
On Subgroups of Type ZD x ZP 

ERNEST E. SHULT 

1. INTRODUCTIOK 

-% few years ago, a very simple (and entirely elementary) characterization 
of the groups S,(2n, 2) was given in [4]. The following theorem on involutions 
was an immediate corollary of this characterization. 

THEOREM 2 [4]. Let K be a class of involutions in a $nite grozlp G rind 
suppose the following: 

(ii) At least tulo involutions i?z K commute, 

Since no reference to Sp(2n,‘2) appears anywhere in the statemen; of the 
of the theorem, J. Alperin wondered whether a more natural direct proof 
could be found. Indeed he found a short elementary proof {utilizing nothing 
worse than Baer’s crirerion that an involution belong to D,(G)) of a mOre 
general result, namely: 

TSEOREi\I 2 (Alperin [ lj). Suppose il is a fours-group and is a subgroup oj 
the Jinite group 6. Let K be the set of coujugates irl G of all kvolutions in ,g and 

slcppose, for eaery inzohtiorz t in K, C(t) n A is ?zontriGd. Thex d PI Q(G) 
is also rsontvizial. 

This theorem is more general in several respects. First, K k not necessarily 
one conjugacy class of G. Second, the commuting condition is entirely 
relative to a single fours-group d, rather than all fours-groups generated by 
commuting pairs in K. 

For some time the author has been wondering if there were versions of these 
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theorems for odd primes. Finally, because of a recent geometric theorem by 
F. Beukenhout and the author, we can prove the following. 

THEOREM 3. Let K be a union of conjugacy classes of cyclic groups of prime 
order p in a finite group G. We assume at least two members of K commute and 
that if X and Y are two commuting subgroups in K, then 

(a) every subgroup of order p in (X, Y) belongs to K, and 

(b) for each subgroup W in K, C(W) n (X, Y) is nontrivial. 

Then K contains a subgroup V commuting with all other members of K. In 
particular, V < O,(G), and G is not simple. 

Note that when we say that two members of K commute (as subgroups), 
they generate a 2, x 2, and so centralize one another. 

Remark. With only a very minor modification of the proof, the above 
theorem holds if (a) and (b) are replaced respectively by (a’). At Zeast three 
subgroups of order p in {X, Y) belong to K, and (b’) for each subgroup Win K, 
C(W) n (X, Y) contains a subgpoup in K. 

In a general way, the proof of Theorem 3 given here may be viewed as an 
odd analogue of my earlier proof involving the Sp(2n, 2)-characterization, 
and not at all analogous to Alperin’s proof. The basic useful property that two 
involutions always generate a dihedral group seems to suggest that his proof 
will not generalize in any obvious way. It is thus an open question whether 
one can prove the following. 

CONJECTURE. Suppose A E Z, x Z, is a subgroup of the$nitegroup G. Let 
K be the set of all conjugates of cyclic subgroups of order p in G. Suppose, for 
each subgroup I;y in K that C(W) n A is nontrivial. Ti7en A n O,(G) is 
nontTivia1. More spec$cally, d n Co(K) is nontrivial. 

2. PRELIMINARY RESULTS 

A polar space is defined by Tits [5] as a set of points S together with 
distinguished subsets called subspaces such that 

(1) a subspace together with the subspaces it contains is a d-dimensional 
projective space with -1 < d < n - 1 for some integer n called the rank 

of8 

(2) the intersection of two subspaces is a subspace; 

(3) given a subspace L of dimension n - 1 and a point p in S - L, 
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there exists a unique subspace lli containing p such that dim(P1 ,qL) = 
H - 2; it contains all points of L joined to p bv some subspace of dimension i ; 

(4) there exists two disjoint subspaces of dimension IZ - 1. 

