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Lipolysis is the biochemical pathway responsible for the catabolism of triacylglycerol (TAG) stored in cel-
lular lipid droplets. The hydrolytic cleavage of TAG generates non-esterified fatty acids, which are subse-
quently used as energy substrates, essential precursors for lipid and membrane synthesis, or mediators in
cell signaling processes. Consistent with its central importance in lipid and energy homeostasis, lipolysis
occurs in essentially all tissues and cell types, it is most abundant, however, in white and brown adipose
tissue. Over the last 5 years, important enzymes and regulatory protein factors involved in lipolysis have
been identified. These include an essential TAG hydrolase named adipose triglyceride lipase (ATGL)
[annotated as patatin-like phospholipase domain-containing protein A2], the ATGL activator comparative
gene identification-58 [annotated as a/b hydrolase containing protein 5], and the ATGL inhibitor G0/G1
switch gene 2. Together with the established hormone-sensitive lipase [annotated as lipase E] and mono-
glyceride lipase, these proteins constitute the basic ‘‘lipolytic machinery’’. Additionally, a large number of
hormonal signaling pathways and lipid droplet-associated protein factors regulate substrate access and
the activity of the ‘‘lipolysome’’. This review summarizes the current knowledge concerning the enzymes
and regulatory processes governing lipolysis of fat stores in adipose and non-adipose tissues. Special
emphasis will be given to ATGL, its regulation, and physiological function.

� 2010 Elsevier Ltd. Open access under CC BY-NC-ND license.
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1. Introduction and overview

Fat stores of white adipose tissue (WAT) represent the major
energy reserves in mammals. During food intake, excess of dietary
non-esterified fatty acids (NEFAs) are esterified to chemically rela-
tive inert triacylglycerols (TAGs), which are subsequently stored in
cytosolic lipid droplets (LDs) of adipocytes. Upon increased energy
demand, TAG stores are mobilized by their hydrolytic cleavage and
the resulting NEFAs are delivered via the circulation to peripheral
tissues for b-oxidation and ATP production. Additionally, also
non-adipose tissues are able to esterify NEFAs into TAGs and re-
hydrolyze them upon demand. Accordingly, TAG storage and mobi-
lization is a general biological process in essentially all cells of the
body and not restricted to adipose tissue. However, whereas adipo-
cytes are able to secrete NEFAs and provide them as systemic en-
ergy substrate, non-adipose cells do not secrete NEFAs but utilize
TAG-derived NEFAs in a cell autonomous manner for energy pro-
duction or lipid synthesis. Consistent with this local utilization,
the TAG storage capacity of non-adipose tissues and cells is rela-
tively minor compared to adipose tissue providing NEFAs for the
whole organism. In fact, excessive ectopic lipid deposition in
non-adipose tissues leads to lipotoxicity and is associated with
prevalent metabolic diseases, such as type-2 diabetes [1–4].

The cellular concentration of NEFAs is tightly controlled by
the balance between TAG hydrolysis and NEFA esterification
[5–7]. The hydrolysis of the primary and secondary ester bonds
between long chain fatty acids and the glycerol backbone in
TAG is called ‘‘lipolysis’’ and depends on specific hydrolases
commonly designated lipases [8,9]. To date, three enzymes have
been implicated in the complete hydrolysis of TAG molecules in
cellular lipid stores (Fig. 1): adipose triglyceride lipase (ATGL)
selectively performs the first and rate-limiting step hydrolyzing
TAGs to generate diacylglycerols (DAGs) and NEFAs [10]. Hor-
mone-sensitive lipase (HSL) is a multifunctional enzyme capable
of hydrolyzing a variety of acylesters including TAG, DAG, and
monoacylglycerol (MAG). Within the TAG hydrolysis cascade this
enzyme is rate-limiting for DAG catabolism [11,12]. Finally,
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Schematic delineation of the coordinate breakdown of triacylglycerols.
iations: ATGL, adipose triacylglycerol lipase; DAG, diacylglycerol; G, glyc-
SL, hormone-sensitive lipase; MAG, monoacylglycerol; MGL, monoacylglyc-
ase; NEFA, non-esterified fatty acid; TAG, triacylglycerol.
monoglyceride lipase (MGL) efficiently cleaves MAG into glycerol
and NEFAs [13].

The important role of ATGL for TAG catabolism became evi-
dent from the analysis and examination of ATGL-deficient mice
and human patients with mutations in the gene for ATGL [14–
16]. ATGL deficiency in mice is associated with severely reduced
lipolysis resulting in increased fat deposition in virtually all tis-
sues of the body, most notably in highly oxidative tissues, such
as muscle, testis, and the tubular system of the kidney. The mas-
sive fat deposition in the heart is causative for cardiac dysfunc-
tion and premature death of the animals [16]. Similarly, ATGL
mutations in humans are associated with systemic TAG accumu-
lation and cardiac myopathy [14,15]. The group of Fischer [14]
elucidated the molecular basis of this rare inherited disease anno-
tated as ‘‘neutral lipid storage disease with myopathy (NLSDM)’’.
Importantly, the deficiency or dysfunction of a potent coactivator
of ATGL, CGI-58 (annotated as a/b hydrolase domain containing
5), also results in a severe systemic TAG accumulation in mice
and human patients. Patients with mutations in CGI-58 addition-
ally develop severe ichthyosis, a condition not observed in pa-
tients with mutations in the ATGL gene. Accordingly, this
disorder was named ‘‘neutral lipid storage disease with ichthyosis
(NLSDI)’’. More recently, G0S2, a protein specifically inhibiting
ATGL, has been identified [17,18]. However, the physiological rel-
evance of this protein in the regulation of lipolysis has not been
demonstrated so far. One would expect that a constitutive over-
expression of this protein would result in a phenotype similar
to that of ATGL deficiency.

In contrast to ATGL deficiency, hormone-sensitive lipase (HSL)-
deficient mice do not show increased fat deposition, are not over-
weight or obese, and lose WAT mass with increasing age
[11,12,19,20]. Adipocytes of HSL-deficient mice exhibit only a
moderate decrease in stimulated lipolysis [11,21]. Notably, these
mice accumulate DAG in several tissues indicating that HSL is
rate-limiting for DAG hydrolysis [11]. Mutations in the HSL gene
of humans leading to enzyme dysfunction or deficiency have not
been reported. The physiological role of MGL in lipolysis has not
been evaluated so far. Yet, the physiological importance of MGL
in the breakdown of the endocannabinoid 2-arachidonoylglycerol
has recently been elucidated using inhibitor studies and a MGL-
deficient mouse model [22–30], confirming the pivotal role of
MGL in the endocannabinoid system.

The recently characterized genetic mouse models and human
disorders suggest that ATGL, HSL, and MGL are the main lipases in-
volved in the catabolism of TAG. The activities of these enzymes
are, however, delicately regulated. In addition to the factors and
processes involved in lipolysis discussed in this review, many more
remain to be elucidated.
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Fig. 2. Conserved areas and domain organization of ATGL. Protein sequences of human and mouse ATGL were aligned using web-based ‘‘T-Coffee Multiple Sequence
Alignments’’ tool [203,204]. Identical amino acids in the protein sequences are depicted as black, differences in the sequence as white bars. Human ATGL as the longer
orthologue (504 amino acids) was used as template. Domain organization is shown for the human protein.

