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Abstract

Let Ω be a symmetric cone and V the corresponding simple Euclidean Jordan algebra. In our previ-
ous papers (some with G. Zhang) we considered the family of generalized Laguerre functions on Ω that
generalize the classical Laguerre functions on R+. This family forms an orthogonal basis for the subspace
of L-invariant functions in L2(Ω,dµν), where dµν is a certain measure on the cone and where L is the
group of linear transformations on V that leave the cone Ω invariant and fix the identity in Ω . The space
L2(Ω,dµν) supports a highest weight representation of the group G of holomorphic diffeomorphisms that
act on the tube domain T (Ω) = Ω + iV . In this article we give an explicit formula for the action of the
Lie algebra of G and via this action determine second order differential operators which give differential
recursion relations for the generalized Laguerre functions generalizing the classical creation, preservation,
and annihilation relations for the Laguerre functions on R+.
 2005 Elsevier SAS. All rights reserved.
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Introduction

It is a general understanding that special functions are closely related to representation theory
of special Lie groups. Special functions are realized as coefficient functions of the representation
and the action of the Lie algebra is used to derive differential equations and recursion relations
satisfied by those functions. Standard references to this philosophy are the works of Vilenkin
and Klimyk [24,25]. We also refer the interested reader to the text [10], the recent text [1], and
the work of T. Koornwinder. The present article reflects these general philosophies. In particular,
we conclude our work on the connection between generalized Laguerre functions, highest weight
representations and Jordan algebras, [2,5–8]. The classical Laguerre functions �λ

n form an orthog-
onal basis for the Hilbert space L2(R+, xλ−1dx), λ > 0. As far as we have been able to trace,
the first generalizations of the Laguerre functions and polynomials is from 1935 in the work of
F. Tricomi [23]. Later, in 1955, C.S. Herz [12] considered generalized Laguerre functions in the
context of Bessel functions on the space of complex (m × m)-matrices. The Laguerre polyno-
mials are defined on the cone of positive definite complex matrices in terms of the generalized
hypergeometric functions, also introduced in the same article. Other realizations of the Laguerre
functions, using the Laplace transform, were also derived. The motivation was to construct a
complete set of eigenfunctions for the Hankel transform. The generalization to all symmetric
cones using Euclidean Jordan algebras was achieved almost 40 years later in the beautiful book
by J. Faraut and A. Koranyi [11]. Here the Laguerre polynomials were defined in terms of certain
polynomials, ψm(x), invariant under the action of a maximal compact subgroup L leaving the
cone invariant and fixing the identity e:

Lν
m(x) = (ν)m

∑
|n|�m

(
m
n

)
1

(ν)n
ψn(−x),

cf. Section 4. The Laguerre functions are defined as

�ν
m(x) = e− trxLν

m(2x),

where tr is the trace in the corresponding Jordan algebra. It was shown that the Laguerre func-
tions were orthogonal and eigenfunctions of the Hankel transform. Later, F. Ricci and A. Tabacco
constructed a system of differential operators, in the context of the Jordan algebra of Hermitian
symmetric matrices and real symmetric matrices, having the Laguerre functions as eigenfunc-
tions with distinct eigenvalues, cf. [19]. In the simplest case this differential operator is nothing
but the Laguerre differential operator. None of these works, however, considers the generalized
differential recursion relations that correspond to raising and lower operators satisfied by the
Laguerre functions.

The first time that the Laguerre polynomials were directly related to representation theory was
in [24] where they were shown to be coefficient functions of representations of the group{(1 a b

0 c d

0 0 1

) ∣∣ a, b, c, d ∈ R, c �= 0

}
.

Later B. Kostant and N. Wallach used the recursion relations that exist amongst the Laguerre
functions to construct a highest weight representation and subsequently study Whittaker vectors
for some special representations [17,27]. In [17] the differential equations and recursion relations
for the Laguerre functions were used to give a realization of the highest weight representations

of ˜SL(2,R), the universal covering group of SL(2,R). The opposite point of view was taken



248 M. Aristidou et al. / Bull. Sci. math. 130 (2006) 246–263
in [7] where the authors showed how one can derive those classical relations using a highest
weight representation and the Laplace transform. The classical relations were given as the action
of special elements in the Lie algebra acting as second order differential operators on functions
on R+.

The connection to the construction in [11] was established in [8] where the generalized La-
guerre functions were shown to be not only orthogonal but also a basis of the space of L-invariant
functions in the highest weight module realized in L2(Ω,dµν), where Ω is a symmetric cone,
and dµν is a certain quasi-invariant measure on Ω . Using a certain L-invariant element in the
Lie algebra, the authors showed that the Laguerre functions satisfy a first order differential re-
cursion relation involving the Euler operator (cf. Theorem 7.9 in [8]). The terms in this relation
involve a raising and lowering of indices that parameterize the Laguerre functions. In the context
of a highest weight representation one deduces that the Euler operator is made up of a creation
and annihilation operator derived from the action of the Lie algebra. However, no attempt was
made to derive an explicit form of these operators until we considered the special cases of the
cones of Hermitian symmetric matrices and real symmetric matrices in [2,5], respectively. In
this article we generalize those results to the Laguerre functions related to all symmetric cones.
The tools are again highest weight representations and Jordan algebras. The main results are the
explicit formulas for the action of the Lie algebra in the realization of the highest weight space
L2(Ω,dµν) and then the restriction to the subalgebra of L-invariants which results in the differ-
ential equations and recursion relations in terms of explicitly constructed differential operators.