-1 standard example of a polar space is the subspace S(V) defined as fol!ov+ss: 
Let P be a Desarguesian projective spat, p of finite dimension z. Let r be 
either a polarity in P or a nondegenerate quadratic form on P. Let S(n) be 
the collection of absolzlte points or (respectively) the S&&W points of P with 
respect to pi. The subspaces of S( T are defined to ‘oe the projective subspaces ) 
of P lying in S(r). (For example, if S( n is a projective sympiecdc space, its ) 
polar subspaces are its isotropic subspaces. By allowing T to be a quadratic 
form as well as a polarity, the definition of S(r) is aliowed to include the 
singular projective points in the orthogona.1 geometries of characteristic 2 
as well as the overlying projective svmplectic geometry which contains i.t in 
this case.) Combined work of VeIdkamp and Tits [6, 5] has yielded the 
foollowing. 

TKEosEnr (Veldkamp-Tits, [6, 51). If S zs a m e 0 ar c S ‘t p 1’ “9 ace all 9-f .mhse 
I-a%wasionai subspaces hue at least three points, thez 

(i) S ck S(T) ifrank S > 3, 0~ 

(ii) S is a generalized 4-gon in the sense of Ti!s. 

U-e now turn to a graph-theoretic characterization of the polar spaces. 
For the purposes of this paper, all graph s considered are undirected and 
without !oops. Recently 3’. Beukenhout and the author considered graphs 3 
satisfying the following hypothesis. 

2.1. If (~v7 y) is an edge in 3, tkeye exisfs a (Rot necessavi& unique) 
complete subgraph C(x, F) contaimkg at least three rertices and the edge (x, y) as 
a subg~~aplz, such that if z is an?) vertex of 59 not in C(x, y), tlzez z is eithijoixed 
by an edge to exact<v one member of C(x, y). 0:’ is joined to all of the vzemben of 
C(s, y). 

Although we do not require 9 to be finite, we do impose a finitness con& 
tion. If 9 is a graph satisfying 2.1, we say that a complete subgraph C of 3 is a 
subspace of 9 if and only if for any two points .v and y of C, each C(x, y) of 2.1 
lies in C. The empty set is a subspace. A$ag oJlengtlz d is a chain of subspaces 
R, ) K ” ,~.., I& with each Ki properly contained in Ki+l . Our condition is 
as foliows. 

2.2. Ez~er~~jlag oj 1 has length at most n. 

The follown-rg theorem was proved by F. Beukenhout and the author and 
ail1 appear in a forthcoming publication [2]. 
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THEOREM (Beukenhout-Shult). Let 9 be a graph satisfying hypotheses 2.1 
and 2.2. Then either 

(1) 9 is totally disconnected, 

(2) 9 contaifzs a vertex arced to all other vertices of 9 or, 

(3) the subspaces of 9 together .with the vertices of 9 form a polar space. 

This theorem together with the Veldkamp-Tits theorem yields the 
following. 

COROLLARY. Let 9 be a finite graph satisfying hypotheses 2.1 and 2.2. Then 
one of the following holds: 

(i) 9 is totally disconnected. 

(ii) 9 contains a vertex Iq’ing on an edge with all the other vertices of 9. 

(iii) 9 is the graph of isotropic or singular projective points of a non- 
degenerate projective symplectic orthogonal OF unitary geometry. 

(iv) 9 is a generalized 4gon, each C(x, y) is a maximal complete subgraph. 
(Note: Although 59 is regular it ma?) not be strongly, regular in this case, and tlze 
C(N, y)‘s may have caFdinality depending on the choice of edge (x, y).) 

Our proof of Theorem 3 rests primarily on this corollary. Most of the 
proof involves what to do with case (iv). However some work is required in 
case (iii) and to facilitate this we require two technical lemmas concerning 
S(r) which we establish in this section. 

LEMMA 2.1. Let k’ be a jinite vector space admitting a nondegenerate 
quadlatic fom zr, and let S denote the set of singular vectors of V. Then either 

(i) (S) = I’, 

(ii) dim V = 2 and (V, z-) defines an oTthogona1 geometry or, 

(iii) dim k’ = 1. 

Proof. The pair (I/; r) defines a symplectic, unitary or orthogonal 
geometry on I/. We may assume dim 17 > 1. 

