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Ž Ž ..In this paper we consider a sufficient condition for W t, x t to approach zero
Ž .as t ª `, where x t is a solution of a non-autonomous functional differential

Ž .equation with finite delays and W t, x is a so-called Lyapunov function. We shall
show that in the applications this provides useful information for asymptotic

Ž .behavior of the solution x t . For example, we generalize examples given by J. R.
Ž .Haddock and J. Terjeki J. Differential Equations 48, 1983, 95]122 to the case of´

non-autonomous systems. Q 1996 Academic Press, Inc.

1. INTRODUCTION

w xIn 1967 J. K. Hale 10 extended in a natural manner LaSalle’s invari-
ance principle to autonomous functional differential equations with delays
by Lyapunov functionals. However, it seems to be in general very difficult
to find a Lyapunov functional with conditions which the theorem needs
when one considers applications to mechanical engineering, mathematical
biology, population dynamics, and the other practical sciences. In order to

w xcircumvent this difficulty, J. R. Haddock and J. Terjeki 9 developed a new´
invariance principle by the Lyapunov]Razumikhin method which many
authors used in research of qualitative theory of solutions of functional
differential equations. They presented an asymptotic stability theorem of
the zero solution as a corollary of the main theorem and noted that this
corollary could not be expected to non-autonomous cases without exten-

w xsive modifications 9, p. 100 .
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On the other hand there are various contributions by many authors to
the case of non-autonomous functional differential equations. For exam-

w xple, T. A. Burton 1 discussed asymptotic behavior of solutions by intro-
w xducing the pseudo-Lyapunov function and T. Yoshizawa 23 , using this

function, presented an invariance principle for the non-autonomous case,
w x w xwhich is an extension of his own result 21 . Recently W. E. Hornor 13

discussed the Haddock]Terjeki invariance principle by limiting equations.´
Ž Ž ..In this paper we discuss under what conditions W t, x t approaches

Ž . Ž .zero as t ª `, where x t is a solution and W t, x is a so-called Lyapunov
function, and we shall show that in the applications this result provides

Ž .powerful information for asymptotic behavior of the solution x t . Since
we use the Lyapunov]Razumikhin method, we can avoid the difficulty of
finding Lyapunov functionals.

For example, we discuss the scalar equation

0Xx t s ya t x t q b s x t q s dsŽ . Ž . Ž . Ž . Ž .H
Ž .yr t

0 2y x t c s x t q s ds.Ž . Ž . Ž .H
Ž .yr t

Ž . Ž .The case a t ' a ) 0 and r t ' r ) 0 was considered by Haddock and
w x Ž .Terjeki 9 . We generalize their result see Example 4.1 . They also´

XŽ . Ž .w Ž .x Ž .considered the scalar equation x t s bx t y r 1 y x t y bx t , b, r ) 0
w xwhich was studied in detail in 5 by the new invariant theorem. We discuss

XŽ . Ž . Ž Ž Ž ...Ž Ž .. Ž . Ž .the scalar equation x t s a t g x t y r t 1 y x t y a t x t , where
Ž . Ž . Ž . Ž .a t is integrally positive and u G g u for all u ) 0, g 0 G 0 and g u is

Ž .continuous and monotone nondecreasing see Example 4.2 . We also
w xconsider the functional differential equation discussed by Burton 2 and

w xYoshizawa 23 .
The contents of this paper are as follows. In Section 2 we give prelimi-

naries. In Section 3 we discuss the asymptotic behaviors of solutions and
we give two theorems. In Section 4 we give several examples which
illustrate the theorems.

2. PRELIMINARIES

d Žw x d.Let R be the d-dimensional Euclidean space. Let C s C yr, 0 , R ,
w x dr ) 0, denote the space of continuous functions that map yr, 0 into R .