If g is simple, then the subalgebra of L-invariants in gC is isomorphic to sl(2,C). It should be
noted that such a three dimensional Lie algebra of differential operators has shown up in several
places in the literature. We would like to mention its important role in the study of the Huygens’
principle [4,14,15], in representation theory [16] (and the references therein), and in the theory
of special functions [21].

One cannot downplay the essential role that Jordan algebras play in establishing and express-
ing many of the fundamental results obtained about orthogonal families of special functions
defined on symmetric cones. Nevertheless, the theory of highest weight representations adds
fundamental new results not otherwise easily obtained. In short, our philosophy is that there is a
strong interplay between Jordan algebras, highest weight representations, and special functions
which has not been fully exploited.

The starting point in this project has been the representation theory, wherein the Laguerre
polynomials form an orthogonal family of functions invariant under a group action. However,
the Laguerre polynomials have also been introduced in the literature using several variable Jack
polynomials [3,9,18]. We would like to thank M. Rösler for pointing these references out to us. To
explain the connection, a little more notation is needed. Let J be an irreducible Euclidean Jordan
algebra of rank r . Let c1, . . . , cr ∈ J be a Jordan frame, a = ⊕r

j=1 Rcj and e = c1 + · · · + cr .

Let Ω = {x2 | x ∈ J and x regular} be the standard symmetric cone in J . Let H = {g ∈ GL(J ) |
gΩ = Ω}o and L the maximal compact subgroup of H fixing e. Then the Laguerre functions
and polynomials are L-invariant functions on Ω . Let

Ω1 = a ∩ Ω � (R+)r .

Then Ω = L ·Ω1 and therefore the Laguerre polynomials and functions are uniquely determined
by their restriction to Ω1. Thus, the Laguerre polynomials can also be defined as polynomials on
Ω1 or the vector space a, invariant under the Weyl group WH = NL(a)/ZL(a). This is the way
the Laguerre polynomials are defined in the above references.
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In the case of symmetric matrices, this boils down to the fact that each symmetric matrix can
be diagonalized. Thus

Ω1 = {
d(λ1, . . . , λn) | λj > 0

}
and the Laguerre polynomials can be viewed as polynomials in the eigenvalues, invariant under
permutations.

The article is organized as follows. The necessary tools from Jordan algebra theory are in-
troduced in Section 1. In Section 2 we introduce the tube domain T (Ω) = V + iΩ , where V

is a simple Euclidean Jordan algebra. The main part of this section is devoted to describing the
Lie algebra of G = G(T (Ω))o, where G(T (Ω)) is the group of holomorphic automorphisms of
T (Ω) and the subscript o stands for the connected component of the identity. The final result is
the description of the L-invariant elements in g. Most of this material can be found in [11].

In Section 3 we introduce the highest weight representations and give an explicit realization
of those representations in L2(Ω,dµν) using the second order Bessel differential operator intro-
duced in [11]:

Bν = P

(
∂

∂x

)
x + ν

∂

∂x
,

where P(a) denotes the quadratic representation of V . For w ∈ VC we define the differential
operator Bν,w by

Bν,wf (x) = (
Bνf (x),w

)
.

Then the following holds:

Theorem 3.4. Let f ∈ L2(Ω,dµν)
∞. The representation λν of g is described as follows:

(1) λν(X(iu,0,0))f (x) = tr(iux)f (x), X(iu,0,0) ∈ n+,
(2) λν(X(0, T ,0))f (x) = ν

p
Tr(T )f (x) + DT txf (x), X(0, T ,0) ∈ h,

(3) λν(X(0,0, iv))f (x) = −Bν,ivf (x), X(0,0, iv) ∈ n−.

Here n+,h, and n− are certain subalgebras of g such that g = n+ ⊕ h ⊕ n−.
In Section 4 we introduce the Laguerre functions and finally, in Section 5 we use Theorem 3.4

to derive explicit second order differential operators such that one of them has the Laguerre
functions as eigenfunctions and the two others are an annihilator operator and a creation operator.
Setting Bν = Bν,e we have:

Theorem 5.2. The Laguerre functions are related by the following differential recursion rela-
tions:

(1) (− trx + Bν)�
ν
m(x) = −(rν + 2|m|)�ν

m(x),
(2) (trx + rν + 2Dx + Bν)�

ν
m(x) = −2

∑r
j=1

( m
m−γj

)
(mj − 1 + ν − (j − 1) d

2 )�ν
m−γj

(x),

(3) (trx − rν − 2Dx + Bν)�
ν
m(x) = −2

∑r
j=1 cm(j)�ν

m+γj
(x), where the constants cm(j) are

defined by

cm(j) =
∏
k �=j

mk − mj − d
2 (k − j + 1)

mk − mj − d
2 (k − j)

.
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1. Jordan algebras and symmetric cones

In this section we will set down the notation and basic results concerning Jordan algebras
and symmetric cones used for the remainder of this paper. We have tried to keep the notation
consistent with the text by Faraut and Koranyi (cf. [11]). For proofs of results mentioned below
see this text.

