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1. I NTRODUCT~ON 

In this paper we shall prove two interpolation theorems about poly- 
nomials in several complex variables. Our results will be applied elsewhere to 
a problem of Diophantine approximation involving Abelian functions. They 
are presented here separately on account of their possible independent 
interest. 

For a positive integer n we denote by Cl, the complex n-space equipped 
with the Euclidean norm i z i defined for z (=, ,..., IJ by 

iz 2 ~~ I 2, ‘2 + . . . -: zn ‘?. 

Let P(z) ~~ P(zr ,..., z,) be a polynomial in ir ,..., zn with complex coeffi- 
cients. In the first half of this paper we consider the question of determining 
the general growth of P(z) from its behaviour on a given set 9 More precisely, 
let 9JI(P, 9’) denote the supremum of / P(z)1 on a bounded set .Y, and write 
9 for the unit polydisc defined by the inequalities 

~ --I ; l,...,‘Z, ~ < I. 

We shall obtain fairly good estimates for %R(P, 9) in terms of !UZ(P, Y) 
provided .V satisfies certain conditions. Our main result (Theorem A) is 
concerned with finite sets 9’) although to establish this result we shall also 
have to investigate analogous problems for sets of positive measure. 

In Appendix 2 of my thesis [5] I proved the following theorem, in which $9 
denotes the unit ball defined by ~ z 1 < 1. Let 9 be a finite subset of 99 
containing m points with minimum distance between distinct points at least 
6 < I, and suppose P(z) is of degree at most d in each variable. Then there 
are positive constants c1 , c2, depending only on n, such that if 

m82n-2 2 c,d (1) 
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INTERPOLATION IN SEVERAL VARIABLES 19 

then the absolute values of the coefficients of P(z) do not exceed 

(c2d/S)nd %qP, 9). (2) 

It is not difficult to deduce a similar bound for ‘?l.R(P, SF) with, say, 2c, 
instead of c2 . 

Now in applying this result for large d it is impossible to avoid a factor of 
the order dd in (2). Theorem A shows that in favourable circumstances we 
can replace this by a factor of the order cad for some cQ independent of d. 
Although this is only a slight improvement, it represents a best possible 
dependence on d; for example, the polynomial P(zl ,..., z,) = 2ndzld . . . znd 
satisfies YJ(P, 9) < 1 for any finite subset P’ of the polydisc / zi 1 < 4 
(1 < i < n). The exact statement of our result is as follows, in which the 
separation of a finite set Y is defined (not quite as in [Sj) as the minimum 
distance between distinct points of Y. 

THEOREM A. Let 9 be a finite subset of B with cardinality m > 1 and 
separation 6 satisfying 

for some positive integer d and some positive number 8. Then for any poly- 
nomial P(z) of degree at most din each variable we have 

!nl(P, 9”) < (2l078>“d !Jx(P, Y). 

It follows immediately from Cauchy’s integral formula (see Lemma 1 
below) that the same inequality holds for the absolute values of the coefficients 
of P(z). Also by taking the maximum value of 6’ in this inequality we see that 
the factor (c2d/8)nd in (2) can be replaced by (c4/d1/2S)nd. Thus if 6 is of the 
same order of magnitude as d-lj2 our claims for the improved dependence 
on d are justified. 

The proof of Theorem A will be given in section 4, where we shall also 
deduce the following corollary. 

COROLLARY A. Let 9 be a subset of B containing a point within 2F” 
n-n/2d-1/2 of each point of PA for some positive integer d. Then for any poly- 
nomial P(z) of degree at most din each variable we have 

(JJz(P, 9) < (213n)n2d %R(P, Y). 

This yields, in particular, an explicit form of one of the conjectures on 
p. 123 of [5], according to which there cannot be a zero of P(z) within 
c,d-lj2 of each point of B unless P(z) is identically zero. The other conjecture, 
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relating to the points of M with real components, was recently established by 
Moreau in [7], together with a refinement exactly analogous to our corollary. 

