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1. INTRODUCTION

A few years ago, a very simple {and entirely elementary) characterization
of the groups S,(2#, 2) was given in [4]. The following theorem on involutions
was an immediate corollary of this characterization.

Treorem 1 [4]. Let K be a class of involutions in a finite group G and
suppose the following:

(1) If t; and t, are tweo involutions in K which commute, then iyt, € K, and
any tmvolution sin K — {1, , 1, , 1y} commutes with at least one of the involutions
ity , .

(it} At least two involutions in K commute.

Then all involutions in K commute with one another and generate a normal
abelian 2-subgroup of G.

Since no reference to Sp(2#, 2) appears anywhere in the statemen: of the
of the theorem, J. Alperin wondered whether a more natural direct proof
couid be found. Indeed he found a short elementary proof (utilizing nothing
worse than Baer’s crirerion that an involution belong to O,(G)) of a more
general result, namely:

Tasoren 2 (Alperin [1]).  Suppose A is a fours-group and is a subgroup of
the finite group G. Let K be the set of conjugates in G of all involutions in A and
suppose, for every involution t in K, C(t) N 4 is nontrivial. Then A N O{G)
s also nontrivial.

This theorem is more general in several respects. First, K is not necessarily
one conjugacy class of G. Second, the commuting condition is entirely
relative to a single fours-group -, rather than ali fours-groups generated by
commuting pairs in K.

For some time the author has been wondering if there were versicns of these
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theorems for odd primes. Finally, because of a recent geometric theorem by
F. Beukenhout and the author, we can prove the following.

TurorEM 3. Let K be a union of conjugacy classes of cyelic groups of prime
order p in a finite group G. We assume at least two members of K commute and
that if X and Y are two commuting subgroups in K, then

(a) every subgroup of order p in {X, Y belongs to K, and
(b) for each subgroup Win K, C(W)N <X, Y is nontrivial.

Then K contains a subgroup V commuting with all other members of K. In
particular, V < O,(G), and G is not simple.

Note that when we say that two members of K commute (as subgroups),
they generate a Z, X Z, and so centralize one another.

Remark. With only a very minor modification of the proof, the above
theorem holds if (a) and (b) are replaced respectively by (a'). A¢ least three
subgroups of order p in {X, Y belong to K, and (b') for each subgroup W in K,
C(W)N (X, Y contains a subgroup in K.

In a general way, the proof of Theorem 3 given here may be viewed as an
odd analogue of my earlier proof involving the Sp(2n, 2)-characterization,
and not at all analogous to Alperin’s proof. The basic useful property that two
involutions always generate a dihedral group seems to suggest that his proof
will not generalize in any obvious way. It is thus an open question whether
one can prove the following.

CONJECTURE.  Suppose A ~ Z, x Z, is a subgroup of the finite group G. Let
K be the set of all conjugates of cyclic subgroups of order p in G. Suppose, for
each subgroup W in K that C(W)N A is nontrivial. Then A N O (G) is
nontrivial. More specifically, A N Cy(K) is nontrivial.

2. PreLIMINARY RESULTS

A polar space is defined by Tits [5] as a set of points .S together with
distinguished subsets called subspaces such that

(1) asubspace together with the subspaces it contains is a d-dimensional
projective space with —1 <{ d < # — 1 for some integer 7 called the rank
of S;

(2) the intersection of two subspaces is a subspace;

(3) given a subspace L of dimension n — 1 and a point p in S — L,
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there exists a wunigue subspace M containing p such that dim(AfNL) =
i — 2; it contains all points of L joined to p by some subspace of dimension {;

(4) there exists two disjoint subspaces of dimension # — i,

A standard example of a polar space is the subspace S{(=) defined as follows:
Let P be a Desarguesian projective space of finite dimension #. Let 7 be
either a polarity in P or a nondegenerate quadratic form on P. Let S{m) be
the collection of absolute points or (respectively) the singular points of P with
respect to 7. The subspaces of S{rr) are defined to De the projective subspaces
of P lying in S(=). (For example, if S(=) is a projective symplectic space, its
polar subspaces are its fsofropic subspaces. By allowing = to be a quadratic
form as well as a polarity, the definition of S(z) is aliowed to include the
singular projective points in the orthogonal geometries of characteristic 2,
as well as the overlying projective symplectic geometry which contains it in
this case.) Combined work of Veldkamp and Tits [6, 5] has vielded the
following.