If (Y, rr) defines a symplectic geometry, S = Vif and so (i) holds. 
Suppose (V, QT) defines a unitary geometry and let TV be any nondegenerate 

2-dimensional subspace. We suppose GF(q”) to be the ground field. The 
(q + 1)-st power map defines an epimorphism between multiplicative 
groups, GF(q2)* + GF(q)*, and so there exist elements a: and /3 in GF(q’)* 
such that ag+l = -/3Q+l. Since q + 1 > 2, we can choose 01 and /3 so that 
01 f p. Now IV contains an orthonormal basis {e, , es> and aei + /3e, and 
eael + ,Ge2 (where E # 1, E *+l = 1) are two singular vectors spanning IV so 
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;,(A’ n W):, = TT’. Since Pv is generated by its nondegenerate 2-dimensionai 
subspaces, ‘, A”,:, = I’ and so (i) holds. 

Assume finally that (V, rr) defines an orthogonal geometr>-. We may now 
assume dim 1’ 2 3, since otherwise (ii) holds. The nondegenerate 2-dimen- 
sional subspaces of T’ are of two types, P, having no singular vectors and P, I 
having two singular one dimensional subspaces spanning PC For perpen- 
dicular sums we have Pa I P, Y PI J- PI I where the geometry isomorphisms 
are defined up to a scalar multiple of the quadratic form. Assume R’ is a 
nondegenerate 3-dimensional subspace. Then r’ is defined orer a field F of 
odd characteristic and the quadratic form .Q can be taken (up to a scaiar 
multiple of Q) to be defined by 

where g is a nonsquare in F. (This replacement of Q by 2 nonzerO scalar 
multiple cQ does not affect the question whether ,,‘,W n S> = W.) In rhc 
former case ,.(i, 0, Q), (0, I: O):\, ,(O, 1, 0), (0, 0, 1) .’ are ~WG nondegenexte 
2-dimensional subspaces of type P, so k~ ‘S n W,. -= FT. In the iatter case 
there exist scalars oi and /? in F* such that n” -r ,F = -g (for if F is odd, 
ever:’ element of F is a sum of two nonzero squares). Then IY f 0 + fi and 
sr i (a% fl, I), sZ = (a, -p, 1) and sg = (-a, /?, 1) are three singular vectors 
whose span contains sr - sZ = (C&2/3, Q), s1 - s3 = pa, o3 6) and $(s2 +- s3j 1 
(0, 0: I), so they span TV. 

Now assume dim W = 4. If 6f F PI 1 PI ) (:A n TI’*. = Tf’. JVe may 
thus assume 5’ Y P, 1 PI . But in this case Aut(IP) contains a normai 
subgrcup isomorphic (projectively) to PSL(2, q”), so hut(R’) acts irredu&!p 
on TV. Thus S (7 W + ,a implies ,I.!3 n W,: = My. Thus, if W is a non- 
degenerate subspace of dimension 3 or 4> \, S ~1 iv’> zz IF’~ If the &arzc- 

teristic of the field is even, dim P’ C< 4, and I7 is spanned by nondegenerate 
subspaces W’ of dimension 4, whence <,I.!$ = 157 If the characteristic is odd, 
dim 1’ > 3, and I’ is a sum of nondegenera te subspaces K of dimension 3. 
Thus in either case, cIS’,: = T’ follows. This completes the proof of the lemma. 
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(iii) (I’, T) dejines an orthogonal geometry and dim F’ < 3, or else V is of 
type PI I P, zuhere P, asd PI are the nondegenerate 2-dimensional ol-thogonal 
geometries having 0 or 2 singular l-dimensional subspaces, respectively. 

Proof. Since si is not perpendicular to s, P = <s, s,i is a nondegenerate 
2-dimensional subspace containing at least two singular l-dimensional 
subspaces. We may assume (since nondegenerate symplectic spaces have even 
dimension) that dim I’ 3 4, since otherwise one of (ii) or (iii) holds. We may 
then write I’ = P J- II’ where W = P’ and set s2 = p + w where p E P 
and w E W. Then zu f 0 since otherwise (i) holds. Then unless (I’, n) 
defines an orthogonal geometry and II’ ‘v P, , we have (S n IV; = IV by 
Lemma 2.1, and so there exists a vector sa contained in S n (W - wl), and 
clearly sa lies in S n sl n srl but sa is not in S n sL n syl so 2.1 fails. Thus 
we see that (iii) holds. The proof is complete. 

