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ABSTRACT 

The notions of the theory of spectral localization which are well-known for operators are 
generalized to an arbitrary Banach algebra. In this setting several improvements and corrections of 
the existing results for operators are obtained. 

1. INTRODUCTION 

Before giving an outline of this paper we define the notions of a local spectral 
theory in a general Banach algebra and describe their relation with the existing 
literature. 

Throughout this paper A denotes a Banach algebra with identity element e. 

1.1. DEFINITIONS. Let a, bE A. An analytic A-valued function u( ,a; b) 
defined on an open subset Q of C is a local resolvent of a at b on $2 if 

(he - a)u(A, a; b) = b, 

for all A E 9. 
The union of the domains of all local resolvents of a at b is called the local 

resolvent set of a at b; notation @(a; b). The complement C\e(a; b) = :a(a; b) 
is called the local spectrum. 

If R( , a) denotes the ordinary resolvent of a, then R( , a)b is a local resolvent 
of a at b on the ordinary resolvent set e(a). 

It is obvious that &a; b) is open in C and that &a; b)>e(a); a(a; bj is a 
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closed subset of the spectrum a(a), but unlike the ordinary spectrum, a(a; b) 
may be empty (e.g. for b = 0). 

1.2. In the literature local resolvents and local spectra have only been studied 
for operators, bounded or closed, on Banach spaces and Frechet spaces. 
Roughly spoken one looks at the action of the operator on a one-dimensional 
subspace only; that motivates the use of the adjective “local”. We do not give a 
survey of the literature. The first author to study local spectra seems to have 
been Nelson Dunford as long ago as the fifties. In this paper we refer to Gray 
[2], Stampfli [3], Vasilescu [4], [5], [6] and Vrbova [7]. 

A typical way to define the concepts of local resolvent and local spectrum for 
operators is the following. 

Let X be a Banach space, .T a bounded operator on X and XE X a vector not 
equal to 0. An analytic X-valued functie ti( , T; x) defined on an open subset 52 
of C is a local resolvent of T at x on Q if 

(AI- T)ti( , T; x) =x, 

for all A E 52. 
The union of the domains of all local resolvents of Tat x is the local resolvent 

set Q(T; x); the complement C\g(T; x) is the local spectrum 6(T, x). 

1.3. Many results for operators can be adapted to our. situation by an easy 
translation; we freely use such results in the more general setting of a Banach 
algebra. That our approach is in fact a generalization is best seen from the 
followil:g theorem. This theorem clarifies the relation between the usual 
spectral localization for operators on a Banach space X and our definition used 
in the algebra, B(X), of the bounded linear operators on the same Banach 
space. 

THEOREM. Let X be a Banach space, TEB(X), XEX\(O}. If PEB(X) is a 
projection on the one-dimensional subspace spanned by x then B(T; x)= 
=a(T; P)* 

PROOF. The mappingf: X-+C satisfying Pz=f(z)x for all ZE X is a bounded 
linear functional. If we define the mapping z : X+B(X) by 

then n is linear and continuous, and n(x) = P. Let u’( , T; x) be a local resolvent 
of Tat x on a set 52 in the sense of 1.2, Then n(C( , T; x)) is an analytic function 
on 52 with values in B(X); moreover, for all z E X we have for Iz in the set 52: 

(AI- T)n(ti(d, T; x))(z) = (AI- T)f(z)ti(A, T; x) =f(z)x = Pz. 

So n(z?( , T, x)) is a local resolvent of T at P on $2 in the sense of 1 .l and 
Q( T; x) C @( T; P). On the other hand; if U( , T; P) is a local resolvent of Tat P 
on Q in the sense of 1.1 then U( , T; P)x is an analytic X-valued function on 52 
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satisfying (U-P)U(il, T; P)x=Px=x; hence it is a local resolvent in the sense 
of 1.2and~(T; P)cQ(T; x). El 

A detailed treatment of local resolvents and local spectra in a general Banach 
algebra is available in [l]. In the present paper we focus our attention on 
improvements of the existing theories. In B(X) the advantage of our approach 
is that we are not restricted to localization at projections with one-dimensional 
range. 