Fig. 3. 3D structure of Pat17 depicting sequence similarities with human ATGL. A
region of human ATGL, commonly annotated as the patatin-domain of ATGL (Ile10–
Lys179), shares sequence similarities with Pat17 (Leu32–Ser228). The 3D structure
of this sequence area in Pat17 is depicted as colored cartoon [34]. The remainder of
the Pat17 3D structure is displayed in grey ribbon style. N- and C-terminal ends are
indicated with capital letters. The insert shows the catalytic dyad of Pat17 with the
catalytic residues Ser77 and Asp215 (corresponding to Ser47 and Asp166 in human
ATGL) highlighted as yellow sticks. The figure was prepared using PyMol (The
PyMOL Molecular Graphics System, Version 1.2, Schrödinger, LLC).
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2. Lipolytic enzymes

2.1. Adipose triglyceride lipase

2.1.1. Enzymatic properties: ATGL is a selective TAG hydrolase
In 2004, three groups [10,19,31] independently identified an

enzyme capable of hydrolyzing TAG. This enzyme was named adi-
pose triglyceride lipase [10], desnutrin [31], and phospholipase
A2n [19] (now annotated as patatin-like phospholipase domain
containing protein 2, PNPLA2). The enzyme selectively performs
the first step in TAG hydrolysis generating DAGs and NEFAs [10].
The substrate- and stereo-selectivity of this reaction has not been
studied in detail. Since most animal and microbial lipases preferen-
tially cleave the primary ester bond at the sn-1(3) position of TAG
[32], this may also be assumed for the positional priority of ATGL.
Yet, the phylogenetic ancestry of the patatin domain of ATGL
would rather suggest a sn-2 preference because various known
patatin domain containing glycoproteins in plants [33,34] as well
as the cytosolic phospholipase A2 (cPLA2) [35] preferentially
cleave the sn-2-acyl ester bond of phospholipids to release arachi-
donic acid. Compared to the hydrolytic activity towards TAG, ATGL
exhibits only minor or no activity when other lipids such as DAG,
MAG, cholesteryl- (CE), or retinylesters (RE) are provided as sub-
strates [10]. The enzyme was reported, however, to exhibit mea-
surable phospholipase [36] and DAG transacylase activities, the
latter generating TAG and MAG from two DAG molecules in an
acyl-CoA independent manner [19].

2.1.2. Gene and protein structure: ATGL contains a patatin domain
The human and mouse genes for ATGL (PNPLA2 and Pnpla2,

respectively) encode proteins with 504 and 486 residues, respec-
tively. Orthologues of ATGL have also been described in other spe-
cies including rat, cow, pig, chicken, fly, plants, and yeast [37–42].
The human gene for ATGL is located on chromosome 11p15.5 and
comprises 10 exons [14]. Promoter sequences of the ATGL gene
(PNPLA2) that regulate its tissue-specific and hormonally con-
trolled expression have not been characterized so far. The only
exception relates to the characterization of a peroxisome prolifer-
ator-activated receptor-gamma (PPARc) responsive element with-
in the promoter of the murine Atgl gene [43]. The human gene
encodes for a 2.4 kb mRNA (the murine mRNA is 2.6 kb long) with
relatively short 50 and 30 untranslated regions.

Virtually all tissues examined express measurable amounts of
ATGL mRNA [10,31,44,45]. WAT and brown adipose tissue (BAT)
exhibit the highest expression levels, an observation which was
eponymous for the protein. Much lower expression is detectable
in other tissues such as testis, skeletal and cardiac muscle [10]. Sys-
temic TAG accumulation in humans and mice lacking ATGL activity
argues for a critical physiological function of the enzyme also in
non-adipose tissues (see below).

Human and murine ATGL share 84% amino acid identity. Nota-
ble regions of low sequence conservation are clustered around res-
idue 260 and the C-terminal end of the protein, outside of
conserved domain areas (Fig. 2). Sequence similarities predict that
the N-terminal half of ATGL is an a/b-fold protein, belonging to the
superfamily of patatin-like phospholipases. The name patatin
derives from a plant protein, which is a non-specific lipid acyl
hydrolase present in high amounts in potato tubers [33]. The 3-
dimensional (3D) structure for two members of the superfamily
have been determined, Pat17 [34] and human cPLA2 [35]. In these
proteins, the hydrolytic reaction is mediated through a catalytic
serine-aspartate dyad (Ser47–Asp215 in Pat17, Ser228–Asp549 in
cPLA2), with the nucleophilic serine located within a GXSXG motif
typically found in lipases of the a/b hydrolase fold family [34].
Although no 3D structures for ATGL is available to date, it is as-
sumed that the enzyme also acts through a catalytic dyad. Identi-
fication of a GXSXG sequence with the presumed active site serine
and the presence of a DXG/A sequence, all located within the pat-
atin domain, lead to the conclusion that the catalytic dyad is com-
posed of Ser47 and Asp166. Fig. 3 displays the 3D structure of
Pat17 highlighting the catalytic area and further regions with se-
quence similarities to human ATGL. The critical role of Ser47 and
Asp166 for ATGL enzyme activity was proven by mutation studies.
Replacement of Ser47 of the murine protein or Asp166 of the
human protein with an alanine in both cases led to catalytically
inactive proteins [8,46]. The enzyme–substrate transition state is
stabilized via a glycine-rich oxyanion hole in patatin domain
containing proteins. The C-terminal part of ATGL is expected to
consist mostly of a-helical and loop regions. It is assumed that a
hydrophobic stretch (amino acid 315–360) represents a lipid
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binding region and is involved in the regulation of enzyme activity
[47,48] (see Fig. 2).

2.2. Hormone-sensitive lipase: enzymatic properties – gene and
protein structure

HSL was initially discovered in WAT of mammals as an enzyme
which is induced by fasting and stimulated by catabolic hormones
[49–52]. Since then, numerous studies have addressed the bio-
chemistry, cell biology, and physiology of HSL [53–59]. They found
that HSL hydrolyzes a variety of substrates including TAG, DAG,
MAG, CE and RE as well as short chain carbonic esters and artificial
substrates, such as p-nitrophenyl butyrate. In fact, the relative
maximal hydrolysis rates for TAG:DAG:MAG:CE:RE are in the range
of 1:10:1:4:2. These in vitro data were indicative that HSL may be
more important as a DAG than TAG hydrolase.

The tissue-specific expression pattern of HSL resembles the one
for ATGL. Highest expression is observed in WAT and BAT. Low HSL
expression is found in many other tissues and cells particularly in
steroidogenic cells, muscle, pancreatic b-cells, and macrophages
[55,60,61].

The human Hsl gene (designated Lipe) is located on chromo-
some 19q13.2. It spans a genomic region of 25.9 kb comprising
10 exons. Alternative exon usage results in a significant variation
in the 50 region of HSL transcripts [62] leading to different
tissue-specific mRNA and protein sizes in adipose tissue, pancre-
atic b-cells, ovaries, and testis. Multiple potential transcription
factor-binding elements upstream of each transcriptional start site
suggest the possibility of differential transcriptional regulation of
HSL in different tissues and under various physiological conditions
[63].

To date no 3D protein structure for HSL is available. Yet, HSL
protein domain architecture suggests that the enzyme comprises
of three functional regions [64]: the N-terminal domain (amino
acids 1–300) is believed to mediate lipid binding, enzyme dimer-
ization, and interaction with the fatty acid binding protein 4
(FABP4) [64–67]. These features are thought to modulate the
in vivo activity of HSL; in fact, the interaction with FABP4 is known
to enhance HSL catalytic activity also in vitro [68]. The C-terminal
domain (amino acids 301–768) contains a common structural fold
found in many lipases and esterases, called the a/b hydrolase fold,
which harbors the classical catalytic triad of Ser424, Asp693, and
His723 of the human protein [64,69,70]. The third region repre-
sents the regulatory module of the enzyme. This region (amino
acids 521–669) is located within the catalytic domain and contains
all five known phosphorylation sites of HSL [54,71–73].

