 0 then Dða n bÞ ¼ 0 and

the first statement follows. For the second statement, it is enough to assume that all

the generators from S are homogeneous. A pair a; bAS can be written as a ¼
zla0; b ¼ zmb0 for some l; mAk and a0; b0AvofVg0: Now the statement follows from

formula (6). &

1.7. Modules over vertex algebras

Now we give several definitions of modules for vertex algebras. We will call a
vector space V a module over a vertex algebra A if there is a vertex algebra
homomorphism p : A-voðVÞ: In other words, for any a; bAA; the vertex operators
pðaÞ and pðbÞ are local and pða n bÞ ¼ pðaÞ n pðbÞ; pð1Þ ¼ 1: We remark that
sometimes what we call a module is called a weak module.

If instead of a homomorphism p : A-voðVÞ we have a homomorphism
p : A-vofVg of A into the space of generalized vertex operators over V ; then V

is called a generalized module.

Assume now that a vertex algebra A ¼ "½l�AG A½l� is graded by a group GCk=Z

so that A½l� n A½m�CA½lþm�: Then a generalized module V is called twisted if the
representation homomorphism p : A-vofVg is homogeneous, that is,

pA½l�CvofVg½l�: This definition is due to Li [22]. Equivalently, twisted modules
can be defined using the so-called twisted Jacoby identity, see e.g. [5,8,10].

Remark. We can generalize the definition of twisted representation to the case when
vofVg ¼ FðVÞ#F E for an arbitrary differential Galois extension E of the field
F ¼ kððzÞÞ; see Remark at the end of Section 1.2. Note that the Galois group
GalðE=FÞ acts on vofVg in a natural way. Let GCAut A be a group of
automorphisms of the vertex algebra A and fix a group homomorphism
r : G-GalðE=FÞ: A representation p : A-vofVg is called twisted if it is equivariant
with the action of G: pðgaÞ ¼ rðgÞpðaÞ for any gAG and aAA: Note that for different
homomorphisms r : G-GalðE=FÞ we will get different categories of twisted
representations.

Assume that an A-module V (generalized or not) has a linear map D : V-V :
Then the module V is called strong if pðAÞCvofVg0; see Section 1.6. We note that if

A contains an element u such that Y ðuÞð0Þ ¼ D (as it is the case when A is a vertex
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operator algebra), and V is a module over A such that pðuÞAvoðVÞ ¼ vofVg½0�; then

V is a strong module. Indeed, by (5) we have ½uð0Þ; aðnÞ� ¼ ðu 0 aÞðnÞ ¼ ðDaÞðnÞ for

any aAA½n�:
Let again V be a module (generalized or not) over A and let p : A-vofVg be the

representation map. Assume A is a vertex operator algebra and let uAA be the
Virasoro element. We say that V is a module over the vertex operator algebra if
V ¼ "nAk Vn is graded, pðuÞAvoðVÞ and pðuÞð1ÞjVn

¼ n: As it was mentioned above,

in this case V is necessarily a strong module over A:

Remark. Let A be a vertex algebra and let V be a strong twisted module over A:
Then the semidirect product ArV has a structure of generalized vertex algebra,
introduced by Dong and Lepowsky [6]. The products in a generalized vertex algebra
are indexed not necessarily by integers. If aAA and vAV then a n v ¼ aðnÞv and the
products v n a are defined using the quasisymmetry identity (C3), see Section 1.1.

2. Twisted realizations of conformal algebras

In this section, we consider realizations of conformal algebras by generalized
formal series. We construct the twisted coefficient algebra of a conformal algebra,
which gives the universal realization of this type. As an example we consider affine
conformal algebras in Section 2.2.

2.1. The coefficient algebra

Let L be a conformal algebra. Assume that L ¼ "½l�AG L½l� is graded by a group

GCk=Z so that L½l� n L½m�DL½lþm�; DL½l�DL½l�:
Define a Lie algebra CoeffG L in the following way. The underlying linear space of

CoeffG L is spanned by the symbols aðnÞ for all homogeneous aAL and k{n �
deg a mod Z subject to the linear relations ðDaÞðnÞ ¼ �naðn � 1Þ: The brackets in

CoeffG L are defined by the formula (5) for a ¼ aAL½m� and b ¼ bAL½n�: For a non-

homogeneous aAL denote aðnÞ ¼ a½n�ðnÞ; where a½n� is the projection of a onto the

space L½n�:
This construction generalizes the construction of usual coefficient algebra

Coeff L ¼ Coeff ½0� L done in [15,16,28]. If L is a vertex algebra, then CoeffG L was

considered in [8], at least when G is a finite cyclic group.

Let f : L-ðCoeffG LÞfzg be a map given by fðaÞ ¼
P

nAGþZ aðnÞz�n�1: It is easy

to see that f is a homomorphism of L into a conformal subalgebra of ðCoeffG LÞfzg
such that fðL½l�ÞCðCoeffG LÞfzg½l�: Moreover, this map is universal in the following
sense: if r : L-Kfzg is another homogeneous homomorphism of L into a conformal
subalgebra of series with coefficients in some Lie algebra K ; then there is a unique
Lie algebra homomorphism p : CoeffG L-K making the following diagram
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commutative:

ð10Þ

The proof of the fact that CoeffG L is indeed a Lie algebra and of the above
universality property is done in the same way as in the case when G ¼ 0:

We also give another construction of CoeffG L: Let L ¼ Coeff L be the ordinary
coefficient Lie algebra of L: Let LGCLfzg be the conformal algebra generated by all

the series of the form zna for nAk and aAL½n�: The algebra LG is closed under the

multiplication by z71; in fact we have z�lL
½l�
G ¼ k½z71�L½l�:

Consider the coefficient Lie algebra Coeff LG of LG: Let LGCCoeff LG be its
subalgebra consisting of all elements of the form að0Þ for aALG: In other words,
LG ¼ Ker D; where D : Coeff LG-Coeff LG is the derivation given by aðnÞ/�
naðn � 1Þ: There is a Lie algebra homomorphism Coeff LG-LG given by

aðnÞ/ðznaÞð0Þ for aAL½n�; which induces the conformal algebra homomorphism

Z : LG-LG½½w71�� such that ZðzkaÞ ¼ wkZðaÞ for kAZ: It could be shown that Z is the
universal among all realizations of LG by integral formal series that commute with
multiplication by the variable.

We construct a homomorphism r : L-LGfwg in the following way. Let aAL½l�;

define rðaÞ ¼ ZðzlaÞw�lALGfwg: Clearly, r is a linear map and it does not depend
on the choice of representative lA½l�: Now we show that r is indeed a
homomorphism.

Let a1;y; akAL be homogeneous elements of L satisfying a conformal identity
Rða1;y; akÞ ¼ 0: Here R is a linear combination of conformal monomials in ai’s
with coefficients in k½D�: We have to show that Rðrða1Þ;y; rðakÞÞ ¼ 0 in LGfwg:
Without loss of generality, we can assume that R is homogeneous with respect to the

gradation by G: Let deg ai ¼ ½li�: Substitute ai ¼ z�li bi in R; apply formula (6) and

then cancel the common factor z�l1�?�lk : We get an identity R1ðb1;y; bkÞ ¼ 0;
which holds in LGCLfzg; where R1 is a combination of conformal monomials in

b1;y; bk with coefficients in k½D; z71�: Since Z : LG-LG½½w71�� is a k½D; z71�-module

homomorphism, we have R1ðZðb1Þ;y; ZðbkÞÞ ¼ 0 in LG½½w71��: Substitute now

ZðbiÞ ¼ wlirðaiÞ and apply (6) again. After dividing by wl1þ?þlk ; we get
Rðrða1Þ;y; rðakÞÞ ¼ 0:

By the universality of CoeffG L we get a map p : CoeffG L-LG such that diagram
(10) commutes for K ¼ LG:

Proposition 2. The map p : CoeffG L-LG is an isomorphism.