Trerorem (Veldkamp-Tits, [6, 5)). If S is a finite polar space all of whose

1-dimensional subspaces have at least three points, then
(1) S~=S8@E)ifrank S = 3, 0r
{(ity S is a generalized 4-gon in the sense of T1is.

We now turn to a graph-theoretic characterization of the polar spaces.
For the purposes of this paper, all graphs considered are undirected and
without loops. Recently F. Beukenhout and the author considered graphs %
satisfving the following hvpothesis.

2.1 If (x,y) is an edge in 9, there exisis a (not necessarily unique)
complete subgraph C(x, y) containing at least three vertices and the edge (x, 3) as
a subgraph, such that if z is any vertex of % not in C{x, v), then z is either joined
by an edge to exactly one member of C(x, v), or 1s joined to all of the members of
Clx, v

Although we do not require % to be finite, we do impose a finitness condi-
tion. If % is a graph satisfying 2.1, we say that a complete subgraph Cof ¥ isz
subspace of ¢ if and only if for any two points x and v of C, each C{x, 3) of 2.1
lies in C. The empty set is a subspace. A flag of length 4 is a chain of subspaces
K,, K, ,..., K; with each K; properly contained in &, ;. Our condition is
as follows.

2.2, Ewery flag of I has length at most n.

The following theorem was proved by F. Beukenhout and the author and
will appear in a forthcoming publication [2].
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TreOREM (Beukenhout-Shult). Lef & be a graph satisfying hypotheses 2.1
and 2.2. Then either

(1) & is totally disconnected,
(2) ¥ contains a vertex arced to all other vertices of ¥ or,

(3) the subspaces of ¥ together with the vertices of % form a polar space.

This theorem together with the Veldkamp-Tits theorem yields the
following.

CoROLLARY. Let ¥ be a finite graph satisfying hypotheses 2.1 and 2.2. Then
one of the following holds:

(i) % is totally disconnected.
(it) ¥ contains a vertex lying on an edge with all the other verfices of %.
(i) % is the graph of isotropic or singular projective poinis of a non-
degenerate projective symplectic orthogonal or unitary geometry.
(iv) F s a generalized 4-gon, each C(x, v) is a maximal complete subgraph.
(Note: Although % is regular it may not be strongly regular in this case, and the
C(x, v)'s may have cardinality depending on the choice of edge (x, ).)

Our proof of Theorem 3 rests primarily on this corollary. Most of the
proof involves what to do with case (iv). However some work is required in
case (iil) and to facilitate this we require two technical lemmas concerning
S(7) which we establish in this section.

Lemma 2.1. Let V' be a finite vector space admitling a nondegenerate
quadratic form m, and let S denote the set of singular vectors of V. Then either

@) 8=V,
(ity dim V = 2 and (V, =) defines an orthogonal geometry or,
(i) dim ¥V = 1.

Proof. The pair (V,n) defines a symplectic, unitary or orthogonal
geometry on V. We may assume dim V" > 1.

If (V, 7) defines a symplectic geometry, S = V'#and so (i) holds.

Suppose (V, 7) defines a unitary geometry and let TV be any nondegenerate
2-dimensional subspace. We suppose GF(g?) to be the ground field. The
(g + 1)-st power map defines an epimorphism between multiplicative
groups, GF(¢®)* — GF(g)*, and so there exist elements « and B in GF(¢?)*
such that a?+! = —fB9+1, Since ¢ + 1 > 2, we can choose « and f so that
o 7 B. Now W contains an orthonormal basis {e, , &,} and wae; 4 Be, and
exe; 4 Pe, (where € 7 I, ™1 = 1) are two singular vectors spanning W so
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S N )y = I Since I is generated by its nondegenerate 2-dimensional
subspaces, < .S = " and so (i) holds.