1.4. REMARKS. Every Banach algebra A can also be regarded as an algebra 
of operators working on itself e.g. by looking at the left regular representation 
which represents a E A by the operator d f B(A) where ii : x-ax (x E A). We can 
now distinguish four local spectra of a at b: a(a; b) in the algebra A in the sense 
of 1.1; c7(n, b) in the sense of 1.2. and o(if; 6) in the sense of 1.1 in the algebra 
B(A) but also in the subalgebra A: = {ii 1 a E Ah,). Fortunately these four local 
spectra are equal. 

It is merely a matter of choice that our localization is based on the functional 
equation (1e - a)u(A) = b and not on u(A)(;le- a) = b. Requiring that local 
resolvents satisfy both equations is to severe a restriction, since common 
solutions only exist if ab = ba. In fact, if (ne - a)u = u(ile- a) = b then 

ab=Ab-(Ae-a)b=Ab-(Ae-a)u(lle-a)=Ab-&lie-a)=ba. 

It is very well possible that there are different local resolvents of a at b on a 
set Q (see 131 or sec. 2 below). It is also possible that there is only one local 
resolvent, but that the functional equation has non analytic solutions on Q as 
well. For a trivial example of the latter phenomenon, take a = b = 0 and Q = C; 
then the function identical equal to 0 is the only local resolvent on C but every 
function of 3, which is zero for A #O satisfies the functional equation. 

1.5. OUTLINE. Situations where the local resolvent is uniquely determined 
have drawn much attention in the literature. Section 2 of this paper is devoted 
to the question of uniqueness of local resolvents. In Section 3 we look at large 
local spectra (and also at small ones) and refute a conjecture of Gray’s. The 
short Sections 4 and 5 contain some remarks on the radius of the local spectrum 
and on spectral mapping theorems, respectively. 

2.THESINGLEVALUEDEXTENSJONPROPERTY 

2.1. DEFINITION. Let a, b 6 A. We say that a has the single valued extension 
property (abbreviated s.v.e.p.) at b if for all open sets 52~ C there exists at most 
one local resolvent of a at b on J2. Moreover, we say that a has s.v.e.p. if a has 
s.v.e.p. at b for every bE A. 

2.2. If ur ( , a; b) and u2( , a; b) are local resolvents of a at b on a set 52, then 
the set of all complex A for which uI (h, a; b) f u2(A, a; b) is an open subset of 
@(a; b)\@(a). This is a consequence of the following lemma and the identity 
theorem for analytic functions. 
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LEMMA. Let a, b E A and let C2 c C be open and connected and 52fl &a) f 0. 
Let u be an analytic A-valued function on Sz. Then u is a local resolvent of a at b 
on 52 iff o(A) =&A; a)b for all A E 52n &a). 

PROOF. [2] Theorem 1.2. Cl 

Since ~(a; b)\@(a) c a(a), it is now obvious that a has s.v.e.p. if the interior 
of a(a) is empty. Important examples of elements for which the spectrum has 
empty interior are idempotents and quasinilpotents in a Banach algebra; all 
operators on finite dimensional spaces (matrices); all operators on Hilbert space 
which are compact or self-adjoint or unitary. 

2.3. REMARK. The following example (which is a modification of Stampfli’s 
example of absence of s.v.e.p., [3] p. 287) gives open sets Qt and Sz, which are 
domains of local resolvents whereas a1 UL$ is not the domain of a local 
resolvent (of course 52, II s2, has to be non empty for this phenomenon). The 
restriction of a local resolvent to an open subset of its domain is also a local 
resolvent, so every open subset of ~(a; b) is the domain of a local resolvent iff 
&a; b) is itself the domain of a local resolvent. The fact that not every open 
subset of the local resolvent set is necessarily the domain of a local resolvent 
seems to have been overlooked in [2]; therefore, some results in [2], in fact [2] 
Lemma 2.2 and [2] Theorem 3.1. require a correction. 