Proof. We will show that the homomorphism r : L-LGfwg constructed above has
the same universality property as CoeffG L: Then the fact that p : CoeffG L-LG is
an isomorphism follows from uniqueness of CoeffG L:
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Let c : L-Kfwg be a homogeneous homomorphism of L into a space of
generalized series with coefficients in some Lie algebra K : This induces a

homomorphism y : LG-K ½½w71�� defined by yðznaÞ ¼ wncðaÞ for any aAL½l� and
nAlþ Z: It is easy to see that yðznaÞ ¼ wnyðaÞ for every aALG and nAZ: Hence,
there is a homomorphism LG-K such that all the corresponding diagrams
commute. &

2.2. Twisted affine algebras

We illustrate the construction of Section 2.1 by the example of affine conformal
algebras.

Let g be a Lie algebra with an invariant bilinear form ð� j �Þ; i.e. such that

ð½a; b� j cÞ ¼ ða j ½b; c�Þ: Assume that the algebra g ¼ "½l�AG g½l� is graded by a group

GCk=Z: Assume further that the gradation on g agrees with the form ð� j �Þ in the
following way:

ðg½l�jg½m�Þ ¼ 0 unless lþ m ¼ 0: ð11Þ

Consider the Lie algebra L̂G ¼ g#k½Gþ Z�" kc; where k½Gþ Z� is the group

algebra of Gþ Z: We will write aðnÞ ¼ a#n for aAg; nAGþ Z: The brackets in L̂G

are defined by

½aðmÞ; bðnÞ� ¼ ½a; b�ðm þ nÞ þ dmþn;0mða½m�jb½n�Þc; cAZðL̂GÞ;

where a½m� and b½n� are projections of a and b onto g½m� and g½n�; respectively. The

twisted affine Lie algebra LGCL̂G is the subalgebra of L̂G spanned by c and all

elements of the form aðnÞ for aAg½n�: The grading on g induces a grading on LG by

setting deg aðnÞ ¼ deg a; deg c ¼ 0: From now on, if a#nAL̂GWLG; then we set
aðnÞ ¼ 0:

For any aAg consider series ã ¼
P

nAGþZ aðnÞz�n�1ALGfzg: These series are local

of order 2, and together with the series c ¼ c z0 they generate a conformal algebra
LCLGfzg: The products between ã ’s are

ã 0 b̃ ¼ g½a; b�½a; b�; ã 1 b̃ ¼ ðajbÞc: ð12Þ

The affine conformal algebra L is a homogeneous subalgebra of LGfzg so that for

aAg½l� we have ãALGfzg½l�: It is independent on the G-grading of g: It is easy to see
that LG ¼ CoeffG L:

For each equivalence class ½l�AGCk=Z choose a representative lAk such that the
representative of Z is 0 and if ½l� þ ½m� ¼ 0; then either l ¼ m ¼ 0 or lþ m ¼ 1: For
example, if kDR; then we can take 0plo1: A very important special case is when G
is a finite cyclic group of order p; then one can take the set of representatives of G in

k to be f0; 1
p
; 2

p
;y; p�1

p
g:
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For a homogeneous element aAg½l� consider the series ta ¼ zlãALG½½z71��: Clearly,
the series ta are pairwise local of order 2, so together with c they generate a

conformal algebra LGCLG½½z71��; called a twisted affine conformal algebra. We
calculate the non-zero products of these series, using (6) and (12). Here
a; bAg; deg a ¼ ½l�; deg b ¼ ½m�:

ta 0 tb ¼ zlþm g½a; b�½a; b� þ lzlþm�1ðajbÞc

¼
z t½a;b� þ lðajbÞc if lþ mX1;

t½a;b� if lþ mo1;

(

ta 1 tb ¼ zlþm ðajbÞc ¼
ðajbÞc if l ¼ m ¼ 0;

zðajbÞc if lþ m ¼ 1;

0 otherwise:

8><>:
It is not difficult to see that LG is isomorphic to the subalgebra of Coeff LG consisting

of all elements of the form að0Þ; i.e., the embedding LG-LG½½z71�� is the universal
one among realizations of LG by formal series that agree with the multiplication by z;
see Section 2.1.

Remark. While in general we cannot guarantee that the twisted representation map
r : L-LGfwg is injective, in the particular case when L is an affine conformal
algebra we do know that r is an isomorphism.

Remark. In principal, one can use the construction of Section 2.1 to get twisted

representations of a vertex algebra. Namely, let A ¼ "½l�AG A½l� be a graded vertex

algebra, and let p : A-voðVÞ be its representation. Let AGCvofVg be the vertex

algebra generated by the generalized vertex operators znpðaÞ for aAA½n�: Then AG

will be closed under the multiplication by z71: If we have a representation

Z : AG-voðUÞ such that ZðzkaÞ ¼ wkZðaÞ for kAZ; then the map a/ZðzlaÞw�l for

aAA½l� defines a twisted representation of A on U : However, in contrast with the
conformal case, it is not clear how to construct such a representation Z of AG: On
the other hand, if A is generated by a conformal algebra LCA; then applying the
construction of Section 2.1 to L we can get a twisted representation of possibly some
other enveloping vertex algebra B*L:

3. Lattice vertex algebras

In this section apply the technique developed in Section 1 to lattice vertex algebras.
We assume here that the ground field is C and the group G is the cyclic group of

order pX0: We identify GCC=Z with the set ½0; 1
p
; 2

p
;y; p�1

p
�:
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We remark that most of the constructions below can be done in a much more
general setting.

3.1. Representation theory of Heisenberg algebras

Let h be a k-vector space of dimension loN equipped with a non-degenerate

bilinear form ð� j �Þ: Assume that h ¼ "lAG h½l� is graded by G and that the grading
agrees with the form in sense of (11). Recall that the grading induces an
automorphism s : h-h such that sjh½l� ¼ expð2pi lÞ: In fact the existence of an

automorphism s : h-h of order p is equivalent to the existence of the above grading
of h by the group G ¼ Z=pZ: Note that s preserves the norm on h: For hAh we

denote by h½l� the projection of h onto h½l�:
View h as an Abelian Lie algebra, and let

H ¼ HG ¼ SpanfaðnÞ j aAh½n�g"Cc

be the corresponding (twisted, unless p ¼ 1) affine Lie algebra, see Section 2.2. It is
usually called a Heisenberg Lie algebra. As in Section 2.2, for an element aAh

consider formal series ã ¼
P

nAGþZ aðnÞz�n�1AHfzg: These series, together with c;

span over C½D� a copy of conformal Heisenberg algebra HCHfzg; so that H ¼
CoeffG H: The grading on h lifts to a grading on H and H and the automorphism s
lifts to automorphisms of H and H: Recall also that there is another grading on H

given by setting deg aðnÞ ¼ �nA1
p
Z:

We note that h½0�CZðHÞ so that H ¼ H 0" h½0�; where

H 0 ¼ SpanfaðnÞ j aAh; nAC�g"Cc:

Let H7 ¼ SpanfaðnÞ j n_0gCH 0: We have H 0 ¼ H�"Cc" Hþ:
Now let M be a restricted H-module, i.e. such that for any uAM we have hðnÞu ¼

0 for nb0: Assume that c acts on M by the identity. Then the vertex operators

h̃AvofMg generate a vertex algebra V0CvofMg: It is an enveloping vertex algebra

of the conformal Heisenberg algebra H: The algebra V0 is a module over the

Heisenberg algebra H by hðnÞx ¼ h̃ n x: It is well known that V0 is the unique
enveloping vertex algebra of H such that c ¼ 1: As a module over H; the vertex
algebra V0 is isomorphic to the so-called canonical relations representation Mð1Þ ¼
UðH�Þ1; which is generated by a single element 1 such that Hþ1 ¼ 0:

The vertex algebra V0 is in fact a vertex operator algebra: it is graded so that

deg h̃ ¼ 1 for hAh and it contains a Virasoro element u ¼ 1
2

Pc
i¼1 *ai �1 *bi; where

ða1;y; acÞ and ðb1;y; bcÞ are dual bases of h; i.e. such that ðaijbjÞ ¼ dij : We have

u 0 u ¼ Du for all vAV0; u 1 u ¼ ðdeg uÞu for all homogeneous uAV0; u 2 u ¼ 0

and u 3 u ¼ 1
2
1:

An H-module V is called h½0�-diagonalizable if it can be decomposed into a direct

sum of subspaces V ¼ "xAðh½0�Þn Vx; so that for hAh½0� one has hjVx
¼ xðhÞ: Recall [14]

M. Roitman / Advances in Mathematics 176 (2003) 53–8868



that an H-module V belongs to the category O if V is h½0�-diagonalizable and for any

vAV there is nA1
p
Z such that for any xAUðHÞ of deg xXn we have xv ¼ 0: Clearly,

any module from the category O is restricted.
For the future reference, we cite here a result from the representation theory of

Heisenberg algebras.

Lemma 1. Let V be a module over the Heisenberg Lie algebra H. Let O ¼
fvAV j Hþv ¼ 0gCV be the vacuum subspace of V. Then the following conditions are

equivalent:

(i) VDMð1Þ#O and O is h½0�-diagonalizable;
(ii) V ¼ UðHÞO and O is h½0�-diagonalizable;

(iii) VAO and V is completely reducible over H;
(iv) VAO and there is a grading V ¼ "nA1=p Z Vn on V such that deg aðnÞ ¼ �n and

uð1ÞjVn
¼ n; where

uð1Þ ¼ 1

2

Xl

i¼1

X
so0

aiðsÞbið�sÞ þ
X
sX0

bið�sÞaiðsÞ
 !

AUðHÞ

is the first coefficient of the Virasoro element uAV0:

Clearly, the vacuum space OCV is stable under the action of h½0�: Condition (iv)
means that V is a module over the vertex operator algebra V0; see Section 1.7. We
remark that if in (iv) we assume that the grading on V is bounded from below, that

is, there is n0A1
p
Z such that Vn ¼ 0 for non0; then the condition VAO becomes

obsolete.

3.2. Fock spaces

Let LCh be a lattice in h of rank l: Assume that L agrees with the G-grading on h

in the sense that rk L½l� ¼ dim h½l� for ½l�AG: Consider a central extension

1-F- #L-L-1

of L by the multiplicative group FDC� ¼ CWf0g: Let e : L- #L be a section e : L�
L-Z be the corresponding 2-cocycle, so that eðaÞeðbÞ ¼ eða; bÞeðaþ bÞ for a; bAL:
Denote by R the quotient of the group algebra C½ #L� obtained by the identification of

F with C�CC:
The key object of the construction is a vector space V ; which is a module over the

associative algebra R and a restricted module over the twisted Heisenberg algebra H

such that

½hðnÞ; eðaÞ� ¼ dn;0ðhjaÞeðaÞ for hAh; nAGþ Z; ð13Þ
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and c ¼ id: Formula (13) mean that H acts on R by derivations, so we can form a

skew tensor product algebra UðHÞ *#R such that V is a UðHÞ *#R-module.

We assume that V ¼ "xAðh½0�Þn Vx is h½0�-diagonalizable. The bilinear form on L

induces a homomorphism n : L-ðh½0�Þn by nðaÞb ¼ ðajbÞ for aAL; bAL½0�: The
relation ½bð0Þ; eðaÞ� ¼ ðajbÞeðaÞ is equivalent to the fact that eðaÞVxDVxþnðaÞ:

Such a module V is sometimes referred to as a Fock space. In Section 3.4 we will
make V to be a module over certain vertex algebra, under some additional
assumptions.

A standard way to construct a Fock space V is as follows. Let O ¼ "xAðh½0�Þn Ox be

a h½0�-diagonalizable module over R and h½0� such that ½h; eðaÞ� ¼ ðhjaÞeðaÞ for hAh½0�:
In other words, O is a module over a certain skew tensor product algebra

Uðh½0�Þ *#R: As before, we have eðaÞOxDOxþnðaÞ: Take now a restricted H-module M

such that h½0� acts on M by 0. Let V ¼ M#O: Then V ¼ "xAðh½0�Þn Vx; Vx ¼
M#Ox; is also a restricted h½0�-diagonalizable H-module and also it is a module over
R such that relation (13) hold.

For example, assume that V satisfies the conditions of Lemma 1 as a module
over H: Then V ¼ Mð1Þ#O can be obtained by the above construction
for M ¼ Mð1Þ: The vacuum space OD1#OCV becomes a module over

Uðh½0�Þ *#R:

3.3. Twisted vertex operators

Now we are ready to define the main ingredient of this construction—the vertex

operator XaAvofVg for aAL: Let h0 ¼ h � h½0� for hAh: We set

XaðzÞ ¼ eðaÞE�ða; zÞEþða; zÞzað0Þz�ða0ja0Þ=2; ð14Þ

where

E7ða; zÞ ¼ exp
X

nAGþZ;n_0

�aðnÞ
n

z�n:

Note that að0Þ ¼ a½0� is the projection of a onto h½0�; so that zað0ÞjVx
¼ zxða

½0�Þ:

Remark. In fact, we need that V is h½0�-diagonalizable only for the expression zað0Þ to

make sense. We can instead interpret zað0Þ ¼ expðað0Þ log zÞ; and then this expression
is well defined under somewhat weaker assumptions, for example it is enough to
require that að0Þ acts locally finite dimensionally.

Proposition 3 (Lepowsky [19]). Let hAh; nAGþ Z; a; bAL: We have

(a) ½hðnÞ;XaðzÞ� ¼ ðajhÞznXaðzÞ;
(b) h̃ n Xa ¼ 0 if 1pnAZþ and h̃ 0 Xa ¼ ðajhÞXa;
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(c) DXa ¼ *a �1 Xa;
(d) u 0 Xa ¼ DXa; u 1 Xa ¼ 1

2
ðajaÞXa;

(e) XaðwÞXbðzÞ ¼ eða; bÞ Xa;bðw; zÞiw;z
Qp�1

s¼0 ðw1=p � osz1=pÞðs
�sajbÞ; where o ¼

exp 2pi
p

is the primitive pth root of unity and

Xa;bðw; zÞ ¼ eðaþ bÞE�ða;wÞE�ðb; zÞEþða;wÞEþðb; zÞ

� wað0Þzbð0Þw�ða0 ja0Þ=2z�ðb0 jb0Þ=2:

We have Xa;bðw; zÞ ¼ Xb;aðz;wÞ and Xa;bðz; zÞ ¼ XaþbðzÞzða
0 jb0Þ: The notation iw;z in

(e) is a short for iw1=p;z1=p ; see (2).

Proof. (a) Let 0anAGþ Z: Then

hðnÞ; exp �aðmÞ
m

z�m

� �� �
¼ dn;�m exp �aðmÞ

m
z�m

� �
ðajhÞzn;

and hðnÞ commutes with all the rest of the factors in (14). Also, hð0Þ commutes with
all the factors in (14) except eðaÞ; whose commutators are given by (13), so (a)
follows.