Assurce finally that (I, =) defines an orthogonal geometry. We may now
assume dim 17 > 3, since otherwise (ii) holds. The nondegenerate 2-dimen-
sional subspaces of 1" are of two types, P, having no singular vectors and P, ,
having two singular one dimensional subspaces spanning P, . For perpen-
dicular sums we have Py | Py~ P, | P,, where the geometry isomorphisms
are defined up to a scalar multiple of the quadratic form. Assume W is 2
nondegenerate 3-dimensional subspace. Then I is defined over a field F of
odd characteristic and the quadratic form O can be taken (up to a scalar
multiple of O) to be defined by
2

Oy, ¥z, %3) = 3" + 2 + x5° or R

where g is a nonsquare in F. (This replacement of O by a nonzero scalar

raultiple ¢Q does not affect the question whether [N S» = W) In the
former case - (1,0, 0), (0, 1,0)>, <(0, ,0), (0,0, 1) are two nondegenerate
2-dimensional subspaces of type P; so SN W, = [ In the latter case
there exist scalars o and § in F* such that o + 8* = —g {(for if ' ! is odd,

every element of ¥ is a sum of two nonzero squares). Then o £ 0 3 § and
5, = (o B B, 5 = (2, —B, 1) and 53 = (—a, 5, 1) are three singular vectors
whose span contains s; — 8 = (0, 28, 0}, §; — 53 = {22, 0, §) and (s, + 83} =
{0, 0, 1}, so they span W\

Now assume dim W = 4. If W~P, | P, (SN, =1 We may
thus assume W ~ P, | P,. But in this case Aut(}¥) cortains a normal
subgroup isomorphic (projectively) to PSL(2, g2}, so Aut(H') acts irreducibly
on W. Thus SN W == @ implies (SN W = [’ Thus, if I¥ is a non-
degenerate subspace of dimension 3 or 4, <8N ¥ = V. If the charac-
teristic of the field is even, dim ¥~ <{ 4, and [ is spanned by nondegenerate
haracteristic is ocd,

subspaces 17 of dimension 4, whence (S, =
dim I" > 3, and " is a sum of nondegenerate subbpaces W of dimension 3.
17 follows. This completes the proof of the lernma.

Thus in either case, (S =

LevMa 2.2. Let T be a finite veclor space admitting a nondegenerate

g7
quadratic form m and let S denote the singular vectors of V. Fix s in S. Suppose s,

and s, are two vectors in S not perpendicular fo s. but that (2.1}

Snstngs=SNnstNs
Then etiher

i sye{s s,

(i} (I, ) defines a unitary geometry and dim ¥ <C 3,
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(i) (V, w) defines an orthogonal geometry and dim V < 3, or else V is of
type P, | Py where Py and Py are the nondegenerate 2-dimensional orthogonal
geometries having O or 2 singular 1-dimensional subspaces, respectively.

Proof. Since s, is not perpendicular to s, P = (s, 5;> is a nondegenerate
2-dimensional subspace containing at least two singular 1-dimensional
subspaces. We may assume (since nondegenerate symplectic spaces have even
dimension) that dim }~ > 4, since otherwise one of (ii) or (iii) holds. We may
then write I = P | W where W = P+ and set s, = p + w where pe P
and we V. Then @ 5 0 since otherwise (i) holds. Then unless (¥, 7)
defines an orthogonal geometry and W ~ P, we have (SN W) = W by
Lemma 2.1, and so there exists a vector s; contained in S N (W — =t), and
clearly s, lies in S N s+ N s but 55 is not in .S N st N syt so 2.1 fails. Thus
we see that (iit) holds. The proof is complete.

3. ProoF oF THEOREM 3

Let K be the union of classes of Zp’s described in the hypothesis of
Theorem 3. We convert K to a graph " whose vertices are K and whose
edges are pairs of subgroups in K which commute with one another. Given
two commuting members X and ¥ of K, the collection C(X, Y') of subgroups
of order p lying in (X, Y is a subset of K which we regard as a subgraph of
. Then C(X, Y) is a complete subgraph of ¢ containing the arc (X, Y).
We have |C(X,Y) =1+ p >3 and from our hypothesis, for any
Ze K — C(X,Y), Ce(ZYyN (X, Y has order p or p?—that is, in terms of A,
Z is joined by an edge to one or all members of C(X, Y). Thus the graph &~
satisfies hypothesis 2.1 and 2.2. Then by the Corollary of Section 2, (i) £~ is
totally disconnected, (ii) %" contains a vertex joined by an edge to all other
vertices of ", (iil) 4" is isomorphic to the graph of isotropic or singular
projective points of a nondegenerate projective symplectic, orthogonal or
unitary geometry, or (iv) ¢ is a generalized 4-gon and each C(X, Y) is a
maximal complete subgraph of 7.

We consider these four cases individually.

(1) This case does not occur since, by the hypothesis of Theorem 3,
2 contains an edge.