In the second half of this paper we apply Theorem A to a special case of the 
following problem. Let .Y be a finite subset of @‘I. and let a(s) be complex 
numbers indexed by points s of .‘f. We seek the simplest polynomial such 
that 

P(s) a(s) (3) 

for all s. Again let m and 6 be the cardinality and separation of .‘Y. The very 
elementary argument of Lemma 19 of [6] (see also Lemma 2 of Appendix 3 
of [4]) shows that there exists a polynomial P(z) of degree at most m - 1 in 
each variable satisfying (3). Furthermore, if 8 < 1 and the points s of -V 
satisfy I s I -< r for some r 35 2, the coefficients of P(z) can be chosen to have 
absolute values at most 

( r/Qrc”’ max a(s) (4) 

for some cs depending only on n. It is easy to see that the upper bound on the 
degree is best possible; for example, if Y’ lies in the subspace defined by 
z* = .,. :: ‘y,L x.: 0 then the problem essentially involves only a single complex 
variable. Similarly the estimate (4) cannot in general be substantially im- 
proved, at least with regard to the exponent c,m. 

However, if Y is a subset of a certain type of lattice (i.e., a discrete sub- 
group of rank 2n) in C”, we shall see (Theorem B below) that in both esti- 
mates the number m can sometimes be replaced by mlin. In fact let K’ be a 
totally real extension of the rational field Q of degree n, and let K be a 
totally imaginary quadratic extension of K’. We can find II embeddings 
* 1 ,..., $n of K into @ which induce distinct embeddings of K’ into @. Then 
as N runs over all integers of K, the points in CT1 of the form 

define a lattice /I. Such lattices occur naturally in the theory of complex 
multiplication of Abelian varieties (cf. [lo]). In section 6 we shall prove the 
following theorem, where for brevity we denote by rY the set of points of 
the form rs for some fixed r >, 0 and some s in a set Y. 

THEOREM B. Let fl be a lattice in @In of the type described above. There 
exists a positive constant C, depending only on A, with the following property!. 
Suppose 9’ is ahnite subset of il contained in rB for some r > 1. Then for any 

complex numbers a(s) indexed by points s of 9, we can find a polynomial P(z), 
of degree at most Cr2 in each variable, such that P(s) = a(s) for all s and 

%R(P, r@) S CT” max / a(s) I . 
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If Y is as large as possible it contains m > c7r2” points for some positive 
c7 independent of r; thus the quantity r2 occurring above can be of order 
ml/*. It is natural to suppose that a similar improvement on the simple 
estimates of [6] can be obtained for sets 9’ which satisfy only a weak distribu- 
tion condition like that of Theorem A. But at present I cannot find a proof 
even when 9’ is a subset of an arbitrary lattice in C. 

For applications we shall need a generalization of Theorem B involving 
not only the values of P(z) on .Y but also those of its derivatives. Since this 
will be deduced from Theorem B in section 7, we state it as a corollary. For 
a nonnegative integral vector m = (m, ,..., m,) (i.e., with m, ,..., rn,,& non- 
negative integers) we put 

D” = (a/Zz,)“ll . . . (E/Zz,J”*, 

and 

lm 1 = m, + .., f m,, m! = m,!... m V n . . 

COROLLARY B. Let A be a lattice in @” of the type described above. There 
exists a positive constant C, depending only, on A, with the following property. 
Suppose Y is a jnite subset of (1 contained in rZ3 for some r > I, and k is a 
positive integer. Then for any complex numbers a(s, m) indexed by points s 
of Y and nonnegative integral vectors m with j m 1 < k we can find a poly- 
nomial P(z), of degree at most Ckr2 in each variable, such that D”P(s) = 
a(s, m) for all s, m and 

W(P, r’@) < (Cr’/r)CkVZ max 1 a(s, m)/m! [ 

for any r’ 3 r. 

Note the more general kind of growth inequality appearing in this result. 

2. AUXILIARY RESULTS ON POLYNOMIALS 

We collect here various types of elementary estimates for polynomials 
which will be useful later on. They can be established by induction on the 
number n of complex variables by means of appropriate arguments with the 
polynomials P(al ,..., a,-, , z), P(zl ,..., z,-~ , a) for fixed a, ,..., a,-, , a. 
Thus we shall give detailed proofs only for n = 1. Tn this case we denote the 
disc 9 simply by 9. 