2.4. EXAMPLE. Let A be the algebra of the bounded linear operators on a 
separable Hilbert space H, with inner product ( , > and an orthonormal basis 
(fn}FCO. Let WE A be the adjoint of the unilateral shift, so Wfo =0, Wf =f,- 1 
(n=1,2,...). Let P,EA be given by P,x:=(x&)fn (xEH); then IIP,ll=l 
(n=O,l,...). Let&$ betheopenunitdisc: {AE@~ lAl<l}.Then C,“=OA”P,is 
a local resolvent, different from 0, of Wat 0 on a,; so W lacks s.v.e.p. at 0. 

The function - C r= i An-rP, is a local resolvent of W at PO on G$; APiP0 is a 
local resolvent of W at PO on 52,: = C\(O). Hence ,Q( W; PO) = C = Qi U Qz. 
There is no local resolvent of W at PO on C, for, by 2.2, such a function would 
be equal to R(A., W)P, = A- ‘PO for ) Iz 1 > 1 and by Liouville’s theorem this is 
impossible for an entire function. 

2.5. The phenomenon mentioned in 2.3 and illustrated in 2.4 can not occur 
for elements that have s.v.e.p. 

LEMMA. If a has s.v.e.p. at b then there exists a unique local resolvent of a at b 
on ~(a; b). 

PROOF. By definition &a; b) = UjEJ Qj, where 52j is the domain of a local 
resolvent z+( ,a; b) and J an index set. If for A E &a; b) we set u&a; b) = 
= Uj(A, a; b) if A E 52j then by s.v.e.p. this defines an analytic function which is a 
local resolvent on &a; b). Ll 
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2.6. The difference u = ul( , a; b) - z+( , a; b) of two local resolvents with 
common domain Q satisfies (ne- a)o(A) = 0 on Q. This observation explains 
why we are interested in the following sets (see Vasilescu [4]). 

DEFINITION. S’(a) is the set of all complex A for which there exists a local 
resolvent u( , a; 0) of a at 0 with u(d, a; 0) ;tO. S(a) is the closure of S’(a). 

Note that S’(a) is open, S’(a) c a(a) hence S’(a) CI: interior a(a), and S(a) c o(a). 
In the operator approach of spectral localization the analogous sets are in 

fact equal to S’(T) and S(T). 

2.7. EXAMPLE. We continue 2.4. There we noted that CrZo .Inpn is a local 
resolvent, different from the O-function, of W at 0 on Qt. So S’(W) I3 Q1. 
Sincecr(W)=(AECI 11111) wehaveS(W)=cr(W). 

2.8. Vasilescu ([6] Lemma 3.2) has proved that the set of all complex 1 for 
which there is a nonzero vector XE X with (AI- T)x = 0 and ti(T; x) = 0 is a 
dense subset of S(T). The next theorem implies that the set of all such il is in 
fact equal to S’(T). 

(Note that Vasilescu (141 Definition 2.3) calls C(c x) US(T) the local 
spectrum. See also 4.1. below). 

THEOREM. Let a E A. Then S’(a) = S”(a) where 

S”(a)={AECIZCEA[c#O, (de-a)c=O, a(a; c)=O]). 

PROOF. (i) Let ;lo E S’(a) and let u be a local resolvent of a at 0 on a set D with 
~(1,) # 0. By a theorem of Vasilescu’s, which is valid for our local spectrum also 
([4] Proposition 2.2.) we have a(a; u(&)) = a(a; 0). Trivially a(a; 0) =0. 
Taking c= u(&) we deduce S’(a) (IS”(a). 

(ii) Let A0 E C and c E A be such that cf 0, (&e - a)c = 0, a(a; c) = 0. There is 
a local resolvent u of a at c on a neighbourhood Q of ilo. Since (&e - a)u(p, a; c) 
is analytic in p an D and satisfies 

and 
(pe - a)(&e - a)u(p, a; c) = (&e - a)c = 0 

(&e-a)u(&,a; c)=c#O, 

we have & E S’(a) and S”(a) C S’(a). 0 

2.9. It is obvious that a has s.v.e.p. at b iff S(a)c a(a; b). Since o(a; 0) -0 
this implies that a has s.v.e.p. iff S’(a) = 0. The next theorem gives another 
necessary and sufficient condition for s.v.e.p. A further result on s.v.e.p. will 
be given in sec. 3.5. 

