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Abstract The present one-drug-one-target paradigm in drug
discovery has been considered partially responsible for the
more-funding-less-drug predicament in modern pharmaceutical
industry. To hit the multiple targets implicated in complex dis-
eases, two strategies, based on multicomponent or single-ingredi-
ent, are conceivable. Although the latter is more difficult to be
fulfilled than the former, the recent progress made in the fight
against Alzheimer�s disease (AD) has brought us the first light
of success of the latter strategy. In this review, both synthetic
and natural multipotent agents are described, which hit two or
more targets implicated in AD, e.g., acetylcholinesterase, mono-
amine oxidase, amyloid-b, s protein, metal ions and reactive oxy-
gen species. Nevertheless, due to the potential risks in safety,
absorbability and pharmacokinetics of synthetic multipotent
agents, natural counterparts seem more promising in the future
development.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Modern pharmaceutical industry is facing unprecedented

challenges in drug development. The global research funding

has doubled since 1991, but the approved new drugs have fall-

en by 50% [1]. Considering the fact that most human diseases,

such as cancer, diabetes, heart disease, arthritis and neurode-

generative diseases, involve multiple pathogenetic factors, the

more-funding-less-drug predicament is attributed in part to

the limitations of the present one-drug-one-target paradigm

in drug discovery [1,2]. Therefore, more and more effort is de-

voted to finding new therapeutics aiming at multiple targets

[2], which is becoming a new paradigm in drug discovery.

To hit the multiple targets implicated in the complex dis-

eases, two strategies are conceivable. One is called multicom-

ponent therapeutic strategy, which incorporates two or more

active ingredients in one drug [2]. In fact, this strategy has been

successfully used in traditional medicine (in China and many

other countries) for thousands of years and in current drug
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cocktails as well to suppress the spreading of HIV. The other

attempts to employ one compound to hit the multiple targets,

which can be termed as one-compound-multiple-targets strat-

egy. Although the latter strategy seems more convenient than

the former, it is more difficult to be fulfilled. Nevertheless,

the accumulating experience gained in the battle against

Alzheimer�s disease (AD) displays the feasibility of the latter

strategy.

AD, characterized by progressive memory loss, decline in

language skills and other cognitive impairments, has been a

major threat to ageing population [3,4]. Although the etiology

of AD is not very clear, multiple factors, such as amyloid-b
(Ab) and s protein aggregation, excessive metal ions (e.g.,

Cu2+, Zn2+, Fe3+), oxidative stress and reduced acetylcholine

(ACh) level, have been considered to play important roles in

the pathogenesis of AD [3–6]. This provides diverse targets

for screening AD-modifying drugs. Indeed, numerous syn-

thetic or natural molecules have been screened to decrease

Ab production (e.g., b-secretase inhibitor), to prevent Ab or

s aggregation, to chelate transition metals, to scavenge reactive

oxygen species (ROS) or to inhibit acetylcholinesterase

(AChE) or monoamine oxidase (MAO) [3–7]. However, the

success of the one-drug-one-target strategy is limited, which

has stimulated the search for more efficient combined weapons

to combat AD.
2. Synthetic compounds as multipotent agents

Some pioneers resorted to incorporating two or more phar-

macophores in one molecule to design multipotent agents to

hit more than one target in AD. Several pioneering studies at-

tempted to combine AChE and MAO inhibiting activity. Fink

et al. [8] showed that hybrid of an AChE inhibitor (i.e., physo-

stigmine) and an irreversible MAO inhibitor, such as LL-depre-

nyl, resulted in dual AChE and MAO inhibitors. Furthermore,

they found that a series of imino 1,2,3,4-tetrahydrocyclo-

pent[b]indole carbamates (Fig. 1) are efficient dual AChE

and irreversible MAO inhibitors too [8]. Brühlmann et al. [9]

discovered that some coumarin and chromone derivatives

(Fig. 1) can behave as inhibitors of both MAO (mainly

MAO-B) and AChE. By incorporating two pharmacophores

in inhibiting AChE and MAO-B, i.e., carbamate and propar-

gyl group, into a single molecule scaffold, Sterling et al. [10]

also gained novel dual inhibitors of AChE and MAO.