LEMMA 1. The coefficients of a poIynomial P(z) do not exceed m(P, 9’“) 
in absolute value. 
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Proof For n = 1 let P(z) = pdzd 1 . . . + pO for some rl; then 

2x@, = jrprplP(z) dz (0 < r 2; d). 

where the integral is taken around the unit circle j z L 1 in the anti-clock- 
wise sense. This gives the lemma for IZ =: 1, and the general statement follows 
by induction. We could also have used directly the Cauchy integral formula 
in C”. 

LEMMA 2. If P(z) is a polynomial of degree at most d in each variable 
then for any r 3 1 we have 

ProoJ For n = 1 we consider the reciprocal polynomial Q(z) = zdP(z-l). 
If %? denotes the boundary 1 z / = 1 of 9, then by the maximum modulus 
principle we have LuI(P, r9) = %R(P, &), and the right-hand side of this is 
just rdYX(Q, r-W). This number clearly does not exceed r”!IJI(Q, 68) = 
P$JI(Q, %?), which in turn is equal to r%H(P, VZ) and so at most rd%N(P, 9). 
The general lemma follows by induction on n. Once again a direct proof is 
possible using the maximum modulus principle in C” (see [5 p. 851). 

LEMMA 3. If P(z) is a polynomial of degree at most d in each variable 
which has no zeros in 9 then 

9J1(P, 9) < 23nd 1 P(0) 1 . 

Proof. (cf. [5, Lemma A7, p. 1291). Suppose at first that n = 1. If P(z) 
does not vanish on B then the function p(z) = (P(z))-’ is analytic on 9. It 
follows from the maximum modulus principle that for each integer r with 
0 < r ,< d there is a point a, with 1 a, 1 = r/d such that 1 y(a,.) I> 1 ~(0) 1 . 
Hence 1 P(a,) / < I P(0) I . We now use the Lagrange interpolation formula 

P(z) = i P(al.>(z - a,) . . . (z - a3/(a, - aO) . . . (a, - ad), (5) 

where the terms z - a, , a, - a, are omitted in the summand corresponding 
Lave to r (0 < r < d). For any s we h 

I a, - a, I 3 I 

whence 

a7 I - I a, I I = I r - s l/d, 

a,1 >r!(d-r)!dmd. 
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Also if 1 z 1 < 1 we find that the numerators in (5) satisfy 

l(Z - a,) . . . (Z - Ud)i < ti (1 T- Y/d) = d+(24!/d!. 

Hence (5) yields 

9X(P, 9) < / P(0) I(‘,“, i (“, <s 23d 1 P(0) I. 
r=o r 

This proves Lemma 3 for n = 1, and the general assertion follows by induc- 
tion on n, since for fixed a, , . . ., a,_, , a in 9, the polynomials P(al ,..., a,-, , z), 
ptz1 ,..., G-1 2 a) do not vanish on 9, gtn-l respectively. Note that if P(z) 
has no zeros in a polydisc 9 of radius r centred at s, this result implies 
that 2X(P, Y) < 23nd j P(s) 1 independently of r. 

3. SETS OF POSITIVE MEASURE 

Let Y be a subset of gn with positive Lebesgue measure. In this section we 
obtain some estimates for the growth of a polynomial P(z) in terms of 
%Q(P, 9). In the case of a single complex variable such results go back at 
least to Polya (see below), and related inequalities for several complex 
variables occur in work of Bishop [l] (see also [S, p. 1331). 

Let pn denote the usual Lebesgue measure in C”, so that 

/P(.P) = 7-P, p”(B) = rr”/n!, 

and write p = pl. Polya [9] proved the following theorem. If P(z) is a poly- 
nomial of degree d in a single complex variable with leading coefficient 
unity, then for any M 3 0 the set of points z satisfying j P(z) j < M has 
measure at most .rriVVd. We shall deduce the next lemma from this result. 

LEMMA 4. Let P(z) be a polynomial of degree at most din a single complex 
variable and let Y be a subset of 9 of positive measure a. Then 

%Jl(P, 9) < 24dcJ-“mll(P, Y). 