Ž . w xIf x t is a continuous function defined on yr, T , then we define x g Ct
Ž . Ž . w xby setting x s s x t q s , s g yr, 0 for each t F T where T ) 0. Fort

5 5 � < Ž . < w x4 < < dw g C, let w denote sup w s : s g yr, 0 , where ? is a norm of R .
Ž . � < Ž . < 4For any fixed B ) 0 let C B s x g C: x t F B for all t G t .t 0
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We consider the functional differential equation

dxrdt s F t , x , x s c g C , t G 0, 1Ž . Ž .t t 00

w . dwhere F: 0, ` = C ª R is continuous. Assume that any solution with
Ž . Ž .any initial value t , c , t G 0, c g C, exists in the future. Let V t, x be a0 0

w . dcontinuous scalar function defined on yr, ` = R which satisfies locally
a Lipschitz condition with respect to x. Then, for any w g C we define the
function

V X t , w s lim sup V t q h , w 0 q hF t , w y V t , w 0 rh.� 4Ž . Ž . Ž . Ž .Ž . Ž .Ž1.
hª0q

Ž . Ž . Ž . Ž .Let x t s x t; t , c denote a solution of 1 with an initial value t , c ,0 0
t G 0, c g C from now on in this paper.0

w xThe following definition was given by L. Hatvani 12 .

w . w .DEFINITION 1. A continuous function p: 0, ` ª 0, ` is said to be
Ž . ` Ž .integrally positï e if H p s ds s ` holds on every set J s D a , bJ ms1 m m

Ž .such that 0 F a , a - b F a , b y a G d ) 0 m s 1, 2, . . . for1 m m mq1 m m
some fixed d ) 0.

For example, it is known that the function t 2 sin2 t, t G 0 is integrally
positive.

Ž .We give the definition of stability of the zero solution of 1 , where
Ž .F t, 0 ' 0 for all t G 0 and the one of boundedness of solutions.

Ž .DEFINITION 2. The zero solution of 1 is said to be stable if for any
Ž .« ) 0 and any initial time t G 0 there exists a d t , « ) 0 such that0 0

< Ž . < 5 5 Ž .x t; t , w - « , t G t for any w g C with w - d t , « .0 0 0

Ž .DEFINITION 3. The zero solution of 1 is said to be asymptotically stable
Ž .if it is stable and furthermore, there exists a s t ) 0 such that0

< Ž . < 5 5 Ž . Ž .x t; t , w ª 0 as t ª ` for any w g C with w - s t . If s t s `,0 0 0
then it is said to be globally asymptotically stable.

Ž .DEFINITION 4. The solutions of 1 are said to be equi-bounded if for
Ž .any a ) 0 and any initial time t G 0, there exists a b t , a ) 0 such that0 0

< Ž . < Ž . 5 5x t; t , w - b t , a for any w g C with w - a .0 0

w xThe following theorem is known and useful 11 .

Ž .THEOREM 2.1. For the functional differential equation 1 suppose that
the following condition is satisfied:
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Ž . Ž .1 there exists a positï e definite, continuous function V t, x defined on
w . d0, ` = R which is locally Lipschitzian with respect to x such that

V X t , w F 0, t G tŽ .Ž1. 0

� Ž Ž .. w x4 Ž Ž Ž ...whene¨er w g C, sup V t q s, w s : s g yr, 0 F h V t, w 0 , where h:
w . w . Ž . Ž .0, ` ª 0, ` is continuous with h 0 s 0 and h u ) u for all u ) 0.

Ž .Then, solutions are equi-bounded. Furthermore, if F t, 0 ' 0 for all t G 0,
then the zero solution is stable.

3. ASYMPTOTIC BEHAVIOR OF SOLUTIONS

Ž . w . dLet V t, x defined on yr, ` = R be a real valued, continuous
function which is locally Lipschitzian with respect to x. Then, M. E.

w x Ž Ž ..Parrott 19 considered under what conditions V t, x t approaches some
finite value as t ª `.