Besides hydrolyzing ACh, AChE also functions as a

promoter of Ab fibril formation, which is independent of its
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Synthetic multipotent compounds to combat Alzheimer�s disease. The targets for each molecule are indicated in the parentheses. A basic
principle to design multipotent compounds is incorporating two or more pharmacophores in one molecule. Despite the in vitro success of these
synthetic agents, the potential risks in safety, absorbability and pharmacokinetics is a big hurdle in their further development.
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normal hydrolyzing activity and is associated with the periph-

eral binding site of AChE [11]. This stimulated the interest to

design hybrid molecules to inhibit AChE and AChE-induced

Ab aggregation simultaneously. Piazzi et al. [12] achieved this

goal by linking a benzylamino group and a coumarin heterocy-

cle through a phenyl ring. The combined molecule (AP2238)

(Fig. 1) is able to contact both the catalytic and the peripheral

binding sites of AChE at the same time. Moreover, Rosini

et al. [13] rationally designed a novel compound (lipocrine)

(Fig. 1) by linking tacrine, a AChE inhibitor, and lipoic acid,

a universal antioxidant, and endowed the hybrid molecule with

three functions, i.e., inhibiting the catalytic activity of AChE

and AChE-induced Ab aggregation and protecting against

ROS. Melchiorre et al. [14] showed that a polyamine, caproc-

tamine (Fig. 1), is well balanced between an AChE inhibitor

and a competitive muscarinic M2 receptor antagonist, which

means that caproctamine will stimulate cholinergic activity in

the brain by decreasing ACh hydrolysis rates and by enhancing

ACh release in the synapse at the same time. More interest-

ingly, caproctamine also has potential to prevent AChE-

induced Ab aggregation by interacting with the peripheral

binding sites of AChE [14].

Considering the preliminary success of metal chelators (e.g.,

clioquinol) in treating AD [5,15] and the fact that some super-

oxide dismutase (SOD) mimetics are metal chelates, Ji et al.

[16] proposed that better clinical effects than clioquinol can
be expected for a SOD-mimetic ligand with metal-binding abil-

ity comparable with clioquinol, because the ligand bears me-

tal–protein-attenuating ability and radical-scavenging

potential in one structure. By means of quantum chemical cal-

culation, two metal chelators, 1-BYT and 1,4-BYT (Fig. 1)

were revealed to be qualified candidates to fulfill this strategy

[16].
3. Natural products as multipotent agents

Despite the in vitro success of synthetic multifunctional

agents, the potential risks in safety, absorbability and pharma-

cokinetics is a big hurdle in their further development [8].

Hence, it is exciting to note that some natural products also

hold multiple functions, among which, curcumin (Fig. 2) is gi-

ven the most attention. The beneficial effect of curcumin to

prevent AD has been shown by transgenic mouse experiment

[17] and epidemiologic investigation that AD prevalence is

only 1% in people over age 65 of rural India, where turmeric

is commonly used in food [18]. The AD-preventing mechanism

of curcumin was naturally related to its well known antioxi-

dant and anti-inflammatory activities [19,20]. However, recent

in vitro and in vivo experiments revealed that curcumin can

block Ab aggregation with high efficiency (IC50 < 1 lM)

[21,22]. In addition, curcumin is also a good metal chelator
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[23]. Both experimental determination and theoretical calcula-

tion indicated that curcumin can efficiently sequester Cu2+ and

the Cu2+-curcumin complex gets more active than the parent

curcumin in scavenging ROS by catalyzing the dismutation

of superoxide anion radical [24] or by donating a proton or

an electron [25]. Therefore, all of the evidence implies that cur-

cumin is a very promising multipotent compound to treat AD.