(b) It follows that ½hðnÞ;XaðmÞ� ¼ Xaðm þ nÞ for every m; nAGþ Z: Hence we have
for nAZþ

ðh̃ n XaÞðmÞ ¼
X

s

ð�1Þs n

s

 !
½hðn � sÞ;Xaðm þ sÞ�

¼ ðajhÞ
X

s

ð�1Þs n

s

 !
Xaðm þ nÞ ¼

0 if n40;

ðajhÞXaðmÞ if n ¼ 0:

(

(c) Using that ða0ja0Þ=2 ¼
P

lAG lða½l�jaÞ; we get

DXaðzÞ ¼
X
no0

aðnÞz�n�1 XaðzÞ þ XaðzÞ
X
n40

aðnÞz�n�1

þ XaðzÞað0Þz�1 �
X
lAG

lða½l�jaÞz�1XaðzÞ

¼ :*aXa: �
X
lAG

lða½l�jaÞz�1XaðzÞ:
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On the other hand, set *aðzÞ ¼
P

l z�l *a½l�ðzÞ: The locality of *a and Xa is 1, hence,

using (6),

*a �1 Xa ¼
X
l

ðz�l *a½l�Þ �1 Xa

¼
X
l

ðz�lð*a½l� �1 XaÞ � l z�l�1ð*a½l� 0 XaÞÞ

¼ : *aXa : �
X
lAG

lða½l�jaÞz�1XaðzÞ:

(d) Let us calculate u 0 Xa by the associativity formula (V3). We have, using (b)
and (c):

u 0 Xa ¼
1

2

X
i

X
so0

aiðsÞbið�s � 1Þ þ
X
sX0

bið�s � 1ÞaiðsÞ
 !

Xa

¼ 1

2

X
i

ðaið�1ÞðbijaÞ þ bið�1ÞðaijaÞÞXa

¼ að�1ÞXa ¼ DXa:

The other relation is proved in the same way.

(e) Let us first calculate S ¼ Eþða;wÞE�ðb; zÞE�1
þ ða;wÞ: Since

exp �aðnÞ
n

w�n

� �
E�ðb; zÞ exp

aðnÞ
n

w�n

� �
¼ exp

w�n

n
ad aðnÞ

� �
E�ðb; zÞ

¼ ða½n�jbÞ znw�n

n
E�ðb; zÞ;

we have

S ¼ exp
X

0onAGþZ

�ða½n�jbÞ znw�n

n

¼ exp
X

lAf1
p
;y;

p�1
p

;1g

�ða½l�jbÞ
X

nAlþZþ

znw�n

n
:

Denote y ¼ ðz=wÞ1=p and let l ¼ q
p
; 1pqpp: Then

X
nAlþZþ

znw�n

n
¼
Z ðz=wÞl�1

1 � ðz=wÞ dðz=wÞ ¼ p

Z
yq�1

1 � yp
dy:
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Using the elementary fraction decomposition

yr

1 � yp
¼ 1

p

Xp�1

s¼0

o�sr

1 � osy
;

we get that

X
nAlþZþ

znw�n

n
¼ �

Xp�1

s¼0

lnð1 � osyÞo
�sq

;

so that

S ¼
Yp�1

s;q¼0

ð1 � osyÞo
�sqðaðq=pÞjbÞ ¼

Yp�1

s¼0

ð1 � osyÞ
P

q
o�sqðaðq=pÞjbÞ

¼
Yp�1

s¼0

ð1 � osyÞðs
�sajbÞ:

The rest of non-trivial commutation relations between the factors in (14) are

eðaÞeðbÞ ¼ eða; bÞeðaþ bÞ; wað0ÞeðbÞ ¼ eðbÞwað0Þwða½0� jbÞ;

so we finally get, using that a½0� ¼ 1
p

Pp�1
s¼0 s

sa;

XaðwÞXbðzÞ ¼ eða;bÞXa;bðw; zÞwða½0� jbÞS

¼ eða;bÞXa;bðw; zÞiw;z
Yp�1

s¼0

ðw1=p � osz1=pÞðs
�sajbÞ: &

Statement (b) implies that Xa generates a highest weight module over the

Heisenberg Lie algebra H; where the action is given as usual by hðnÞu ¼ h̃ n u: This
module is irreducible and is, in fact, a module over the Heisenberg vertex algebra
V0 ¼ UðHÞ1:

The Virasoro element uAV0 gives the operator

D ¼ uð0Þ ¼
X

i

X
so0

aiðsÞbið�s � 1Þ þ
X
sX0

bið�s � 1ÞaiðsÞ
 !

: ð15Þ

By (d) the vertex operators Xa are of weight 0 with respect to this D; see
Section 1.6.
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3.4. Lattice vertex algebras and their generalized representations

In this section, we construct the vertex superalgebra VL; known as the lattice
vertex superalgebra.

We start with the remark that only minimal modification is needed to transfer all
the definitions and results of Sections 1 and 2 to the realm of superalgebras. All
commutators must be interpreted as supercommutators, formula (3) must change to

ða n bÞðzÞ ¼ ReswðaðwÞbðzÞiw;zðw � zÞn � ð�1ÞpðaÞpðbÞbðzÞaðwÞiz;wðw � zÞnÞ;

etc. Notably, in the definition of vertex operator superalgebra the eigenvalues of the
grading derivation uð1Þ are allowed to be half-integer, and the vertex algebra A ¼

"
nA1

2
Z

An is graded by 1
2
Z so that the even and odd parts of A are, respectively,

A
%0 ¼ "nAZ An; A

%1 ¼ "nAZþ1=2 An: A reader who is averse to supermathematics

can assume that the lattice L is even, i.e. ðajaÞA2Z for all aAL; see (i) below.
Here, we make the following assumptions on the data introduced in Section 3.3.

(i) For any a; bAL the numbers ms ¼ ðs�sajbÞ; 0pspp � 1; are integer, in other
words LCh is an integer lattice and the automorphism s : h-h preserves the dual

lattice L0 ¼ faAh j ðajLÞCZg+L:
(ii) The cocycle e : L� L-C� is such that the corresponding commutator

map is

Cða; bÞ ¼ eða; bÞeðb; aÞ�1 ¼ ð�1ÞðajaÞðbjbÞþpða½0� jb½0�Þo�
Pp�1

s¼1
sms : ð16Þ

Note that pða½0�jb½0�Þ ¼
Pp�1

s¼0 msAZ:

The cocycle e satisfying (16) can be easily constructed in the following way. Let
a1;y; al be a Z-basis of L: Define e first for a; bAfa1;y; alg such that (16) holds.

This is possible since Cða; bÞ ¼ Cðb; aÞ�1 and Cða; aÞ ¼ 1: Then, since C : L�
L-C� is bimultiplicative, the identity (16) will continue to hold for the
bimultiplicative extension of e to the whole L: Note that for p ¼ 1 or 2 we have

Cða; bÞ ¼ ð�1ÞðajaÞðbjbÞð�1ÞðajbÞ:

Theorem 2. Under assumptions (i) and (ii) above, the vertex operators Xa;XbAvofVg
are local of order

Nða; bÞ ¼ maxf�ms j mso0; 0pspp � 1g,f0g:

They generate the lattice vertex superalgebra V ¼ VLCvofVg; which does not depend

on the G-grading of h: The products of the generators are given by

Xa �ðajbÞ � n � 1 Xb ¼ Kða; bÞ 1

n!
ðD � bð�1ÞÞðnÞXaþb ð17Þ

M. Roitman / Advances in Mathematics 176 (2003) 53–8874



for nX0; and Xa n Xb ¼ 0 if nX� ðajbÞ: Here

Kða; bÞ ¼ eða; bÞp�ðajbÞ
Yp�1

s¼1

ð1 � osÞms : ð18Þ

In particular,

Xa �ðajbÞ � 1 Xb ¼ Kða; bÞXaþb; Xa �ðajaÞ � 2 X�a ¼ Kða; aÞ�1
*a:

In the case when p ¼ 1 this is just the usual construction of lattice vertex algebras,
see e.g. [12,15].

