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Abstract 

Contemporary shop-floors are highly affected by the ever-increasing complexity that is caused by the fluctuating customer demands. Therefore, 
a high degree of flexibility is needed and the scheduling of manufacturing tasks must be agile to changes. For addressing this challenge, this 
research work proposes a knowledge enriched short-term job-shop scheduling engine. More precisely, it focuses on the short-term scheduling 
of the resources of the machine shop, through an artificial intelligence algorithm that generates and evaluates alternative assignments of 
resources to tasks. Based on the requirements of a new order, a similarity mechanism retrieves successfully executed past orders together with a 
dataset that includes the processing times, the job and task sequence and the suitable resources. Afterwards it adapts these parameters to the 
requirements of the new order so as to evaluate the alternative schedules and identify a good alternative in a timely manner. The deriving 
schedule can be presented on mobile devices and it can be manipulated by the planner on-the-fly respecting tasks precedence constraints and 
machine availability. A case study from the mold making industry is used for validating the proposed framework. 
© 2014 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of the International Scientific Committee of “RoMaC 2014” in the person of the Conference 
Chair Prof. Dr.-Ing. Katja Windt. 
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1. Introduction 

Modern manufacturing relies on the reuse of past 
knowledge that is contained in data repositories and IT 
systems, as well as in the form of tacit human knowledge. 
Knowledge constitutes a key factor for improving 
manufacturing performance, during design, planning and 
operational phases [1, 2]. The importance of knowledge reuse 
for a system’s planning phase is evident, as rough estimates 
indicate that more than 20% of an engineer’s time is spent on 
searching and absorbing information for a new project [3].  

The production of engineer-to-order products, is a 
particular type of manufacturing system, which essentially 
relies on the expertise of human resources. Usually in this 
type of business, the scheduling of new orders in an already 
occupied manufacturing system, is performed empirically and 
using rules of thumb. However, with the rising complexity of 
production requirements and the increased penetration of IT 
systems in manufacturing, knowledge reuse is necessary for 
reducing the product development cycle. On the contrary, 
currently valuable knowledge generated and associated to 

products and processes in a daily basis, remains tacit and its 
reusability is confined to a specific operator or planner [4].  

In this research work, a scheduling mechanism is proposed 
that is enhanced with an integrated knowledge reuse 
mechanism. The knowledge reuse mechanism retrieves 
executed scheduling cases, and through a Case-Based 
Reasoning methodology extracts information related to the 
modelling of the scheduling workload. The deriving workload 
model includes necessary input for a scheduler, such as the 
job structure and the task breakdown, the precedence 
constraints, and the processing and setup times. Alternative 
schedules are generated and are optimized using multiple 
conflicting criteria, such as flowtime and tardiness. The 
scheduling is performed using an Intelligent Search Algorithm 
with three tunable parameters, which are adjusted through a 
parametric investigation, using a Statistical Design of 
Experiments. All functionalities are exposed through the 
designed mobile app. This work extends the research 
presented in [5, 6] by enhancing the scheduling algorithm 
with knowledge reuse capabilities and by verifying the 
method in a case from the domain of engineer-to-order 
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products. Finally, it should be mentioned that the two engines 
are designed in a modular way. The scheduling engine is 
capable to function without input provided by the knowledge 
mechanism, if the latter is not available. Similarly, the 
knowledge mechanism is decoupled from the scheduling 
engine and can be used for extracting manufacturing 
information for different purposes, such as for the estimation 
of the delivery time of an injection mold [7]. 

2. State of the Art 

Throughout the years, several methods have been proposed 
for knowledge reuse in the manufacturing domain. They aim 
to support designers and engineers in decisions related to 
modelling, design, prediction, monitoring, simulation, and 
optimization and in general knowledge intensive domains of 
manufacturing. There are two main ways to reuse past 
knowledge: reuse the past case solution and reuse the past 
method that constructed the solution [8]. Case-based 
Reasoning (CBR) process is an Artificial Intelligent technique 
that retrieves past experience to reuse for target problem; of 
course, the solutions of past cases may need to be revised for 
applying. The successful problem-solving experiences are 
then retained for further reusing [9]. The CBR method is 
utilized in this research work due to its suitability for complex 
ill-defined concepts, with unstructured knowledge and 
because case generalization is required [9]. 

