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PERSPECTIVES IN BASIC SCIENCE

Th1 and Th2 T helper cell subsets affect patterns of
injury and outcomes in glomerulonephritis
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Th1 and Th2 T helper cell subsets affect patterns of injury and ated immunity and delayed type hypersensitivity (DTH),
outcomes in glomerulonephritis. The recognition that human whereas others are characterized by stronger antibody
immune responses can be directed by two different subsets of

responses and/or an allergic response [2]. For example,T helper cells (Th1 and Th2) has been an important develop-
individuals infected with Mycobacterium leprae development in modern immunology. Immune responses polarized by

either the Th1 or Th2 subset predominance result in different either tuberculoid leprosy, in which limited disease is
inflammatory effector pathways and disease outcomes. Many accompanied by strong cellular immunity and granuloma
autoimmune diseases are associated with either Th1- or Th2-

formation, or lepromatous leprosy, with strong antibodypolarized immune responses. Although these different immune
production and more extensive disease [3]. Variableresponse patterns are relevant to glomerulonephritis (GN),

little attention has been paid to the consequences of Th1 or involvement of immune effector responses may also be
Th2 predominance of nephritogenic immune responses for the relevant to human GN, in which there is variable evi-
pattern and outcome of GN. Unlike other autoimmune condi-

dence of DTH involvement and variable amounts andtions, GN results from a variety of different immune responses
isotypes of immunoglobulin deposited [4, 5].and has a range of histologic features and immune effectors

in glomeruli. This review assesses the data available from stud- The concept that T helper cells, in rodents and in
ies of experimental and human GN that address the Th1 or humans, differentiate into functionally distinct subsets
Th2 predominance of nephritogenic immune responses and (now termed Th1 and Th2) has altered the understandingtheir relevance to the different histopathological patterns and

of cognate immune responses, and has helped to explainoutcomes of GN. In particular, the evidence that Th1-predomi-
nant nephritogenic immune responses are associated with se- the different immunologic patterns and outcomes in dis-
vere proliferative and crescentic GN is presented. eases such as leprosy. There is evidence to support the

existence of at least one other population of Th cells,
the Th3 subset, having immunoregulatory properties and

Renal injury in glomerulonephritis (GN) is character- characterized by the production of transforming growth
ized by injurious immune responses to self or foreign factor-b (TGF-b) [6]. This review examines the roles of
antigens [1]. Different immune responses lead to differ- Th1 and Th2 subsets, as, currently, little is known about
ent patterns of injury with a variety of clinical presenta- the role of the Th3 subset in GN.
tions and disease outcomes. The development and main- The observations that Th1 and Th2 subsets produce
tenance of cognate immune responses generally involve

distinct immune responses associated by distinct patterns
the activation of T lymphocytes, which direct antigen-

of cytokine secretion have helped to explain the differentspecific, cell-mediated effector mechanisms and promote
immune effects of these cytokines. In 1986, Mosmannantibody production and antibody-mediated effector
et al demonstrated that functionally distinct subsets ofmechanisms. It has long been observed that some im-
CD41 T cells could be defined by their pattern of cyto-mune responses are associated with prominent cell-medi-
kine production. This led to the concept of Th1 and Th2
T-cell subsets in mice [7] and in humans [8]. DTH is

Key words: crescentic glomerulonephritis, membranous glomerulone- mediated by the Th1 subset of CD41 cells [9]. This Th1
phritis, delayed type hypersensitivity, immunoglobulin isotypes, macro- subset is characterized by the production of interferon-gphages, fibrin.

(IFN-g), interleukin (IL)-2, and lymphotoxin-a [tumor
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Fig. 1. T helper cell subsets, Th1/Th2. Interleu-
kin (IL)-12 drives differentiation of T cells to
the Th1 subset, which induces cell-mediated
immune responses of which the classic example
is the delayed type hypersensitivity (DTH) re-
sponse. IL-4 induces Th2 cell development,
humoral immunity, and components of imme-
diate type hypersensitivity. The IgG subclasses
listed are for the mouse.

Table 1. Human homologues of murine IgG subclasses, based onclearance of intracellular pathogens and are likely to be
their complement fixing and opsonising abilities and on changes

important in organ-specific autoimmune diseases. in isotype switching observed in response to Th1 and Th2 cytokines
In contrast, Th2 cells, defined by their propensity to

Mouse Humansecrete interleukin (IL)-4, IL-5, and IL-10, are important
Th1 IgG2a IgG1in allergy, mast cell/IgE-mediated immediate type hyper-

IgG3 IgG3
sensitivity responses, and helminth infections, in which Probably Th1 IgG2b IgG2

Th2 IgG1 IgG4protective responses are mediated by eosinophils. In ad-
dition, cytokines produced by Th2 cells act as regulators
of the immune response. IL-4, IL-13, and particularly
IL-10 regulate Th1 responses, suppress DTH, and have
inhibitory effects on macrophages, especially in the con- type switching to IgA is less clear. TGF-b induces switch-

ing to IgA [21], and this may indicate that IgA is associ-text of the activation by Th1 cytokines such as IFN-g
[10–13]. Th2 responses are associated with high levels ated with a separate T helper cell subset response (Th3).

Based on a comparison between the biological actionsof antibody production promoted by cytokines such as
IL-4 that stimulate B-cell growth. A simplified diagram of the IgG subclasses and their up- or down-regulation

in response to Th1 and Th2 cytokines, the human homo-of Th1 and Th2 response patterns is shown in Figure 1.
There have been several detailed reviews on the charac- logues of the murine IgG subclasses are given in Table 1.

In vivo studies have demonstrated that immune re-terization of Th1 and Th2 subsets and their relevance
to a number of infective and inflammatory diseases in sponses and disease outcomes following antigenic stimuli

are markedly influenced by the cytokine environment.rodents and in humans [6, 8, 14, 15].
The profile of immunoglobulin isotypes is heavily in- This phenomenon has been most thoroughly explored

in murine leishmaniasis [22]. Mice prone to Th1 responsesfluenced by the Th1/Th2 balance of the immune re-
sponse. This has been studied extensively, particularly (for example, the C57BL/6 strain) are protected from

ongoing infection with Leishmania major by a responsein the mouse [16–18], in which the levels of IgG1 (which
has a weak affinity for Fcg receptors) and IgG2a (which characterized by high levels of Th1 cytokines and DTH.