Ž .THEOREM 3.1 Parrott . Suppose that there exists an integrable function p:
w . w . X Ž . Ž . Ž .0, ` ª 0, ` such that V t, w F p t whene¨er t G 0, w g C B ,Ž1. 1

� Ž Ž .. w x4 Ž Ž ..sup V t q s, w s : s g yr, 0 s V t, w 0 . If for e¨ery « ) 0 there exist a
Ž . w . w .K s K « ) 0, an integrable function p : 0, ` ª 0, ` , a continuous func-2
w . w . Ž . Ž .Ž . Ž .tion h: 0, ` ª 0, ` with h u s h « u ) u for u ) 0, h 0 s 0, and a

Ž .time T s T « ) t such that0

V X t , w F Kp t , t G T ,Ž . Ž .Ž1. 2

Ž . � Ž Ž .. w x4 Ž Ž ..whene¨er w g C B , sup V t q s, w s : s g yr, 0 F 2« , V t, w 0 G « ,
� Ž Ž .. w x4 Ž Ž Ž ...and sup V t q s, w s : s g yr, 0 F h V t, w 0 for all t G T , then for

Ž . Ž . Ž . Ž Ž ..any solution x t of 1 such that x g C B for all t G t , lim V t, x tt 0 t ª`

exists.

Ž Ž ..But we note that from Theorem 3.1 one cannot know whether V t, x t
approaches zero as t ª ` or not. Thus, consider another so-called Lya-

Ž .punov function W t, x for discussing asymptotic behavior of the solution
Ž . � Ž Ž .. w x4x t and, noting that lim sup V t q s, x t q s : s g yr, 0 st ª`

Ž Ž .. Ž Ž ..lim sup V t, x t , we shall give a sufficient condition for W t, x t tot ª`

approach zero as t ª `.

Ž .THEOREM 3.2. For the functional differential equation 1 , assume that
Ž . Ž . w . dthere exist continuous functions V t, x , W t, x on yr, ` = R which are

locally Lipschitzian with respect to x, an integrally positï e function p:
w . w . w . w .0, ` ª 0, ` and an integrable function e: 0, ` ª 0, ` . And suppose that

w . w . X Ž .there exists an integrable function p : 0, ` ª 0, ` such that V t, w F1 Ž1.
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Ž . Ž . � Ž Ž .. w x4p t whene¨er t G 0, w g C B , sup V t q s, w s : s g yr, 0 s1
Ž Ž ..V t, w 0 , and furthermore, for e¨ery « ) 0 and any fixed B ) 0 there exists

Ž . Ž . w . w . Ž .a H s H « ) 0, a continuous h s h « : 0, ` ª 0, ` with h u ) u for
Ž .u ) 0 and a time T s T « ) t such that0

Ž . X Ž .3.2a there exists an M ) 0 such that W t, w F M, t G T ,Ž1.

Ž . X Ž . Ž . Ž Ž .. Ž .3.2b V t, w F yHp t W t, w 0 q e t , t G T ,Ž1.

Ž . � Ž Ž .. w x4 Ž Ž ..whene¨er w g C B , sup V t q s, w s : s g yr, 0 F 2« , V t, w 0 G « ,
� Ž Ž .. w x4 Ž Ž Ž ...and sup V t q s, w s : s g yr, 0 F h V t, w 0 for all t G T. Further-

Ž Ž .. Ž .more, assume that if lim V t, x t s 0, then lim x t s 0 and ift ª` t ª`

Ž Ž .. Ž . Ž Ž ..lim W t, x t / 0, then lim x t / 0. Then, W t, x t ª 0 as t ªt ª` t ª`

Ž . Ž . Ž .` for any solution x t of 1 such that x g C B for all t G t .t 0

Ž . Ž .Proof. Suppose that there exists a solution x t of 1 such that
Ž Ž .. Ž . Ž .W t, x t ¢ 0 as t ª `, x g C B . Then, since x t ¢ 0 as t ª `, wet