The second area of interest in this research work is 
production scheduling. Scheduling of operations is one of the 
most critical issues in planning and managing of 
manufacturing processes. In most SMEs that cannot afford 
strong investments in software solution, scheduling is carried 
out empirically. The definition of an optimum solution is 
quite difficult, depending on the job shop environment, 
process constrains and performance indicators [10]. 
Numerous approaches have been reported for the modelling 
and solutions of the job shop scheduling problem. Wang et al., 
[11] proposed the development of an application using a 
genetic algorithm including a chromosome representation in 
seven different machines of a job floor that enables a dynamic 
job shop scheduling within complex production systems. 
Moreover, a task model allowing the representation of 
activities with optional parts and several scheduling 
algorithms to incorporate them into real time systems is 
described in [12]. Chryssolouris et al. [5] considering the 
issues rising from static scheduling proposed a dynamic 
scheduling problem to accurately reflect a real job shop 
scheduling environment. However, literature findings that 
focus on knowledge reuse as an enabler for improving 
scheduling performance are insufficient. Motivated by 
empirical knowledge, [13] proposes an efficient search 
method for the multi-objective flexible job-shop scheduling in 

order to reach high automation levels towards generating 
optimal or near-optimal production schedules. Another study 
proposed a data mining technique for discovering dispatching 
rules that improve scheduling performance [14]. The job-shop 
scheduling problem has been addressed using a knowledge 
enriched genetic algorithm in [15]. The idea was to imbue 
production system knowledge during the formulation of the 
initial population of the algorithm with the potential of faster 
and better convergence. The authors in [16] utilise data 
mining for optimizing the assignment of due dates to orders 
dispatched in a dynamic job-shop. 

The third area of interest is mobile technology. Mobile 
technology evolves rapidly; in the last decade the use of 
mobile apps has outpaced traditional PC-based web-browsing 
[17]. The usage of apps doubled on average over the last year, 
with utility and productivity apps second in growth [18]. The 
adoption of apps focused on core manufacturing processes, 
which was up to now limited [19], is finding its way into 
activities such as manufacturing network design [20] as well 
as in other scientific domains [21, 22]. The necessary 
components of apps in order for them to be fully leveraged in 
manufacturing are presented in [23], where architecture, 
development, infrastructure, security, portfolio and privacy 
issues are investigated. Short-term estimations speak of apps 
boosting productivity by 5%-10% [24].  

3. Knowledge Enriched Scheduling 

3.1. Overview of the Method 

The Knowledge Enriched Scheduling engine, hereby 
referred to as KES, consists of two mechanisms, namely: i) 
the knowledge extraction and reuse mechanism and ii) the 
short-term scheduling mechanism (Fig. 1). 

Once a new order enters the system, a break-down of the 
product components into a Bill of Materials (BoM) structure 
is carried out. The product is characterized by a number of 
attributes (product features) that are used by the similarity 
mechanism for a pairwise attribute comparison. The outcome 
of the similarity comparison is an ordered list that contains the 
past cases ranked from the most to the least similar. By 
reusing the knowledge stored in these past cases, the expert 
planner is allowed to extract valuable information that helps 
him introduce the new order into the production system with 
the needed adaptations. The reusable information includes the 
required number and type of jobs, the number of tasks for 
each job and their precedence constraints, and finally the 
processing times for each task in specific machines. The 
output of this process is the necessary input for a scheduler. It 
noted here that specific process planning information, such as 
cutter selection, process parameters and fixture specification 
are beyond the direct scope of the proposed work. 
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The latter component of the KES is the short-term 

scheduling mechanism. After the identification of the most 
similar cases, the expert planner aggregates information that 
can be reused in the new case and adapts it. The adaptation is 
required in order to compensate for missing tasks that were 
not identified during the similarity measurement, or in order 
to imbue to the dataset the actual situation of the shop-floor 
(machine break-downs, availability). The result of the 
adaptation is the model of the workload and the facility. These 
models are inserted in the intelligent scheduling engine. The 
planner defines the decision-making criteria and their weight 
factors, which reflect the design and planning objectives of 
the system. Following on that, the definition of the tunable 
parameters of the scheduling algorithm are defined. The 
tunable parameters are the Maximum Number of Alternatives 
(MNA), the Decision Horizon (DH) and the Sampling Rate 
(SR). The description of the function of these parameters is 
described in section 3.2 below. The scheduling algorithm 
generates scheduling alternatives and through a decision 
matrix selects and displays the best in a Gantt chart form.  