However, BALB/c mice develop persistent disease withis strongly complement fixing and has a high affinity
for Fcg receptors) have been related to the Th1/Th2 no DTH to Leishmania, hyporesponsiveness to IL-12,

and high levels of IgE and IL-4 production [22, 23].predominance of immune responses. A Th2, IL-4–
dominant response promotes a higher ratio of IgE and A number of models of organ-specific autoimmune

diseases, including insulin-dependent diabetes mellitusIgG1 to IgG2a, whereas Th1 response patterns (IL-12
and IFN-g driven) have higher IgG2a to IgG1 and IgE in non-obese diabetic mice [24], experimental autoim-

mune encephalomyelitis (EAE), autoimmune thyroiditisratios. In the mouse, IgG3 switching is also induced by
Th1 responses, and this isotype is complement fixing with [24], and experimental colitis [25], have been shown to

be initiated by Th1-mediated responses. In some of thesehigh Fcg receptor affinity [18]. IgG2b is less extensively
studied, but is induced by IL-12 [19] and by the absence models, treatment with IL-4 [26] or IL-10 [27–29] has

resulted in marked attenuation of disease with selectiveof IL-4 [20]. The relevance of Th1/Th2 responses in iso-
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reductions in Th1 responses. The transfer of memory the same study. MCP-1, but not MIP-1a, increased Th0
T cells transfected to produce IL-4 [30] or IL-10 [31] or Th2 IL-4 production [46], whereas MCP-1 decreased
ameliorated EAE. These results, plus analyses of the macrophage IL-12 production in granulomatous in-
effects of attempts at oral tolerance, have led to the flammation [47]. It is not clear whether these apparently
concept of “immune deviation,” which suggests that contrasting effects of MCP-1 are due to differential ef-
modifying the immune response with IL-4 and/or IL-10 fects on the direction in which Th0 cells are polarized
may lead to a diminution of inflammatory autoimmune or are due to the effect of MCP-1 on the accumulation
injury [32]. of effector Th1 cells.

The cytokine profile of antigen-stimulated CD41 T cells Although the concept of Th1/Th2 immune responses
and the pattern of T-cell immune responses are deter- provides a useful framework, it is perhaps overly simplis-
mined by a number of factors, including the type, dose, tic to consider that each immune response to an antigen
and route of antigen presentation, the epitope T-cell will be strictly either Th1 or Th2, with one type of re-
receptor binding affinity, the nature and degree of co- sponse being protective and the other harmful. The com-
stimulatory signals, and the genetic background of the plexity of infectious and inflammatory responses implies
animals. One of the most important and widely studied that some cytokines (or a single cytokine) within a Th1
factors is the cytokine milieu at the time of antigen pre- or Th2 grouping may have overlapping or, at times, op-
sentation [6, 14, 15]. IL-12 is crucial for the development posing functions. The findings relating to the role of
of Th1 responses [33], whereas IL-4 is required for the IFN-g in humans with multiple sclerosis and animals
generation of Th2 cells [15]. The presence of IL-12, which with EAE attest to this statement [48–50]. At a cellular
is not produced by T cells but by antigen-presenting level, there is some heterogeneity in the pattern of cyto-
cells such as macrophages and dendritic cells, polarizes kine secretion of Th1 and Th2 cells [51]. It has been
uncommitted T cells toward a Th1 profile [33]. In the suggested that the Th1/Th2 paradigm could be modified
absence of IL-12 during the initiation of the immune re- to include the concept that although an overall immune
sponse, T cells may lose future responsiveness to IL-12 response to a specific antigen may be predominantly Th1
because of a loss of the b2 subunit of the IL-12 receptor or Th2, antigen-specific T cells produce a spectrum of
[34]. This early loss of responsiveness to IL-12 is linked cytokines, with pure Th1 and Th2 cytokine profiles being
to a region of chromosome 11 [35], homologous with the at the extremes of a spectrum [52]. However, another
5q31 region in humans, which is in the same area as the review of the functional diversity of T helper lympho-
genes for a number of significant immunologic proteins, cytes refers to features that confirm the presence and
including IL-4, IL-5, and IL-12p40. Genetic loci for sus- relevance of the Th1/Th2 model in immune responses
ceptibility to EAE [36] and for susceptibility to insulin-

[14]. Two factors are cited: first, the clear pattern ofdependent diabetes mellitus in non-obese diabetic mice
antigen-specific Th1 or Th2 cell (and associated cyto-[37] have been identified in the same region of chromo-
kine) predominance in a number of diseases in both micesome 11. Loci within the p31 region of human chromo-
and humans, and second, the tendency for T helper cellsome 5 have been associated with chronically dysregu-
populations to become increasingly polarized and irre-lated Th2 responses, such as total IgE levels [38] and
versibly committed with chronic immune stimulation. Inbronchial hyperreactivity [39]. This suggests that genetic
addition to the extensive data pertaining to CD41 cells,predisposition to some immunologic disorders is medi-
there is now evidence for polarized Th1 and Th2 CD81

ated by a tendency to produce exaggerated or persistent
cells [53].Th1 or Th2 responses [40].

There is increasing evidence to support the relevanceRecent studies suggest that chemokines may influence
of Th1 and Th2 responses in human disease [6, 8]. Muchor be influenced by Th1 or Th2 patterns of the immune
of this evidence has been gathered using two methods.response. Evidence exists that macrophage inflammatory
Antigen-specific CD41 T-cell clones secreting predomi-protein-1a (MIP-1a), MIP-1b, and RANTES (regulated
nantly Th1 or Th2 cytokines in vitro have been isolatedon activation, normal T cell expressed and secreted) are
from affected tissues, fluid (for example, cerebrospinalassociated with Th1 responses [41, 42]. The evidence
fluid in multiple sclerosis or synovial fluid in arthritis),that monocyte chemoattractant protein-1 (MCP-1) plays
or associated lymphoid tissue. Panels of T-cell clonesa differential role in Th1/Th2 responses is less clear.
secreting either a Th1 or a Th2 profile of cytokines haveAntibodies to MCP-1 diminished skin DTH, including
been derived from humans with different infective andT-cell and monocyte infiltration [43], and mice geneti-
noninfective diseases. This approach has not been ap-cally deficient in CCR-2, the receptor for MCP-1, are
plied to the study of human GN. The second approachdeficient in Th1 responses [44]. On the other hand, there
has been the in vivo assessment for Th1 or Th2 patternsare data to support a role for MCP-1 in Th2 responses.
of cytokine mRNA using reverse transcription-polymer-MCP-1 induced Th0 cells to differentiate into a Th2
ase chain reaction (RT-PCR), Northern blotting, or inphenotype, and T cells cultured with MCP-1 could not

transfer EAE [45]. MIP-1a had the opposite effect in situ hybridization.
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Table 2. Non-infective conditions associated with predominant EVIDENCE FOR TH1/TH2 POLARIZATION OF
Th1 or Th2 effector responses in humans