3. PROOF OF THEOREM 3 

Let K be the union of classes of Zp’s described in the hypothesis of 
Theorem 3. We convert K to a graph ;X whose vertices are K and whose 
edges are pairs of subgroups in K which commute with one another. Given 
two commuting members X and I’ of K, the collection C(X, Y) of subgroups 
of order p lying in (X, Y) is a subset of K which we regard as a subgraph of 
x. Then C(X, Y) is a complete subgraph of % containing the arc (X, Y). 
We have 1 C(X, Y)l = I + p > 3 and from our hypothesis, for any 
Z E K - C(X, I’), C,(Z) n (X, Y) h as order p or pa- that is, in terms of %, 
Z is joined by an edge to one or all members of C(X, I’). Thus the graph A’- 
satisfies hypothesis 2.1 and 2.2. Then by the Corollary of Section 2, (i) x is 
totally disconnected, (ii) &‘- contains a vertex joined by an edge to all other 
vertices of ;Y-, (iii) Lx is isomorphic to the graph of isotropic or singular 
projective points of a nondegenerate projective symplectic, orthogonal or 
unitary geometry, or (iv) ;X is a generalized 4-gon and each C(X, Y) is a 
maximal complete subgraph of ;Y. 

We consider these four cases individually. 

(i) This case does not occur since, by the hypothesis of Theorem 3, 
% contains an edge. 

(ii) In this case, there exists a group V in % commuting with all other 
subgroups in .X. Thus, writing C(x) for the set of all subgroups of G 
commuting with every subgroup in z, we see that 
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and :V is a normal elementary abelian p-subgroup of G. So the conciusion of 
our theorem holds. 

(iii) In this case, there exists a projective space P 2nd a polarity or 
quadratic form 7~ such that 3? e S(r). Let S denote the tsomorphism 
Z + S(z), and write s 1 y if x and y are elementa of P and x E n(y). Then 
for groups X and 1’ in Z we have [X, I’] = 1 if and only if i’(X) I .j’(4). 
Each group in K acts (by conjugationj on the graph .x and hence on 
j-(.X) v S(T). 

If S(n) is the set of singular l-dimensional subspaces of a unitary polarity Z, 
then S(r) satisfies 2.1 with the cliques C(x,_r’j having i + q’ points. Rut if 
J(X) = s and f(Y) = y where X, IT E K, [X, I J = I, we see that the family 
U(X, F) of subgroups of K lying in C:X, Y: is the preimage of C(.Y, j,), that 
is 

f( U(X, Y)) = C(s, :\r) 

and contains 1 + p points. Since p is not q’, the unitary case is excluded. 
Suppose rr is a symplectic polarity of the projective space P so P = S(T). 

We may then view P as the collection of l-dimensional subspaces of a vector 
space I;- equipped with a nondegenerate symplectic form. Since S(n) is not 
totally disconnected, dim > 4. The group Aut(S(rr)) now contains two 
subgroups: p(G), the induced action of G = :<K:: onf(Z) = S(r); and the 
group P Sp(Zz, q), the action on S(v) induced by the symplectic group 
Aut(P, 7r). 

We wish to argue first, that for each X in K, p(X) coincides with the 
group of transvections of Aut(P, YT) with directionf(X) = s. The difI%zult)-y 
of course, is that we do not know that p(G) even normalizes -kut(P: -) as 
subgroups of aut(,S(n)). 

l-dimensionai subspace of V not perpendicular to x, and if zi: is any further 
I-dimensional subspace of the hyperbolic plane ,,e, J;;, then w E .Z and an) 
l-space in x1 perpendicular to y is also perpendicular to ZE. Thus the vertices 
of Z are assorted into classes C, , C, ,..., each class containing p rertices, 
such that if y and w are two elements of the same class, F and G are joined by 
an edge with the same set of points in P. Conversely, if it and EC are two 
elements of Z joined bv edges to precisely the same set of vertices in T: then, 
putting lx,:: = s, ,:y,$ = y, ~::zo,,) = ‘zL’, where x0 i ,I’~ and ZG~ are vectors in 
FrgT we have 

where i’. and ZL’~ are not perpendicular to x0 ~ 53~ Lemma 2.2, this forces 
“Co E ,:x0 , Ju ; so -1 and w belong to the same subset Ci of Z. Thus the Cj are 
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equivalence classes in Z, for the relation of being joined by an adge to the 
same set of vertices in r. 