3.2. Modelling of the Facility and the Workload 

The production facility is hierarchically divided into job-
shops that contain work-centers, which in turn contain a 
number of resources. The latter are individual processors with 
diversified processing capabilities (machining technology, 
cycle times). Similarly, the workload model includes orders 
broken down into jobs, each containing a number of tasks.  

Tasks are assigned to resources based on an intelligent 
multi-criteria search algorithm that generates, evaluates and 
selects the scheduling alternatives, as described in [25]. The 
Intelligent Search Algorithm (ISA) evaluates the alternatives 
in a decision matrix based on setup cost and processing time 
criteria. A utility function is used for ranking the alternatives 
and for selecting the highest performing one.  

 

 

Fig. 2. The four-level hierarchical workload and facility model 

As depicted in Fig. 2, the orders are dispatched to the 
facility, the jobs to the job-shops and the tasks to work-
centers’ resources. The resources are not parallel processors 
and their availability is subject to the system workload. The 
release of jobs and tasks takes into consideration constraints 
such as finite capacity, precedence relations and availability. 
The job and task modelling is presented in Fig. 3.  
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Fig. 3. Modelling of the mold order, jobs and tasks 

Fig. 1. Overview of the Knowledge Enriched Short Term Scheduling engine 
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3.3. Description of the Knowledge Reuse Mechanism 

In today’s evolving environment, planners require efficient 
methods for generating schedules for new orders that their 
industries take on in a fast and accurate manner. This task can 
be supported through the utilization of existing knowledge 
retrieved from past schedules. As a result, the first step in the 
workflow of the presented research work is the comparison of 
the new order requirements against past cases. This similarity 
measurement emphasizes on the differences exhibited 
between the basic attributes that characterize old and new 
orders. The past cases are retrieved using the Case-Based 
Reasoning methodology and are compared with similarity 
mechanisms. Similarity mechanisms recognize the type of 
attributes; numeric or alphanumeric values are considered. 
The alphanumeric attributes take discrete values and are 
matched with numbers between zero and one for 
normalization reasons. Moreover, both attribute types are 
multiplied with weight factors, considering their influence on 
the actual similarity between cases. Eqs. (1) and (2) are used 
for measuring the Euclidean distance through a pairwise 
comparison between the attributes of past and new cases. Eq. 
(3) aggregates the results of the two distance metrics. 

, numerical values (1) 

, alphanumeric values (2) 

 (3) 
where: Dn=numerical distance, Dt=text distance, n=number 

of attributes, Tni=ith attribute of the new case n, Tpi=ith 
attribute of the past case p, k=mapping for alphanumeric 
attributes and wi=the weight of attributes. 

The past case with the highest similarity index is analyzed 
first. The planner may retrieve the process sequence, 
precedence constraints, the components and the resources 
used in the past case, as well as processing and setup times. 
Moreover, based on their experience, expert planners have the 
capability to recognize if the retrieved data are adequate to 
describe the new order. In case they are insufficient, the 
planner adapts the dataset to the requirements of the new case. 
In order to further enhance the knowledge retrieval, in cases 
when the new product requires a different amount of 
components or processes than the retrieved most similar case 
then, the second similar case can be consulted and afterwards 
the third and so on. Either way, the similarity index must 
remain above the threshold of 60%, which is calculated based 
on historical observations, otherwise the retrieved information 
would be misleading. Indicatively, if the best match in terms 
of similarity index is fairly old in comparison with the new 
case, it is most probable that adaptations would be required to 
compensate for changes in the shop-floor, such as addition of 
new manufacturing resources and technologies. In this case, 
engineers are aware of the current state of the shop-floor and 
can replace the old resources with similar ones in the new 
process plan. Having decided the matching past similar cases, 
the task sequences are retrieved, the availability of the 
machines is confirmed and then the final combination of the 
new sequence of processes and components is settled. 

3.4. Description of the Short-term Scheduling Mechanism 

The operational policy behind the assignment of a task to a 
specific resource can be either a simple dispatching rule, or a 
multiple-criteria decision making technique described below. 
The advantages of dispatching rules derive from their 
simplicity, since they do not attempt to predict the future, but 
rather make decisions based on the present. Thus, these rules 
are very useful in factories that are extremely unpredictable, 
such as job shops. Also, they are spatially local, requiring 
only the information available at the location where the 
decision will be implemented. Finally, they are easily 
understood by human operators and are easy to implement 
[26]. On the other hand, the multiple-criteria decision making 
technique, involves the formation of several alternatives and 
their evaluation before assigning the available resources to 
pending production tasks.  