NEPHRITOGENIC IMMUNE RESPONSES
Th1 Th2 IN GLOMERULONEPHRITIS
Multiple sclerosis [55–57] Asthma [58–60] A number of criteria can be established to distinguish
Autoimmune thyroiditis [61] Atopic dermatitis [62, 63]

polarized Th1 or Th2 nephritogenic immune responses.Graves ophthalmopathy [64] Vernal conjunctivitis [65]
Rheumatoid arthritis [66] Normal pregnancy [67] The criteria rely on the ability of these Th cell subsets to
Lyme arthritis [68] Idiopathic hypereosinophilia [69] be distinguished by their cytokine profile and the immune
Reactive arthritis [70] Omenn’s syndrome [71]

effectors they direct. These criteria are outlined in Table 3.Contact (nickel) dermatitis [72] SLE [73]
Type 1 diabetes mellitus [74] Scleroderma [75] A Th1-predominant nephritogenic immune response
Erythema nodosum [76] Chronic GVHD [75] should be associated with antigen presentation in the
Recurrent abortion [77, 78]

setting of IL-12 expression and the production of IFN-gPsoriasis vulgaris [79]
Renal allograft rejection [80] and IL-2 by Th1 cells. The effector responses would
Primary biliary cirrhosis [81] include the accumulation of T cells and macrophages,
Pulmonary sarcoidosis [82, 83]

as well as the deposition of “Th1 type” IgG subclassesCrohn’s disease [84]
in glomeruli. Th2-predominant nephritogenic immune
responses would be expected to demonstrate IL-4 and
IL-10 production by antigen-specific T cells. DTH re-
sponses would be weak or absent in glomeruli, and “Th2A number of host immune responses to infectious
type” IgG subclasses would be deposited. This schema ispathogens in humans demonstrate either Th1 or Th2
complicated by the fact that counterregulatory cytokines,predominance. For example, the immune response in
such as IL-10, are present within glomeruli of more se-tuberculosis is Th1 predominant, whereas T-cell re-
vere glomerular lesions [99]. However, in this study, thesponses to Toxocara canis have been characterized as
IL-10 observed was not shown to be a product of ThTh2 [54]. As well as the role of Th1 and Th2 subsets in
cells within the lesion. Its presence may reflect counter-infective immune responses, there have been numerous
regulatory mechanisms in the context of severe injurystudies of Th1 and Th2 predominance in noninfectious
rather than indicating the nature of the cognate, T-cell–diseases using clones and/or cytokine mRNA detection.
driven response to a nephritogenic antigen(s).These are summarized in Table 2. Organ-specific autoim-

More direct proof of Th1 predominance would includemune diseases and granulomatous diseases have been
the diminution of nephritogenic immune responses andlinked to predominant Th1 responses, whereas allergy,
associated GN by IL-4 and/or IL-10 administration orpregnancy, and some systemic autoimmune diseases
by the inhibition of Th1 cytokines IL-12, IFN-g, or IL-2.

have been linked to Th2 patterns of immune responses.
The administration of Th1 cytokines or inhibition of IL-4

Two recent studies provide data for a genetic basis or IL-10 should enhance Th1 responses and exacerbate
for Th1 or Th2 predominance in human populations. the severity of associated GN. Th2-predominant immune
Oro et al [85] found a lower incidence of IgE-mediated responses would be enhanced by IL-4 and/or IL-10.
disease in people with multiple sclerosis than in normal Blockade of these cytokines should diminish Th2-depen-
individuals and Shirakawa et al [86] found an inverse dent immune responses and the associated antigen-specific
relationship between tuberculin skin DTH and atopy in Th2-type IgG response. Th2 immune responses might
Japanese school children. be diminished or deviated toward Th1, with potentially

There are different patterns of immune effector re- more severe glomerular injury if Th1 cytokines are ad-
sponse in different forms of GN. Many studies have ministered. For these criteria to be completely assessed,
addressed the roles of individual cytokines in vivo or in the antigen inducing the nephritogenic immune response
vitro. It is important to interpret the findings of these must be known. Because of the potential hazards of
studies in the context of the underlying immune response inappropriate in vivo cytokine administration, complete
and to assess whether the immune effectors and cyto- assessment of these criteria is likely to occur in only
kines indicate either a predominant Th1 or Th2 pattern experimental GN.
in individual forms of GN. The relevance of Th1 and Th2 A number of limitations constrain the evaluation of
pathological responses in a number of different nonrenal nephritogenic responses in human GN. In a vast majority
diseases is increasingly recognized. The initiation and of cases, the precise nature of the disease-initiating anti-
regulation of these responses are currently being defined. gen is unknown, so the characteristics of the antigen-
If some or all of the patterns of GN suggest Th1 or Th2 specific immune response cannot be clearly defined. The
predominance of the nephritogenic immune responses, conditions influencing polarization of the immune re-
this knowledge may allow rational and targeted biologi- sponse are usually unknown. Even in situations in which
cal therapies to be developed to manage the outcomes GN is associated with strong responses to identified anti-

gens (for example, antinuclear antibodies or antibodiesof GN more effectively.
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Table 3. Idealized criteria used in this review for the assessment of Th1/Th2 predominance in GN.
In part b), references from experimental models of GN that fulfill the criteria are quoted

(a) Observational data Th1 Th2

DTH effectors in glomeruli T cells, macrophages, fibrin present T cells, macrophages, fibrin absent
IgG subclasses in glomeruli IgG1, IgG3 (human) IgG4 (human)

IgG2a, IgG3 (rodent) IgG1 (rodent)
Cytokines in glomerulia IL-12, IL-2, IFN-g Absence of Th1 6 IL-4, IL-10

Antigen-specific systemic immune response Skin DTH present Skin DTH absent
IgG1, IgG3 (human) IgG4 (human)
IgG2a, IgG3 (rodent) IgG1 (rodent)
IL-2, IFN-g IL-4, IL-10

(b) Functional inventions Th1 Th2

Administering IL-12 and/or IFN-g (Th1 cytokines) Augments GN [87] Attenuates GN [88] or shifts to Th1 type GN [87]
Blocking Th1 cytokines Attenuates GN [89–91]
Administering IL-4 and/or IL-10 (Th2 cytokines) Attenuates GN [92–94]b Augments GN [96]
Blocking Th2 cytokines Augments GN [95] Attenuates GN [97, 98]

a Assessment of this parameter is complicated by the possibility that counterregulatory cytokines produced by effector cells or intrinsic glomerular cells may be
present within the lesion

b Also see (abstract; Fouqueray et al., J Am Soc Nephrol 7:1698, 1996)

against extractable nuclear antigens), proof of the causal- predominant nephritogenic immune responses. A num-
ity of particular antigens in the induction of glomerular ber of immunohistochemical studies have demonstrated
injury is indirect or circumstantial. Finally, Th1 or Th2 the prominent participation of DTH effectors (macro-
cytokines have not been administered or selectively in- phages, T cells, and fibrin) in this form of GN [100–107].
hibited in human GN. However, observations of the pat- These observations apply to all forms of crescentic GN,
tern of GN observed in people given IL-2 or IFN-g for regardless of the immunohistological category or the pat-
other diseases provide evidence for Th1 predominance tern of immunoglobulin participation. Crescent forma-
in some forms of GN. tion complicates many forms of GN but is most promi-