THEOREM. Let a E A. The following conditions are equivalent 
(i) a has s.v.e.p. 
(ii) b6, Jo(a; b) = 0 iff b = 01. 



PROOF. We only show that S(a) = 0 together with o(a; b) = 0 implies b = 0. If 
s(a) = 0 and ~(a; b) = C then a has s.v.e.p. at b and by Lemma 2.5 there exists a 
unique local resolvent u( ,a; b) on C. By Lemma 2.2 we have 

lim A-too u(1, a; b) = limA,, R(A, a)b = 0. 

Liouville’s theorem now yields u(J, a; b) = 0 for all 2 E C, hence 

b=(Ae-a)u(A,a; b)=O. 0 

3. LARGE AND SMALL LOCAL SPECTRA; GRAY’S CONJECTURE 

3.1. In [2] Gray states the following conjecture: For every operator TE B(X) 
there is a vector x E X such that c?( T; x) = a(T). Although Vrbovh proves in [7] 
that the set 

(xEXp(T; x)US(T)=a(T)) 

is of the second category in X, Gray’s conjecture is not true. In the counter- 
example we give in 3.6. local spectra at the identity play a central r81e. Therefore 
we first study a(a; e) in some detail. 

3.2. LEMMA. Let a, bg A. Then a(a; b) c a(a; e). If b has a right inverse 
then a(a; b) = @a; e). 

PROOF. If u( , a; e) is a local resolvent of a at e then u( , a; e)b is one at eb = b. 
So @(a; e)c&a; b). Let, moreover, c be a right inverse of b, i.e. bc= e. If 
u( ,a; b) is a local resolvent of a at b then u( ,a; b)c is one at bc=e, hence 
da; b) Ma; 4. 0 

3.3. For the ordinary resolvent R( , a) analyticity follows from the fact that it 
satisfies (k- a)R(A, a) =R(A, a)(Ae- a) = e. As we have seen in 1.4. the 
functional equation used in defining the local resolvent set may have non 
analytic solutions. Nevertheless &a; e) can be characterized, just as e(a), by a 
purely algebraic condition. 

THEOREM. Let a E A, then &a; e) is the set of all I E C for which 1s -a has a 
right inverse in A. Let A0 E C and u E a satisfy (&,e - a)u = e. Then 

i20:={A~@l IA-&) <(~~u~~)-l}c~(a;e). 

PROOF. The function C rzo (& - R)‘QP ’ ’ is analytic for /iz-&( <(l[uJI)P1. 
An easy calculation shows that it is a local resolvent of a at e, hence Do c&a; e). 
It is trivial that for ;1 E &a; e) the element ile - a has a right inverse in A. 0 

3.4. We denote the topological boundary of a set T/by bdl/and the closure of 
V/y V. 

THEOREM. Let a E A. Then b&(a) c bdo(a; e). 
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PROOF. If &E b&(a) then hoe- a is a two-sided, hence right topological 
divisor of zero. If A. were in ~(a; e) then e = (&e - a)u(&, a; b) would also be a 
right topological divisor of zero, which is absurd. Hence bda(a) C a(a; e). Since -- 
bda(a) c@(a) c @(a; e) we have bda(a) c @a; e) fl &a; e) = bda(a; e). 0 

3.5. THEOREM. Let QE A,. Then a has s.v.e.p. at e iff ~(a; e) = a(a). 

PROOF. (i) If a has s.v.e.p. at e then there is a unique analytic function 
u( , a; e) on &a; e) satisfying (Ae - a)@, a; e) = e. Moreover, we have 

(Ae- a)[au(A, a; e) - u(A, a; e)a] = 0. 