The lattice vertex algebra V ¼ "aAl Va is graded by the lattice L: The subspace
V0 is the Heisenberg vertex subalgebra of V; and the rest of Va’s are irreducible
modules over V0:

The even and odd parts of V are

V
%0 ¼ "

aAL:
ðajaÞA2Z

Va; V
%1 ¼ "

aAL:
ðajaÞA2Zþ1

Va:

We also note that V is a simple vertex algebra.

Let us calculate the commutator map of the cocycle K : L� L-C� given
by (18):

Kða; bÞKðb; aÞ�1 ¼Cða; bÞ
Yp�1

s¼1

ð1 � osÞms�mp�s

¼ð�1ÞðajaÞðbjbÞþðajbÞ Yp�1

s¼1

ð�o�sÞms
Yp�1

s¼1

1 � os

1 � o�s

� �ms

¼ð�1ÞðajaÞðbjbÞð�1ÞðajbÞ:

It follows that for different automorphisms s all resulting cocycles K are

cohomological and define certain class KAH2ðL;C�Þ: Therefore, the vertex algebra
VLCvofVg generated by Xa’s is indeed independent on s:

Remark. If ðajbÞ is not an integer, then the vertex operators Xa and Xb are not local.

However, they are local in a generalized sense, and they generate a generalized vertex
algebra [6], mentioned at the end of Section 1.7. One can define products Xa n Xb

for n � �ðajbÞ mod Z:
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3.5. Proof of Theorem 2

The assertion about locality follows from Proposition 3(e) and the formula

ðw � zÞ ¼
Yp�1

s¼0

ðw1=p � osz1=pÞ:

Denote by PðmÞ ¼ fr ¼ ðr1; r2;yÞ j riX0;
P

iX1 iri ¼ mg the set of partitions

of mAZ: Some standard combinatorial argument shows that (17) can be re-
written as

Xa n Xb ¼ Kða; bÞ
X

rAPð�ðajbÞ�n�1Þ

Y
jX1

að�jÞ
j!

� �rj

Xaþb; ð19Þ

where no� ðajbÞ:
Consider the operator d ¼ iw;z � iz;w : Cðw; zÞ-C½½w71; z71��; see (2). It is easy to

see that dðgÞ ¼ 0 if and only if gAC½w71; z71�: In this case g commutes with
d: dðgf Þ ¼ gdð f Þ: We will also make use of the following formula. For any formal
power series f ðw; zÞ in the variables w; z one has

Reswð f ðw; zÞdðw � zÞ�k�1Þ ¼ 1

k!

@k

@wk

����
w¼z

f ðw; zÞ

whenever both sides make sense.
Let n ¼ �ðajbÞ � k � 1: We calculate the product Xa n Xb using (8) and

Proposition 3(e):

ðXa n XbÞðzÞ ¼Resw ðXaðwÞXbðzÞiw;zðw � zÞn

 
� ð�1ÞðajaÞðbjbÞXbðzÞXaðwÞiz;wðw � zÞnÞ

� FðN þ m þ kÞ
Yp�1

s¼1

ðw1=p � osz1=pÞN�n

!

¼ eða; bÞ Resw Xa;bðw; zÞFðN þ m þ kÞ
 

�
Yp�1

s¼1

ðw1=p � osz1=pÞN�nd
Yp�1

s¼0

ðw1=p � osz1=pÞmsþn

!

¼ eða; bÞ Resw1=p Xa;bðw; zÞwp�1=pFðN þ m þ kÞ
 

�
Yp�1

s¼1

ðw1=p � osz1=pÞmsþNdðw1=p � z1=pÞ�k�1

!

M. Roitman / Advances in Mathematics 176 (2003) 53–8876



¼ eða; bÞ 1

k!

@k

ð@w1=pÞk

�����
w1=p¼z1=p

� Xa;bðw; zÞwðp�1Þ=pFðN þ m þ kÞ
Yp�1

s¼1

ðw1=p � osz1=pÞmsþN

 !
: ð20Þ

We use here that Resw ¼ Resw1=p wðp�1Þ=p: Note that N þ msX0 for all 0pspp � 1:
Set

B ¼ wðp�1Þ=pFðN þ m þ kÞ
Yp�1

s¼1

ðw1=p � osz1=pÞmsþN :

Recall that there is an operator D : V-V given by (15), such that the weights of all

vertex operators Xa are 0, see Section 1.6. Using (9) and the formula
Qp�1

s¼1 ð1 �
osÞ ¼ p; we calculate

Bjw1=p¼z1=p ¼ p�m�k
Yp�1

s¼1

ð1 � osÞms z�ða0 jb0Þzk ð1�pÞ=p;

hence wt Bjw1=p¼z1=p ¼ �ða0jb0Þ � k p�1
p
: Since B is a Laurent polynomial in w1=p and

z1=p; we get that

wt
@i

ð@w1=pÞi

�����
w1=p¼z1=p

B ¼ �ða0jb0Þ � k
p � 1

p
� i

p
:

Let us now calculate the derivative of Xa;b; as in the proof of Proposition 3(c):

@

@w1=p
Xa;bðw; zÞ ¼ pwðp�1Þ=p @

@w
Fa;bðw; zÞ

¼ pwðp�1Þ=p :*aXa;b: � 1

2
ða0ja0Þw�1Xa;b

� �
¼ pwðp�1Þ=p *a �1 Xa;b þ

1

2
ða0jb0Þw�1Xa;b

� �
:

Iterating this formula and using the fact that Xa;bðz; zÞ ¼ XaþbðzÞzða
0 jb0Þ; we get

1

i!

@i

ð@w1=pÞi

�����
w1=p¼z1=p

Xa;b

¼ pi zða
0 jb0Þzi ½ðp�1Þ=p�

X
ðr1;r2;yÞAPðiÞ

Y
jX1

að�jÞ
j!

� �rj

Xaþb

þ a sum of terms of the weight less than i p�1
p

þ ða0jb0Þ: ð21Þ
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Now expand (20) using the Leibniz rule and (21), and note that the only term of
weight 0 in this expansion is the biggest weight term in

eða; bÞ 1

i!

@i

ð@w
1
pÞi

0@ ������
w1=p¼z1=p

Xa;b

1AB;

which is precisely the right-hand side of formula (19). This finishes the proof of
Theorem 2. &

Remark. One could have used the theorem of Li and Xu [24] on characterization of
lattice vertex algebras to show that the vertex algebra generated by the vertex
operators XaAvofVg is isomorphic to the lattice vertex algebra. They consider only
the case of an even lattice, but one can easily generalize their result to the case of a
non-trivial odd part. It is easy then to deduce the product formula (19) but this proof
would not give the explicit formula (18) for the cocycle K:

Dong and Lepowsky [7] have constructed all twisted modules of VL for the case
when L is even, see Section 1.7 for the definition. They used, however, completely
different techniques, in particular, they didn’t get the cocycle K explicitly. Some
special cases were also considered in [5,9]. We will study twisted modules of VL in
Section 3.7.

Corollary 1. Let UCV be a UðHÞ *#R-submodule of V. Then U is a submodule over

the vertex algebra VL:

3.6. Do we get all generalized modules of VL?

In this section, we show that in fact the construction of Theorem 2 exhausts all
reasonable modules of VL: A similar argument was also used in [4,5,21,24].