There is no comprehensive study of the Th1/Th2 pre- nent in anti-glomerular basement membrane (GBM) GN
dominance of an antigenic-specific nephritogenic human and “pauci immune” antineutrophil cytoplasmic anti-
response in GN. There have been many studies of the

body (ANCA)-associated GN. Although both demon-cytokines produced by peripheral blood mononuclear
strate significant T-cell and macrophage influx, the for-cells in various types of human GN. Most of these use
mer demonstrates strong linear IgG deposition, whereaswhole cell populations without antigen-specific stimula-
the latter is characterized by a paucity or absence oftion, and results attributing the cytokine profile to the
immunoglobulin in glomeruli. The variable participationantigen-specific nephritogenic immune response must be
of humoral immunity and the invariant appearance ofinterpreted with caution. Some attempts have been made,
effectors of DTH suggest that cell-mediated immunityusing biopsies of patients with GN, to determine the pat-
is likely to play a predominant role in the developmenttern of cytokines produced within kidneys. Although these
of crescentic GN. These observations are supported byare more relevant, many of these studies have examined

the presence of only one or two cytokines and, therefore, specific experimental studies that confirm the potential
do not provide sufficient data to allow a Th1/Th2 pre- for T-cell–directed immunity to account alone for the
dominance to be determined. However, the immunohis- full expression of crescentic GN [89, 108–111]. The likely
tological evaluation of renal biopsies has provided a great importance of DTH effectors in crescentic GN is consis-
deal of information on the nature of the immune ef- tent with Th1 direction of these forms of GN.
fectors in glomeruli. The immunoglobulin isotypes de-
posited in glomeruli and the presence or absence of DTH Anti-glomerular basement
effectors permit an assessment of the predominance of membrane glomerulonephritis
Th1 or Th2 immune effectors in several subtypes of GN. As well as the prominent participation of Th1 effectors

in glomeruli, recent studies have confirmed the presence
TYPES OF HUMAN GLOMERULONEPHRITIS of circulating T cells specifically reactive with the nephri-
LIKELY TO HAVE TH1-PREDOMINANT togenic epitopes derived from GBM [112, 113]. The spe-
NEPHRITOGENIC IMMUNE RESPONSES cific antigen-stimulated cytokine profiles of these T cells
Crescentic glomerulonephritis have not been reported. Anti-GBM disease is strongly

associated with (and clinically diagnosed by) the presenceIn crescentic GN, the pattern of glomerular immune
effectors strongly suggests that injury results from Th1- of anti-GBM antibody. Studies of the IgG subclasses of
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these antibodies in the circulation and/or deposited in gest that the immune response relevant to renal injury
in this disease is Th1 predominant. Moreover, in otherthe kidney show the predominance of Th1 subclasses
granulomatous diseases, such as tuberculosis, antibody(IgG1 and/or IgG3), although IgG4 was also noted [114–
plays a relatively minor role.117]. Further analysis provided in some of these reports

supports a role for Th1 responses. In the study of Weber
Membranoproliferative glomerulonephritiset al, only IgG1 (directed against GBM) was elevated

Few studies are available to allow assessment of theout of proportion to the total IgG subclass levels in sera
polarization of Th responses in membranoproliferative[114]. The presence of IgG4 anti-GBM antibodies has
GN. The published reports suggest that Th1 responsesbeen noted in a minority of patients, predominantly older
may direct injury in this condition. IgG3 (Th1-type sub-females [117]. The presence of Th2-type IgG4 anti-GBM
class) is the predominant subclass in glomeruli [123, 124],antibodies was reported in a patient in which active dis-
and autoantibodies to solid phase C1q are restricted toease did not recur after treatment of anti-GBM GN,
IgG3 [125]. The presence of glomerular DTH effectorswhereas in another patient, recurrent GN was associated
[104] is also consistent with a predominant Th1 responsewith the reappearance of IgG1 in the serum [115]. Taken
directed toward as yet unidentified antigens in glomeruli.together, these data suggest Th1 predominance of the

injurious anti-GBM autoimmune response. Th1 cytokine-induced
crescentic/proliferative glomerulonephritis“Pauci immune” crescentic glomerulonephritis

The increasing application of cytokine therapy for ma-Most patients with crescentic GN have glomerular in-
lignant and autoimmune diseases has produced a numberjury characterized by the absence or paucity of glomeru-
of outcomes, suggesting that Th1 cytokines direct cres-lar antibody deposition. The demonstration of DTH ef-
centic GN in humans. The Th1-associated cytokinesfectors (macrophages, T cells, and fibrin) in glomeruli
IFN-g and IL-2 used for the treatment of rheumatoidin the absence or paucity of immunoglobulin [100, 104,
arthritis and malignancy, respectively, have been associ-107] provides strong evidence for a predominant Th1
ated with the development of crescentic nephritis. Twonephritogenic immune response.
patients treated with IFN-g for rheumatoid arthritis de-Patients with active Wegener’s granulomatosis have
veloped systemic lupus erythematosus (SLE) with prolif-HLA-DR1 CD41 cells in the peripheral blood that pro-
erative and/or crescentic GN [126, 127]. Another patientduce increased IFN-g (but not IL-4, IL-5, or IL-10) com-
who retrospectively probably had IgA disease developed

pared with normal donors or to those with inactive disease crescentic GN following IL-2 therapy [128]. Two further
[118]. This increased IFN-g production was inhibited by patients developed either crescentic or severe prolifera-
exogenous IL-10. Monocytes from these patients pro- tive GN de novo in association with IL-2 treatment [129].
duced increased IL-12, although this increase also oc- These data strongly support the argument that Th1 cyto-
curred in those with inactive disease. Increased levels of kines direct crescentic GN in humans.
markers of cell-mediated immunity, including neopterin,
TNF receptor, and IL-2 receptor, are present in active

SUBTYPES OF HUMANdisease and correlate with disease activity [119].
GLOMERULONEPHRITIS WITH EVIDENCEThis form of GN is strongly associated with the pres-
FOR PREDOMINANT Th2 NEPHRITOGENICence of circulating ANCAs. The role of this antibody in
IMMUNE RESPONSESthe development of glomerular injury remains unclear.

The subclasses of these antibodies have been variably Membranous glomerulonephritis
reported to be Th1 type or Th2 type. The ANCAs most This form of GN is characterized by IgG and comple-
potent in inducing neutrophil activation are the Th1 ment deposition in glomeruli. The analysis of renal biop-
IgG3 subclass [120]. sies for DTH effectors is consistently negative. A number

To complicate this analysis further, the predominant of reports have shown that IgG4 (Th2-type subclass)
ANCA subclass has been reported to vary according to predominates in renal biopsies [123, 130–133]. This pat-
the particular neutrophil antigen to which it is directed tern is observed in both idiopathic- and lupus-associated
[121]. The subclass of ANCA also may vary according membranous GN [131, 132]. Although it is possible that
to the time of assessment in the disease process and the affinity and/or size of immune complexes is relevant
activity of disease. IgG3 is most commonly reported as to their subepithelial localization in membranous GN,
the predominant subclass involved. IgG3 subclass ANCA there is evidence that systemic immune responses in this
is associated with the onset of disease and correlates disease are characterized by the presence of IgG4. IgG4
with presence and severity of renal disease [122]. is overrepresented in the circulating immune complexes

In summary, pauci immune GN is distinguished from [134] and predominates in serum cryoglobulins [132] in
other forms of GN by the predominance of glomerular membranous GN. Although limited, these data would

suggest that the initiating glomerular antigen in membra-DTH effectors and paucity of antibody. These data sug-
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nous GN initiates Th2-type predominantly humoral im- Lupus nephritis
mune responses in membranous nephropathy. It is difficult to ascribe the autoimmune systemic re-

sponses of SLE to either purely Th1 or Th2, althoughMinimal change glomerulonephritis
the majority of evidence suggests that dysregulated IL-