Let V be a real Jordan algebra. This means that V is a real vector space with a bilinear
commutative product (a, b) �→ ab such that a2(ab) = a(a2b). In general, a Jordan algebra is not
associative. Let L(a) denote left multiplication by a on V . Thus L(a)x = ax. Since the product
is bilinear, L(a) is a linear operator on V . The multiplicative property given above is equivalent
to [L(a),L(a2)] = 0, for all a ∈ V .

Let x ∈ V and let R[x] be the algebra generated by x. The rank of V , r , is defined by

r = max
{
dim R[x] | x ∈ V

}
.

An element x ∈ V is regular if dim R[x] = r . The set of regular elements is open and dense in
V . Suppose x is regular. We define tr(x) and det(x) as follows:

tr(x) = Tr
(
L(x)|R[x]

)
,

det(x) = Det
(
L(x)|R[x]

)
,

where Tr and Det are the usual trace and determinant of a linear operator. It is not hard to show
that tr(x) and det(x) are polynomial functions in x and hence have polynomial extensions to all
of V and VC.

Throughout, we will assume that V is finite dimensional with dimension n and contains a
multiplicative identity e. Let VC = V ⊗ C be the complexification of V . An element x ∈ VC is
said to be invertible if there is a y ∈ C[x] such that xy = e. The element y is necessarily unique,
it is called the inverse of x, and denoted x−1. We let I denote the inversion map on the set of
invertible elements: I(x) = x−1.

The quadratic representation P of V is defined by

P(a) = 2L(a)2 − L(a2)

and plays a pivotal role in all that follows. If F :V → V is a differentiable map, we denote by
DF :V → End(V ) the derivative of F . For u,x ∈ V we set

DuF(x) = DF(x)u = lim
t→0

F(x + tu) − F(x)

t
.

Lemma 1.1. An element x is invertible if and only if P(x) is invertible as a linear operator on V .
In this case

P(x)(x−1) = x,

P (x)−1 = P(x−1).

The set of invertible elements is an open set in V given by {x ∈ V | Det(P (x)) �= 0}. The deriva-
tive of the inversion map, I, is given by

DI(x) = −P(x)−1,

and, in particular, for all u ∈ V , we have

DuI(x) = −P(x)−1u.
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The polarization of P is given by

P(x, y) := 1

2
Dy

(
P(x)

)
= 1

2

(
P(x + y) − P(x) − P(y)

)
= L(x)L(y) + L(y)L(x) − L(xy).

A real Jordan algebra is Euclidean if there is an associative inner product on V . In other
words, there is an inner product (·, ·) satisfying

(xu, v) = (u, xv),

for all x,u, v ∈ V . This is equivalent to saying that L(x) is symmetric for all x ∈ V . A Jordan
algebra is simple if there are no nontrivial ideals.

Proposition 1.2. Suppose V is a simple Euclidean Jordan algebra of dimension n and rank r .
For x, y ∈ V we have

TrL(x) = n

r
tr(x),

DetP(x) = (detx)2n/r ,

det(P (y)x) = (dety)2 detx.

Henceforth, we will assume V is a simple Euclidean Jordan algebra of dimension n and rank
r . Let Ω be the interior of the set of all squares x2, x ∈ V . Let G(Ω) be the group of all invertible
linear transformations on V which leave Ω invariant. We will also use the notation H = G(Ω)o,
where the subscript o denotes the connected component containing the identity.

Proposition 1.3. The set Ω is a symmetric cone. This means that Ω is an open convex cone in
V , self-dual in the sense that

Ω = {
y ∈ V | (x, y) > 0,∀x ∈ Ω \ {0}},

and G(Ω) and H acts transitively on Ω . Furthermore, Ω is the connected component of e in the
set of invertible elements of V and

Ω = {
x ∈ V | L(x) is positive definite

}
.

2. The tube domain T (Ω)

Let V be a simple Euclidean Jordan algebra and T (Ω) = Ω + iV .3 We note that T (Ω) is
contained in the set of invertible elements in VC and I : z �→ z−1 is an involutive holomorphic
automorphism of T (Ω) having e as its unique fixed point, cf. [11, Theorem X.1.1]. We note that
VC is a complex Jordan algebra. The multiplication, trace, and determinant formulas all extend
from V to VC in the usual way. We extend the bilinear form (·, ·) on V to a complex bilinear
form on VC and denote it in the same way.

3 We choose the right half plane for T (Ω) instead of the upper half plane, V + iΩ , given in [11], for example, and
usually referred to as the Siegel upper half plane.
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Let G(T (Ω)) be the group of holomorphic automorphisms of T (Ω) and G = G(T (Ω))o. We
describe elements in G as follows: Let (iu,T , iv) ∈ iV × H × iV and define

τiu(z) = z + iu,

ρT (z) = T z,

σiv(z) = (z−1 + iv)−1.