Let V be a generalized module over the lattice vertex algebra VL which is twisted
as a module over the Heisenberg algebra V0: This means that for any homogeneous

hAh½l� the corresponding vertex operator h̃AvofVg½l� is also homogeneous. Then the
V is a module over the twisted Heisenberg algebra H; such that c acts as the identity,
see Section 3.1.

Assume that V ¼ "xAðh½0�Þn Vx is h½0�-diagonalizable, though as in the remark

preceding Proposition 3, we note that this assumption can be relaxed. We will show
that VL-module V can be obtained by the construction of Section 3.4.

For aAL define

eðaÞ ¼ E�ða; zÞ�1
XaðzÞEþða; zÞ�1

z�að0Þzða
0 ja0Þ=2:

Using the same calculations as in the proof of (a) and (c) of Proposition 3 we see that
d
dz

eðaÞ ¼ 0 and ½hðnÞ; eðaÞ� ¼ dn;0ðhjaÞeðaÞ; so that relations (13) hold. Now we want
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to show that eðaÞ : V-V generate an action of the central extension #L of the lattice

L corresponding to a cocycle e : L� L-C� satisfying (16). It will follow that V is a

module over the skew tensor product UðHÞ *#R introduced in Section 3.2.
Modifying slightly the proof of Proposition 3(e) we get that

XaðwÞXbðzÞ ¼ eðaÞeðbÞX 0
a;bðw; zÞ

Yp�1

s¼0

ðw1=p � osz1=pÞðs
�sajbÞ;

where

X 0
a;bðw; zÞ ¼ E�ða;wÞE�ðb; zÞEþða;wÞEþðb; zÞwað0Þzbð0Þw�ða0 ja0Þ=2z�ðb0jb0Þ=2

is symmetric, X 0
a;bðw; zÞ ¼ X 0

b;aðz;wÞ; and also eðaþ bÞX 0
a;bðz; zÞ ¼ XaþbðzÞzða

0 jb0Þ:

Take N sufficiently large. Then, since Xa and Xb must be local, we get

0 ¼ðXaðwÞXbðzÞ � ð�1ÞðajaÞðbjbÞXbðzÞXaðwÞÞðw � zÞN

¼ðeðaÞeðbÞ � Cða; bÞeðbÞeðaÞÞX 0
a;bðw; zÞ

Yp�1

s¼0

ðw1=p � osz1=pÞns

for some nsAZþ and Cða; bÞ as in (16). But this can only happen if

eðaÞeðbÞ ¼ Cða; bÞeðbÞeðaÞ;

because otherwise we get X 0
a;bðw; zÞ ðw � zÞn ¼ 0 for n ¼ maxs ns; and this is

impossible since X 0
a;b is regular at w ¼ z:

Now we can apply calculations (20) to the product Xa n Xb for n ¼ �ðajbÞ � 1:
Similar to (20) we get that

eðaþ bÞXa n Xb ¼ eðaÞeðbÞp�ðajbÞ
Yp�1

s¼1

ð1 � osÞðs
�sajbÞ

Xaþb:

But we know that Xa n Xb ¼ Kða; bÞXaþb in VL; therefore

eðaÞeðbÞXaþb ¼ eða; bÞeðaþ bÞXaþb;

hence eðaÞeðbÞ ¼ eða; bÞeðaþ bÞ:
So we have proved the following

Theorem 3. Let V be a generalized module over the lattice vertex superalgebra VL

such that h̃AvofVg½l� for hAh½l�: Assume that V is h½0�-diagonalizable. Then there is a

unique action of the extended lattice #L on V such that for every aAL the highest

weights vectors XaAVa act on V by the vertex operators (14).
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It follows from Theorem 3 that a VL-submodule UCV is a UðHÞ *#R-submodule
of V : Combining this with Corollary 1, we get the following statement.

Corollary 2. Assume V is an irreducible module over UðHÞ *#R; satisfying the

assumptions of Theorem 2. Then V is an irreducible module over the vertex algebra VL:
Conversely, let V be a module over VL; satisfying the assumptions of Theorem 3. Then

V is an irreducible UðHÞ *#R-module.

3.7. Twisted modules over lattice vertex superalgebras

In this section, we study twisted modules over the lattice vertex algebra V ¼ Vl;
see Section 1.7 for the definition. As in Section 3.3, we fix a pth primitive root of

unity o ¼ expð2pi
p
Þ:

Assume that the automorphism s : h-h preserves the lattice L: Then s
induces an automorphism s : V0-V0 of the Heisenberg vertex algebra, see
Section 3.1. Let #s : V-V be an extension of this automorphism to the whole

vertex algebra V: It is easy to see that #sXa ¼ jðaÞXsa for some 1-cocycle j : L-C�

such that

djða; bÞ ¼ jðaþ bÞ
jðaÞjðbÞ ¼

Kðsa; sbÞ
Kða; bÞ :

Since s preserves the norm ð� j �Þ on h and

Kða;bÞKðb; aÞ�1 ¼ ð�1ÞðajaÞðbjbÞð�1ÞðajbÞ;

we see that the cocycle Kðsa;sbÞ
Kða;bÞ is indeed symmetric and therefore equal to dj0 for

j0ðaÞ ¼
Kðsa; saÞ
Kða; aÞ

� �1
2
:

Formula (18) implies that

Kðsa; sbÞ
Kða; bÞ ¼ eðsa; sbÞ

eða; bÞ ;

therefore the map eðaÞ/jðaÞeðsaÞ defines an automorphism of the algebra R ¼
C½ #L�=/F � C�S: And vice versa, any such automorphism of R defines an
automorphism of V:

Remark. In general, when the order of s is p; the order of #s : V-V may not be
equal to p; in fact it may not be finite at all. However, the extension corresponding
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to j0 is of order p: Indeed,

#spXa ¼j0ðaÞj0ðsaÞ?j0ðsp�1aÞXa

¼ Kðsa; saÞKðs2a; s2aÞ?Kða; aÞ
Kða; aÞKðsa; saÞ?Kðsp�1a; sp�1aÞ

� �1
2

Xa ¼ Xa:

Now we show how the vertex algebra V is decomposed into a sum of the root
spaces of #s: Consider the action of #s on a linear span SpanfXa;Xsa;y;Xsp�1ag of the
#s-orbit of Xa: It is easy to see that the eigenvalues of #s on this space are all the
different roots

mðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðaÞjðsaÞ?jðsp�1aÞp

q
: ð22Þ

Fix such a root m ¼ mðaÞ: The eigenvector corresponding to the eigenvalue moj for
some 0pjpp � 1 is

Yj ¼
Xp�1

s¼0

o�jsksXssa; ð23Þ

where ks ¼ m�sjðaÞjðsaÞ?jðss�1aÞ for s40 and k0 ¼ 1:
So we deduce that V ¼ "mAC� Vm is decomposed into a direct sum of the root

spaces of #s such that #sjVm
¼ m:

Let V ¼ "xAðh½0�Þn Vx be a generalized h½0�-diagonalizable V-module. Denote by

X ¼ fxAðh½0�Þn j Vxa0g the set of weights of V : By Theorem 3 there are operators

eðaÞ : V-V ; aAL; that define an action of R on V ; satisfying the commutation
relations (13).