The absence of humoral and cellular immune effectors 10 might be important. Particular immunoglobulin iso-
in glomeruli makes it difficult to argue strongly that this types in serum or the predominant cytokines of blood
form of GN results from immune responses directed to- mononuclear cells vary with the severity of disease,
ward endogenous or planted/deposited exogenous anti- whether unstimulated or mitogen-stimulated cells are
gens. However, many reports suggest systemic immune studied, or with the particular autoantigen studied. Blood
activation in this condition with evidence of the produc-

mononuclear cell cytokine profiles (unstimulated or mi-
tion of a humoral substance with significant effects on

togen stimulated) have been more frequently reportedvascular permeability [135–137]. The reports of produc-
to be Th2 rather than Th1. Dysregulated and increasedtion of Th2-type cytokines by peripheral blood mononu-
production of IL-10 from B cells and monocytes [73,clear cells and association with IgE, IgG4 production, and
156–159] have been demonstrated and may have a ge-atopy [138, 139] suggest that the systemic immune activa-
netic basis [160]. IL-4 has been reported as being in-tion associated with minimal change GN is the Th2 type.
creased [158, 161, 162], whereas reduced IL-12 [163] and
IFN-g [158, 164] have been commonly reported. How-

TYPES OF HUMAN GLOMERULONEPHRITIS ever, less frequent reports of increased production of
WITH EVIDENCE FOR HETEROGENEITY OF IFN-g and IL-2 have been noted together with reduced
Th1/Th2 PREDOMINANCE IL-4 [165]. Elevation of serum neopterin levels [166] and
IgA nephropathy soluble IL-2 receptor levels correlating with disease is

indirect evidence of involvement of cell-mediated auto-There is no clear evidence for either Th1 or Th2 pre-
immunity.dominance in IgA-associated GN. Although this disease

Despite these observations, the profile of autoanti-is characterized by glomerular IgA deposition, IgG de-
body subclasses in lupus is more often reported to beposits are also observed. The subclasses of these deposits

are predominantly IgG1 and IgG3 (Th1 isotypes) [140]. of the Th1 pattern with predominant IgG1 and IgG3
The participation of DTH effectors is seen in only a [167–171] and reduced levels of IgG2 and IgG4 [172].
minority of patients, typically those with crescentic IgA Some reports have noted a Th2 (IgG2, IgG4 predomi-
disease [106]. The pattern of renal cytokine expression nant) response to some autoantigens, whereas the same
suggests both Th1 and Th2 involvement, with IL-4 expres- sera show Th1 (IgG1, IgG3) responses to others. Serum
sion emphasized in some reports [141–143] and IFN-g cryoglobulins in proliferative lupus nephritis are IgG3
expression emphasized in other reports [144, 145]. The and IgG4 in membranous lupus nephritis [132]. Reports
cytokines found in serum or produced by peripheral blood suggest that in patients with lupus nephritis, IgG1 and
mononuclear cells also suggest participation of either Th2 IgG3 autoantibodies correlate with activity [173].
[146, 147], Th1 [148–150], or both Th1 and Th2 involve- In the kidney, the pattern of IgG subclasses varies
ment [144, 151, 152]. with the histologic pattern of disease. Proliferative and

There is evidence that abnormal glycosylation of IgA crescentic forms of GN are associated with Th1 immuno-
is relevant to the glomerular deposition of IgA in IgA globulin subclasses [132] and prominent influx of DTH
nephropathy [153, 154]. A recent report has implicated effectors, macrophages, T cells, and fibrin. Nonprolifera-
Th2 responses in this process [155]. The addition of IL-4

tive lupus nephritis (membranous) is characterized by
and IL-5 to B cells significantly altered the terminal gly-

the deposition of IgG4 [132] and the absence of DTHcosylation of IgA, which may promote deposition of IgA
effectors [174]. IL-4 mRNA has been detected in thein glomeruli.
glomeruli of patients with lupus nephritis, and its expres-Given the wide spectrum of severity and outcome in
sion was inversely correlated with the degree of glomeru-IgA nephropathy, it may be simplistic to assume that
lar injury [143].all nephritogenic immune responses in this disease are

These observations suggest that the Th1/Th2 profilesimilar. It may be possible that the pattern of immune
of the immune response is heterogeneous in SLE andresponses in this condition differs among individuals.
that immune cells other than T cells are producing cyto-Polarization toward a Th1 response may be most promi-
kines, particularly IL-10, which may be important in dis-nent in the subgroup with strong evidence of glomerular
ease pathogenesis. However, the reactants in nephriticDTH, that is, crescentic IgA GN. The occurrence of
glomeruli support the argument that Th1 responses in-synpharyngitic crescentic GN may be induced by in-
duce DTH effectors and proliferation and crescentic GN,tercurrent antigen stimuli (for example, sepsis) polariz-
whereas Th2 responses lead to less severe nonprolifera-ing the nephritogenic immune responses in susceptible

humans toward Th1. tive, predominantly humorally-mediated renal injury.
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EXPERIMENTAL MODELS OF the lesion was CD41 dependent in the effector phase.
GLOMERULONEPHRITIS Depletion of CD41 cells at antigen challenge (that is,

after the establishment of the immune response) resultedMuch of our knowledge of the immunopathogenesis
in the abrogation of crescent formation and a markedof GN comes from the study of experimental models.
reduction in the severity of GN without affecting theEvidence suggests that similar events are likely to occur
titers or glomerular deposition of antibody [89].in various forms of human GN. Many studies provide

Murine models provide an opportunity to test the rele-data relevant to the evaluation of the role Th1 and Th2
vance of Th1/Th2 predominance to the pattern of GNsubsets in determining the pattern of injury and outcome
by in vivo manipulation of key Th1 and Th2 cytokines.of disease. Many of the criteria for Th1/Th2 predominance
The contribution of a number of the cytokines involvedin GN (Table 3) have been tested in experimental GN.
in the initiation and maintenance of Th cell responses

Glomerulonephritis induced by anti-glomerular (IL-12, IFN-g, IL-4, and IL-10) has been explored. Sev-
basement membrane globulin or glomerular eral studies using the anti-GBM model support the hy-
basement membrane extracts pothesis that crescent formation in C57BL/6 mice is a

manifestation of predominant Th1 responses to nephri-Proliferative GN may be induced passively by the in-
togenic antigens [87, 89, 91–93, 95]. Interleukin-12, pro-jection of heterologous anti-GBM antibodies into naive
duced by antigen-presenting cells, acts on uncommittedanimals. This results in transient glomerular injury medi-
T cells to induce differentiation into Th1 cells [33]. Block-ated by activation of complement and recruitment of
ade of IL-12 by a neutralizing monoclonal antibody at-neutrophils [175]. As there is no involvement of an active
tenuated crescent formation and glomerular injury (butimmune response, there is no role for cognate T cells,
had little overall effect on humoral responses), whereasor T helper cell subsets. The autologous phase of anti-
the administration of recombinant murine IL-12 to miceGBM is characterized by cognate autologous immune
with mild GN accelerated this disease and induced severeresponses to an antigen (heterologous immunoglobulin)
crescentic GN [87].planted in the glomerulus. Sensitization to the heterolo-