We observe that

σiv = Iτiv I−1

Let N+ = {τiu | u ∈ V } and N− = {σiv | v ∈ V }. We identify H with {ρT | T ∈ H }. It is well
known that the map, (iu,T , iv) �→ τiuρT σiv , is a diffeomorphism of N+ × H × N− onto an
open dense subset of G. Furthermore, if K = Ge , the stabilizer of e, i.e., the set of all g ∈ G such
that ge = e, then

G = N+HK,

cf. [11, pp. 205–207] for details. We set L = K ∩ H and note that K is a maximal compact
subgroup of G and L is a maximal compact subgroup of H .

Let n+, n−, h, g, and k be the Lie algebras corresponding to N+, N−, H , G, and K , respec-
tively. The one parameter subgroups

z �→ z + itu ∈ N+ (u ∈ V ),

z �→ exp(tT )z ∈ H (T ∈ h),

z �→ (z−1 + itv)−1 ∈ N− (v ∈ V )

induce the corresponding vector fields

X(z) = iu ∈ n+,

X(z) = T z ∈ h,

X(z) = −P(z)iv ∈ n−.

As g = n+ ⊕ h ⊕ n− it follows, that every vector field g is of the form

X(z) = iu + T (z) − P(z)(iv)

and we will denote it by the triple X(iu,T , iv). For x, y ∈ VC set

x�y = L(xy) + [
L(x),L(y)

]
.

Proposition 2.1. Let X(iu1, T1, iv1) and X(iu2, T2, iv2) be two vector fields in g. Then the Lie
bracket is given by[

X(iu1, T1, iv1),X(iu2, T2, iv2)
] = X(iu,T , iv),

where

u = T1u2 − T2u1,

T = [T1, T2] − 2
(
(u1�v2) − (u2�v1)

)
,

v = T t
2 v1 − T t

1 v2.
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Proof. The proof is just as is found in [11, p. 209]. �
We note that l, the Lie algebra of L is given by

l = {
X(0, T ,0) | h � T = −T t

}
,

where t denotes the transpose of T .

Proposition 2.2. The Lie algebra of K is given by

k = {
X(iu,T , iu) | u ∈ V, T ∈ l

}
.

Proof. The map s(X) = −iXi takes vector fields acting in the upper half plane to those acting
on the right half plane and vice versa. The vector fields of the form X(−u,T ,u), T ∈ l, with the
obvious notation, form the Lie algebra for the group acting on the upper half plane that fixes i.e.
(cf. [11, p. 210]). Furthermore,

s
(
X(−u,T ,u)

) = −iX(−u,T ,u)i(z)

= −i
(−u + T (iz) − P(iz)u

)
= iu + T z − P(z)iu

= X(iu,T , iu)

and this implies the proposition. �
Proposition 2.3. The Killing form, B , on g is given by

B
(
X(iu1, T1, iv1),X(iu2, T2, iv2)

) = B◦(T1, T2) + 2 Tr(T1T2) − 4
n

r

(
(u1, v2) + (u2, v1)

)
,

where B◦(·, ·) is the Killing form on h. It is nondegenerate on g.

Proof. Cf. [22, p. 28]. �
We now define

p = {
X(iu,T ,−iu) | u ∈ V, T = T t ∈ h

}
.

It is not difficult to see that the Killing form is negative definite on k and positive definite on p.
Moreover,

g = k ⊕ p

is the Cartan decomposition of g corresponding to the Cartan involution Θ :g → g given by

Θ
(
X(iu,T , iv)

) = X(iv,−T t , iu).

Let gC be the complexification of g which we will identify with the set of all vector fields of
the form X(z,T ,w), where z,w ∈ VC and T ∈ hC. We will let [·, ·] denote the complex linear
extension of the bracket given in Proposition 2.1. Specifically, we have[

X(z1, T1,w1),X(z2, T2,w2)
] = X(z,T ,w),

where
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z = T1z2 − T2z1,

T = [T1, T2] + 2
(
(z1�w2) − (z2�w1)

)
,

w = T t
2 w1 − T t

1 w2.

Let T ∈ hC and write T = T1 + iT2 where T1, T2 ∈ h. If T = T t then T1 and T2 are likewise
self adjoint. Any self adjoint operator in h is a left translation operator L(x), for some x ∈ V . It
follows then that T = L(x) + iL(y) = L(x + iy), for some x, y ∈ V . Therefore, the self adjoint
operators in hC are left multiplication operators on VC by elements in VC.

Let Z = X(−e,0,−e). Then an easy calculation shows that Z is in the center of kC. Further-
more, ad(Z) has eigenvalues ±2 on pC, the complexification of p in gC. Indeed, let

p+ = {
X(z,L(2z),−z) | z ∈ VC

}
and p− = {

X(z,−L(2z),−z) | z ∈ VC

}
. (2.1)

Then for X(z,L(2z),−z) ∈ p+[
X(−e,0,−e),X(z,L(2z),−z)

] = 2X
(
z,L(2z),−z

)
and for X(z,−L(2z),−z) ∈ p−[

X(−e,0,−e),X(z,−L(2z),−z)
] = −2X

(
z,−L(2z),−z

)
.

Since

pC = p+ ⊕ p−
it follows that p+ is the +2-eigenspace of ad(Z) and p− is the −2-eigenspace of ad(Z). Note,
that both p+ and p− are Abelian subalgebras of pC.