Besides the catalytic site motif (GXSXG) commonly found in
lipases, HSL shows no homology with other known lipases or
proteins; however, 61 of the last 283 amino acids of the lipase 2
of Moraxella TA144, an antarctic psychotrophic bacterium, are iden-
tical to that of rat HSL in the catalytic domain. Since in lipase 2 also
respective amino acids of the triad are conserved it is believed that
it forms a a/b hydrolase fold with an active site [62,64]. In the
C-terminal region of HSL, DNA sequence of HSL shows identity
rates of around 60% with corresponding stretches of acetylcholin-
esterase, bile salt-stimulated lipase, and two fungal lipases from
Geotrichum candidum and Candida rugosa [69,74].

2.3. Monoglyceride lipase (MGL): enzymatic properties – gene and
protein structure

MGL was first isolated from rat adipose tissue and was shown to
specifically hydrolyze MAG but not TAG or DAG [75]. This led to
the assumption that MGL is responsible for the hydrolysis of
MAG in the lipolytic cascade. Interestingly, recent studies with
an MGL-deficient mouse model and an MGL specific inhibitor have
established a pivotal role in endocannabinoid signaling but have
not addressed the role of MGL in the breakdown of lipolytic MAG
[23–30]. Yet, in MGL-deficient mice elevated levels of various
MAG species have been described in the brain [23]. Thus, it appears
likely that MGL might also be indispensable for the breakdown of
MAG in other tissues including WAT. Whether other enzymes with
known hydrolytic activities for MAG in in vitro assays such as HSL
or a/b-hydrolase domain-containing 6 (ABHD6) are relevant for
MAG hydrolysis in vivo remains to be determined.

The human gene for MGL (annotated as MGLL) is located on
chromosome 3q21.3. It spans over 134 kb, contains eight exons,
with a transcript length of 4.6 kb. It codes for a protein of 303 res-
idues with a molecular weight of �33 kDa. The 3D structure of
MGL has been determined very recently by two independent
groups [76,77]. MGL also belongs to the large superfamily of a/b
hydrolase fold proteins with a GXSXG motif. The catalytic triad is
composed by Ser122, Asp239, and His269 [13]. MGL is ubiqui-
tously expressed among tissues. MGL mRNA levels are particularly
high in adipose tissue, kidney, and testis [13]. More recently, MGL
has also been implicated in the degradation of the bioactive MAG
2-arachidonoyl glycerol, which is known to be a potent endoge-
nous agonist of cannabinoid receptors [78]. With the availability
of mouse models that lack or overexpress MGL it will be interesting
to investigate the physiological role of MGL in endocannabinoid
metabolism and the regulation of appetite, pain sensation, mood
control, and other endocannabinoid-affected physiological and
psychological conditions.

2.4. Other lipases

Assessment of lipolytic activities in ATGL-deficient mice using a
specific inhibitor for HSL revealed that ATGL and HSL are responsi-
ble for more than 90% of the lipolytic capacity in murine adipose
tissue [79]. Although this finding suggests that these two enzymes
are the major lipases for TAG catabolism in WAT, it does not ex-
clude a significant contribution of other enzymes in non-adipose
tissues or under specific physiological conditions. In recent years,
a number of alternative TAG hydrolases has been identified and
their physiological relevance in the lipolytic process is currently
being elaborated [80]. Four of these proteins are members of the
PNPLA family with high sequence homology to ATGL. The PNPLA
family of genes consists of 9 and 10 members in the murine and
human genomes, respectively [80]. The structurally closest relative
to ATGL (annotated as PNPLA2) within this family is PNPLA3 (also
called adiponutrin). Similarly as described for ATGL, this protein
acts as TAG hydrolase and transacylase, however, the specific
TAG hydrolase activity is at least two orders of magnitudes smaller
than for ATGL [19]. PNPLA3 has recently gained major interest be-
cause of a strong association of specific variants of the enzyme
(I148M) with non-alcoholic fatty liver disease, hepatosteatosis, ste-
ato-hepatitis, and liver cirrhosis [81–84]. Initially, it was assumed
that a loss of function in the lipase activity of the protein causes
the higher susceptibility to develop fatty liver [81]. However, the
recent finding that adiponutrin-deficient mice have no increased
liver TAG content questions the proposed mechanism [85].

Other members of close ATGL relatives are less well character-
ized (PNPLA1, 4, and 5) [44]. PNPLA4 (alternative name: gene se-
quence 2; GS2) was shown to hydrolyze TAG and act as
transacylase, transferring an acyl chain of one DAG molecule to an-
other, thereby forming one TAG and one MAG molecule [19]. In
keratinocytes, this protein hydrolyzes REs at neutral pH, whereas
in acidic pH conditions the reverse reaction, the esterification of
free retinol, is favored [86,87]. These GS2-driven activities are
consistent with the loss of triolein and accumulation of REs during
the differentiation process of keratinocytes and suggest that GS2
may be involved in the maturation of the epidermal skin barrier.
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Fig. 4. Conserved areas and domain organization of CGI-58. Protein sequences of human and mouse CGI-58 were aligned using web-based ‘‘T-Coffee Multiple Sequence
Alignments’’ tool [202,203]. Identical amino acids in the protein sequences are depicted as black, differences in the sequence as white bars. Mouse CGI-58 as the longer
orthologue (351 amino acids) was used as template. Domain organization is shown for the murine protein.
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The GS2 gene is closely linked to the gene coding for steroid sulfa-
tase (STS) on the distal short arm of the human X chromosome
[88]. Notably, the phenotype of patients with X-linked ichthyosis
who have deletions of both GS2 and STS is indistinguishable from
those with mutations within the STS gene alone [89]. This suggests
that the deletion of GS2 may not cause any apparent phenotype (so
far no GS2 homologue has been identified in the mouse genome) or
it may cause defective epidermal development and ichthyosis sim-
ilar to X-linked ichthyosis. Whether the two remaining proteins of
the family with demonstrated lipase activity, PNPLA1 and PNPLA5
(also called GS2-like) [19,44] have any physiological role in lipoly-
sis is currently not known.

Finally, two proteins of the carboxylesterase family, carboxy-
lesterase 3 (also called triglyceride hydrolase (TGH) or TGH-1)
and carboxylesterase ML1 (also called TGH-2, now annotated as
carboxylesterase B-1) have been shown to hydrolyze a triolein sub-
strate and to be expressed in both liver and adipose tissue [90].
These enzymes show a strong preference for short chain esters
and, accordingly, are weak hydrolases for long chain fatty acid
TAGs. Moreover, these enzymes localize to the endoplasmic retic-
ulum (ER) membrane and are thought to face with the active site
to the lumen of the ER suggesting that TGH and TGH-2 may be
more important for the hydrolysis of the microsomal TAG pool
than for TAG in cytosolic LDs [90,91].
3. Regulation of lipolysis