From the fact that a has s.v.e.p. at e it follows that (Ae-a)u(A)=O on ~(a; e) 
implies u(A) = 0 on &a; e). Hence au(R, a; e) = u(& a; e)a; so u(& a; e) equals 
the resolvent and ,o(a; e) C e(a). This means a(a; e) = u(a). 

(ii) If a(a; e) = o(a) then S(a) c a(a) = a(a; e); by 2.9 a has s.v.e.p. at e. Cl 

REMARK. By Lemma 3.2 we have: if a has s.v.e.p. at one right invertible 
element, then a has s.v.e.p. at every right invertible element. 

3.6. EXAMPLE. Since a(a; e) is the largest local spectrum, we have a counter- 
example to Gray’s conjecture if we find an operator Tfor which a(T; I) #o(T) 
(see Theorem 1.3). 

We continue 2.4 and 2.7. From 3.4 we deduce (A E C 1 1 ,J 1 = I) = bda( w) C 
C a( W; I)C a( IV). We apply Theorem 3.3. From WW* = I it follows that 
0 E Q( W; I), and from /j W*I] = 1 it follows then that Qr CQ( IV; I>. The 
conclusion is a( W; I) = (a E C ) 1 Iz [ = 1) f o( IV). As we have seen, this means 
that in Efilbert space Gray’s conjecture is not true. In this example we also see 
that UEN d( IV; X) # a( IV); therefore the statements in [2] Theorem 2.5 and its 
corollary [2], 2.6 are not quite correct. 

3.7. Looking in the opposite direction of Gray’s conjecture we finish this 
section with a result on small local spectra. Trivially 0= o(a; 0) is the smallest 
local spectrum. We study spectral sets, i.e. parts of the spectrum that are both 
open and closed in a(a). If o1 is such a spectral set, then the spectral projection 
el with respect to or can be given by 

where the integration path is in &a) and once around crl, whereas a(a)\al is 
outside the path. 

THEOREM. Let aEA; let a(a)=alUa~U...Ucrk where al,.+.,ak are disjoint 
spectral sets; let el, . . . , ek- be the spectral projections with respect to gl, . . . , ok. 
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Then 
~(a; ei) C aj (i= 1, . . ..k). 

bdai C bda(a; eJ (i= 1, . . ..k). 

and 

~(a; e)=o(a; el)Ua(a; ez)U...Ua(a; ek)+ 

PROOF. If yi is an integration path in ~(a) once around oi, with a(a)\cri outside 
yi, then the function 

W): = $ 5, (A - 0 - ‘W, 4dt 
Y, 

is a local resolvent of a at ei,on the set of all A outside yi. To see this, note that 

(Ae - a)~@) = k. j, (A - r)- ‘(Ae - u)R(<, a)d< = 
7, 

+-L 2Tlj i, (a-O-‘(re-a)R(T,a)d~=ei-t-O=ei 

for all A outside J+. Since every A not in oi can be separated from cri by an inte- 
gration path we have a(a; ei) c cri (i = 1, . . . , k). By 3.2. one sees Uf= r a(a; eJ c 
Ca(a; e). On the other hand e=el + . . . +ek and, by [3] Proposition 3, this 
implies a(a; e) c uF= 1 a@; ej). Hence a@; e) = Uf=, ~(a; ei). Moreover, 
~(a; e) fl aj= a(a; eJ. The statement about the boundary of a(a; e;) now 
follows from 3.4. Cl 

4. THE RADIUS OF THE LOCAL SPECTRUM 

4.1. DEFINITIONS. Let a, b E A. We define 

sup { 111 1 AEa(a; b)} if a(a; b)#0 
if a(a; b) =0. 

We also define 

rv(a; b):= sup ()A1 11Eo(a; b)US(a)) if S(a)+0 or b#O 

+(a; 0): = 0 if S(a) = 0. 

The radii introduced for operators by Gray and Vasilescu are given as follows 

F((T; x): = sup (IAt IIEd(T; x)> if c?(T; x)S0 o if d(T; x) = 0. 

([2] Definition 1.3) and 

JfT(T; x):= sup (]A[ lAEd(T; x)US(T)} 

(see [5]; the set of which Fv( T; x) is the supremum is never empty since x#O.) 
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4.2. THEOREM. 1. Let a, b e A. Then 

r(a,b)<lim SLIP~+~ /anbIjl’“srV(a; b). 