Theorem 4. The V-module V is #s-twisted if and only if for every aAL there is a number

mðaÞAC�; given by (22), such that

(i) eðssaÞ ¼ k�1
s eðaÞ for every 0pspp � 1 and

(ii) xðað0ÞÞ � ða0 ja0Þ
2

� l mod Z for every xAX;

where p is the length of s-orbit of a; ks are given by (23) and l ¼ 1
2pi

ln mðaÞ:

Condition (i) means that eðsaÞ ¼ mðaÞjðaÞ�1
eðaÞ for every aAL; where the root

mðaÞ is the same for all a’s in a same s-orbit. We also note that it is enough to impose
(i) and (ii) only for a running over an integer basis of L:

Proof. Fix a root m ¼ mðaÞ satisfying (22), and let l ¼ 1
2pi

ln m: Let p : V-vofVg
be the representation map. Then V is a twisted V-module if and only if
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pðVmÞCvofVg½l�: It is enough to require that YjAvofVg½ðj=pÞþl� where Yj is (the

image under p of) the eigenvector of #s given by (23). Moreover, it is enough to
require this only for a finite set of generators of V; for example for all the Yj ’s

corresponding to the s-orbits of an integer basis of L:
Set X̊aðzÞ ¼ E�ða; zÞEþða; zÞCvofVg so that (see Section 3.3)

Xa ¼ eðaÞX̊azað0Þz�ða0 ja0Þ=2:

Set also Y̊j ¼
Pp�1

s¼0 o
�jskseðssaÞXssðaÞ and then

Yj ¼ Y̊jz
að0Þz�ða0 ja0Þ=2:

It follows that the field YjAvofVg is homogeneous if and only if Y̊j is homogeneous

and the values xðað0ÞÞ are the same modulo Z for all xAX:
Assume that Y̊j is homogeneous. Since X̊aðzÞA"p�1

q¼0 vofVg½q=p�; we have

Y̊jAvofVg½ðqþjÞ=p� for some 0pqpp � 1: Let t be the automorphism of

"p�1
q¼0 vofVg½q=p� such that tj

vofVg½q=p� ¼ oq: It is easy to see that X̊sa ¼ tX̊a: Take

some m � �r
p

mod Z: Denote by xs the coefficient of zm in X̊ssa: It follows that

xs ¼ orsx0: If rcq þ j mod p; then the coefficient of zm in Y̊j is equal to 0. This gives

us the following system of linear equations:

Xp�1

s¼0

oðr�jÞs ks eðssaÞ ¼ 0 for 0prpp � 1; rcq þ j mod p:

Since k0 ¼ 1; the solution of this system is eðssaÞ ¼ oqsk�1
s eðaÞ: Taking moq instead

of m we get exactly (i).

Condition (ii) follows from the fact that in order to have deg Yj ¼ j
p
þ l we must

have

xðað0ÞÞ � ða0ja0Þ
2

� l� q

p
� ða0ja0Þ

2
� 1

2pi
lnðmoqÞ mod Z

for all xAX: &

It follows that sometimes the lattice vertex algebra V ¼ VL has no twisted

representations that agree with an automorphism s : L-L: Recall that C : L�
L-C� is the commutator map given by (16).

Corollary 3. If for some aAL and 0pjpp � 1 we have Cða; sjaÞa1; then there are no

non-trivial twisted modules of VL corresponding to either of the extensions #s : VL-VL

of s:
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Proof. Set b ¼ sja: If Cða; bÞa1; then eðaÞeðbÞaeðbÞeðaÞ: Yet by Theorem 4, we

have eðaÞeðbÞ�1AC�: Therefore, R acts by 0 on every twisted VL-module, hence by
Theorem 3, so does VL: &

3.8. Semisimplicity of twisted representations

Consider the category O #s of h½0�-diagonalizable #s-twisted modules V over VL such
that V satisfies the conditions of Lemma 1 as a module over the Heisenberg algebra
H: In particular, V must be a module over the vertex operator algebra VL: Note that
if V ¼ "n Vn is a #s-twisted module over the vertex operator algebra VL such that
Vn ¼ 0 for n50; then VAO #s: The latter modules appear in the representation theory
of vertex algebras quite often, in particular in connection with the Zhu theory [8,29].

Note that by Corollary 3, the category O #s can sometimes be trivial.

Theorem 5. The category O #s is semisimple with finitely many isomorphism classes of

simple objects.

In order to prove this theorem we have to study the quotient algebra A of R ¼
C½ #L�=/F � C�S modulo the ideal generated by relations (i) of Theorem 4.

More precisely, let PCL be a finite set of vectors, closed under s and spanning L
over Z: For aAP choose the roots mðaÞ; given by (22), such that mðaÞ ¼ mðbÞ if a and
b lie in the same s-orbit of P: For xAR denote by %x its image in A: Then the algebra

A is generated by the set feðaÞ j aAPg subject to relations eðsaÞ ¼ mðaÞfðaÞ�1
eðaÞ for

all aAP: Hence A depends on the cocycle j : L-C�; which determines the extension
#s; and also on the choice of roots mðaÞ for every s-orbit of P:

Note that relations (i) of Theorem 4 belong in fact to the group #L: Let G be the

quotient group of #L modulo the normal subgroup generated by these relations. Then

A ¼ C½G�=/F � C�S:

Let n : L-ðh½0�Þn be the map given by nðaÞh ¼ ðajhÞ: Then nðLÞ is a sublattice of

the dual lattice to L½0�: The algebra R is graded by nðLÞ by setting deg eðaÞ ¼ nðaÞ:
We observe that if a; bAL belong to the same s-orbit, then nðaÞ ¼ nðbÞ: It follows
that relations (i) of Theorem 4 are in the kernel of the composition map

#L-L-
n
nðLÞ; which therefore induces a homomorphism G-nðLÞ; and this makes

C½G� and A graded by nðLÞ as well.

Proposition 4. The algebra A is nðLÞ-graded semisimple.

Recall that a graded algebra is called graded semisimple if it is semisimple as a left
graded module over itself. Like in a non-graded case, an algebra is graded
semisimple if and only if it is decomposed into a direct product of graded simple
algebras, the latter by a graded version of the classical Wedderburn theorem are
isomorphic to matrix algebras over graded division algebras. If an algebra A is
graded semisimple, then the category of graded R-modules is semisimple, i.e. every
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module is completely reducible. The simple graded A-modules are the simple
homogeneous ideals of A with a possible shift of degrees.

Similar to the non-graded case, the graded Jacobson radical JgrðAÞ of a graded

algebra A is defined to be the intersection of all maximal graded left (or right) ideals.
It is a standard exercise to prove that JgrðAÞ is in fact a double sided ideal that acts

by 0 on any simple graded A-module. If JgrðAÞ ¼ 0 that A is called semiprimitive.

The algebra A is called graded (left) Artinian if all strictly decreasing chains of
graded left ideals are finite. In this case JgrðAÞ is an intersection of finitely many left

maximal ideas. If A is graded Artinian and JgrðAÞ ¼ 0 then A is graded semisimple.

For the non-graded case all this is a classical theory presented in most graduate
algebra textbooks, like Jacobson’s Basic Algebra [13]. For the graded case the
references are much more scarce, see, however, [25].

We will use the following rather obvious fact: A homomorphic image of a graded
semisimple algebra modulo a homogeneous ideal is again a graded semisimple
algebra.

Proof of Proposition 4. Let P ¼ T
n

j¼1 Pj be the decomposition of P into a disjoint

union of s-orbits. Choose some ajAPj for every 1pjpn: Let xj ¼ eðajÞAA: Then the

set x71
1 ;y; x71

n is a set of generators of A: We note that xixj ¼ cijxjxi for cij ¼
Cðai; ajÞAC�; where C is the commutator map given by (16).