3.1. Regulation of ATGL

3.1.1. Comparative gene identification-58 (CGI-58) activates ATGL
Extracellular TAG lipases, such as lipoprotein lipase or pancreatic

lipase are catalytically much more active in the presence of coacti-
vators (apolipoprotein CII and colipase, respectively). Similarly,
ATGL activity can be drastically increased by an activator protein
[8] called CGI-58 [also annotated as a/b hydrolase domain contain-
ing protein 5 and as 1-acylglycerol-3-phosphate O-acyltransferase]
[8,17,47,92,93].
Fig. 5. 3D model and domain organization of CGI-58. A homology model of CGI-58
was built using Swiss-Model based on Aspergillus niger epoxide hydrolase as
template [204,205]. The compact aba sandwich containing the a/b-hydrolase core
structure is depicted as cartoon in rainbow colors; residues of the putative catalytic
triad in corresponding hydrolases are highlighted as yellow sticks (Asn155, His329,
Asp303). The cap region covering the potential active site is depicted in magenta,
whereas the N-terminal extension is depicted as a grey ribbon. N- and C-termini are
indicated with capital letters. The figure was prepared using PyMol (The PyMOL
Molecular Graphics System, Version 1.2, Schrödinger, LLC).
3.1.1.1. CGI-58: gene and protein structure. CGI-58 is highly con-
served among species. The name comparative gene identification-
58 derives from a proteomic approach to identify genes conserved
between Caenorhabditis elegans (C. elegans) and humans. The hu-
man gene for CGI-58 is located on chromosome 3p21 and com-
prises seven exons. The gene encodes for a 5.4 kb mRNA (the
murine mRNA is 3.1 kb long), with a short 50 and a 4.2 kb long 30

untranslated region. Human and murine CGI-58 display 94% se-
quence identity and consist of 349 and 351 amino acids, respec-
tively. In Fig. 4 the conserved areas in the protein sequences of
human and mouse CGI-58 are depicted showing that the N-terminal
region, the area outside of the predicted alpha/beta hydrolase
domain, harbors the largest number of sequence variations. Re-
cently, an alternative splice isoform has been described for murine
CGI-58 which lacks the second and third exon and exhibits altered
cellular function (see below) [94].
CGI-58 belongs to an a/b hydrolase-fold containing sub-family
with 15 members annotated as a/b hydrolase domain containing
proteins 1–15 (ABHD1–15). A 3D homology model of mouse CGI-
58 was calculated and shows that the compact core constitutes a
three-layer (aba) sandwich typical for a/b hydrolases, starting
around Cys50 and ranging to Val350 (Fig. 5) [92]. A large, primarily
helical lid region (Pro180–Leu280) is inserted after strand b6 and
covers the potential ‘‘active site.’’ An additional feature of the mod-
el is a long partly helical, partly unstructured region ranging from
the N-terminus to Cys47, which seems to cap the lid. Truncations
of this N-terminal region led to CGI-58 fragments incapable of
localizing to the LD or stimulating ATGL lipolytic activity [92]. Typ-
ically, a/b-hydrolases exert their catalytic activity via a catalytic
triad [95]. In murine CGI-58, this triad is located within the a/b
hydrolase domain, however, the nucleophilic serine within the
canonical GXSXG motif of the active site is replaced by an aspara-
gine residue (Asn155) (Fig. 4). The loss of the nucleophilic serine
residue resulting from this amino acid exchange provides a
rational explanation for the observation that the protein does not
possess intrinsic hydrolase activity [8]. Recent mutation studies
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in our laboratory exchanging Asn155 by Ser and thus reconstitut-
ing the canonical GXSXG motif failed, however, to create a catalyt-
ically active esterase/lipase (unpublished data).

3.1.1.2. CGI-58: activation of ATGL. An important regulatory mecha-
nism for ATGL involves the activation of the enzyme upon interac-
tion with CGI-58. Maximal stimulation is achieved at
approximately equimolar concentrations of enzyme and activator
protein [8]. Interestingly, a species difference exists in the activa-
tion potential between the mouse and human proteins. Both hu-
man and murine CGI-58 activate mouse ATGL much better than
human ATGL. Mutation studies [17,47,92] revealed that ATGL acti-
vation by CGI-58 depends on the amino acid sequence present
within the patatin domain in the N-terminal half of ATGL. The
C-terminal half of ATGL appears to have an inhibitory effect on
CGI-58 mediated enzyme activation [47]. This inhibitory effect is
more pronounced in human ATGL than in murine ATGL because,
compared to human ATGL, CGI-58 mediated enzyme activation
was drastically improved when a hybrid enzyme consisting of
the human N-terminus (the first 266 amino acids containing the
active site) and the murine C-terminus (amino acids 267–486)
was used in enzyme assays. Taken together, these studies are con-
sistent with the concept that the patatin domain within the aba
sandwich fold is responsible for enzyme activity and CGI-58 inter-
action, whereas the C-terminal part of the enzyme has a regulatory
function and mediates LD interaction of the enzyme.

Currently, it is unknown whether CGI-58 binding affects ATGL
conformation, facilitates substrate presentation, or enhances
ATGL’s lipolytic activity by removing reaction products from the
active site. In vitro experiments and studies in living cells using
bimolecular fluorescence complementation (BiFC) revealed that
CGI-58-mediated activation of ATGL requires direct protein–
protein interaction [8,96]. However, this interaction by itself is not
sufficient for ATGL activation because CGI-58 variants, which were
capable of binding ATGL, failed to stimulate enzyme activity [92].
ATGL activation in living cells additionally requires the binding
of CGI-58 to the LD. Truncated variants of CGI-58, which fail to
localize to the LD, but bind to ATGL, are unable to stimulate ATGL
activity [92]. Very recently, a splice variant of CGI-58 was de-
scribed lacking 149 amino acids in the N-terminal region (full
length CGI-58 is 351 amino acids long). The shorter version of
CGI-58 is unable to bind to LDs, lacks the GXNXG sequence, and
fails to activate ATGL [94].

3.1.1.3. CGI-58: ATGL unrelated function. Several studies have
reported that CGI-58 possesses acyl-CoA dependent lysophospha-
tidic acid acyltransferase (LPAAT) activity [97,98]. The acyltransferase
activity of CGI-58 is thought to depend on the structural motif
HX4D near the C-terminus, however, this assumption has not been
tested by mutation studies. In this respect, it is interesting to note
that the shorter splice variant of CGI-58 retains its enzymatic prop-
erties as LPAAT despite the fact that it cannot bind to LDs and does
not activate ATGL. Although the physiological relevance of the
LPAAT activity still needs to be demonstrated in vivo, the in vitro
findings support the speculation that CGI-58 could affect both lipid
synthesis and lipid hydrolysis depending on the metabolic status of
the cell.

3.1.2. G0/G1 Switch Protein 2 (G0S2) inhibits ATGL
Recently, a protein called G0S2 was identified as a selective

inhibitor of ATGL [17]. G0S2 was originally found to be expressed
during re-entry of blood mononuclear cells from G0 into G1 phase
of the cell cycle [99]. However, its mechanistic involvement in cell-
cycling remained unclear. Yang et al. [17] have now demonstrated
that G0S2 is predominantly expressed in adipose tissue and liver
and that overexpression of G0S2 in cells causes massive lipid accu-
mulation. These findings are indicative for a role for G0S2 in lipid/
energy metabolism.
3.1.2.1. G0S2: gene and protein structure. The human gene for G0S2
is located on chromosome 1q32.2 and comprises two exons. The
first exon is non-coding, the second exon contains the complete
coding region for the protein. The respective mRNA consists of
978 nucleotides, with a shorter 50 and a 409 nucleotide long 30

untranslated region. Both human and murine G0S2 proteins con-
sist of 103 amino acids and display 77% sequence identity. G0S2
is unique in that no homologous proteins could be identified in
lower organisms, including C. elegans and Drosophila melanogater.
In addition, G0S2 does not share any sequence similarities with
proteins of known 3D structure. A hydrophobic region locates be-
tween amino acids 27–42. Deletion of this region disables the
interaction of G0S2 with ATGL [17].