Proof. After replacing Y by the subset of 9 on which ( P(z) ( < )IJI(P, Y), 
we may suppose that Y is closed. We assume P # 0. Let a be any point 
with 1 a ] = 2 and P(a) # 0, and write 

Q(z) = PC” + 34, R(z) = zdQ(zW’(4, 

so that R(z) has exact degree d and leading coefficient unity. Correspondingly 
let F be the set of points of the form $(s - a) for some s in Y, and denote by 
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# the set of points of the form f-l for some t in .T-. Then !JJI(Q, 9) 
= 9J1(P, .Y’). Also t ~ 3; 4 for all f in .Y, so that 

!Ul(R, /ld) 39Jl(Q, :F)‘i P(a) . (6) 

It follows from Polya’s theorem that &‘j/) ::- n;M’i’” where M is the right- 
hand side of (6). We proceed to prove that p(+Y) 3 p(Y). 

Since 9, and therefore F-, is closed, so are the sections Y(Y) of .Y on 
which 1 z j = r. If m(r) is the angular measure of Y(r), then m(r) == 0 for 
r < + and r > 1, and Fubini’s theorem for indicator functions (see [I 1, 
p. 871) shows that 

p(cF) = 1’ m(r) dr. 
'l/3 

The set +Y is also closed, and for I :< r :< 3 the analogous section q/(r) is 
simply the magnification of F-Cup’) by the factor r*. Thus 

p(-?/) = J13 r2m(+) dr. 

Changing the variable using Proposition 3 [I I, p. 1041, we find that 

y(a) = lt, r+m(r) dr > f’ m(r) dr = ,u(F). 
'1.'3 

Next it is clear that ~(9) 2 $(Y), and so ~(“2) > j,u. Comparison of 
this with the upper bound for p(%) obtained above yields &I 2 3--d~-dJ2&12, 
or 

1 P(a) / < 3%7~f%-d~W(P, -9). 

Hence this inequality holds for all a with I a / = 2, and Lemma 4 follows on 
appealing to the maximum modulus principle (and noting that the ancient 
Egyptian approximation 256/S 1 for n errs in excess). 

Next we generalize this result to several complex variables. 

LEMMA 5. Let P(z) be a polynomial of degree at most d in each variable 
and let Y be a subset of 9:” of positive measure u. Then 

%n(P, 9’“) -< 24~2~o--nwll(P, 9). 

ProoJ As usual the proof is by induction on n, the case n = 1 being the 
previous lemma. Assume the result true with n replaced by n - 1 for some 
n >, 2, and let P, d, Y, u be as above. As in the proof of Lemma 4, we can 
assume that Y is closed. For each z in B, let m(z) be the measure of the set 
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of points (a, ,..., a,-,) in 9-r such that (a, ,..., a,-, , z) lies in 9. Then 
m(z) :G 7rn-l and by Fubini’s theorem 

We deduce that the set Y of z in 9 for which m(z) 2 ~712~ has measure r at 
least a/276-l. For we have m(z) < a/277 on the complement Y’ of Y in 9, 
and so 

Hence for any t in 5 the polynomial Q(z, ,..., znPl) = P(z, ,..., z,-r , t) 
satisfies 

[ Q(z, ,..., z,-ml) 1 < W(P, 9) 

on a set in 3-l of measure at least a/277. By our induction hypothesis 

$jJ{(Q, CJ+l) < 24(n-l)% (cI/27p-l)Q~ !m(P, 9). 

In other words, for any fixed (a, ,..., anPl) in 9-l the polynomial R(z) = 
l-Y% >‘..> a,-, , z) satisfies 

‘J3l(R, y-> << p-l)% (0/27r-(n--l)d/2 YJl(P, 9). 

We deduce from Lemma 4 that 

Thus the same upper bound holds for 9X(P, P), and this completes the 
proof of Lemma 5. 

By slightly more elaborate arguments the estimate of this lemma can be 
improved with respect to its dependence on both n and u, and indeed best 
possible results can be obtained (see [12]). We do not go into this now, 
however, because our applications involve essentially constant values of 
these parameters. 