2.1. L-fixed vectors

The group K (and its Lie algebra k) naturally acts on gC. We are interested in the set of
vectors, gL

C
, fixed by the action of the subgroup L or, equivalently, those vectors annihilated by l

via the adjoint representation. First of all, since

gC = p+ ⊕ kC ⊕ p−
is a decomposition into kC-invariant subspaces it follows that

gL
C

= pL+ ⊕ kL
C

⊕ pL−.

Let X = 1
2X(e,2L(e),−e), Y = 1

2X(−e,2L(e), e), and Z = X(−e,0,−e) as above. Then X ∈
p+, Y ∈ p−, and Z ∈ kC and each are fixed by L. Furthermore, if s is the C-span of {X, Y, Z} then
s is a Lie subalgebra isomorphic to sl(2,C). Indeed, we need only observe that

[X, Y] = Z,

[Z, X] = 2X,

[Z, Y] = −2Y.

Proposition 2.4. With the notation established above we have

gL
C

= s.

Proof. It follows by [13, Theorem 1.3.11], that dimR gL = dimC gL
C

= 3. The claim follows as
dimC s = 3. �
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3. Highest weight representations of G

In this section we will discuss a well know series of representations of G acting on spaces,
Hν(T (Ω)), of holomorphic functions defined on the tube domain T (Ω) = Ω + iV . The Laplace
transform, Lν , is a unitary isomorphism of L2(Ω,dµν) onto Hν(T (Ω)). We use this isomor-
phism to define an equivalent representation of G on L2(Ω,dµν).

3.1. Representation on Hν(T (Ω))

Let G̃ be the universal covering group of G and κ : G̃ → G the covering map. Then G̃ acts on
T (Ω) via the covering map, i.e., g · z = κ(g)z. For ν > 1 + n(r − 1) let Hν(T (Ω)) be the space
of holomorphic functions F :T (Ω) → C such that

‖F‖2
ν := αν

∫
T (Ω)

∣∣F(ix + y)
∣∣2

∆(y)ν−2n/r dx dy < ∞,

where

αν = 2rν

(4π)n�Ω(ν − n/r)
.

(See Section 4.2 for the definition of �Ω .) Then Hν(T (Ω)) is a nontrivial Hilbert space. For
ν � 1 +n(r − 1) this space reduces to {0}. If ν = 2n/r this is the Bergman space. For g ∈ G̃ and
z ∈ T (Ω), let J (g, z) be the complex Jacobian determinant of the action of g ∈ G̃ on T (Ω) at
the point z. Then

J (ab, z) = J (a, b · z)J (b, z)

for all a, b ∈ G̃ and z ∈ T (Ω). Recall that the genus of T (Ω) is p = 2n
r

. It is well known that for
ν > 1 + n(r − 1) that

πν(g)F (z) = J (g−1, z)ν/pF (g−1 · z)
defines a unitary irreducible representation of G̃, cf. [11,20,26], for example.

For the following we need the explicit form of J (g, z) on the generators τiu, ρT , and σiv .

Lemma 3.1. The multiplier, J , satisfies

(1) J (τiu, z) = 1, u ∈ V ;
(2) J (ρT , z) = DetT , T ∈ h;
(3) J (σiv, z) = det(e + izv)−p , v ∈ V .

Proof. In the following w denotes arbitrary element in VC and z ∈ T (Ω).
(1) Let u ∈ V . Then

d

dt
τiu(z + tw)|t=0 = d

dt
(z + tw + iu)|t=0 = w.

Hence J (τiu, z) = 1.
(2) Let T ∈ H . We then have d

dt
ρT (z + tw)|t=0 = T w. Hence J (ρT , z) = DetT .

(3) For v ∈ V we get by Lemma 1.1 and the chain rule

d
σiv(z + tw)|t=0 = d (

(z + tw)−1 + iv
)−1∣∣

t=0 = (
P(z)P (z−1 + iv)

)−1
w.
dt dt
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Hence J (σiv, z) = ((det z)det(z−1 + iv))−2n/r = det(e + izv)−2n/r . �
Recall that the space of smooth vectors Hν(T (Ω))∞ in Hν(T (Ω)) is the space of all F ∈

Hν(T (Ω)) such that

R � t �→ πν(exp tX)F ∈ Hν

(
T (Ω)

)
is smooth for all X ∈ g. We denote also by πν the action of the Lie algebra g and the complex
linear extension to gC. For F ∈ Hν(T (Ω)) and X ∈ g this action is given by

πν(X)F = lim
t→0

πν(exp tX)F − F

t
.

If F is a complex valued holomorphic function on T (Ω) we let, as before,

DwF(z) = DF(z)w = d

dt
F (z + tw)|t=0

be the (nonnormalized) directional derivative of F in the direction w ∈ VC. As the point evalua-
tion maps F �→ F(z) are continuous linear functionals in Hν(T (Ω)) it follows easily that

πν(X)F(z) = d

dt
J
(
exp(−tX), z

)ν/p
F

(
exp(−tX)z

)∣∣
t=0

= J
(
exp(−tX), z

)ν/p∣∣
t=0F(z) + d

dt
F

(
exp(−tX)z

)∣∣
t=0,

for all z ∈ T (Ω), X ∈ gC, and F ∈ Hν(T (Ω))∞. The following proposition gives the action of
n+, n− and h, and hence the full Lie algebra, on Hν(T (Ω)):

Proposition 3.2. Let F ∈Hν(T (Ω))∞. Then the subalgebras n+, h, and n− act by the following
formulas:

(1) πν(X(iu,0,0))F (z) = −DiuF (z), X(iu,0,0) ∈ n+;
(2) πν(X(0, T ,0))F (z) = − ν

p
tr(T )F (z) − DT zF (z), X(0, T ,0) ∈ h;

(3) πν(X(0,0, iv))F (z) = iν tr(zv)F (z) + DP(z)ivF (z), X(0,0, iv) ∈ n−.