G0S2 mRNA is expressed ubiquitously. The highest expression
levels are detected in adipose tissues and liver followed by muscle,
ovary, and kidney [17,100]. In differentiating adipocyte cell lines,
such as Simpson-Golabi-Behmel syndrome cells or 3T3-L1 adipo-
cytes, G0S2 mRNA is detectable 2–3 days after the initiation of dif-
ferentiation and remains high during the entire differentiation
period [17,100]. In adipocytes, its expression is induced by insulin
and inhibited by TNF-a or isoproterenol, both factors that stimu-
late lipolysis [17]. Importantly, Zandbergen et al. [100] identified
G0S2 as a PPARc target gene containing a PPAR-response element
(PPRE) in its promoter sequence. In contrast to PPARc, PPARa
down-regulates G0S2 mRNA expression [100].
3.1.2.2. G0S2: mode of function. G0S2 directly interacts with the
N-terminal patatin domain of ATGL [17]. Recent evidence [17]
suggests that this interaction does not directly compete with the
binding of CGI-58, which also interacts with the N-terminal region
of ATGL [47]. Interestingly, in 3T3-L1 adipocytes both ATGL and
G0S2 translocate to LDs upon stimulation of lipolysis, while this
is not the case when ATGL expression was down-regulated by
small interfering RNA [17]. This suggests that G0S2 by itself may
be unable to bind to LDs but requires ATGL as its binding partner.
Interestingly, Welch et al. [101] identified G0S2 as a mitochondrial
protein, which interacts with Bcl-2, an anti-apoptotic factor, alter-
ing mitochondrial membrane permeability and promoting apopto-
sis. Thus, G0S2 interacts with proteins involved in different cellular
processes and may link cell cycle, cell survival, and cell death with
lipolysis. The existence of such a link has recently been demon-
strated in yeast, where the entry of the S phase is mechanistically
connected with an induction of TGL4 activity, the yeast orthologue
of ATGL [102]. Future studies are required to focus on the interplay
of CGI-58 and G0S2 in the regulation of lipolysis and its role in the
pathophysiology of obesity, type II diabetes, and cancer.
3.1.3. Hormonal regulation – ATGL is a hormone-sensitive lipase
Lipolysis in adipocytes is predominantly regulated post-transla-

tionally involving phosphorylation and translocation processes of
the participating enzymes. The molecular mechanism leading to
the activation of HSL is well established (see below). Additionally,
early experiments in HSL-deficient adipose tissue showed that the
non-HSL lipolytic activity can also be activated by b-adrenergic
stimulation [12,21,103,104]. This suggested the existence of an-
other ‘‘hormone-sensitive’’ enzyme besides HSL. With the discov-
ery of ATGL and the availability of ATGL-deficient mice it became
evident that b-adrenergic activation of ATGL activity is required
for full hormone-activated lipolysis in WAT [10,16,79]. In the
absence of ATGL, NEFA and glycerol mobilization in response to
b-adrenergic stimulation were decreased by �70%.



Table 1
Regulation of ATGL mRNA expression and enzyme activity.

mRNA down mRNA/protein up Activity
down

Activity up

Feeding [45] Catecholamines
[124,126]

Perilipin
[144]

CGI-58 [8]

Insulin [43,127,128] Dexamethasone [31] Adipophilin
[110]

Isoproterenol
[16,79]

Isoproterenol [128] Fasting [31,45] G0S2 [17]
mTOR1 [129] FoxO1 [125]
TNF-a [43,128] Thiazolidinediones

[43,123,124,126]
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3.1.4. Regulation of ATGL by LD associated proteins
The molecular mechanisms that regulate ATGL activity in re-

sponse to b-adrenergic stimulation are incompletely understood.
Recent evidence suggests an indirect mechanism involving perili-
pin-1 and CGI-58. Perilipin-1 is a member of the PAT family (for re-
view see [105]). The name ‘‘PAT’’ derives from the most noticed
members of the family, perilipin (now annotated as perilipin-1),
adipophilin (also called adipocyte differentiation-related protein;
now annotated as perilipin-2), and tail-interacting protein 47 kDa
(Tip-47; now annotated as perilipin-3). Other members include
perilipin 4 (initially named S3-12) and perilipin-5 (initially named:
myocyte LD protein, PAT protein in oxidative tissues, and LD spe-
cific protein-5) [106–108].

Perilipin-1 expression is restricted to b-adrenergic stimulatable
cells, such as adipocytes and steroidogenic cells, and is essential for
b-adrenergic stimulatable lipolysis. The protein governs the ATGL-
and HSL-mediated breakdown of fat in WAT in multiple ways (see
below). ATGL activity is regulated by the availability of its coactiva-
tor CGI-58. In non-stimulated adipocytes, CGI-58 is located at the
surface of LDs and is mostly bound to perilipin-1 [93,96,109]. In
the activated state, perilipin-1 is phosphorylated by cAMP-depen-
dent protein kinase A (PKA). This causes the dissociation of CGI-58
from perilipin-1, which is now available for the activation of ATGL
[96,109]. Granneman et al. [93] recently pinpointed the perilipin-1
phosphorylation sites responsible for the reversible binding of
CGI-58 (Ser492 or Ser517) [96]. These observations indicate that
perilipin-1 controls the activation of ATGL in WAT by interacting
with its coactivator CGI-58 in a cAMP-dependent fashion.

In non-adipose tissues, the activation of lipolysis is less well
characterized because these tissues express little or no perilipin-
1. Yet, ATGL and CGI-58 play an essential role in TAG hydrolysis
particularly in tissues with high NEFA demand, such as skeletal
muscle, heart, and liver [16]. Thus, alternative, perilipin-1 indepen-
dent mechanisms must exist to regulate ATGL activity in non-
adipose tissues. Listenberger et al. [110] and Bell et al. [111]
demonstrated that another PAT protein, the ubiquitously ex-
pressed perilipin-2, regulates the access of ATGL to LDs in various
cell lines, such as AML-12 hepatocytes, Hek293 kidney cells, and
3T3-L1 adipocytes. In perilipin-1-deficient mice, perilipin-2 is the
major LD coating protein in adipocytes [112]. Whether the regula-
tion of ATGL activity by perilipin-2 in adipose and non-adipose tis-
sues involves the reversible binding of CGI-58 by perilipin-2 is
currently unknown. Perilipin-3 is also expressed in virtually all cell
types and tissues. In murine hepatocytes downregulation of perili-
pin-3 expression leads to a dramatic increase of LD size and a de-
crease in LD number. In addition, these cells show increased
lipolysis associated with increased ATGL localization on LD [111].
Thus, perilipin-3 exerts a protective role for LD via preventing
ATGL access to the LD. Perilipin-4 is found primarily in WAT and
to a lesser degree in skeletal muscle and heart [113] but nothing
is known about its involvement in the lipolytic pathway [114]. Fi-
nally, perilipin-5 was identified as a LD binding protein by three
independent groups [106–108]. Perilipin-5 is expressed predomi-
nantly in oxidative tissues, including heart, skeletal muscle, and
fasted liver. In fasted tissues, perilipin-5 induces LD fragmentation
and lipolysis [107]. Importantly, perilipin-5 has been shown to
interact with CGI-58 and to colocalize on LDs. The expression of
perilipin-5 greatly increases LD localization of both CGI-58 and
ATGL and, thus, may promote their interaction [115]. These obser-
vations may indicate that perilipin-5 regulates fatty acid mobiliza-
tion and oxidation in tissues with high oxidative capacity such as
liver and muscle.

Cidec (FSP27) is a recently identified LD protein that is unre-
lated to the PAT family on a sequence level. Cidec is predominantly
expressed in adipose tissue and liver and has a strong inhibitory
effect on lipolysis, thus promoting lipid storage [116,117]. It will
be interesting to see whether this protein acts via inhibition of
ATGL.