Let T, be the group of transvections in P Sp(2n, 4) having direction N. 
Then the Ci are both TX-orbits on Z and also p(X)-orbits on Z. Thus the 
subgroup H = <p(X), T& of Aut(S(r)) fixes {a$ u rpointwise, and stabilizes 
each Ci . 

There are three facts concerning the subgraph ,Z which we must establish: 

(3.1) The Ci are totally disconnected. 

(3.2) If i # j each vertex of Cj is joined by an edge to exactly one 
vertex of Ci so that edges between Ci and Cj de$ne a l-l correspondence betuleen 
Ci and Cj . 

(3.3) The subgraph Z is connected. 

3.1 is clear since the Ci are the l-dimensional subspaces distinct from x in 
a hyperbolic plane containing 3~‘. 

Set m = <x,>. If (y,,) is an element of Ci , chosen so that x,, . y,, = 1, 
we may set P = <x0, y,,) and write V = P 1 TV where W = P’. Then for 
some zu E lW, the elements of Cj are 

(Y + ZL’), c.3’0 + w + ql>,..., /Yo + w + (p - 1)x,). 

Then y,, + a~,, is perpendicular to y,, + w + /%c,, if and only if p = --ol; 
thus (y,, + ollt,,), a typical element of Ci , is perpendicular to one and only one 
element of Cj . This proves 3.2. 

To prove 3.3 we first show that if i f j, any element of Ci has distance 2 
from any element of Cj . Since 1 Ci 1 > 2, it then follows from 3.2 that each 
vertex of Ci has distance at most 3 from any other vertex of Ci , and this 
proves 3.3. As in the previous paragraph we may define x,, , ya , P, IV and zu. 
Let the vertex in Ci be a = {ys), without loss of generality, and the vertex in 
Cj be b = < ya + w + a~,,). Since dim Sr > 4, TV is nondegenerate and so 
there exists a vector zu2 in Wsuch that w, w = --oI. Then set C = <yO + w, j. 
Then c is a vertex in Z and is perpendicular to a = (yO). But 

(yo + w2) . (yo + w + cq) = -a+ cy. = 0 

so c is perpendicular to b. Thus c is an element of Z lying on an edge with a 
and b and so the proof of 3.3 is complete. 

Suppose, now, that on some Ci , say C, , the groups p(X) and T, do not 
induce the same group of permutations. Then H, restricted to C, , is not 
solvable (for the solvable groups of degreep have a uniquep-Sylow subgroup). 
By a well known theorem of Burnside, His doubIy transitive on C, , Let H, 
be the subgroup of H stabilizing a vertex ,8 in C, . Then H,i3 transitively 



permutes Cl - (PI.. Consider j > 1. HB acts on Cj I and fixes the unique 
vertex of Cj on an edge with ,B. If Ha fixed vertex a in Cj j then EB also 5xes 
the unique vertex in C, on an edge with IY (by 3.3). This is necessarily ,$ since 
HP is tramitive on C, - (p>. Thus H, fixes only the vertex in Cj on an edge 
with j3. We thus see 

(3.4) qy fixes exact& one vertex in em/z Cc . The subgraph 2TG oj 
z3ertices $ Z$jixed by H, is a complete mbgraph of &, ad cordnim axe zwtex 
fi-on1 each c; D 

It follows from 3.2 that ZO has the same valence as 2. Since by 3.4 J, is, 
complete, no edge contains a vertex of ZO and Z - ZO . Since Z - ..Fa is 
nonempty (for p = I Ci ) > j C, n ED 1 = I), this means that Z is not 
connected. But this contradicts 3.3. 