Proof. (1) Let u ∈ V . The formula t �→ τtiu(z) = z + itu defines the one parameter subgroup in
the direction X(iu,0,0) ∈ n+. By Lemma 3.1, we then have

πv

(
X(iu,0,0)

)
F(z) = d

dt
J
(
τ−1
t iu , z

)ν/p
F

(
τ−1
t iu z

)∣∣
t=0

= d

dt
J (τ−t iu, z)

ν/p|t=0F(z) + d

dt
F (τ−t iuz)|t=0

= D−iuF (z).

(2) Let T ∈ h. Then t �→ ρexp(tT )(z) = exp(tT )z defines the one parameter subgroup in the
direction X(0, T ,0) ∈ h. By Lemma 3.1, we have

πν

(
X(0, T ,0)

)
F(z) = d

dt
J (ρexp(−tT ), z)

ν/pF (ρexp(−tT )z)|t=0

= d

dt
J (ρexp(−tT ), z)

ν/p|t=0F(z) + d

dt
F (ρexp(−tT )z)|t=0

= −ν
tr(T )F (z) − DT zF (z).
p
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(3) Finally, let v ∈ V . Then z �→ σtiv(z) = (z−1 + itv)−1 defines the one parameter subgroup
in the direction X(0,0, iv). Again, by Lemma 3.1 and by Lemma 1.1, we have

πν

(
X(0,0, iv)

)
F(z) = d

dt
J
(
σ−1

itv , z
)ν/p

F
(
σ−1

itv z
)∣∣

t=0

= d

dt
J (σ−itv, z)

ν/p|t=0F(z) + d

dt
F (z−1 − itv)−1|t=0

= d

dt
det(e − itzv)−ν |t=0F(z) + DF(z)

[ − P(z−1)−1(−iv)
]

= iν tr(zv)F (z) + DP(z)ivF (z). �
3.2. The Laplace transform

Let L2(Ω,dµν) be the Hilbert space of all Lebesgue measurable functions on Ω such that

‖f ‖2 =
∫
Ω

∣∣f (x)
∣∣2 dµν(x) < ∞,

where dµν(x) = ∆ν−n/r (x)dx. For f ∈ L2(Ω,dµν) the Laplace transform is defined by the
formula

Lν(f )(z) =
∫
Ω

e−(z,x)f (x)dµν(x).

Proposition 3.3. Let f ∈ L2(Ω,dµν). Then Lνf ∈Hν(T (Ω)). Furthermore, the map

Lν :L2(Ω,dµν) →Hν

(
T (Ω)

)
is a unitary isomorphism.

Proof. Cf. [8,20]. �
3.3. Representation on L2(Ω,dµν)

By Proposition 3.3 we can define an equivalent representation, λν , of G on L2(Ω,dµν) so
that Lν is an intertwining operator. Specifically,

λν(g)f = L−1
ν πν(g)Lνf,

for g ∈ G. We denote by L2(Ω,dµν)
∞ the space of smooth vectors. As usual we will let λν

also denote the action of the Lie algebras g and gC on L2(Ω,dµν)
∞. Note that this represen-

tation is not geometric in the sense that G̃ does not act naturally on Ω , only the subgroup –

with the obvious notation – G̃(Ω) ∩ G acts on Ω . We follow [11] to define the Bessel operator
Bν :C∞(V ) → C∞(V ) ⊗ VC formally by

Bν = P

(
∂

∂x

)
x + ν

∂

∂x
. (3.1)

If {ei}ni=1 is an orthonormal basis of V and (x1, . . . , xn) the corresponding coordinate functions,
then

Bνf (x) =
∑ ∂2f

∂xi∂xj

(x)P (ei, ej )x + ν
∑ ∂f

∂xi

(x)ei .
i,j i
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By the definition given in Eq. (3.1) this formula is obviously basis independent. We refer to [11,
p. 322] for more details. For w ∈ VC we define the differential operator Bν,w by

Bν,wf (x) = (
Bνf (x),w

)
. (3.2)

Theorem 3.4. Let f ∈ L2(Ω,dµν)
∞. The representation λν of g is described as follows:

(1) λν(X(iu,0,0))f (x) = tr(iux)f (x), X(iu,0,0) ∈ n+;
(2) λν(X(0, T ,0))f (x) = ν

p
Tr(T )f (x) + DT txf (x), X(0, T ,0) ∈ h;

(3) λν(X(0,0, iv))f (x) = −Bν,ivf (x), X(0,0, iv) ∈ n−.