(if) In this case, there exists a group V' in 2 commuting with all other
subgroups in ¢, Thus, writing C(#") for the sect of all subgroups of G
commuting with every subgroup in %, we see that

V<N = 0 CHy
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and XV is a normal elementary abelian p-subgroup of G. So the conclusion of
our theorem holds.

(1) In this case, there exists a projective space P and a polarity or
guadratic form 7 such that /" ~ S(n). Let f denote the isomorphism
A — S{z}, and write x | yif x and v are elements of P and x € n{y). Then

)
Each group in K acts (by conjugation) on the graph #° and hence on
F(y ~ S(=).

If S(m) is the set of singular 1-dimensional subspaces of a unitary polarity 7,
then S{=) satisfies 2.1 with the cliques C(x, y) having 1 + ¢° points. But if
fX) = vand f(V) = ywhere X, Ye K, [X, 1] = 1, we see that the family
U(X, Y') of subgroups of K lying in /X, ¥} is the preimage of C(x, 3), that
is

JUX, Y)) = Clx, )

and contains | -~ p points. Since p is not ¢°, the unitary case is excluded.

Suppose 7 1s a symplectic polarity of the projective space P so P = S{x
We may then view P as the collection of 1-dimensional subspaces of a vector
space I equipped with a nondegenerate symplectic form. Since S(#) is not
totally disconnected, dim > 4. The group Aut(S(s)) now contains two
subgroups: p{G), the induced action of G = (K> on f{A4) = S(x); and the
group P 8p(2#, ¢), the action on S{zr) induced by the symplectic group
Aut(P, ﬂ'}.

We wish to argue first, that for each X in K, p(X) coincides with the
group of transvections of Aut(P, #) with direction f(X) = ». The difficulty,
of course, is that we do not know that p{G) even normalizes Aut{P, ») as
subgroups of Aut(S(x)).

Set '=a*NSr)and X = S(m) — I —{sp. f yisavertexin X2, yis a
1-dimensional subspace of 77 not perpendicular to x, and if « is any further
1-dimensiona! subspace of the hyperbolic plane e, 3>, then we 2 and zny
1-space in x* perpendicular to y is also perpendicular to w. Thus the vertices
of X are assorted into classes C;, C, ,..., each class containing p vertices,
such that if v and w are two elements of the same class, v and = are joined by
an edge with the same set of points in I. Conversely, if v and = are two

S

elements of 2 joined by edges to precisely the same set of vertices in I, then,
putting <xg» = x, (V> = ¥, (wy> = w, where 5y, v, and w, are vectors in

I'#, we have
= . L 1 I7s . L - L
I'=Nxgt Nyt = F=* Nyt Moyt

where 1, and @, are not perpendicular to x,. Bv Lemma 2.2, this forces
2wy € (X, , ¥yo 50 ¥ and = belong to the same subset C; of 2. Thus the C; are
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equivalence classes in X, for the relation of being joined by an adge to the
same set of vertices in I,

Let T, be the group of transvections in P Sp(2#, ¢) having direction x.
Then the C; are both T,-orbits on X and also p(X)-orbits on X. Thus the
subgroup H = {p(X), T, of Aut(.S(=)) fixes {x} U I" pointwise, and stabilizes
each C; .

There are three facts concerning the subgraph X which we must establish:

(3.1) The C, are totally disconnected.

(3.2) If i  j each vertex of C; is joined by an edge to exactly one
vertex of C; so that edges between C; and C; define a 1-1 correspondence between
C;and C; .

(3.3) The subgraph X is connected.

3.1 is clear since the C; are the 1-dimensional subspaces distinct from x in
a hyperbolic plane containing x.

Set x = {xo>. If {yy> is an element of C;, chosen so that x,-y, = 1,
we may set P = {x,, ¥,> and write ' = P | W where W = P+, Then for
some @ € W™, the elements of C; are

Y 4w, (Yo + @ + %pDpeer; (Yo + w + (p — D)

Then y, 4 ax, is perpendicular to y, + w + Bx, if and only if 8 = —a;
thus (¥, + axy), a typical element of C; , is perpendicular to one and only one
element of C;. This proves 3.2.