Ž Ž ..have lim V t, x t s b ) 0 by Theorem 3.1 and the hypothesis. Firstt ª`

� X4 � 4 Xassume that there exist two sequences t , t with t , t ª ` as j ª `,j j j j
X Ž .t - t - t j s 1, 2, . . . and some d ) 0 such thatj j jq1

W t , x t s dr2, W tX , x tX s d ,Ž . Ž .Ž . Ž .j j j j

dr2 - W t , x t - d , t g t , tX .Ž .Ž . Ž .j j

Here, because of b ) 0, we can take a l ) 0 with l - b - 2l. Let
Ž . � < Ž . < 4 Ž .s l s min h u y u : l F u F 2l where h s h l and choose a time

Ž . � Ž Ž .. w x4T ) T s T l such that sup V t q s, x t q s : s g yr, 0 - b q0
Ž . � Ž Ž .. w x4 Ž Ž ..s l r2, sup V t q s, x t q s : s g yr, 0 - 2l, V t, x t G l, and

< Ž Ž ... < Ž . Ž Ž ..V t, x t y b - s l r2 for all t G T . Then, since l F V t, x t F0
Ž . Ž Ž .. � Ž Ž ..2l and b F s l r2 q V t, x t , we obtain that sup V t q s, x t q s :

w x4 Ž . Ž . Ž . Ž Ž .. � < Ž .s g yr, 0 -bqs l r2Fs l r2qs l r2 q V t, x t smin h u y
< 4 Ž Ž .. Ž Ž Ž ...: l F u F 2l q V t, x t F h V t, x t for all t G T . Therefore, by0

Ž .condition 3.2a ,

dr2 s W tX , x tX y W t , x tŽ . Ž .Ž . Ž .j j j j

tX
j XF W s, x dsŽ .H Ž1. s

tj

F M tX y t .Ž .j j

X w x Ž .Thus, we have t G t q dr 2 M j s 1, 2, 3, . . . . Furthermore, by condi-j j
Ž .tion 3.2b , we have that

V X t , x F yHp t W t , x t q e t , t G T .Ž . Ž . Ž . Ž .Ž .Ž1. t 0
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Ž . � 4We may suppose t ) T j s 1, 2, . . . by taking a subsequence of t , ifj 0 j
necessary. Thus,

tX
kX X XV t , x t FV t , x t q V s, x dsŽ . Ž . Ž .Ž . Ž . Hk k 1 1 Ž1. s

t1

k X Xt tj kFV t , x t q yHp s W s, x s dsq e s dsŽ . Ž . Ž . Ž .Ž .Ž . Ý H H1 1
t tj 1js1

k X `t jF V t , x t q yHp s dr2 dsq e s ds,Ž . Ž . Ž .Ž . Ý H H1 1
t 0jjs1

Ž . Xwhich tends to y` as k ª ` since p t is integrally positive and t G t qj j
w x Ž .dr 2 M j s 1, 2, 3, . . . . This is a contradiction. Next, suppose that there

Ž Ž ..exists a time T ) t and g ) 0 such that W t, x t G g for all t G T .1 0 1
Then, since x satisfies the condition of the theorem, we have thatt
Ž Ž .. Ž Ž .. t Ž . t Ž .V t, x t y V T , x T F yHgH p s ds q H e s ds. Thus, it follows1 1 T T1 1

Ž Ž ..that V t, x t ª y` as t ª `. This is a contradiction. Consequently, the
proof of the theorem is complete.

In some cases the next theorem will be useful.