Proof. (1) Let u ∈ V and for convenience let m = ν − n/r . Let w = 1
2z ∈ Ω . Then w + Ω is an

open neighborhood of z and for f ∈ L2(Ω,dµν)
∞ we have∣∣e−(y,x)(iu, x)f (x)∆m(x)

∣∣ �
∣∣e−(w,x)(iu, x)f (x)∆m(x)

∣∣,
for all y ∈ w + Ω . As e−(w,·)(iu, ·)f ∆m ∈ L1(Ω,dµν) we can interchange the integration and
differentiation in the following to get

πν

(
X(iu,0,0)

)
Lνf (z) = −DiuLνf (z)

= −
∫
Ω

Diu(e
−(z,x))f (x)∆m(x)dx

=
∫
Ω

e−(z,x)(iu, x)f (x)∆m(x)dx

= Lν

(
tr(iux)f (x)

)
(z).

(2) In [8, p. 191] we determine the action of H on L2(Ω,dµν) as follows:

λν(h)f (x) = Det(h)
ν
p f (htx),

h ∈ H . Differentiation of this formula gives (2).
(3) By Proposition XV.2.4 of [11] we have

Lν(Bν,ivf )(z) = −
(

P(z)
∂

∂z
+ νz, iv

)
Lνf (z)

= −(
DP(z)iv + ν tr(izv)

)
Lνf (z)

= −πν

(
X(0,0, iv)

)
Lνf (z),

from which the result follows. �
Remark 3.5. Each of these formulas extend to the complexification in an obvious way:

(1) λν(X(w,0,0))f (x) = tr(wx)f (x), X(w,0,0) ∈ n
+
C

;
(2) λν(X(0, T ,0))f (x) = ν

p
Tr(T )f (x) + DT txf (x), X(0, T ,0) ∈ hC;

(3) λν(X(0,0,w))f (x) = −Bν,wf (x), X(0,0,w) ∈ n
−
C

.
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4. Laguerre functions

We continue with the assumption that V is a simple Euclidean Jordan algebra with rank r ,
dimension n, and degree d ; cf. [11, pp. 71 and 98] for the definition of the degree of a Jordan
algebra. Let ci , i = 1, . . . , r , be a fixed Jordan frame and V (k) the +1 eigenspace of the oper-
ator L(c1 + · · · + ck). Then each V (i) is a Jordan subalgebra of V and we have the following
inclusions:

V (1) ⊂ V (2) ⊂ · · · ⊂ V (r) = V.

Let deti , i = 1, . . . , r , be the determinant function on V (i) and define ∆i(x) = det(Pix), where
Pi is orthogonal projection of V onto V (i). These are the principal minors, they are homogeneous
polynomials of degree i, and ∆r(x) = detx. For convenience we write ∆ = ∆r , cf. [11, p. 114]
for details. For s = (s1, . . . , sn) ∈ Cr define

∆s = ∆
s1−s2
1 ∆

s2−s3
2 · · ·∆sr

r .

For m = (m1, . . . ,mr) a sequence on nonnegative integers we write m � 0 to mean m1 � m2 �
· · · � mr � 0. Let

Λ = {m | m � 0}.
Then ∆m are the generalized power functions of degree |m| = m1 + · · · + mr . Since ∆m is a
polynomial function on V it extends uniquely to a holomorphic polynomial function on VC.

4.1. L-invariant polynomials

We define ψm by the following formula

ψm(x) =
∫
L

∆m(lx)dl, x ∈ V,

where dl is normalized Haar measure on L. The function ψm is a nonzero L-invariant poly-
nomial on V , for each m ∈ Λ, which also extends uniquely to a holomorphic function on VC.
Furthermore, the set of L-invariant polynomials is spanned by the set of all ψm, m ∈ Λ. More-
over, if Pk(V ) denotes the set of L-invariant polynomials on V of degree at most k then Pk(V ) is
spanned by all those ψm with |m| � k. The function ψm(e+x) is also an L-invariant polynomial
of degree |m| and has an expansion that defines the generalized binomial coefficients

(m
n

)
:

ψm(e + x) =
∑

|n|�|m|

(
m
n

)
ψn(x).

4.2. The gamma function

For convenience we also reproduce the gamma function of the symmetric cone Ω : Let s ∈ Cr

and define

�Ω(s) =
∫

e− trx∆s(x)∆−n/r (x)dx,
Ω
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where ∆(x) = ∆r(x) as before. For ν a real number and m ∈ Λ define

(ν)m = �Ω(ν + m)

�Ω(ν)
,

where ν + m means to add ν to each component of m.

4.3. The generalized Laguerre functions

The Laguerre polynomials are defined by

Lν
m(x) = (ν)m

∑
|n|�|m|

(
m
n

)
1

(ν)n
ψn(−x), (4.1)

and the generalized Laguerre functions by

�ν
m(x) = e− trxLν

m(2x), (4.2)

cf. [11, p. 343].

Remark 4.1. Let 0 denote the multi-index with entries 0. Then �ν
0 = e− trx . Let X(z,2L(z),−z) ∈

p+, cf. Eq. (2.1). Then a straightforward calculation gives

λν

(
X(z,2L(z),−z)

)
�ν

0 = 0,

for all z ∈ VC. Thus �ν
0 is the highest weight vector for λν .