To prove 3.3 we first show that if 7 £ j, any element of C, has distance 2
from any element of C;. Since | C; | > 2, it then follows from 3.2 that each
vertex of C; has distance at most 3 from any other vertex of C,, and this
proves 3.3. As in the previous paragraph we may define %, , y, , P, W and w.
Let the vertex in C; be @ = { ), without loss of generality, and the vertex in
C; be b = {yy -+ w + axyy. Since dim 7 > 4, W is nondegenerate and so
there exists a vector @, in Wsuch that e, - @ = —a. Thenset C = (y, + w,).
Then ¢ is a vertex in X' and is perpendicular to @ = {y,>. But

(3o + ) (o +w+axg) =—a+a=0

so ¢ is perpendicular to b. Thus ¢ is an element of X lying on an edge with a
and b and so the proof of 3.3 is complete.

Suppose, now, that on some C;, say C,, the groups p(X) and T, do not
induce the same group of permutations. Then H, restricted to C,, is not
solvable (for the solvable groups of degree p have a unique p-Sylow subgroup).
By a well known theorem of Burnside, H is doubly transitive on C, . Let H,
be the subgroup of H stabilizing a vertex 8 in C,. Then H, transitively
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permufes C; —{B}. Consider j > 1. H; acts on C;, and fives the unique
vertex of C; on an edge with B. If H, fixed vertex o in C;, then Hj also fixes
the unique vertex in C; on an edge with « {by 3.2). This is necessarily § since
Hyg is transitive on C; — (B}. Thus H, fixes only the vertex in {; on an edge

with: 3. We thus see

(3.4) H, fixes exactly one vertex in each C;. The subgraph Zy of
veriices of 2 fixed by Hy is a complete subgraph of 2, and contains one vertex
from each C; .

It follows from 3.2 that 2, has the same valence as . Since by 3.4 2, is
complete, no edge contains a vertex of Xy and & — 2. Since & — Iy is
nonempty (for p ={C;| >|C, N 2| = 1), this means that 2 is not
connected. But this contradicts 3.3.

Thus we are forced to conclude that p(X) and 7°, induce the same permuia-
tion group on each C; in 2. Then the commutator [p(X), T, fixes pointwise
each (', as well as {x} U I and so is the identitv of Auz{S{=)). Thus
H=:p(X), T, ~Z,0or Z, X Z,. In the latter case —*he*e isa k“rnei i of
the action of Honeach C; . Butby3.2 U; = U;foralljso U, g Aut{.S{=)).
Thus p(X) = T, as subgroups of Aut(S(m)).

(3.5} p(X) induces on S(w) the same group of aitomorphisms as induced
by the transwections with direction x = f(X).

Now suppose X and Y are distinct mutually commuting subgroups in K.,
let Z be a subgroup of (X, Y distinct from X and ¥. Then by 3.3 p{Z}
induces on S(=) a group of automorphisms identical with that induced by the
group of transveections 7', having direction g = f(Z). But Z is generated by
%, = %, ¥, where xy and vy generate X and 7, respectively. Thus p{zg)
corresponds to the action on S(m) of the product of two commuring trans-
vections (induced by p{x,) and p(3,)) having directions x and y. But this is
impossible since the product of two commuting transvections with directiors

x and 7 has only x* N 3+ N S(7) as its fixed point set, and this has smailer
cardinality than 2~ N S(#). This contradiction disposes of the case that wis a
sviplectic polarity.

Finally, we may suppose 7 is a nondegenerate quadratic form on a vecror
space 17, inducing an orthogonal geometry. Fix A, Y ¢ K suchthat [X, ¥} == [,
put f(X} = x, f(¥) = y and set ¥} = Y“ where (x,> = X. Then ¥; = ¥’

and both Y and Y, fail to commute with X. Writing S{m) = » U I'U L,
where I = x~ N S(r) and & = S(7) — ({x} U I'), we see that y ar‘l yyare
joined by edges to the same set of vertices in I. Thus if we write P = (¥, v,

— P 1 W where W = P!, y, is generated by a vector p + @ where p e P
and e W. Then w + O since otherwise ¥, is a singular lire in P and this
would be impossible since P, being a nondegenerate orthogonal 2-dimensicnal

481f22[1-9
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space already containing singular points x and y cannot possess the third
singular point y, . Since ¥, is arced to the same vertices in I" = S(7) N x* as
¥ is, we see that the singular vectors of W, are all perpendicular to w. By
Lemma 2.1, this is possible only if 7 contains no singular vectors at all.
In this case I is orthogonal of type P, | P, . But then S(=) is totally discon-~
nected, a case already excluded.