3.1.5. Regulation of ATGL by its targeting to LDs
Two independent genetic screens in D. melanogaster L2 cells for

genes that affect LD size and morphology revealed that proteins of
the ER-Golgi transport machinery are essential for normal LD num-
ber and size [118,119]. Silencing of either coat protein complex-I
(COPI) or (ADP-ribosylation factor 1) ARF1, two essential members
of the transport machinery, in L2 cells inhibited ATGL-mediated
lipolysis and increased the cellular TAG content. Soni et al. [120]
elegantly demonstrated in human Hela cells that the delivery of
ATGL to LDs critically depends on the vesicular transport machin-
ery and its protein components ARF1, SAR1 (small GTP binding
proteins), guanine–nucleotide exchange factor, and the effector
coatamer proteins COPI and II. In the absence of these proteins,
ATGL stays strictly associated with the ER membrane.

3.1.6. ATGL regulation by enzyme phosphorylation
Human ATGL is phosphorylated at two serine residues (Ser404

and Ser428) [121]. However, the relevance of phosphorylation for
the regulation of enzyme activity is unclear. In contrast to HSL
(see below), phosphorylation of ATGL does not involve PKA [10].
Furthermore, the known phosphorylation sites are not critical for
LD localization or in vitro TAG hydrolysis [46]. Interestingly, the
ATGL orthologue in C. elegans ATGL-1 is phosphorylated at multiple
sites by AMPK thereby inactivating enzyme activity [122]. ATGL-1
inhibition via enzyme phosphorylation prolongs the life span of
C. elegans larvae during the dormant state of dauer [122]. Whether
matching regulatory phosphorylation sites exist on mammalian
ATGL orthologues and whether they are involved in enzyme inac-
tivation during hibernation, long-term fasting, etc. is not known.

3.1.7. Transcriptional regulation of ATGL
ATGL expression and activity have been shown to be regulated

by numerous effectors or conditions (summarized in Table 1). The
enzyme is upregulated during adipose differentiation [10,31] and a
target for transcription factors PPARc [43,123,124] and insulin-
responsive transcription factor forkhead box O1 (FoxO1) [125].
Furthermore, glucocorticoids such as dexamethasone [31], the
PPARc agonists thiazolidinediones [43,123,124,126], and fasting
induce mRNA expression. In contrast, insulin [43,127,128], TNF-a
[43,128], mTor complex 1 [129], and feeding [45] repress ATGL
mRNA expression. Interestingly, the b-adrenergic agonist isoprote-
renol reduces ATGL (and HSL) mRNA levels in adipocytes [128]
although the enzyme activity is induced at the same time. The role
of leptin in the regulation of ATGL is controversial. Leptin is known
to restrain energy intake and to promote lipolysis, a process involv-
ing upregulation of PPARc expression [130–132]. Yet, a study on
porcine adipocyte lipolysis found that leptin decreased ATGL pro-
tein expression while it increased mRNA expression [133]. Insulin



A. Lass et al. / Progress in Lipid Research 50 (2011) 14–27 21
resistance and obesity have also been correlated with changes in
ATGL mRNA or protein levels [43,123,124,126–128].

3.2. HSL – regulation of enzyme activity

The regulation of HSL activity has been intensively studied over
nearly five decades [134–137]. The best-studied system is the reg-
ulation of HSL in adipocytes. Adipose HSL activity is controlled by
two distinct mechanisms in response to b-adrenergic stimulation:
first, the enzyme is phosphorylated by cAMP-dependent PKA. This
leads to an increase of the intrinsic enzyme activity (�two-fold).
HSL harbors at least five distinct serine residues that can be phos-
phorylated. Recent results demonstrated that phosphorylation of
Ser650 (human HSL) or Ser660 (rat HSL) are particularly important
for enzyme activity [138]. Besides PKA, other protein kinases have
also been shown to phosphorylate HSL and regulate enzyme activ-
ity. The list includes extracellular signal-regulated kinase, glycogen
synthase kinase-4 [139], Ca2+/calmodulin-dependent kinase II, and
AMP-activated kinase [140]. Second, phosphorylated HSL interacts
with the LD protein perilipin-1, which itself is a target of PKA
phosphorylation.

The translocation of the phosphorylated enzyme to the LD in
WAT is mediated by perilipin-1. In the basal, non-hormonally stim-
ulated state, perilipin-1 is not phosphorylated and prevents the
binding of HSL to LDs. In perilipin-1-deficient mice this barrier
function is not present, basal lipolysis in WAT is increased, and
the animals are leaner than wild-type mice [141–143]. In response
to b-adrenergic stimulation, perilipin is phosphorylated on six con-
sensus serine residues by PKA [144]. Specifically the phosphoryla-
tion of serines 81, 222, and 276 induce the binding of HSL to
perilipin-1 and access to the LD [145]. The interaction domain of
perilipin with HSL involves the N-terminal region of perilipin-1
although the exact region is controversial [145,146]. Consistent
with this pro-lipolytic activity of phosphorylated perilipin-1, per-
ilipin-1-deficient mice are unable to sufficiently recruit HSL to
the LD and incapable to induce lipolysis in WAT upon hormone
stimulation [142,143]. After full hormonal stimulation, HSL phos-
phorylation and the perilipin-1 mediated translocation of the en-
zyme to the LD causes a �100-fold induction of HSL activity in
WAT [79].

In non-adipose cells lacking perilipin-1 the role of HSL is less
well characterized. Generally, HSL expression in these cells and tis-
sues is quite low. However, in some of them a physiological func-
tion of HSL has been described, e.g. in muscle and macrophages
[135,147–153]. The interaction of HSL with LDs in tissues lacking
perilipin-1 may involve perilipin-2 and perilipin-5 [145].

3.3. Regulation of MGL

To date, no evidence exists that cellular MGL mRNA concentra-
tions or enzyme activities are regulated by either hormones or the
energy state of the cell. MGL is highly expressed in many tissues.
High MAG hydrolase activity levels are constitutively present in
adipocytes, hepatocytes, and muscle cells suggesting that this
activity is not subject to extensive regulation. MGL is necessary
for the complete breakdown of TAG in in vitro experiments [154].
Yet, other enzymes such as HSL and a/b hydrolase domain contain-
ing protein 6 (ABHD6) also exhibit MAG hydrolase activity and it is
therefore not clear whether in vivo MGL is the only relevant MAG
hydrolase. The generation of an MGL-deficient mouse model has
recently been published [23]. In this study the role of MGL in the
breakdown of the endocannabinoid 2-arachidonoyl glycerol
(2-AG) has been confirmed. Yet, whether or not a block of 2-AG
catabolism in these mice affects appetite regulation and energy
homeostasis and whether MGL is rate-limiting in the breakdown
of MAG in adipose tissues has not been addressed.
4. Lipolysis: physiology and pathophysiology