4. PROOF OF THEOREM A AND COROLLARY A 

Let P(z) be a polynomial of total degree D and consider the divisor in @” 
defined by P(z) = 0. We can construct a (2n - 2)-dimensional Hausdorff 
measure on this divisor which takes multiplicities into account; for a in C” 
and r 3 0 let us write the corresponding measure in the ball / z - a 1 < r in 
the form 

7rn-1r2n-20(a, r)/(n - l)! 
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for some @(a, r). Then it is known that the function @(a, r) has the following 
properties: 

(i) @(a, v) is monotone nondecreasing in r 

(ii) O(a) = lim,,, @(a, r) is the order of the zero of f’(z) at z = a 

(iii) lim,,, @(a, r) =~ D independently of a. 

For references see Bombieri and Lang [2]. 
We now prove Theorem A. Let .Y be a finite subset of d consisting of 

m > 1 points sr ,..., s,, with separation 6 < 2 satisfying 

for some integer d G- 1 and some real number 0 > 0. Furthermore let P(z) 
be a polynomial of degree at most d in each variable. Consider the 
balls Si defined by ) z - si 1 < ;S (I + i < m), and suppose exactly I< m 
of these contain a zero of P(z), without loss of generality those with 1 < i < I. 
If tj is a zero of P(z) in g)i (I < i < I), then the balls ) z - ti < +S are 
disjoint and contained in 2&‘. We proceed to estimate @(O, 2) in two ways. On 
the one hand, by (i) and (iii) we have, since D ,( nd, 

O(0, 2) < nd. 

On the other hand, from the measure-theoretic definition of the O-function 
we have 

23n-‘@(O, 2) 3 (&s)- c qtj ) $3), 
i=l 

and using (i) and (ii) we see that this is at least 

We conclude that 

I < (10/S)2n-2 nd -=c &m. 

This means that exactly m - I > $rn of the balls 9Yi do not contain a zero of 
P(z). Now the polydisc SSi of radius 8/5n1/2 centred at si lies completely in &9’i , 
whence for each i > I the polynomial P(z) has no zeros in 9i , and so Lemma 
3 implies that 

%n(P, LB<) < 23nd / P(s,) / < 23”wl(P, 9) (I < i < m). 
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But the total measure of the sets 9i (1 < i < m) is 

(m - I) 7rn(6/5n1/2)2n > 35-2n~n02, 

and they all lie in 2.99. Hence the polynomial Q(z) = P(2z) satisfies 

‘3Jz(Q, F) < 23n”9JI(P, 9’) 

for a subset .Y- of 9?‘& of measure at least +10-2n~“62. Applying Lemma 5, we 
deduce that 

(on noting this time that the Roman approximation 3h for r errs in defect). 
This completes the proof of Theorem A. 

To deduce Corollary A we follow [5 p. 1271. Suppose 9’ is a subset of G9 
containing a point within 6 < 2-57Ln-n12d-1/2 of each point of @‘, and let P(z) 
be a polynomial of degree at most d in each variable. Select an integer k 
satisfying 

(46)-l < k ,< (36)-l, 

and consider the points 

a = (GLl + 4/k,..., (pn + ivJ/k) 

as pl T vr ,. , pm , v, range over all nonnegative integers not exceeding k/2n1/2. 
There are 

m > (k/2nli2)2’% > 2-@ln-n8--2~~ 

such points, and they all lie in 2?/W. For each a let s(a) be a point of Y 
nearest a. Since k-l - 26 >, 8. the set .Y’ of points s(a) has cardinality m 
and separation at least 6, and it is clearly contained in .g. Furthermore we 
have 

m@n-2 > 2-69.--n@2 > 27”d, m82’L > nnt12 

with 6’ = 2p3nnpn. Hence we may apply Theorem A to the polynomial P(z) 
on the set -Y’. and we conclude that 

9JI(P, ?P) ,< 213”“dn”‘dim(P, ~9”‘) .< (213n)~*d ‘$I~(P, .Y) 

as required. 
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5. LEMMAS ON ALCXRRAIC NUMBERS 

We prove Theorem B in the next section. We shall need some elementary 
facts about algebraic numbers which it is convenient to record separately in 
this section. 