(iv) We are assuming here that 4" is a generalized 4-gon and that each
C(X, Y)is a maximal clique in %"

Fix vertex X in " and let I" denote those members of #" — {X} which
commute with X and set X' = " — (I" U {X}). This gives us a decomposi-
tion, #" = {X} 4+ I' + 2. The subgraph I'is a union of C(X, Y) - {{X}as Y
ranges over I'. Since the cliques C(X, V') are maximal complete subgraphs
the existence of an edge between C(X, Yy) — {X} and C(X,Y,) — {X}
implies C(X, Y,) = C(X, Y,). Thus

(3.6) I' is the disjoint unmion of f complete subgraphs I'y, Ty ,..., T .
Also,

(3.7) Each vertex in X is arced to exactly one vertex in each I;,

i=1,.f

Since case (ii) is excluded, 2 is nonempty. Fix a vertex Z in X and let
Y; e I" be the unique vertices in each I'; lying on an edge with Z,7 = 1, 2,..., f.
Now Y7 , being a group of order p acting on J#” by conjugation centralizes X
and hence permutes the connected components I ,..., I'; as wholes. Suppose
Y, stabilizes I'; for some j > 1. Then, since ¥; commutes with Z, V, fixes
the unique vertex ¥ in I'; lying on an edge with Z. Thus Y, commutes with
Y;, forcing an edge between I and I;. This contradicts 3.6. Thus Y,
stabilizes [} and permutes {I%,..., I';} in cycles of length p. Similarly, ¥,
stabilizes I'; and permutes the remaining I'y(j 5 7) in cycles of length p. It
follows that the group <Y ,..., Y, transitively permutes the I'; . Since % is
connected, the line graph defined by the cliques is also connected. It follows
that

(3.8) Aut(X") is transitive on cliques and f = 1 mod p.

It is not clear yet that Aut(#") is transitive on vertices. (Otherwise it would
then follow that Aut(#") would be transitive on ‘“flags”, that is, incident
vertex-clique pairs.)

(3.9) For any vertex W in A", the subgraph of all vertices in A~ joined
by an edge to W is also the disjoint union of f complete subgraphs. In particular A~
is regular.
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For any vertex W in X" let A(W) be the set of vertices lying on an edge
joined to V. We have already seen that A(1") is a union of complete graphs,
corresponding to the cliques containing V. We first show that if ¥ is in 2,
the number of complete subgraphs in A(H) is f. First, if C is a complete
subgraph of A(W), C U {}} is a clique of Hypothesis 2.1 and so X lies on an
edge joined to exactly one of its points R in C. Then R € I} for some 7. If 7
1s a second complete subgraph of A(IV), similarly |C°nT'| =1, but
"N T is empty since otherwise a vertex in C and a vertex in €’ would form
an edge Thus each complete subgraph in A(W} meets I" at a distinct I
at so by 3.7, the number of such connected components of A(I¥} is exactiv

Now let ¥ e I We claim there exists a vertex [}¥"in 2 not on ar: edge with
Y. Buppose otherwise. Then 2 C A(Y), the set of vertices arced to ¥ Fix Z
in 2, and let y; = A(Z) N I". Without loss of generality assume v = v,
Then if f > [, we can choose Y, == ¥ and censider the clique C(Y,, Z).
Since this contains at least three vertices, 2 C(1;, Z) consists of at least
two points arced to Y. By hypothesis, ¥ is arced every vertex of C{1;, Z)
including Y, . But ¥ = Y is not arced to ¥, by choice of j. Thus we may
assume § = . In this case our vertex ¥ is arced to every further vertex of J#".
But this was case (ii), already excluded. Thus we must assume there exists
a vertex I in X not arced to Y. From the previous paragraph [0, W] = |
implied A(W) has f components, and similarly [, ¥} == |, implies, in turn,
that A(Y) has exactly f components. From our genera! choice of Y eI we
see now that 3.9 holds. Regularity follows, since bv 3.8 all cliques have the
same cardinality and so | A{Z)| = fp for every Z in 7.

(3.10)  Tke relation “‘~" defined on X by the vule W ~ 1" if and only
if AWYNT = AVYN T is an equivalence relation on 2. The equivalence
classes 2y ... 2, , each have cardinalitv a multiple of p.