4.1. ATGL is essential for TAG catabolism to provide NEFAs as energy
fuel

Since ATGL is highly expressed in WAT and BAT it was thought
to be of particular importance in these tissues [10]. However, the
phenotype of ATGL-deficient mice [16] broadened this view and
provided solid evidence for a crucial role of the enzyme in non-adi-
pose tissues. ATGL-deficiency in mice is associated with reduced
lipolysis resulting in excessive fat deposition in virtually all tissues
including fat, liver, muscle, kidney, spleen, and lung. This impli-
cates that the ATGL mediated catabolism of TAG is required in
essentially all cell types of the body. Massive TAG accumulation
in the heart of ATGL-deficient mice caused cardiac myopathy and
premature death starting with the age of �12 weeks. The animals
are moderately obese when kept on a low fat chow diet. The size
of BAT, in contrast, increases dramatically (�20-fold) due to the
massive accumulation of lipid. Interestingly, ATGL-deficient mice
are similarly active as wild-type mice when fed ad libitum. How-
ever, the situation changes dramatically under conditions of in-
creased energy demand such as fasting, cold exposure, or
physical exercise. Under these conditions, ATGL is essential for
the provision of NEFAs as metabolic fuel. Accordingly, ATGL-
deficient mice are unable to increase thermogenesis in response
to cold exposure. Fasting or exercise normally induces lipolysis
resulting in increased plasma NEFA levels. This increase does not
occur in ATGL-deficient animals [155–157]. With increasing fasting
time, ATGL-deficient animals develop hypoglycemia and show a
gradual decrease in oxygen consumption starting �8 h after food
deprivation [155]. After overnight fasting, oxygen consumption is
reduced by 70–80% and mice exhibit hypothermia indicating en-
ergy starvation. The respiratory quotient of starved ATGL-deficient
mice is elevated in comparison to wild-type mice indicative for an
increased usage of carbohydrates for energy conversion. This
change in energy substrate utilization can also be observed in re-
sponse to physical exercise [155]. Moderately exercised animals
rapidly deplete their liver glycogen stores and develop hypoglyce-
mia under conditions which barely affect glycogen stores of wild-
type animals [155,157]. Together, these observations demonstrate
that ATGL-deficient mice are not capable of mobilizing sufficient
energy in form of NEFAs to maintain normal energy metabolism
during fasting or exercise. Conversely, tissue-specific overexpres-
sion of the enzyme in adipose tissue of transgenic mice results in
increased lipolytic rates and decreased body weight [158].

It has long been known that NEFA metabolism strongly affects
glucose utilization in skeletal muscle, the most efficient energy dis-
sipating organ in the body. Randle et al. [159] proposed a ‘‘glucose–
fatty acid cycle’’ in which the utilization of glucose is directly
inhibited by the presence of NEFAs and vice versa. This mechanism
adapts substrate utilization to substrate availability in coordina-
tion with hormones controlling energy metabolism [160]. Obesity
and type II diabetes are commonly associated with high circulating
NEFA levels. The chronic overexposure of non-adipose tissues to
NEFAs promotes the accumulation of TAGs and NEFA-derived
metabolites in liver, muscle, pancreatic b-cells, and other tissues.
Additionally, it compromises insulin signaling and cell function, a
process which is often referred to as lipotoxicity [161]. However,
ATGL-deficient mice disproved the hypothesis that TAG accumula-
tion per se causes insulin resistance or lipotoxicity because these
animals exhibit increased insulin sensitivity and increased glucose
tolerance despite massive accumulation of TAG in muscle and liver
[16]. Furthermore, ATGL-deficient animals support the concept of
the glucose–fatty acid cycle, since in this mouse model reduced
NEFA levels are associated with increased carbohydrate oxidation.
ATGL affects glucose metabolism by different mechanisms and in a
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tissue-specific manner: (i) measures of insulin signaling are in-
creased in skeletal muscle and WAT, but decreased in BAT and liver
[162]. (ii) In pancreatic islets, ATGL deficiency causes TAG accumu-
lation and impairs fuel and non-fuel-stimulated insulin secretion,
which is consistent with the concept that ATGL is required for
the provision of NEFAs as energy source for the ATP demanding
process of insulin secretion. Thus, the lack of ATGL leads to hypoin-
sulinemia in ATGL-deficient mice [163]. (iii) Serum insulin levels in
ATGL-deficient mice are drastically reduced during glucose toler-
ance tests despite improved glucose tolerance [16]. This suggests
that enhanced glucose tolerance is at least in part mediated by
non-insulin dependent mechanisms.

In addition to serum NEFAs, glucose, and insulin levels, retinol-
binding protein 4 (RBP4) has been implicated in the development
of insulin resistance [164,165]. Human association studies and
the characterization of mutant mouse lines that lack or overex-
press RBP4 established a direct link between elevated serum
RBP4 levels and insulin resistance [165–172]. Interestingly, in
ATGL-deficient mice insulin sensitivity is not only associated with
reduced plasma NEFA levels but also with decreased serum RBP4
concentrations [162]. Despite these initial observations, the ques-
tion as to how ATGL activity regulates insulin sensitivity, insulin
secretion, or RBP4 levels requires further attention.

4.2. The role of ATGL in human physiology – identification of ATGL and
CGI-58 as causative genes for the development of NLSD

Following the discovery of ATGL, the question whether the en-
zyme plays the same significant role in human adipose and non-
adipose tissues as in mouse tissues was somewhat controversial
[173]. Recently, however, Langin and coworkers re-addressed the
issue [174], examining the roles of HSL and ATGL/CGI-58 in basal
and forskolin-stimulated lipolysis in a human white adipocyte
model (hMADS cells). In an elegant study, the authors concluded
that ATGL/CGI-58 acts independently of HSL and precedes its ac-
tion in the sequential hydrolysis of TAG [174]. These results are
consistent with the observations in mice and argue for an essential
role of ATGL in the initiation of lipolysis.

Further evidence for an essential role of ATGL in human lipid
metabolism came from the characterization of patients with neu-
tral lipid storage disease (NLSD). This lipid disorder is character-
ized by massive TAG accumulation in many tissues and
lymphocytes [175]. Interestingly, some patients with NLSD also
developed ichthyosis, a massive skin defect, while other patients
did not. NLSD patients without ichthyosis instead suffered from
more severe skeletal and cardiac myopathy [176]. The first at-
tempts to delineate the molecular basis for excessive TAG accumu-
lation goes back to studies conducted in the 1980s and 1990s by
the labs of Douste-Blazy [177,178], Salvayre [179–181], and Cole-
man [176,177,182–186]. The groups of Douste-Blazy and Salvayre
used fibroblasts obtained from a patient suffering from ‘‘multisys-
temic lipid storage myopathy’’ without signs of ichthyosis and con-
cluded from their pulse-chase experiments that the TAG
accumulation may be explained by defective catabolism of cyto-
plasmic TAG [177,180]. Coleman’s group, using fibroblasts from a
patient suffering from NLSD with ichthyosis, concluded quite the
opposite. They found that the massive TAG accumulation is more
likely to be caused by defects in phospholipid metabolism rather
than TAG catabolism [182,183]. In 2001, the group of Fischer final-
ly identified mutations in the gene coding for CGI-58 as causative
for Chanarin-Dorfman syndrome (CDS) [187], now referred to as
NLSD with ichthyosis (NLSDI) [14]. Later, CGI-58 was shown to
specifically activate TAG hydrolysis by ATGL and biochemical studies
with CGI-58 mutants known to be associated with NLSDI revealed
that mutated CGI-58 variants completely lost their capability to
stimulate ATGL [8]. This study provided the biochemical function
for CGI-58 in TAG catabolism and a rational mechanism for the
lipid storage phenotype in patients with CGI-58 deficiency. The
functional link between CGI-58 and ATGL also suggested that in
a subgroup of patients NLSD might be caused by a mutation of
ATGL. This prediction was verified in 2007 [14]. Patients with
mutations in the ATGL gene develop a similar phenotype as
ATGL-deficient mice: they suffer from massive TAG accumulation
in multiple tissues and develop severe myopathy. Cardiac myopathy
is often lethal and can only be prevented by heart transplantation.
Importantly, however, and in contrast to patients with defects in
CGI-58, patients with mutations in ATGL do not develop ichthyosis
[14]. Because of these phenotypical differences and to better differ-
entiate between two distinct monogenic disorders, NLSD caused
by mutations in the ATGL gene is now referred to as NLSD with
myopathy (NLSDM). So far, 10 different mutations causative for
NLSDM have been described (reviewed in Schweiger et al. [15]).
In most of the patients mutations affect the C-terminal half of
the enzyme leading to truncated forms of ATGL. In these variants
the patatin domain, containing the putative catalytic dyad
(Ser47–Asp166), and the aba sandwich domain are intact and
the proteins may retain remnant enzyme activity in vivo [48]. In
accordance with the NLSDM phenotype, however, the truncated
enzymes exhibit defective LD binding, suggesting that reduced
lipolysis is caused by mislocalization of ATGL [47]. In one patient
a mutation occurred within the patatin domain of ATGL and this
individual may entirely lack a functional enzyme [188].