Interferon-g, produced by Th1 cells, activates macro-gous immunoglobulin prior to the administration of anti-
phages and may play a role in the induction and mainte-GBM globulin accelerates the induction of GN. Autoim-
nance of the Th1 response. Neutralization of IFN-g withmune forms of anti-GBM GN can be induced by immuni-
a monoclonal antibody attenuated crescent formationzation with GBM antigens and involve loss of tolerance
and diminished renal injury in an accelerated murinewith immune responses against the GBM itself. The lat-
model of anti-GBM GN, emphasizing the importance ofter two models of GN result in severe crescentic injury
Th1 effectors in this crescentic disease. This was associ-in which the role of Th1/Th2 subsets can be dissected.
ated with fewer glomerular macrophages but no effectOne approach has been to use strains of mice with
on the circulating titers of antigen-specific antibody [89].different Th1/Th2 predominance in their immune respon-
These findings have been supported by recent experi-siveness. Only mice with Th1 predominance develop
ments demonstrating that mice genetically deficient insevere crescentic GN. C57BL/6 mice develop healing
IFN-g developed fewer crescents, diminished glomerularresponses following Leishmania major infection because
CD41 T cells, macrophages, and fibrin together with athey develop Th1-dominated immune responses [22].
lesser degree of functional injury [91]. Haas et al alsoWhen sensitized C57BL/6 mice were challenged with
reported lesser renal injury in the same model of cres-antimouse GBM globulin, they exhibited strong DTH
centic GN in IFN-g receptor-deficient mice [90], al-responses and predominant IFN-g production by anti-
though the extent of some of the reductions in diseasegen-stimulated T cells consistent with a Th1 response.
parameters, including glomerular crescent formation, didTheir pattern of glomerular injury showed crescent for-
not reach statistical significance.mation, glomerular accumulation of CD41 cells, macro-

Interleukin-4 is produced predominantly by T cellsphages, and prominent fibrin deposition (Fig. 2) [89].
and is one of the determinants of the Th1/Th2 balance.The accumulation of effector of DTH implies a Th1-
When GN was induced in Th1-prone mice geneticallydriven immune response in glomeruli. The presence of
deficient in IL-4, they developed antigen-specific im-fibrin, a product of this Th1 response, may amplify the
mune responses that were more polarized toward Th1inflammatory response via its chemotactic effects on
(increased skin DTH, decreased IgG1, and increasedmacrophages [176]. Although autologous antibody was
IgG3) compared with genetically normal, strain-matcheddeposited in glomeruli in this model, it is not essential
mice. These changes translated into markedly increasedfor crescent formation because mice with a genetic in-
renal impairment, increased glomerular crescent forma-ability to produce antibody (immunoglobulin m chain
tion, and increased accumulation of glomerular effectorsgene knock-out mice) still developed crescentic disease

of similar severity to normal mice [111]. Furthermore, of DTH [95]. These data suggest that in Th1-prone mice,
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Fig. 2. Different patterns of glomerular injury in C57BL/6 and BALB/c mice with anti-glomerular basement membrane glomerulonephritis (anti-
GBM GN). Th1-prone C57BL/6 mice develop proliferative GN with frequent glomerular crescent formation (A). BALB/c mice (Th2 prone relative
to C57BL/6 mice) develop GN with paucity of DTH effectors and sparse crescent formation (B; silver methenamine/acid fuchsin stain; magnification
3400).

endogenous IL-4 attenuates crescentic GN by modulat- GBM globulin to sensitized C57BL/6 mice reduced glo-
merular crescent formation and preserved renal functioning the Th1/Th2 balance of the immune response.

The administration of Th2 cytokines provides another [93]. In the same study, IL-10 treatment showed a trend
to reduced crescent formation, whereas IL-4 alone hadway of modulating Th1 responses and examining the

effects on the development of GN. Treatment with either no effect on crescent formation or renal function. Al-
though all treatments had some effect on the accumula-IL-4 or IL-10 or both selectively inhibited Th1 systemic

and nephritogenic immune responses [92] when given tion of glomerular CD41 cells and macrophages, there
were no changes in the systemic immune response toprior to the initiation of anti-GBM GN. Skin DTH was

reduced, as was IFN-g production, by splenic T cells. sheep globulin (IgG subclasses, splenic T-cell IFN-g),
suggesting that the Th1/Th2 balance between the re-Total circulating antigen-specific immunoglobulin was

unaltered, but levels of IgG2a and IgG3 were selectively sponding subsets has not been altered. The synergistic
effect of IL-4 and IL-10 has been observed in otherreduced. Glomerular crescent formation was abrogated,

and glomerular effectors of DTH (CD41 T cells, macro- models of Th1-mediated immune responses [177, 178].
The diminution of GN is likely to be due at leastphages, and fibrin) were diminished. Proteinuria was de-

creased in all treated groups, and the combination of partially to immunomodulatory properties of IL-4 and
IL-10 on the cellular effectors of injury. Support forIL-4 and IL-10 prevented the renal impairment, whereas

IL-10 alone provided partial protection of renal function. this conclusion comes from a study by Tipping et al that
assessed the T-cell independent effects of IL-10 in a mac-The beneficial effects of IL-4 and/or IL-10 treatment

prior to disease initiation raise the important prospect rophage-dependent model of anti-GBM GN induced in
Wistar-Kyoto rats by passive administration of autologousof using these cytokines to treat established disease. This

prospect has now been addressed by five studies using antibody (abstract; Tipping et al, Nephrology 3:S231,
1997). In this model, rats develop glomerular macrophagerodent models. Combined treatment with IL-4 and IL-

10 commenced 72 hours after the administration of anti- accumulation and proteinuria, which were attenuated by
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IL-10 treatment. Phenotypic markers of glomerular macro- antigen and crescentic GN with mononuclear infiltrates
and antibody deposition [181]. This disease could bephage activation were also reduced in IL-10–treated rats.

Three further studies have examined the effects of transferred to T-cell receptor-deficient mice by lympho-
cytes from nephritic mice. Susceptibility to nephritis wasIL-4 or IL-10 on accelerated anti-GBM GN in inbred

Sprague-Dawley rats, a strain in which the Th1/Th2 bal- associated with a Th1-like Th cell response, with IL-12
and IFN-g detectable in glomeruli (but not IL-4 or IL-ance of the responding T-cell subsets has not been de-

fined. In these studies, cytokine treatment was com- 10) and antigen-specific IgG2a. Nonsusceptible strains
did not develop glomerular cellular infiltrates, and nei-menced after sensitization but immediately prior to

antigen challenge. Tam et al reported that rat IL-4 re- ther IL-12 nor IFN-g was detectable in glomeruli. In
resistant mice, although antibody was deposited in glo-duced proteinuria and histologic indices of renal injury in

a noncrescentic model, but had no effect on the systemic meruli and total serum levels of antigen specific antibody
were unaltered, IgG2a was barely detectable, indicatingimmune response to the nephritogenic antigen [94]. They

observed a modest reduction in glomerular macrophage a poor Th1 response. A susceptible strain, SJL/J, could
be tolerized orally to a3(IV) NC1 collagen, with resultingnumbers and an up-regulation of mRNA for IL-1 recep-

tor type II, which acts as a decoy receptor for IL-1. abrogation of crescent formation. The development of
tolerance was associated with reduced serum IgG2a lev-Interleukin-10 gene transfer into rats either by transfer

of transfected mesangial cells or by transferring the IL- els, whereas serum IgG1 levels were unaffected. IL-12
was undetectable in glomeruli. These findings in autoim-10 gene into skeletal muscle reduced proteinuria in the

autologous phase of the disease (abstract; Fouqueray mune anti-GBM GN support the data from other models
that crescent formation results from Th1 responses toet al, J Am Soc Nephrol 7:1698, 1996). Chadban et al

administered murine IL-10 to inbred Sprague-Dawley nephritogenic antigens.
BALB/c mice produce IL-4, have reduced DTH re-rats and found no change in crescent formation [179].