That ““~" is an equivalence relation is obvious. Since X acts on the elements
of each 2 in orbits of length p, the second statement foilows.

(3.11} In the subgraph X each vertex is arced tc f{p — 1) others.
Two vertices He in a common X, if and only if their distance (in X} from one
another is at least 3.

The first statement follows from 3.7 and 3.9. The situation of 3.7 now helds
generally because of 3.9, that is, any pair of vertices nof forming an edge are
joined to exactly f vertices in common. Thus if V| i7in 2, and lie in a common
X, then () N A(W) contains f points in I" not arced to one ancther. If
{15, 77 = 1, then A(I) N A(W) = C(V, W) — {V, '}, a complete subgraph
of p — 1 points. Thus [, W] 5 L. Then AU} )N AW ) I = A1y A0,
since all f vertices of the right side lie in the left. Thus A(F )N 47y N I"so
F" and W have distance 3 in 2. Conversely if 17 and i7" are distance 3 in 2
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AN AW)C T so AVYN T = AW)N T, and so V and X lie in the

same 2 .
|2 =(f—Dp~ (3-12)
We simply count edges with one end point in I” and one in 2.
(2l =p, i=Ll..,m (3.13)

For W, VeZ,,(WuAW)n 2NNV} (AF)n X)) is empty.
Thus

U (A0 n2)yui{ry)

ves,

has cardinality | 2, | (1 + f(p — 1)) and so by (3.12) we obtain

__(=Dp?

By 3.8 f = kp + 1 for some positive integer k. Substituting yields

kp?
1 +kp—*k

kp?

Z | = —

< (3.15)

where the inequality comes from 2 — | << 4kp in the denominator. Now
| 2; | is an integer multiple of p (by 3.10 less than 2p. It follows that | 2, | = p
for all 7.

Now it is easy to verify

(3.15) If YelZ;, then (<X, Y induces a group of permutations on

v

{X} U Z,, isomorphic to PSL(2, p) acting on 1 -+ p letters.

First we must show (X, Y stabilizes {X} U 2, . But {X} U 2, — {Y}isaset
of vertices I such that A(V) N A(Y) is the same set of vertices for all " in
the set, and each I” does not centralize Y. Thus these V’s make up an
equivalence class of 4" — A(Y) for the relation of being arced to the same
subset of 4(Y), by 3.10 with Y in the role of X. Thus Y stabilizes {X} U 2,
and so H = (X, Y stabilizes it, and is doubly transitive on it. But X is a
normal subgroup H M N(X), regular on the remaining p letters, 2; . Thus the
group of permutations induced on {X} U 2, is a split (B, N)-pair of rank one.
We may now apply the result of Hering, Kantor, and Seitz [3]; this together
with the fact that H acts on 1 + p letters, where p is a prime, and is generated
by p-elements, yields (3.15).

(3.16) Hypothesis (a) of Theorem 3 forces a contradiction.

From (3.15) we see that any two members of 2~ which do not commute
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generate a group H whose action on the H-orbit containing either of these
elements is that of PSL(2, p) on its 1 -+ p p-Sylow subgroups. As before
H =AY is 2-transitive on {X} U 2; = {X, ¥, ,..., ¥, }. There exists a
vertex § in I’ commuting with every subgroup of { X}. U2y Put X = (x),
Y, =y 1= 1,..p and ' = {¥). By Hypothesis {a) of Theorem 3 [or
with Hy aothems (a’) a suitable generator v of I” can be found such that]
= «wyy» is an element of K. Without loss of generality choose the v
that yl"f = {9 -, ¥p- Then Y}’ does not commute with X and if ¥," = {vy;)
we have (Y,)* = {17,..., ¥/} = 2, for some j 5% /. Since H is Z-transitive on
{X30 2, we can choose the indices 7 so that X = ¥ = »7'Y, y, , and put
17,y =+t Then

M«A (‘

(03, ow) = o
generates a subgroup lying in the Yl’—orbit of Y, . Butsinee H; = X, 1"
is 2-transitive on {X} U X, , its subgroup (¥,’, Y, is also Z-transitive on it,
and so the subgroup (za®) is one of {X, Yl', , ¥,'}. This is impossible since
none of these 1 4 p subgroups commutes VVlth any other, vet {zx%) central-
izes X and vet is distinct from it. This contradiction completes the proof of

Theorem 3.
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