Ž . Ž Ž . Ž .THEOREM 3.3. For any fixed bounded solution u t s u t ,u t , . . . ,1 2
Ž .. Ž .u t of 1 , setd

d
0 0 2F t s F t s b u t q u du ds, b G 0.Ž . Ž . Ž .Ý H Hu i i i½ 5

yr sis1

Ž . Ž . Ž .Assume that there exist continuous functions V t, x , W x , and U t, x on
w x dyr, ` = R which are locally Lipschitzian with respect to x, an integrally

w . w . w . w .positï e function p: 0, ` ª 0, ` and an integrable function e: 0, ` ª 0, `
such that

V t , x s U t , x q F t , x g Rd , t G t .Ž . Ž . Ž . 0

X Ž . Ž . Ž .Here, consider V t, x for any solution x t of 1 . If for x s u , t G t ,Ž1. t t t 0
the following inequality is satisfied:

Ž . X Ž . Ž . Ž Ž .. Ž .3.3a V t, u F yp t W u t q e t , t G t ,Ž1. t 0

Ž Ž ..then W u t ª 0 as t ª `.

Ž . Ž .Proof. Suppose that there exists a solution u t of 1 such that
Ž Ž .. Ž .W u t ¢ 0 as t ª `, where u g C B . First, assume that there exist twot

� X4 � 4 X X Ž .sequences t , t with t , t ª ` as j ª `, t - t - t j s 1, 2, . . .j j j j j j jq1
Ž Ž .. Ž Ž X..and some d ) 0 such that W u t s dr2, W u t s d , dr2 -j j
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Ž Ž .. Ž X. Ž . Ž .W u t - d for all t g t , t . Since u t is the bounded solution of 1 ,j j
X Ž . X w xthere exists an M ) 0 such that W u F M. Thus, t G t q dr 2 MŽ1. t j j

Ž . Ž .j s 1, 2, 3, . . . . On the other hand, since condition 3.3a holds, by the
same method as in the proof of Theorem 3.2, we have a contradiction.
Furthermore, by continuing the same discussion as in the proof of Theo-
rem 3.2, the proof of the theorem is complete.

4. APPLICATIONS

In this section we present several examples which illustrate Theo-
rem 3.2. Let B ) 0 denote any fixed real number. First, we generalize the

w xexample by Haddock and Terjeki 9 .´
EXAMPLE 4.1. Consider the scalar differential equation

0Xx t s ya t x t q b s x t q s dsŽ . Ž . Ž . Ž . Ž .H
Ž .yr t

0 2y x t c s x t q s ds, 2Ž . Ž . Ž . Ž .H
Ž .yr t

w . 1where a, b, c, r : yr, ` ª R are real valued and continuous functions
Ž . 0 < Ž . < Ž . Ž .such that 0 F r t - r for some r ) 0, H b s ds F a t , and c t G 0yr Ž t .

w . Ž . 2 Ž . Ž .for all t g yr, ` . Let V t, x s x r2. Let x t denote any solution of 2 .
Then,

0XV t , x s x t ya t x t q b s x t q s dsŽ . Ž . Ž . Ž . Ž . Ž .HŽ2. t ½ Ž .yr t

0 2yx t c s x t q s ds .Ž . Ž . Ž .H 5Ž .yr t

Ž . Ž . 0 < Ž . <If a t [ a t y qH b s ds G 0 with q ) 1 is integrally positive, thenyr Ž t .
Ž . Ž . 2any solution of 2 approaches zero as t ª `. To see this, let h u s q u

for any u G 0. Then

0 2XV t , x F y a t y q b s ds x t ,Ž . Ž . Ž . Ž .HŽ2. t ½ 5Ž .yr t

Ž Ž .. Ž Ž Ž ... w xwhenever t G t , V t q s, x t q s F h V t, x t for any s g yr, 0 .0
Ž .Then we note that all solutions of 2 are bounded by Theorem 2.1. Let

Ž . 2 X Ž .W t, x s x r2. There exists an M ) 0 such that W t, x F M wheneverŽ2. t
Ž . Ž Ž .. Ž Ž Ž ... w xx g C B , t G t , V t q s, x t q s F h V t, x t for any s g yr, 0 .t 0
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Thus, all conditions of Theorem 3.2 are satisfied. Therefore, since B is any
Ž . Ž .fixed real number, any solution x t of 2 approaches zero as t ª `. And,

Ž .since the zero solution of 2 is stable and solutions are equi-bounded by
Ž .Theorem 2.1, the zero solution of 2 is globally asymptotically stable.