Let K be a totally imaginary quadratic extension of a totally real field K’, 
with 

[K : Q] = 2[K’ : Q] == 2n, 

and choose embeddings $I ,..., #11 of K into @ that induce distinct embeddings 
of K’ into C. Thus the conjugates of any 01 in K are given by OI*I . . . . . &n and 
their complex conjugates. Our first lemma deals with ‘arithmetic progres- 
sions’ in the ring I of integers of K, that is, congruence classes module a 
fixed element of I. 

LEMMA 6. Let rr be a prime element of K, and let /31 ,..., fiL be representa- 
tives of the nonzero congruence classes of I module T. If ‘2[ denotes one of these 
congruence classes then the sets /3;‘%,..., /3;*91 between them contain all 
elements of I not divisible by T. 

Proof. Suppose YI consists of all elements of I congruent to i\: modulo r, 
so that a is not divisible by 7r, and let y be any element of I not divisible 
by n. Since the nonzero congruence classes of I form a multiplicative group, 
there exists /3i with /3+ congruent to N modulo n, whence y lies in /3;‘%. 

LEMMA 7. For any d > 0 there exists a prime element of K ull of whose 
conjugates exceed A in absolute value. 

Proqf. For a nonzero element n: in 1 let 

D(x) = (log ~ & . . . . . log i CY*” ‘) 

be a point of the real space R”. Because K has no real embeddings, this gives 
rise to the well-known Dirichlet map associated with K. The image of the 
group of units of Zis a lattice in the subspace of [w” consisting of all (.\-, ,..., x,) 
with x1 + . . . + X, := 0. It follows by simple geometry that if 7 is a unit with 
D(q) nearest to D(U) we have for all i,,j 

log ~ 9, i - log 99 I < c (7) 

with 7r = “7-l and some constant c depending only on K. 
Now there are infinitely many principal prime ideals p in K (see [3. p. 2 I4]), 

and so we can select one with norm at least ezcnAen. Let m be a generator of 
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p and let 7 be a unit with D(T) nearest to D(a). Then n = “7-l is a prime 
element of K and we deduce from (7) that for any i 

Since this norm is no smaller than e 2cn 2*1, we find that j ~T$Z / 3 A and this A 
establishes Lemma 7. 

6. PROOF OF THEOREM B 

With the notation of the preceding section, we associate to each 01 in K the 
complex vector 

L(x) = (&..., ay. 

The image A = L(Z) of I is then a lattice in P, because it is discrete and of 
rank 2n; in fact for nonzero 01 in Z we have 

For r 3 0 denote by A(r) the subset of A lying in the ball MS; that is, the set 
of points h in fl with / A / < r. Thus A(r) is the origin if r < 1. The following 
lemma contains the most important part of the proof of Theorem B. 

LEMMA 8. There exists a positive constant c, depending only on A, with 
the following property. For any r 3 1 there is a polynomial P(z), of degree at 
most cr2 in each variable, whirh vanishes at all nonzero points of A(r) but 
satisfies 

P(0) = 1, !M(P, rG@) < cr2. 

Proof. We shall denote by c1 ,... positive constants depending only on A. 
Let 7~ be a prime element of K, to be specified later, and let a be the minimum 
of the absolute values of its conjugates. Select representatives & ,..., fit of the 
nonzero congruence classes of I module 7, and let b be the maximum of 
the absolute values of all their conjugates. 

For brevity we shall say that a point A of A is divisible by rr if A = L(N) for 
some 01 divisible by V. For any r > 1 consider the set .Y of points of A(2br) 
divisible by r. Since 1 L(a) I < 2br implies 

I L(n-la) 1 .< a-l L(a) I < 2a-lbr 

we see that .Y contains at most c,(a-1br)2” points. Hence if d < c,(a-1br)2 is 
the greatest integer not exceeding ct!n(a-1br)2, we can choose the (d + 1)” > 
c,(a-1br)2n coefficients of a polynomial Q(z) of degree at most d in each 
variable such that Q(z) vanishes on Y but is not identically zero. 
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We now try to apply Theorem A to the polynomial Q(brz) on the subset 
(by)-l /l(br) of 9I. Clearly this set contains /n ;, ~,(br)~‘~ points with separa- 
tion 8 > c&-l. It follows that if 

then indeed Theorem A is applicable in these circumstances. In view of this, 
we use Lemma 7 to fix n as a prime element of smallest height such that 
a 3 c5 and a > 1. We deduce that 

\332(Q, brP) .< c$l1(Q, A(br)). 