Treated rats developed an immune response against mu- sponses, and do not heal when infected with Leishmania
major because of an ineffective Th1 immune response torine IL-10, which the authors state may have contributed

to the renal injury observed in the treated animals. Renal this pathogen [22]. Accelerated anti-GBM GN in BALB/c
induced glomerular injury with only occasional crescentexpression of MCP-1 and IL-1b mRNA was reduced by

high-dose IL-10, but glomerular macrophage numbers formation (5% to 10% of glomeruli; Fig. 2) and absent
cutaneous DTH to the nephritogenic antigen. Their ne-were increased. High-dose treatment also increased anti-

gen-specific antibody levels in the serum but not the phritis was humorally mediated and was not CD41 de-
pendent in the effector phase [89, 182]. Only the minorimmunoglobulin deposition in glomeruli. Although skin

DTH was reduced, the accumulation of T cells in glomer- crescentic component was blocked by CD41 depletion
[89]. Marked crescent formation in this strain was in-uli was not assessed. Although it is not clear how this

study contributes to the understanding of the nephrito- duced by administration of IL-12 [87], but IL-4–deficient
mice did not develop severe crescentic GN (in contrast togenic immune response, it indicates the need for careful

dose selection in the pharmacological use of IL-10 in GN. the findings in mice that do make normal Th1 responses)
[87]. Therefore, in mice with intact IL-12 responses, theOther studies support the hypothesis that Th1 re-

sponses initiate proliferative and/or crescentic GN in observed Th1-predominant nephritogenic immune re-
sponse is negatively regulated by endogenous IL-4 [95].anti-GBM models. Coelho et al studied the role of cellu-

lar immunity in a noncrescentic model of anti-GBM GN In this context, the findings in BALB/c IL-4 2/2 mice
suggest that in mice that do not generate predominantin two inbred rat strains [180]. Lewis rats are susceptible

to Th1-mediated organ-specific immune diseases such as Th1 responses, endogenous IL-4 has little regulatory ef-
fect on cell-mediated nephritogenic immune responses.EAE, whereas the Brown-Norway strain develop Th2

based autoimmunity when injected with HgCl2. Four These experiments show that the BALB/c strain that
is resistant to Th1 responses, cell-mediated glomerulardays after the induction of GN in sensitized rats, both

strains had developed similar humoral responses to injury, and crescent formation is genetically deficient at
the level of the IL-12/IL-12 receptor system and implysheep globulin; however, the degree of renal injury was

more pronounced in Lewis rats. They developed more that the presence of normal IL-12 production and re-
sponsiveness is critical to nephritogenic Th1 responses.skin DTH and increased numbers of glomerular T cells

and macrophages than Brown-Norway rats. The authors These studies in murine GN support the available hu-
man data on Th1 predominance of crescentic GN. Mouseconclude that the increased susceptibility of Lewis rats

to this disease was due to their capacity to mount a Th1 strains prone to predominant Th1 nephritogenic immune
responses develop crescentic GN, which is CD41 effectorimmune response.

Kalluri et al demonstrated that susceptible strains of dependent, antibody independent, feature prominent
DTH effectors, and are associated with the presence ofmice immunized with a3(IV) NC1 collagen developed an

autoimmune response directed against the Goodpasture Th1 cytokines in glomeruli. In these strains, cytokine
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manipulations, which inhibit Th1 responses attenuate proliferative GN that may result in development of cres-
cents, as well as lymphadenopathy, vasculitis, and arthritis.GN, whereas those that amplify Th1 or inhibit Th2 re-

Although somewhat conflicting, studies of the cyto-sponses exacerbate disease. In a strain without Th1 pre-
kine and antibody isotype profiles in lupus mice providedominance (BALB/c), enhancing Th1 responses via IL-
evidence of involvement of both Th1 and Th2 subsets.12 administration can induce crescentic GN.
Increased expression of IL-4 mRNA in the thymus andA number of studies have examined Th1 and Th2
spleen has been reported during the early stages of dis-cytokines in the heterologous phase of anti-GBM GN in
ease in MRL/lpr mice [187]. Mitogen-stimulated T cellswhich active cognate immune responses are not involved.
from NZB/W mice produce higher levels of Th2 cyto-The presence of IL-4, IL-10, and IL-13 mRNA in renal
kines (IL-4 and IL-10) and lower levels of Th1 cytokinestissue in a rat model has been suggested to be linked to
(IFN-g and IL-2) than C57BL/6 mice [188]. These datathe production of anti-inflammatory eicosanoids [183].
suggest Th2 involvement. On the other hand, involve-IL-10 [184], but not IL-4 administration [94], was protec-
ment of Th1 immune responses is suggested by a numbertive in rats, whereas IL-4–deficient mice developed in-
of studies. The ratio of IFN-g to IL-4 secreting cells increased proteinuria [185]. These observations suggest
MRL/lpr mice is increased compared with MRL 1/1potential effects of Th1/Th2 cytokines on the response
mice [189]. IL-12 levels are increased in sera of MRL/of intrinsic glomerular cells to injury or may be explained
lpr mice [190]. Nucleosomal peptide epitopes stimulatedby effects of these cytokines on neutrophils. IL-12 did
production of Th1 cytokines and induced severe lupusnot increase proteinuria in the heterologous phase of
nephritis in SWR 3 NZB F1 mice [191]. In the kidney,anti-GBM–induced injury in naive mice (abstract; Kitch-
Th1 cytokine mRNA has been detected. IL-12 proteining et al, J Am Soc Nephrol 8:458–459, 1997).
and mRNA is up-regulated in tubular cells and macro-Some cytokines integral to the Th1 or Th2 systemic
phages [192], whereas IFN-g is overexpressed and isimmune response may be produced by or may affect
associated with enhanced MHC II [193].intrinsic glomerular cells. However, there is no evidence