Let xj ¼ deg aj ¼ nðajÞAnðLÞ: It is easy to see that xj ¼ 0 if and only if
P

aAPj
a ¼

0: We can assume that x1;y; xma0 for some mpn and xmþ1 ¼ ? ¼ xn ¼ 0:
Clearly, xj’s span nðLÞ over Z:

Assume also that our choice of P yields the minimal possible value of m: We claim
that in this case x1;y; xm is a Z-basis of nðLÞ: Indeed, otherwise there is an invertible
matrix MASLðm;ZÞ such that the mth column of ðx1 ? xmÞM is 0. Let a0j be the jth

column of ða1 ? amÞM for 1pjpm; and let P0 be the closure of

fa01;y; a0mg,Pmþ1,?,Pn with respect to the action of s: Then P0 is a generating

set of L; closed under s and, since nða0mÞ ¼ 0 the number of s-orbits in P0 with non-

zero degree is at most m � 1:
Suppose there is a linear relation between elements of P of the form

Xn

j¼1

Xp�1

s¼0

rjsssaj ¼ 0; rjsAZ:

In R this relation becomes
Q

j;s eðssajÞrjs ¼ y0; where y0AC� is a product of some

values of the cocycle e: In A this relation becomes

Yn

j¼1

x
rj

j ¼ y; rj ¼
Xp�1

s¼0

rjs

for some other constant yAC�:
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For m þ 1pjpn we have
P

s s
saj ¼ 0; hence in A we get the relation x

p
j ¼ yjAC�:

By the change of variables xj/y�1=p
j xj we can make yj ¼ 1:

A look at formula (16) for the commutator map C shows that if
Pp

s¼0 s
sa ¼ 0 for

some aAL; then Cða; bÞp ¼ 1 for any other bAL:
Summing up, we get that A is a homomorphic image of the algebra

B ¼ k x71
1 ;y; x71

n

xixj ¼ cijxjxi for 1pi; jpn

x
p
j ¼ 1 for m þ 1pjpn

�����
* +

;

where cij ¼ c�1
ji AC� for 1pi; jpn and c

p
ij ¼ 1 if either i4m or j4m: The nðLÞ-

grading on B is defined by deg xj ¼ 0 for m þ 1pjpn and deg xj ¼ xj for 1pjpm

where x1;y; xm is a Z-basis of nðLÞ: It is enough to show that B is nðLÞ-graded
semisimple.

Let x ¼ k1x1 þ?þ kmxm; kiAZ; be an arbitrary vector in nðLÞ: Denote by Bx the

homogeneous component of B of degree x: Note that the element xx ¼ xk1

1 ?xkm
m ABx

is invertible. For a graded subspace ICB denote by Ix the homogeneous component

of I of degree x:
The component B0 is the homomorphic image of the group algebra of finite group

G0 ¼ xk; cij

m þ 1pi; j; kpn; x
p
k ¼ c

p
ij ¼ 1; cij ¼ c�1

ji ;

xixj ¼ cijxjxi; xkcij ¼ cijxk

�����
* +

:

By Maschke’s theorem (see e.g. [13]), C½G0� and hence B0 is a finite-dimensional
semisimple algebra.

We claim that if I ; JCB are two graded left ideals such that I0 ¼ J0; then I ¼ J:

Indeed, if bAIx; then x�xbAI0 ¼ J0; hence b ¼ xxx�xbAJx: It follows that B is graded
(left) Artinian.

Let ICB be a graded left ideal. Then I is graded maximal if and only if I0 is a
maximal ideal of B0: Therefore, since JðB0Þ ¼ 0; we must have JgrðBÞ ¼ 0; and that

finishes the proof. &

Remark (Passman [26]). The argument above shows in fact that if B ¼ B0 *G is a
crossed product of an algebra B0 with a group G; then B is G-graded Artinian if and
only if B0 is Artinian, and also JgrðBÞ ¼ 0 if and only if JðBÞ ¼ 0: The same is true if

B is a strongly G-graded algebra. See e.g. [18,26] for definitions and further results.

Proof of Theorem 5. Let VAO #s: By (i) of Lemma 1 and Theorem 4 we have V ¼
Mð1Þ#O; where O is nðLÞ-graded module over A: Hence it follows from Proposition
4 that O is decomposed into a direct sum of graded irreducible A-modules, and
Corollary 2 implies that V is decomposed into a direct sum of irreducible VL-
modules.

A V-module V ¼ Mð1Þ#OAO #s is simple if and only if O is a simple nðLÞ-graded
A-module. Such O must be isomorphic to a simple homogeneous ideal of A up to a

M. Roitman / Advances in Mathematics 176 (2003) 53–88 85



shift of weights. The weights of O are restricted by (ii) of Theorem 4. We claim that a
simple object of O #s is determined up to an isomorphism by a choice of roots mðajÞ;
given by (22), for each generating s-orbit Pj{aj of L; a choice of simple

homogeneous ideal O of A and an equivalence class ZAðL½0�Þ0=nðLÞ:
Indeed, assume all these choices are made. Since the extension #s is fixed, the choice

of mðajÞ’s determines the nðLÞ-graded semisimple algebra A: The set X ¼
fxAðh½0�Þn jOxa0g is an equivalence class in ðh½0�Þn=nðLÞ: Let xAðh½0�Þn be such that

xðað0ÞÞ ¼ 1
2 ða0ja0Þ � 1

2pi
ln mðaÞ for aAL: By Theorem 4 (ii) we have that X �

x mod ðL½0�Þ0; so now we further specify X � xþ Z mod nðLÞ:
It follows that there are at most finitely many isomorphism classes of simple

objects in O #s: &

3.9. Examples

Example 0. If s ¼ Id; then nðLÞDL; since the form is non-degenerate, and A ¼ R is

a L-graded division algebra. The automorphism bidid : VL-VL is defined by choosing

an arbitrary values mj ¼ jðajÞAC� for a basis a1;y; al of L: The simple objects of

category Obidid are parametrized by L0=L; which agrees with the result of Dong [4]. Let

xAhn be the functional defined by xðajÞ ¼ 1
2pi

ln mj: Then the simple object of category

Obidid corresponding to an equivalence class ZAL0=L is Mð1Þ#C½L�; where C½L� is

graded such that its set of weights is equal to Zþ xþ L:

Example 1. A more interesting example is when s ¼ �1: In this case take P ¼
f7a1;y;7alg: The grading is trivial, since L½0� ¼ 0: One can choose the cocycle e so

that eðaj; ajÞ ¼ 1 and then jð�ajÞ ¼ jðajÞ�1; hence (22) gives mj ¼ 71 for all 1pjpl:

Set xj ¼ eðajÞAA; then

A ¼ C½x1;y; xl �=/xixj ¼ cijxjxi; x2
j ¼ mjfðajÞS;

where cij ¼ ð�1Þðai jaiÞðaj jajÞð�1Þðai jajÞ: So A is a semisimple algebra of dimension

2l for any choice of j and mj: A simple module VAO #s is decomposed

V ¼ Mð1Þ#O; where O isomorphic to a simple ideal of A: This case was studied
in [5,9,12].

We remark that c�1�1 is an isomorphism of any lattice L: When L is the Leech

lattice, a certain c�1�1-twisted module over VL is used to construct the Moonshine

vertex algebra Vy; see [12].

Example 2. Take L ¼ Zaþ Zb and let s be the rotation a/b; b/� a: Then we

must have ðajbÞ ¼ 0; ðajaÞ ¼ ðbjbÞ: As in the previous example, L½0� ¼ 0; so the
grading is trivial. Formula (16) yields C ¼ 1; therefore the cocycle e is trivial and

hence j : L-C� is a character. Set jðaÞ ¼ j1; jðbÞ ¼ j2: The lattice L is generated
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by a single orbit fa; b;�a;�bg; and for that orbit m ¼
ffiffiffi
14

p
by (22). Set x ¼ eðaÞ; y ¼

eðbÞAA: Then relations (i) of Theorem 4 give y ¼ mj�1
1 x; x�1 ¼ mj�1

2 y; therefore

A ¼ C½x�=/x2 ¼ m2j1j2S: It follows that there are exactly 2 irreducible #s-twisted
VL-modules for every extension #s : VL-VL:
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