Since Q(z) now has degree at most c7rp in each variable we obtain at once 
using Lemma 2 

‘W(Q, 2brLP) -< 2’“W(Q, br@) :g c,‘2’9lZ(Q, A(br)). 

In other words, there exists a point -A, in A(br) such that 

in particular, Q(-h,) # 0 so that A,, is not divisible by r. 
It follows that the polynomial 

satisfies 

and has the same degree as Q(z). Furthermore we have R(0) : = I and by 
construction R(z) vanishes on the set of points of the form h, -t h for some 
h in A(2br) divisible by r. Now write A,, = L(ol,J and let 21 be the arithmetic 
progression consisting of all elements of I congruent to a0 module rr. Since 
j A, / < br, we find that R(z) vanishes at all points in br.@ of the set L(21). 

Next we put 

qz, *.... z,, ) ; n R@flz, ,...) /tyz,, i=l 

and deduce from the properties of R(z) the following properties of S(z). It has 
degree at most cgr2 in each variable, and, because (p~lzI ,..., ,f$z,J lies in 
br9 whenever (zl ,..., z,) lies in r.GP, we have 

Also S(0) = 1 and for each i the polynomial S(z) vanishes at all points L(y) 
of L&l?I) with (/?&Pl,..., p~#‘7~) in brB (1 < i ~2 I). Tn particular it vanishes 
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at all points in & of the sets L(@21),..., L(/Q12f). Hence from Lemma 6 the 
polynomial S(z) vanishes on all points of A(r) not divisible by n. 

Finally we extend the range of zeros to all nonzero points of A(r). 
Remembering that the foregoing arguments depend on the parameter r, we 
rename the polynomial S(z) as S(z; r). Since a > 1, there exists a greatest 
integer K with aK < r, and for each nonnegative integer k < K we put 

S,(z) = S((~T’~)-~ z, ,.. ., (7r”n)-’ z,; a-“r). 

We proceed to verify that the polynomial 

P(z) = S,(z) . . . S,(z) 

satisfies the conditions of Lemma 8. Its degree in each variable does not 
exceed 

cg(r2 + a-2r2 + .,. + a -““r”) < cgr2/( I - a-“) = cllr2. 

Furthermore, if (zl ,..., z,) lies in r9’ then ((&1)-l’ z1 ,..., (.rr+~)-~ z,) lies in 
a-kr9z > so that 

9X(S, , rW> < c;izLr2. 

Thus a similar calculation yields 

Also P(0) = 1. To verify the assertion about the zeros of P(z) we note that 
any nonzero A in A(r) can be written as L(+cI) for some cy in I not divisible 
by rr and some nonnegative integer k. Since 

we must have k < K and consequently S(z; &r) vanishes at L(a). Hence 
Sk(z) vanishes at A = L(T&) and we conclude that P(z) also vanishes at X. 
This completes the proof of Lemma 8. 

The proof of Theorem B is now immediate. Suppose 9’ is a subset of A(r) 
for some r > 1, and the a(s) are complex numbers indexed by points s of Y. 
We use Lemma 8 to construct a polynomial Q(z), of degree at most 4cr2 in 
each variable, which vanishes at all nonzero points of A(2r) but satisfies 

Q(O) = 1, 9X(@ 2rCP) < c*+. 

Then clearly the sum 

J’(z) = CQ(S> Q(z - s>, 

taken over all s in 9, fulfills the conditions of Theorem B. 

64+4/1-3 
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7. PROOF OF COROLLARY B 

In this section we shall deduce Corollary B from the following lemma 

LEMMA 9. There exists u positive constant c, depending only on A, with the 
following property. For a positive integer k let a(m) be complex rwmbers 
indexed by non-negative integrul vectors m with j m ~ < k. Then for any r Y- I 
there is a polynomial P(z), of degree at most ckr2 in each variable, ,chich has a 
zero of order at least k at all nonzero points of A(r) but satisfies DmP(0) =- 
a(m) (I m ’ < k) and 

VJI(P, t%) 5; chr2 max , a(m)/m! 1 . 