Thus we are forced to conclude that p(X) and T,? induce the same permutz- 
tion groiup on each Ci in Z. Then the commutator [p(S), T,] fixes pointw:se 
each 5’; as weii as (.x> u r and so is the identit!; of -%ur(S(~)). Thus 
N = :,p(S), TX:‘, ‘v Z, or Z, X 2,. In the latter case there is a kernel l.‘; of 
the action of H on each Ci . But by 3.2 L.‘;:i = L,‘j for allj so L:: = 1 E iut(S(r)). 
Thus p(S) = T,: as subgroups of Aut(S(rr)). 

(3.5) p(X) induces on S(n) the same grozr? of autoxo~;~kisms as irzdzced 
by the tranrvections with direction x = Jf(X). 

Now suppose X and I- are distinct mutually comm;lting subgroups in K. 
let 2 be a subgroup of (;X, Yj distinct from X and Y. Then by 3.5 p(Z) 
induces on S(r) a group of automorphisms identical with that induced by t5.e 
group of transveections T, having direction z =J’(Z). Rut Z is generated b> 
x0 = zcyO where s,, and yO generate X and I-, respectively. Thils p(.zO) 
corresponds to the action on S(r) of the product of two commuting trans- 
vections (induced by p(x,) and p(p,,)) having directions x and y. But this is 
impossible since the product of two commuting transvections with directions 
s and y has only x1 n yi n S( ) rr as its fixed point set, and this has smaller 
cardinality rhan & n S(n). This contradiction disposes of the case that r is a 
svmplectic polarity. 

Finall!-, we may suppose r is a nondegenerate quadratic form on a vector 
space I.77 inducing an orthogonal geometry. Fix Ly: 1’ E K such that [X, 17 + 1 I 
purf(X) = x, f(Y) = y and set 1; = Y”o where ,:~x-,‘; = X. Then Yi f I- 
and both I- and I; fail to commute with X. Writing S(r) = x v F w Z; 
where T = .& n S(V) and 22 = S(n) - ({xj. u P), we see that y and y1 are 
joined by edges to the same set of vertices in J’. Thus if we write P = Is? -1~:‘~ 
J- = P i W where W = P, yi is generated by a vector p + w where p c P 
and ea E W. Then zu + 0 since otherwise yi is a singular line in P and this 

would be impossible since P, being a nondegenerate orthogonal 24mensiaaal 
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space already containing singular points x and y cannot possess the third 
singular point y1 . Since yr is arced to the same vertices in r = S(n) n .& as 
3’ is, we see that the singular vectors of IV0 are all perpendicular to zu. By 
Lemma 2.1, this is possible only if IV contains no singular vectors at all. 
In this case I’ is orthogonal of type Pr 1 P,, . But then S(n) is totally discon- 
nected, a case already excluded. 

(iv) We are assuming here that % is a generalized 4-gon and that each 
C(X, Y) is a maximal clique in 5$?“. 

Fix vertex X in x and let r denote those members of .X - (X} which 
commute with X and set z = &‘” - (r u {X}). This gives us a decomposi- 
tion, J? = {X> + r + r. The subgraph r is a union of C(X, Y) - ({X} as I 
ranges over r. Since the cliques C(X, Y) are maximal complete subgraphs 
the existence of an edge between C(X, YJ - (X> and C(X, I’,) - {X> 
implies C(X, I;) = C(X, YJ. Thus 

(3.6) r is the disjoint union off complete subgraphs r, , r, ,..., T’, . 
Also, 

(3.7) Eaclz vertex in .Z is arced to exactly one vertex in each ri , 
i = l,...,f. 