Ž . 0 < Ž . <If a t s H b s ds, t G 0, and there exists an L ) 1 such thatyr Ž t .
Ž . 0 Ž . 0 Ž . Ž .a t - LH c s ds for all t G t G 0, and H c s ds y a t rL is inte-yr Ž t . 0 yr Ž t .

Ž . Ž .grally positive, then any solution x t of 2 approaches zero as t ª `. To
Ž . 2 Ž .see this, for any « ) 0, let h u s q u, u G 0, where q s 1 q 2«rL .

Then, we obtain that

0X 2V t , x F y a t y 1 q 2«rL b s ds x tŽ . Ž . Ž . Ž . Ž .HŽ2. t ½ 5Ž .yr t

0 2y 2« c s ds x tŽ . Ž .H½ 5Ž .yr t

0 2s y2« c s ds y a t rL x t ,Ž . Ž . Ž .H½ 5Ž .yr t

� Ž Ž .. w x4 Ž Ž Ž .. Ž Ž ..whenever sup V t q s, x t q s : s g yr, 0 F h V t, x t , V t, x t G «
for all t G T where T is a sufficiently large time. Therefore, by Theorems
2.1 and 3.2 the proof of the example is complete.

Ž . Ž . 0 < Ž . <Remark 4.1. Let a t ' a ) 0, r t ' r ) 0 for all t G 0. If H b s dsyr
0 < Ž . <- a, then there exists a q ) 1 such that a y qH b s ds ) 0. Ifyr

0 < Ž . < Ž .H b s ds s a and c 0 ) 0, then there exists an L ) 1 such that a -yr
0 Ž . 0 Ž .LH c s ds, and H c s y arL ) 0 is integrally positive since it is ayr yr

constant. Therefore, Example 4.1 is a generalization of Example 2.1 in
w x9, p. 101 .

w x w xRemark 4.2. T. A. Burton 2 and T. Yoshizawa 23 discussed the next
scalar differential equation

2Xx t s y a q t sin t x t q bx t y r t ,Ž . Ž . Ž . Ž .Ž .

Ž .where a ) 0, b are constants. If a ) b, 0 F r t - r, then any solution
Ž .x t ª 0 as t ª ` by Theorem 3.2. However, they used a Lyapunov

Ž Ž .. Ž .2 t Ž .2functional V t, x ? s x t r2 q kH x s ds where k ) 0 andtyr Ž t .
2 2Ž . XŽ . 2under conditions b - a 1 y a , yM F r t F a , 0 - a - 1 and b F

2Ž . XŽ . Ž .a 1 y a , r t F a , 0 - a - 1, respectively, they proved x t ª 0
as t ª `.

w xNext, we consider a generalization of Cooke’s model 5, p. 41 . See also
w xHaddock and Terjeki 9, p. 103 .´
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EXAMPLE 4.2. Consider the scalar differential equation

xX t s a t g x t y r t 1 y x t y a t x t , t G 0, 3Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .

Ž . Ž .where a t G 0 is integrally positive, g u is continuous, monotone nonde-
Ž . Ž .creasing with g 0 G 0 and u G g u for any u G 0. For every « ) 0

'Ž .choose a positive real number q such that 1 q g 2« ) q ) 1. Let
Ž . 2 Ž . 2 Ž .h u s q u for any u G 0 and let V t, x s x r2. r t is the same one as

in Example 4.1. Then,

V X t , x s x t ya t x t q a t g x t y r t�Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .Ž3. t

ya t x t g x t y r t .4Ž . Ž . Ž .Ž .Ž .