Schedules are constructed on the basis of events occurring 
sequentially through time. Thus, the next scheduling decision 
is identified by moving along the time horizon until an event 
(release of a new order in the system or the completion of a 
task) is scheduled to occur that will initiate a change in the 
status of the system [27]. The set of pending tasks become 
eligible for release at the time a resource becomes available. 
Since the method considers a finite capacity problem, in case 
multiple jobs are competing for a resource, the Intelligent 
Search Algorithm (ISA) and the decision matrix with the 
criteria and their weighting factors are used to determine 
which task will be dispatched to which resource, optimizing 
the planning objectives. 

In the ISA algorithm is the search of the solution space is 
guided by three adjustable control parameters, namely the 
Maximum Number of Alternatives (MNA), the Decision 
Horizon (DH) and the Sampling Rate (SR). MNA controls the 
breadth of the search, DH controls the depth and SR directs 
the search towards branches of high quality solutions [28]. 
The proper selection of MNA, DH and SR allows the 
identification of a good solution by examining a limited 
portion of the search space, thus effectively reducing 
computational time. A Statistical Design of Experiments [29] 
has been carried out to reduce the number of experiments and 
to identify an optimum set of these factors in order to obtain 
the results of the highest possible quality [6, 28]. The 
workflow of the algorithm follows: 

 

Step 1: Start at the root and generate alternatives by random 
assignments for DH layers until MNA 

Step 2: For each branch (Step 1), create SR random samples 
until all the branch nodes are searched 

Step 3: Calculate the criteria scores for all the samples 
belonging to the same alternative of Step 1 

Step 4: Calculate the score of the branch as the average of 
the scores achieved by its samples 

Step 5: Calculate the utility values of each alternative/branch 
Step 6: Select the alternative with the highest utility value 
Step 7: Repeat Steps 1-6 until an assignment has been done 

for all the nodes of the selected branch 
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3.5. Description of the Knowledge Enriched Scheduling App 

The scheduling and the similarity mechanism components 
have been implemented in C++ for validation purposes. The 
integrated knowledge enriched scheduling engine has been 
designed for implementation into a mobile app for the 
Android OS. The designed app allows data entry, selection of 
decision-making criteria, definition of weight factors and 
tunable parameters of the ISA, and results’ visualization. The 
alternative with the highest utility value is displayed together 
with the scheduling Gantt chart and the mean values of the 
performance indicators (utilization, flowtime, and tardiness). 
The app will also allow operator interaction in case the 
derived schedule is not acceptable or needs refinements due to 
order prioritization and machine breakdowns among other 
reasons (Fig. 4). The precedence constrains, machine 
availability and capacity, and due dates are respected during 
rescheduling. Moreover, performance indicators are re-
calculated each time a rescheduling occurs. 

 

Calculation of Constraints
• Precedence
• Availability
• Capacity
• Due dates

Re-calculation of Performance 
Indicators:
• Mean Utilization
• Mean Tardiness
• Mean Flowtime

 

Fig. 4. Rescheduling performed by the operator through a tablet 

4. Design of the Knowledge Enriched Scheduling App 

Mobile apps deployed on the Android OS are based on a 3-
tier architecture that consists of 3 layers (data, business, and 
presentation) following the rules of the Model-View-
Controller architectural pattern. The Presentation layer 
includes the Graphical User Interfaces of the app and the Data 
Layer retrieves data from the back-end. Finally, the Business 
layer handles the data exchange between these two layers.  

For the programming of the platform, the Android SDK 
(Software Development Kit) is required, which provides the 
developers the API libraries and tools necessary to build, test, 
and debug apps for Android. The back-end will be 
implemented with the Apache Tomcat v7.0.19, since it is fully 
compliant with the latest advances in web programming and 
servlet specifications. The supporting data model of the app is 
based on requirements’ collection from a mold manufacturer. 
The application runs of devices with low specs for today’s 
standards (ARM-based processor, 512 MB minimum memory 
and 300MB free minimum storage space, OS Android 4.0TM 
or later). 