2. Let X be a Banach space, TE B(X) and XE X, xf 0. Then 

J(T; x)llim sup,,, (/T”x/I”“IJv(T; x). 

PROOF. The proofs of 1 and 2 are completely analogous, so we only prove 1. 
On the set 

{IECI I;11 >lim su~~+~ IIanbIli’n} 

the function C T=,, A ~ n-Laflb is a local resolvent of a at b, as one verifies easily. 
This proves the first inequality. For 1 A I > rl/(a; b) the local resolvent u(& a; b) 
is unique and for 11 I > r(a) (the ordinary spectral radius) Lemma 2.2 yields 

~@,a; b)=R(il,a)b=(C,“=o d-‘-‘an)b. 

So the Laurent series CrEO A- n-‘anb converges for 11 I > r,(a; b). This proves 
the second inequality. 0 

4.3. REMARK. In [2] Lemma 2.2 Gray asserts that ?(T; x) =lim sup,,, 
11 TX I[ “U and in [5] Proposition 2.5 Vasilescu states that JV(T; x) = lim sup,,, 
/I T”x/ tjn. Both assertions are not correct as we shall show now. Again, let W be 
as in 2.4, 2.7 and 3.6. Let x: = CT=0 2-i(kf1)fk, then /XII = 1 and: 

lim SUP~+~ /I Wnx II 1’n = 

= lim supndol 11 zrzn 2-+@+r)fk-,I]l’n= 

= lim SUP~+~ (Crzn 2-(~+up+~. 

In2.7 we have found 8(W; x)US(W)=~(W)={~E@~ /A[ sl}, hence 

lim SUP~+~ 11 w”xIIl’~=+fi<l =?v(W; x). 

Since8(W;x)ccr(W;I)={IZECl IJI=l}(by1.3,3.2and3.6)and~(:(W,x)z~ 
slim supn+- I/ W”xII tin = +fi, the local spectrum e( W, x) has to be empty and 
r( W; x) = 0. Hence F( W; x) < lim SUP~+~ I/ W”x/l f’n, indeed. 

5.LOCALSPECTRALMAPPINGTHEOREMS 

A local operational calculus may be developed in a more or less standard 
way; see [l] Chapter 5. We restrict ourselves here to some remarks on local 
versions of the spectral mapping theorem. In [2] Theorem 5.2 it is asserted that 
for a bounded operator T on X and for a function F analytic on a neigh- 
bourhood of a(T) the equality c?(F( T); x) = F(e( T; x)) holds for all x E X, x # 0. 
There should be an additional assumption, among other reasons because the 
proof uses the identity UxtX B(T; x) = a(T), which is not generally true as we 
have seen in 3.6. Recently, Vasilescu [6] has proved the equality e(F(T); x) = 
=F(c?(T; x)) together with F(S( T)) = S(F(T)) for functions which are analytic 
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on a neighbourhood of a(r) and non constant on every component of their 
domains. 

In [lj the assumption of non constancy is dropped; instead of it s.v.e.p. is 
assumed. The result is: 

THEOREM. Let a, b E A; let F be analytic on a neighbourhood of a(a) and let a 
have s.v.e.p. at b. Then 

a(F(a); b) .= F(a(a; b)). 

In case a does not have s.v.e.p. at b we can prove only the following 
inclusions: 

F(a(a; b)) c @(a); b) CF(a(a; b) US(a)). 

It seems interesting to weaken the conditions on F so far that F has to be 
analytic on a neighbourhood of a(a; b) only. If a then has s.v.e.p. at b one can 
study 

where u( ,a; b) is the local resolvent on p(a; b) and the integration path goes 
once around a(a; b) and lies entirely inside the domain of analyticity of F. If a 
does not have s.v.e.p. at b there may not be an integration path around @a; b) 
which lies entirely inside the domain of a local resolvent, since there may not be 
a local resolvent on &a; b). 
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