Ž . Ž . Ž . � ŽWhenever x g C B , x t G 0 for all t G t and x t satisfies sup V t q s,t 0
Ž .. w x4 Ž Ž Ž ... Ž Ž .. � Žx t q s : s g yr, 0 F h V t, x t , V t, x t G « , and sup V t q s,
Ž .. w x4x t q s : s g yr, 0 F 2« for all t G T where T is a sufficiently large

time,

2 2 2X 'V t , x F ya t x t q qa t x t y g 2« a t x tŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž3. t

2's y 1 q g 2« y q a t x t , t G T q r .Ž . Ž .Ž .Ž .
Ž . 2Let W t, x s x r2. Then, all conditions of Theorem 3.2 are satisfied.

Therefore, since B is any fixed real number, any positive bounded solution
Ž . Ž .x t of 3 approaches zero as t ª `.

Finally, we give an example which illustrates Theorem 3.3. The next type
w x w xof system was discussed by Burton 2 and Yoshizawa 23 .

EXAMPLE 4.3. Consider the 2-dimensional differential equation

xX t s y t 4Ž . Ž . Ž .
yX t s yc t , x t , y t y t y g x tŽ . Ž . Ž . Ž . Ž .Ž . Ž .

0 Xq g x t q s y t q s ds,Ž . Ž .Ž .H
Ž .yr t

Ž . Ž . Ž .where r t is the same one as in Example 4.1, g : y`, ` ª y`, ` is
< XŽ . < Ž .continuously differentiable, and g u F L for some L ) 0 and ug u ) 0

Ž .for any u / 0. Suppose that there exists a function a t ) 0 such that
Ž . Ž . Ž .c t, x, y G a t , t G 0 and the function a t y rL G 0 is integrally positive.

Ž . Ž Ž . Ž .. Ž . Ž .Now, for any fixed bounded solution u t s a t , b t of 4 let F t s
Ž . 0 Ž 0 Ž .2 . Ž . Ž . 2 Ž .Lr2 H H b t q u du ds. And set V t, x, y s G x q y r2 q F t ,yr s

Ž . 2 1 Ž . x Ž .and W x, y s y r2 for all x, y g R , where G x s H g s ds. Then, for0
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Ž Ž . Ž .. Ž .any solution x t , y t of 4

02XV t , x , y F ya t y t q Lr2 2 y t y t q s dsŽ . Ž . Ž . Ž . Ž . Ž .HŽ4. t t
yr

0 2 2q Lr2 b t y b t q s ds.Ž . Ž . Ž .Ž .H
yr

Ž Ž . Ž .. Ž Ž . Ž ..If x t , y t s a t , b t , t G t , then0

2X 2 2V t , a , b F y a t y rL b t 2 ab F a q bŽ . Ž . Ž . Ž .Ž .Ž4. t t

X Ž .and there exists an M ) 0 such that W u F M. Therefore, by Theo-Ž4. t
Ž Ž . Ž .. 2Ž .rem 3.3 we have that W a t , b t s b t r2 approaches zero as t ª `.

Thus, all bounded solutions approach the x-axis as t ª `. Thus, if
Ž . < < Ž Ž . Ž .. Ž .G u ª ` as u ª `, then any solution x t , y t of 4 approaches the

Ž Ž ..x-axis and G x t approaches a constant as t ª `.

w xRemark 4.3. T. Yoshizawa 23 proved the same conclusion under the
Ž . Ž . XŽ . Ž . Ž .conditions 0 F r t F b t , b t F b - 1, h t, x, y G bb t , b ) 0 and0

2 2Ž .L - b 1 y b via a Lyapunov functional0

0 02 2V t , x ? , y ? s 2G x t q y t q b y t q u du dsŽ . Ž . Ž . Ž . Ž .Ž . Ž . H Hž /Ž .yb t s

Ž . w xassuming that b t is integrally positive. See also T. A. Burton 2 .
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