5. Industrial Case Study – Experiments and Results 

The case study uses real data from a high-precision mold-
making machine shop. The mold-shop best fits to the make-
to-order business model, where custom molds and dies are 
designed and manufactured based on customer orders. 
Injection molds are one of a kind, first-time-right products 
that vary greatly in terms of quality, tolerances, and mainly 
functionality. Evidently, mold-making is highly specialized 
and knowledge depended industry. Once a new order is 
received, its planning follows. Work is delegated among 
engineers, based on their expertise, who are usually in charge 
of a project from start to end. The resources needed are 
determined by the project’s particularities. In the current 
business model, short-term scheduling is performed 
empirically on a daily basis, in close collaboration between 
engineers, management, as well as work station supervisors. 
Unofficial oral meetings take place in order to schedule 
resources, and, if the situation demands it, the management 
department is involved in the decision making and work 
prioritization. However, no software tools are used to support 
short-term scheduling or to document the decisions made. 

The shop-floor of this case study is comprised of 8 job-
shops, which include 14 work-centers and 40 machines in 
total. The machines include high precision CNC machines 
capable of the following processes: milling, drilling, turning, 
electro-discharge wire cutting, sinking, grinding, tapping, 
roughing, polishing and hardening. Some operations are 
performed manually such as design, fitting, assembly, 
measuring and polishing. The hierarchical model of the 
production facility is included in Table 1. The dataset of the 
case study includes the documented processing times, tasks, 
sequences and resources used for the manufacturing of thirty 
(30) finished products that were carried in a timespan of 
approximately three years. 

As described in section 3.3 above, the new order that 
triggers the scheduling mechanism, is first compared against 
documented past cases for the reuse of knowledge related to 
processes and product structure. In the case study, the new 
order is compared against all 30 documented past cases. 
Moreover, in actual production terms, five (5) orders (molds) 
are simultaneously executed in the shop-floor on average. 
Therefore, in the experiments below, four of the orders are 
already under processing and the new order enters the system 
eight calendar days later. The schedules for these orders have 
been inserted in the scheduling engine by the planner. The 
system is then rescheduled in order to accommodate the new 
order. The new mold order carries the identification number 
“13.23” and its basic attributes are shown in Table 2. A 
fundamental parameter that is taken into consideration is the 
stacks’ shape. There are two options, namely molds with 
cylindrical and rectangular stacks. Since the mold 13.23 has 
cylindrical stacks, the attribute “length” is not considered 
during similarity. After a similarity calculation, the results 
indicate a similarity index of 83% between molds 13.23 and 
12.20. The planner should then adapt the process plan of the 
latter in order to prepare the dataset for scheduling the first. 
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Table 1. The hierarchical model of the mold-making production facility 

Job-shop Work-center No. of Resources 

Design Design 2 

Milling Roughing 14 

Grinding 5 

Air & Water Circuit Cutting 3 

Tapping and Threading 4 

Finishing 6 

EDM Sinking 3 

Wire EDM 5 

Drilling 1 

Measuring Measuring 1 

Polishing Polishing 1 

Fitting Fitting 1 

Hardening Hardening 2 

Assembly Assembly 1 

Table 2. Attributes of the compared molds 

Attributes Mold 13.23 Mold 12.20 Mold 11.38 

Number of cavities 6 6 4 

Type of Hardening Good Very good Good 

Core Cap No No No 

Tamper Evident No No No 

Surface’s Quality Matte Matte Mirror 

Number of components 10 13 12 

Way of Injection Cavity Side Cavity Side Cavity Side 

Slides No No No 

Wall Thickness 0.6mm 0.6mm 0.7mm 

Height 50mm 50mm 15mm 

Width 60mm 70mm 200mm 

Length 0 100mm 0 

Table 3. Similarity measurements between the molds 13.23, 12.20 and 11.38 

Attributes Mold 13.23-12.20 Mold 13.23-11.38 

Number of cavities 0.387298333 0.31622777 

Type of Hardening 0 0.2236068 

Core Cap 0.31622777 0.31622777 

Tamper Evident 0.31622777 0.31622777 

Surface’s Quality 0.2236068 0 

Number of basic components 0.18708287 0.2 

Way of Injection 0.31622777 0.31622777 

Slides 0.31622777 0.31622777 

Wall Thickness 0.38729833 0.35355339 

Height 0.2236068 0.12247449 

Width 0.20412415 0.25819889 

Length _ _ 

Similarity Measure 8.28247155 7.50196978 

 
The next most similar mold is 11.38, which is 75% similar 

with the 13.23. As indicated in Table 2, mold 13.23 differs 

from 12.20 in the attributes: “Type of hardening”, “Number of 
basic components”, and “Width”. The components that are 
needed for manufacturing the 13.23 mold are less than the 
components of 12.20, so the planner should reuse the 
sequence of processes of 11.38 mold and observe that 
components, such as the bottom plates, are missing. Based on 
experience, the extra components are removed and the process 
sequence is customized for the new mold. The calculated 
similarity index between the three molds is shown in Table 3. 
Once the adaptation of the new case is complete, the 
scheduling algorithm generates and evaluates scheduling 
alternatives and their respective performance indicators. Fig. 5 
depicts the schedules of the new order in the system (right) 
and an order that has a start date eight days earlier (left). 