Interestingly, and in contrast to mice lacking ATGL, patients af-
fected with mutations in the ATGL gene are not obese [14].
Whether these results from remnant ATGL activity in WAT of most
NLSDM patients or whether the activity of alternative lipases can
compensate for the absence of ATGL (e.g. HSL) is currently un-
known. It is also conceivable that either a compensatory down-reg-
ulation of lipid synthesis prevents excessive fat accumulation in
WAT when lipolysis is defective or that behavioral changes lead
to decreased food intake and, thus, prevent WAT accumulation.
Interestingly and in good agreement with the observations in
ATGL-deficient mice, NLSDM patients do not develop insulin resis-
tance despite massive hepatic and ectopic lipid accumulation [14].

4.3. Physiological role of CGI-58: CGI-58 is essential for functional TAG
catabolism and skin barrier development

The phenotypical difference in the skin between patients with
NLSDI and NLSDM strongly argued for an ATGL-independent func-
tion of CGI-58 in the skin. To better define this function, CGI-58-
deficient mice were generated and characterized with regard to
systemic lipid metabolism and skin physiology. Unexpectedly
and in contrast to humans, CGI-58 deficient mice die between 12
and 16 h after birth [189]. Consequently, biochemical and physio-
logical studies of CGI-58 deficiency in mice were restrained to
new-born pups and disclosed a dual function of CGI-58 in lipid
metabolism. First, systemic TAG accumulation and severe hepatic
steatosis in newborn CGI-58-deficient mice confirmed a rate-limit-
ing role for CGI-58 in TAG hydrolysis. This function of CGI-58 in
TAG catabolism is directly linked to its ability to activate ATGL
[8]. Second, CGI-58-deficient mice suffer from a severe skin perme-
ability barrier defect, which leads to rapid desiccation after birth
causing postnatal death. These phenotypes strongly resemble
those observed in human subjects with defective CGI-58. In con-
trast to mice, however, the skin defect in humans is not lethal. Pos-
sible reasons for this phenotypical difference could be that humans
nurse their offsprings more intensely, they have increased volume
to surface ratio, and the human skin might be less permeable since
it lacks a protective fur.

Extensive characterization of the biochemical defect in the
epidermis of CGI-58-deficient mice revealed that the skin barrier
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defect is linked to the impaired hydrolysis of epidermal TAG. This
defect can be partially restored by addition of recombinant CGI-58.
The hydrolytic defect in the CGI-58-deficient epidermis leads to
the sequestration of NEFAs in LDs. NEFAs, however, are essential
for the synthesis of skin lipids and normal barrier function. They
are required for the activation of PPARs during keratinocyte
differentiation [190–194], the formation of long-chain fatty acid
x-OH-ceramides [195,196], and the subsequent generation of
acylceramides. The massive accumulation of x-OH-ceramides,
the complete lack of acylceramides, and drastically reduced levels
of protein-bound ceramides in the corneocyte lipid envelope sug-
gested that LD-derived NEFAs are an absolute requirement for
the formation of a functional skin permeability barrier [189].
Importantly, the skin defect in NLSDI patients appears to arise from
the same biochemical defect since samples of human epidermis of
NLSDI patients also lack acylceramides [197]. Consistent with the
defect in TAG catabolism [188,198,199], the epidermal layer of
NLSDI patients accumulates TAG as reported in [200]. In a more de-
tailed study, Akiyama et al. [199] reported that CGI-58 is packaged
into lipid transport and secretion granules (lamellar granules) of
keratinocytes during keratinization. CGI-58-deficiency leads to
the malformation of lamellar granules and thus might play a role
in remodeling of granular lipids before or even after secretion.
Taken together, these findings are consistent with the concept that
CGI-58 activates a currently unknown epidermal TAG hydrolase,
which catabolizes TAG and provides NEFAs for the synthesis of
acylceramides. The lack of acylceramides in CGI-58-deficient mice
or humans impedes the assembly of a functional corneocyte lipid
envelope leading to the observed severe skin barrier defect.

Beside the essential role of CGI-58 in TAG catabolism, it is also
conceivable that the acyl-CoA-dependent LPAAT activity [97] of the
protein (see above) contributes to the skin defect in CGI-58 defi-
ciency [98]. This reaction may channel fatty acids from the break-
down of TAG into glycerophospholipids [93,201]. The observation
of Coleman and colleagues that NLSD fibroblasts, which express a
C-terminal truncated CGI-58 variant [8], are defective in phospho-
lipid metabolism coheres with this mechanism. Yet, Ghosh et al.
[97] reported that mutant CGI-58 variants, known to be associated
with the development of NLSDI, are not compromised in LPAAT
activity. Thus, the significance of CGI-58 as LPAAT in skin lipid
metabolism and the development of ichthyosis remains to be
elucidated.
5. Conclusions

Over the last 5 years important discoveries extended our
knowledge and led to a revision of the lipolytic pathway cataboliz-
ing cellular fat stores. They included the discovery of ATGL as an
essential TAG hydrolase and the identification of the coactivator
CGI-58 and the corepressor G0S2. Additionally, a large number of
protein factors have been characterized mediating the correct en-
zyme targeting (e.g. the ARF/COP system) to LDs, the access to
the substrate (e.g. PAT proteins), and the regulation of enzyme
activity (e.g. Fsp27).

Important questions, however, remain to be addressed: the hor-
monal regulation of ATGL and its coordinated interplay with the
other lipolytic and lipogenic enzymes require further investigation.
Particularly the role of phosphorylation for enzyme activity needs
to be assessed in more detail. In more general terms, it will be
important to elucidate the role of lipolysis for the generation of li-
pid intermediates required for cell signaling processes. In this con-
text, it is conceivable that specific lipolysis-derived NEFAs, DAGs,
or MAGs act as ligands or precursors for ligands of nuclear recep-
tors. Similarly, it is possible that the controlled release of polyun-
saturated NEFAs from LDs regulates the synthesis and biological
action of eicosanoids and prostaglandins. Specific stereoisomers
of DAGs regulate various isoforms of protein kinase-C and insulin
action. It remains to be determined whether the lipolytic system
can participate in the generation or degradation of these signaling
lipids. Finally, the role of lipolysis in human disease is not suffi-
ciently delineated. Further studies are needed to understand the
role of the newly identified lipolytic players in the pathogenesis
of insulin resistance, diabetes, and obesity. Similarly, the role of
lipolysis in the uncontrolled loss of adipose tissue during cachexia
requires clarification.

In summary, the increasing number of enzymes and interacting
partners on LD indicates that lipolysis comprises a large network of
factors coordinately acting within a ‘‘lipolytic machinery’’. The cur-
rent pace of new discoveries will augment the complexity of this
machinery and disclose its involvement in the pathogenesis of li-
pid-associated disorders.
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