Theorem 4.2. Let L2(Ω,dµν)
L be the space of L-invariant function in L2(Ω,dµν). Then the

Laguerre functions form an orthogonal basis of L2(Ω,dµν)
L. Moreover,

∥∥�ν
m(x)

∥∥2 = 1

2rν

1

dm

(
n

r

)
m

�Ω(ν + m).

Proof. This is Theorem 4.1 in [8]. See also [11, p. 344]. �
5. Differential recursion relations

Recall that gL
C

is the set of vector fields in gC invariant under the adjoint action of L. Propo-
sition 2.4 establishes that s = gL

C
is isomorphic to sl(2,C) and is spanned be the vector fields

X = 1

2
X

(
e,2L(e),−e

) ∈ p+,

Y = 1

2
X

(−e,2L(e), e
) ∈ p−,

Z = X(−e,0,−e) ∈ kC.

Our main theorem generalizes the classical differential recursion relations on Laguerre functions
by way of the explicit action of s on L2(Ω,dµν)

∞L. Set Bν = Bν,e.

Proposition 5.1. Let f ∈ L2(Ω,dµν)
∞. With notation as above we have

(1) λν(X)f (x) = 1 (trx + rν + 2Dx + Bν)f (x),
2
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(2) λν(Y)f (x) = 1
2 (− trx + rν + 2Dx − Bν)f (x),

(3) λν(Z)f (x) = (− trx + Bν)f (x).

Proof. These formulas follow directly from Remark 3.5. �
Theorem 5.2. The Laguerre functions are related by the following differential recursion rela-
tions:

(1) (− trx + Bν)�
ν
m(x) = −(rν + 2|m|)�ν

m(x),
(2) (trx + rν + 2Dx + Bν)�

ν
m(x) = −2

∑r
j=1

( m
m−γj

)
(mj − 1 + ν − (j − 1) d

2 )�ν
m−γj

(x),

(3) (trx − rν − 2Dx + Bν)�
ν
m(x) = −2

∑r
j=1 cm(j)�ν

m+γj
(x), where the constants cm(j) are

defined by

cm(j) =
∏
k �=j

mk − mj − d
2 (k − j + 1)

mk − mj − d
2 (k − j)

.

Remark 5.3. In the formulas above γj is the multi-index with 1 in the j th position and 0’s
elsewhere. It should be understood that if m + γj or m − γj is not in Λ then the corresponding
Laguerre function does not appear in the sum.

Proof. Let ξ = X(e,0, e) = e − P(z)e. Then ξ = −Z is the vector field given by the same
symbol in [8]. By Lemma 5.5 of [8]

πν(ξ)qm,ν = (
rν + 2|m|)qm,ν ,

where �Ω(m + ν)qm,ν = Lν(�
ν
m). By the unitary equivalence of πν and λν we correspondingly

have

λν(ξ)�ν
m = (

rν + 2|m|)�ν
m.

On the other hand,

λν(ξ)�ν
m = −λν(Z)�ν

m = (trx − Bν)�
ν
m

by Proposition 5.1. Part (1) now follows.
Let

L2
k(Ω,dµν) = {

f ∈ L2(Ω,dµν)
∞ | λν(z)f = −(rν + 2k)f

}
.

Since λν is an irreducible highest weight representation it is well known that L2
k(Ω,dµν) is finite

dimensional, nonzero if k � 0, and

L2(Ω,dµν) =
∞⊕

k=0

L2
k(Ω,dµν).

Furthermore, part (1) implies that �ν
m ∈ L2|m|(Ω,dµν). For W = X(w,2L(w),−w) ∈ p+ and

f ∈ L2
k(Ω,dµν) we have

λν(Z)λν(W)f = λν(W)λ(Z)f + λν

([Z, W])f
= −(rν + 2k)λν(W)f + 2λν(W)f

= −(
rν + 2(k − 1)

)
λν(W)f.
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This implies that λν(W)f ∈ L2
k−1(Ω,dµν). Similarly, for W ∈ p−, we have λν(W)f ∈

L2
k+1(Ω,dµν).

Now let Z0 = 1
2 (X+Y). Then Z0 = X(0, I,0) is the Euler vector field z ∂

∂z
given in [8, p. 161].

By Theorem 7.9 of [8] (and its proof) we have

−2λν(Z0)�
ν
m =

r∑
j=1

(
m

m − γj

)(
mj − 1 + ν − (j − 1)

a

2

)
�ν

m−γj
−

r∑
j=1

cm(j)�ν
m+γj

.

If Pk denotes orthogonal projection of L2(Ω,dµν) onto L2
k(Ω,dµν) then

−λν(X)�ν
m = P|m|−1

(−2λν(Z0)�
ν
m

) =
r∑

j=1

(
m

m − γj

)(
mj − 1 + ν − (j − 1)

a

2

)
�ν

m−γj

and

−λν(Y)�ν
m = P|m|+1

(−2λν(Z0)�
ν
m

) = −
r∑

j=1

cm(j)�ν
m+γj

.

We obtain formulas (2) and (3) by again applying Proposition 5.1. �
Remark 5.4. Observe that one-half the difference between formula (2) and (3) gives Theorem 7.9
of [8].
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