Since case (ii) is excluded, z is nonempty. Fix a vertex Z in E and let 
Yi E r be the unique vertices in each ri lying on an edge with Z, i = 1,2,..., f. 
Now 1; , being a group of order p acting on 9” by conjugation centralizes X 
and hence permutes the connected components r, ,..., r, as wholes. Suppose 
Y, stabilizes rj for some j > 1. Then, since I; commutes with Z, Y, fixes 
the unique vertex Yi in rj lying on an edge with Z. Thus Yr commutes with 
Yj , forcing an edge between r, and rj . This contradicts 3.6. Thus Y1 
stabilizes r, and permutes {ra ,..., r,> in cycles of length p. Similarly, Yi 
stabilizes ri and permutes the remaining rj(i + i) in cycles of length p. It 
follows that the group (1; ,..., Yf> transitively permutes the ri . Since &- is 
connected, the line graph defined by the cliques is also connected. It follows 
that 

(3.8) Aut(%) is transitive OTZ cliques andf = 1 mod p. 

It is not clear yet that Aut(&‘) is transitive on vertices. (Otherwise it would 
then follow that Aut(x) would be transitive on “flags”, that is, incident 
vertex-clique pairs.) 

(3.9) For any vertex Win .X, the subgraph of all vertices in AC joined 
by an edge to W is also the disjoint zzlzion off conzplete subgraphs. In particular ST 
is regular. 
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For any vertex It’ in ~6 let d(W) be the set of vertices iying on an edge 
joined to W. We have already seen that A(W) is a union of complete graphs, 
corresponding to the cliques containing TV. We first show that if TI’ is in 2.Y> 
the number of complete subgraphs in &4(W) is f. First, if C is a complete 
subgraph of A( IV), C u {W) is a clique of Hyporhesis 2.1 and so X lies an an 
edge joined to exactly one of its points R in C. Then R E Tf for some i. Ir’ C’ 
is a second complete subgraph of 9(W), similarly / C’ n AT 1 = I, bet 
6’ n Ti is empty since otherwise a vertex in C and a vertex in C’ would fo;m 
an edge. Thus each complete subgraph in d(W) meets r at a distinct P1 ) 
2t so by 3.7, the number of such connected components of -4(W) is esactk:,‘. 

Now let E; E r. We claim there exists a vertex It’ in 2Y noe 311 ac edge with 
I’. Suppose otherwise. Then 2Y C A(Y), the set of vertices arced to I-. Fix Z 
in 2, and let ~3~ = A(Z) n r. Without loss of generality assume J’ = ;L’I 1 
Then if f > 1, we can choose I, f E’ and consider the clique /‘(Y? , Z). 
Since This contains at least three vertices, L” n C(I-; I Z) consists oi at least 
two points arced to Y. By hypothesis, I’ is arced every vertex of %(fmi i Zj 
including ZZ . But I’ = 1’~ is not arced to Yi by choice ofj. Thus we mav 
assume? = 1. In this case our vertex I- is arced TO every furrher vprtes of X. 
But this was case (ii), already excluded. Thus we mcst assume there exists 

a vertex W in 2 not arced to E’. From the previous paragraph [A-, W] + i 
implied d(W) hasf components, and similarly [IV, 1-j G I, implies, in turn, 
that A(Y) has exactlv j components. From our general choice of E- E r we 
see nom that 3.9 holds. Regularity follows, since by 3.8 all clkques have the 
same cardinality and so 1 -g(Z)1 = fp for every Z in .X. 

(3.10) The relation “A” defined on Z by the rule TV - I,” $ and 02:~y 
q d(W) n T = &1( F-) n T is an epuizlalence relation 018 Z. The eguiaalezre 
classes 2, ?.1.I E,, , each have cardinalitv a nm!tiple ofpa 

That “-+” . 1s an equivalence relation is obvious. Since X acts on the elements 
of each 2,. in orbits of lengthp, the second statement follows. 

The first statement follows from 3.7 and 3.9. The situation of 3.7 now holds 
generally because of 3.9, that is, any pair of vertices not forming an edge are 
joined. to esaclly f vertices in common. Thus if 8, tf’in L”, and lie in a common 
2Yi t then -J( I’) n A(W) contains j points in r not arced to one another. If 
[ 8-, W] = 1 I then A(V) n A(W) = C( b7, IT) - (Ts7, W), a complete subgraph 
ofp - I points.Thus [Y? W] + l.ThenA(I,y) n A(W) n T = -4(V) n --l(W), 
since alIf ver:ices of the right side lie in the left. Thus A(I,‘) n 9(W) n T so 
T’ azd W haIre distance 3 in 2. Conversely if T- and W are distance 3 in .L’? 
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A( P’) A A(W) C r so A(v) n r = d(W) n r, and so V and Z lie in the 
same Zi . 