Besides curcumin, flavonoids, such as gossypetin, (�)-epicat-

echin-3-gallate and myricetin (Fig. 2), are pleiotropic natural

products too. They have long been known as excellent ROS

scavengers endowed with high metal-chelating ability [26].

Moreover, Taniguchi et al. [27] revealed that these flavonoids

hold Ab- or s-aggregation-inhibiting capability with IC50

lower than 5 lM. The different structures of curcumin and

flavonoids suggest that the structural requirements to fulfill

the multifunction are diverse and thus, it can be expected

to find more candidates from natural product libraries.

Considering the wide enzyme-inhibiting spectra of curcumin

and flavonoids, it is challenging to investigate their effects on

other AD-related proteins. Maybe, more AD-attenuating

mechanisms can be revealed for both kinds of natural products.

As revealed by the structure–activity relationship study on

flavonoids [26,28], catechol moiety is an active center to scav-

enge ROS or bind metal ions. On the other hand, catechol is

also required, e.g., in apomorphine, to prevent Ab aggregation

[29]. Therefore, catechol likely plays a key role in exerting the

multifunction of flavonoids and can be regarded as a multi-

functional pharmacophore, which means that the multiple tar-

gets in AD can be hit not only by one compound but also by

one pharmacophore. The feasibility of this new concept is fur-

ther supported by an intriguing finding that there exist com-

mon peptide motifs in AD-related proteins. By bioinformatic

analyses on 43 proteins implicated in AD, Stephenson et al.

[30] identified BBXB and AXBBXB (where B is a basic residue,

X represents any other amino acids and A refers to an acidic

residue) as two common receptor motifs. BBXB motif occurs
in 27 proteins, while AXBBXB motif is shared by 8 proteins

and holds higher specificity. The common motifs will serve

as the targets of multifunctional pharmacophores, which in-

deed boosts up the practicability of the one-compound- multi-

ple-targets strategy in combating AD.

Although catechol is of great interest in AD-attenuating

drug discovery, there is concern about its potential toxicity

[31]. The toxicity of catechols may arise from its strong elec-

tron-donating ability, which will change the antioxidant to a

prooxidant. In addition, the toxicity of catechols is likely asso-

ciated with their quinone formation potential. It was revealed

that the less quinone is formed, the safer the catechols [31].

These findings offer important clues to screening or designing

catechol-based multipotent agents. For instance, catechol-con-

taining xanthones (Fig. 2) may have more potential than flavo-

noids to act as pleiotropic agents to combat AD, because the

perfect conjugation of rings A, B and electron-withdrawing

ring C (1,4-pyrone) attenuates their electron-donating ability

[32]. More interestingly, xanthones have really been revealed

as efficient AChE and MAO inhibitors [33,34].
4. Conclusion

Drug discovery paradigm is shifting from one-drug–one-tar-

get strategy to one-drug-multiple-targets strategy. The diverse

targets can be hit not only by multiple components but also by

one compound or even by a single pharmacophore. Thanks to

the advancement in high throughput drug screening and com-

puter-aided drug design, there is less and less technical hurdle

in finding more multipotent agents to fulfill the new strategy.

Especially, the recent progress made in fighting against AD

has brought us the first light of success of the new concept,

which also has important implications for treating other neu-

rodegenerative diseases [35], because similar multiple pathoge-

netic factors, such as protein aggregation, excessive ROS and
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metals, are involved [5,6] and different types of soluble amyloid

oligomers bear a common structure [36].

Note. Following the acceptance of the review, two interest-

ing papers appeared [37,38], in which Youdim and coworkers

reported that some designed iron chelators hold MAO-AB

inhibitory activity and antioxidant effect, thus can serve as

multipotent agents to combat AD and Parkinson�s disease.

In addition, from the references of both papers, I found a pio-

neering review on multifunctional drugs to treat neurodegener-

ative disorders [39], which is very helpful to the researchers in

this area.
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