ProoJ If m = (m, ,..., m,) let zm = zy1 . . . z:n and form the sum 

A(z) = 1 a(m) z”/m! 

taken over all nonnegative integral vectors m with 1 m 1 < k. We use Lemma 8 
to construct a polynomial Q(z) with Q(0) = 1 which vanishes at all nonzero 
points of/i(r). Then the rational function (Q(Z))-7c A(z) has a Taylor expansion 
about the origin. If R(z) denotes the sum of the terms of total degree less 
than k in this expansion, we claim that the polynomial P(z) = (Q(Z))” R(z) 
satisfies the conditions of the present lemma. It clearly has a zero of order at 
least k at all nonzero points of A(r). Also, since 

<Q<z>)-~ 44 = R(z) + 44 

for some power series us(z) with a zero of order at least k at the origin, we 
have 

P(z) = 44 - <QW 44, 

and so DmP(0) = DmA(0) = a(m) whenever / m 1 < k. We proceed to 
estimate ‘2R(P, r@) by means of majorization techniques. 

For two formal power series 

g(z) = C iW> zmp h(z) = C q(m) zm 

with q(m) real, we write g(z) <h(z) if 1 p(m) I < q(m) for all nonnegative 
integral vectors m. If h(z) converges on r9 these inequalities plainly imply 
that / g(z) ) < h(r,..., r) on r9P. 

Now if A = max I a(m)/m! 1 we have 

where fk(z) is the sum Czm taken over all non-negative integral vectors m 



INTERPOLATION IN SEVERAL VARIABLES 33 

with 1 m 1 < k. Further, from Lemma 1 the coefficients of Q(rz) do not 
exceed 

M = max( 1, \3Jz(Q, ~3~)) 

in absolute value. This gives 

(204 - 1 < Wf(z) - 1) 

where f(z) is the sum C zm taken over all nonnegative integral vectors m; 
that is, 

f(z) = (1 - z&l . . . (1 - z&l. 

It follows that 

(Q(rz))-” < (1 - M(f(z) -1)))” “:,F, (” +; - ‘) Mj(f(z) -1)‘. 

We immediately obtain a majorizing series for (Q(rz))-“‘ A(rz), and by 
truncating we find that 

R(rz) < Af,(rz) lgl (” ‘J” - ‘) A4j(f(z) - l>j. 

On specializing to points of $@ we get the estimate 

‘9X(R, @P) < Afk(+r,..., 2 +,y (” +;- ‘) M?(2” - l)j. 
j=O 

Now 
fk(+r,..., *r) < (1 + +r)n7c < 2n7cs, 

and the sum over j does not exceed 

22”M” -f (7(2” - l)j < 23nkMk; 

3=0 J 

thus from Lemma 2 we deduce that 

%X(R, &P) < 2nk’9Jl(R, ?@P) < 24nk 2nk~ AM” < 25nks AM”. 

We complete the proof of Lemma 9 by using the estimate of Lemma 8 for the 
number YJI(Q, rW) in the definition of M. 

Finally Corollary B follows from Lemma 9 just as Theorem B follows 
from Lemma 8. Let r > 1, k > 1, and let n(s, m) be complex numbers 
indexed by elements s of a subset Y of A(r) and non-negative integral 
vectors m with 1 m 1 < k. We can then construct for each s in Y a poly- 
nomial P,(z) satisfying IImP, = a(s, m) with zeros of order at least k at all 
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nonzero points of A(2r), and we take P(z) = 1 P&z - s). This gives 
DmP(s) =~ a(s, m) for all s, m, and 

Since the degree of P(z) is at most ck?, the more general estimate 

!M(P. r’LL<l) ..) (Cr’/r)“‘r’max a(s, m)jm! 

for r’ i-2 r can be obtained by applying Lemma 2 to the polynomial P(rz) on 
the polydisc (r’jr) p’l. This concludes the proof of Corollary B. 
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