/ 21 = (f- 1)p’. (3.12) 

We simply count edges with one end point in I’ and one in L’. 

I ‘% I = P> i = I,..., 7% (3.13) 

For PI’, VE &, ((III} u (A(W) n Z)) n ((V} u (A(T’) n Z)) is empty. 

Thus 

it& f-7 z) u VY 

has cardinality j Zi j (1 $- f(p - 1)) and so by (3.12) we obtain 

(f - 1)P” 
141 = 1 +f(p- 1) * (3.14) 

By 3.8 f = kP + 1 for some positive integer k. Substituting yields 

I&I = 
kp” kp” 

l+kP-k <kp--=2p’ 
(3.15) 

where the inequality comes from k - 1 < $kp in the denominator. Now 
1 Zi / is an integer multiple ofp (by 3.10 less than 2~. It follows that 1 Zi / = p 
for all i. 

Now it is easy to verify 

(3.15) If Ire Z;, then (X, Y> induces a group of permutations on 
{Xl u Zi , isomorphic to PSL(2, p) acting on 1 + p letters. 

First we must show I:X, Y) stabilizes {X} u & . But {X} u 2Yi - {El’) is a set 
of vertices I; such that A(V) A A(Y) is th e same set of vertices for all v in 
the set, and each r does not centralize Y. Thus these V’s make up an 
equivalence class of Z - A(Y) for th e relation of being arced to the same 
subset of A(Y), by 3.10 with Y in the role of X. Thus Y stabilizes (X> u Zi , 

and so H = (X, Yj stabilizes it, and is doubly transitive on it. But X is a 
normal subgroup H n N(X), regular on the remaining p letters, Zi . Thus the 
group of permutations induced on {X) u .ZL is a split (B, N)-pair of rank one. 
We may now apply the result of Hering, Kantor, and Seitz [3]; this together 
with the fact that H acts on 1 + p letters, where p is a prime, and is generated 
by p-elements, yields (3.15). 

(3.16) Hypothesis (a) of Theorem 3 forces a contradiction. 

From (3.15) we see that any two members of L%- which do not commute 
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generate a group H whose action on the H-orbit containing either of these 
elements is that of PSL(2, p) on its 1 + p p-Sy!ow subgroups. As before 
-H = ,:ILy9 Y]; is 2-transitive on (X} V Zi = (X, Yr ,.r., YJ. There exists a 
vertex F7 in r commuting with every subgroup of (X> u Zi. Prtt X = :‘r:~: 

YS = ,<yr:? i = I,..., p, and V = ,(cj. By Hypothesis (a) of Theorem 3 [or 
with Hypothesis (a’) a suitable generator ‘E of F’ can be found such that] 
yr; = < .r.> il) is an element of K. Without loss of generality- cheese the -vr sc 
thatjr,,t’ = {vr ,...>)I,}. Then Y,’ d oes not commute with X and if ITi’ = ~:;z~~,,: 
we have (1-r’)” = (T;‘,..., Y,‘> = Zj for somej f 1, ’ Since H is 2-transitive on 
{X> u z1; , we can choose the indices 1: so that X = I’:1 = y;i17D~1 , and pu’t 
j’F_ yy It’ = .L ,b~ Then 

generates a subgroup lying in the Y,‘-orbit of Y9 . But since Hj = /IS, 1;‘; 
is 2-transitive on (X> ‘U Zj I its subgroup (‘y;‘, I’,> is also 2-transitive on it, 
and so the subgroup (ax”) is one of (X, YI’,.,., Y7tI’). This is impossible since 
none of these 1 + p subgroups commutes with any other? yet (a~+> central- 
izes X and yet is distinct from it. This contradiction compietes the proof of 
Theorem 3. 
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