 

 

Fig. 5. Schedule visualisation for two orders 

The tunable parameters of the ISA are defined using a 
Statistical Design of Experiments [29], which reduced the 
required number of experiments for determining the impact of 
tunable parameter on the cardinal preference of the decision-
making process. The number of experiments was 25 and each 
tunable factor had five levels. By calculating the degrees of 
freedom of the three factors, a minimum number of 13 
experiments was indicated to determine the value of each 
parameter. The Analysis of Means (ANOM) diagrams were 
created including the factors of each parameter and the utility 
value, according to which, the optimum value for each 
parameter were: MNA=100, DH=15 and SR=20. In order to 
benchmark the performance of the ISA, a comparison against 
a number of widely used dispatch rules is performed. The 
rules are: First In First Out (FIFO), Shortest Processing Time 
(SPT), Earliest Due Date (EDD), and Least Process Time 
(LPT) [30]. Each schedule is assessed with the mean values of 
the performance indicators: utilization, flowtime, and 
tardiness, which are given by the following formulas: 

Tardiness 
 

Flowtime 
 

Utilization 
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where: Ncomp is the number of completed jobs up to time tn, 
ti

comp is the completion time of job i, ti
dd is the due date of job 

i, ti
arr is the arrival time of job i, ti

start is the start time of job i, 
ttot is the total operating time of the facility, and tn is the time 
point at which all performance measures are calculated. 

 
The diagrams of Figs. 6-8 reveal the superiority of the ISA. 

Still, in cases with specific optimization target, dispatch rules 
yielded high quality results. For instance, the EDD rule 
provided the best results in terms of flowtime and near zero 
tardiness. 
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Fig. 6. Mean Utilization vs. Scheduling Strategy 
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Fig. 7. Mean Flowtime vs. Scheduling Strategy 
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Fig. 8. Mean Tardiness vs. Scheduling Strategy 

7. Conclusions and Future Work 

The presented work focused on the short-term scheduling 
of manufacturing resources through the utilization of existing 
design and planning knowledge. The scheduling of tasks for 
the realization of engineer-to-order products is supported by a 
knowledge retrieval mechanism that is based on a Case-Based 

Reasoning procedure and similarity measurement. Both 
numerical and alphanumeric attributes are considered and the 
similarity between past and new cases is measured using the 
Euclidean distance. The scheduling is performed using an 
intelligent search algorithm that uses adjustable parameters 
that guide the search towards areas of high performance and 
configure its depth and breadth. 

The results of the application of the methodology into a 
real-life pilot case with data obtained from the mold making 
industry verified that the short-term scheduling algorithm 
provides solutions of high quality in comparison to the 
historical values. The quality of the results indicate the 
usefulness of the engine for supporting the short-term 
scheduling of the manufacturing shop-floor. Moreover, the 
offered mobility, which is valuable for the dynamic nature of 
today’s turbulent manufacturing environment, is achieved by 
the deployment of the scheduling engine on mobile devices.  

A limitation of the proposed knowledge reuse approach is 
the necessity for pre-existing, sufficiently documented cases. 
The repository of past cases in the examined case study 
included 30 cases with 13 attributes each, and provided good 
results. The performance of the method in case of fewer cases 
with partial documentation, is expected to be lower. Yet, the 
gathering of this amount of information about previous cases 
is relatively easy, since these 13 attributes comprise basic 
characteristics of a mold, well-known to the planner, and a 
repository with 30 products can be built in a fairly short 
amount of time. 

Future work will focus on the quantitative evaluation of the 
knowledge reuse and scheduling mechanisms. The company 
of the case study is currently testing the engine in real-life 
situations. The relative improvement of important KPIs 
(machine utilization, tardiness, etc.) for the SME will be 
reported in future work. Moreover, a series of interviews with 
the engineers will be organized to assess the quality of the 
produced schedules and the accuracy of the similarity 
measurement results. A long-term vision is the total 
integration of these mechanisms in the everyday practice of 
the company and their utilization through the developed app. 
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