Although the pattern of cytokine expression in lupusthat Th1 or Th2 cytokines produced by intrinsic glomeru-
mice does not clearly identify a predominant role forlar cells are involved in the initiation of nephritogenic
either Th1 or Th2 subsets, there has been considerableimmune responses. Although intrinsic glomerular cell-
work in MRL/lpr mice suggesting a pathogenic role forderived Th1- or Th2-type cytokines may interact with
IgG3, a Th1-type IgG subclass [194–197]. In four strainsimmune effector cells, there is no evidence that the pat-
of MRL mice, including those with the Yaa gene, diseasetern of effector responses is regulated by cytokines pro-
progression correlated with increased production ofduced in the target organ. Although there is the potential
IgG2a and IgG3 anti-DNA autoantibodies and increased

for significant interaction between intrinsic glomerular
IFN-g production but not with IgG1, IL-4, or IL-10 pro-

cells and immune cells, there is no evidence that the overall duction [195]. Although IgG2a is the dominant subclass
pattern of immune response is dictated by these interac- of autoantibodies in the serum of MRL/lpr mice, IgG3
tions, as opposed to the systemic immune response. autoantibodies show a greater tendency to form immune

complexes, and their kidney deposition is higher thanExperimental immune-complex glomerulonephritis
IgG2a [194]. IgG3 monoclonal antibodies with cryoglo-

Murine lupus nephritis. In experimental anti-GBM bulin activity derived from lupus-prone mice induce
GN, Th1-driven nephritogenic immune responses induce “wire loop” lesions in glomeruli [196] and are nephrito-
glomerular DTH and crescent formation, whereas anti- genic independent of their capacity to form immune com-
body responses play only a minor role. In contrast, in plexes [196, 197].
mice developing lupus-like syndromes, antibody produc- Studies of the effects of administration of recombinant
tion is essential for development of GN [186]. In these cytokines and monoclonal antibodies and the use of gene
models, injury is mediated substantially by autoantibod- knock-out and transgenic mice have produced data that
ies and immune complex deposition, and a major role support a role for both Th1 and Th2 subsets in lupus
for DTH responses has not been demonstrated. The nephritis. The transfer of either IL-4– or IL-12–stimu-
available data on the role of Th1 and Th2 cytokines in lated splenocytes to NZB/W mice promoted immuno-
lupus nephritis suggest that both Th1 and Th2 immune globulin synthesis and anti-dsDNA antibody production
responses are required for maximal autoantibody pro- [198]. A majority of studies suggest that blocking or
duction and full expression of GN. Lupus-like syndromes deleting either Th1 (IFN-g, IFN-gR) [199–203] or Th2
develop spontaneously in the MRL/lpr strain [including cytokines (IL-4 or IL-10) [199, 204] diminished disease,
MRL/lpr mice carrying an autoimmune acceleration gene with variable effects on total autoantibody levels but
(Yaa) on the Y chromosome] and NZB/W F1 hybrid mice. with the appropriate shifts in IgG subclasses. Particular
These syndromes are associated with development of emphasis has been placed on the role of IFN-g, mainly

in the generation of autoantibodies. However, one studyautoantibodies and lymphoproliferation. Mice develop
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in particular has addressed its role in promoting cell- are associated with preferential activation of Th2 and
Th1 T cells, respectively [218]. Treatment with anti-IL-4mediated effector responses in renal injury, finding that

MRL/lpr IFN-gR–deficient mice had reduced T cells and monoclonal antibody abrogated the IgE increase, attenu-
ated the IgG1 response to HgCl2, and shifted the sub-macrophages in glomeruli [203]. In a study of IL-10 in

NZB/W mice, anti-TNF-a antibodies abolished the pro- classes of antinuclear antibodies to increased levels of
IgG2a, IgG2b, and IgG3 [98]. Resistance to auto-anti-tection afforded by blocking IL-10, suggesting that up-

regulation of endogenous TNF-a may also play an im- body formation in HgCl2-treated B10.D2 mice was re-
versed by anti-IFN-g monoclonal antibody, but GN wasportant role [204]. The administration of IL-12 [190],

IFN-g [202], or IL-10 [204] enhanced disease. IL-10 ad- not induced [219]. In B10.S mice, treatment with rIFN-g
limited the increase in serum IgE but did not preventministration accelerated the development of autoimmu-

nity, but IFN-g or IL-12 did not alter autoantibody pro- HgCl2-induced autoantibody formation and GN [219].
Chronic graft versus host disease. Graft versus hostduction. These studies demonstrate that augmentation

of either Th1 or Th2 responses can increase the severity (GVH) disease results when parental spleen cells are in-
jected in semi-allogeneic F1 hybrids and induces differentof murine lupus nephritis.

Mercuric chloride-induced glomerulonephritis. Mer- manifestations of disease according to the haplotypes
involved. Chronic forms of GVH disease are associatedcuric chloride induces polyclonal B-cell activation that is

associated with a self-limited syndrome of GN, vasculitis, with the development of GN. The immune responses are
Th2 in type with hypergammaglobulinemia, high serumand arthritis in mice, rats, and rabbits [205]. These ani-

mals develop hypergammaglobulinemia with high circu- levels of IgE, and lesser increases in IgG1 and IgG2a.
Mice develop antibodies to nuclear antigens, erythrocytes,lating levels of IgG1 and IgE [206], driven by Th2 CD41

T cells [207]. They also exhibit a range of autoantibodies thymocytes and skin basement membrane and a mem-
branous GN with granular immunoglobulin depositionthat include rheumatoid factors, anti-DNA antibodies,

anti-myeloperoxidase [208], and anti-GBM antibodies and nephrotic syndrome [220]. Treatment with anti-IL-4
antibodies or IFN-g decreased IgE and IgG1 without re-[209]. Brown-Norway rats develop a biphasic self-limited

GN with marked proteinuria and nephrotic syndrome. ducing IgG2a. Anti-IL-4 antibody treatment diminished
proteinuria and prolonged survival [97], indicating a piv-The initial phase of glomerular injury is associated with

IgG1 and IgG2a anti-GBM antibodies, which are depos- otal role for this Th2 cytokine in this experimental model
of membranous GN.ited in glomeruli in a typical linear fashion [210]. How-

ever, crescent formation is not a feature [211]. This is Similarly, host versus graft disease (HVG) is associ-
ated with the development of a membranous pattern offollowed by the development of circulating immune com-

plexes, which deposit in glomeruli in a granular pattern, GN [221]. This disease is also associated with increased
serum levels of IgE and IgG1, indicating a predominanttypical of human membranous nephritis [212].

The analysis of profiles of cytokine mRNA expression Th2 response, which is attenuated by blocking IL-4 [222].
Attenuation of Th2 responses by treatment of neonatalin susceptible Brown-Norway rats shows pronounced up-

regulation of IL-4 mRNA, but only modest up-regulation mice developing HVG disease with IFN-g also reduces
the serum IgG1 levels, autoantibody formation, and glo-of mRNA for IFN-g, IL-2, and IL-10 [213]. In vitro

studies of the effects of HgCl2 show that splenocytes and merular immune-complex deposits [88].
Taken together, these data demonstrate that in HgCl2-purified T cells from Brown-Norway rats also express

high levels of IL-4 mRNA. Lewis rats, which are resistant induced GN, GVH and HVG glomerular injury result
from Th2-predominant nephritogenic immune responses.to this disease, have higher baseline levels of IFN-g [213]

and IL-12 mRNA [214] and do not increase IL-4 mRNA Overall, the immune response shows Th2-predominant
Ig isotypes. The presence of local DTH effectors has notproduction after HgCl2 treatment [213, 215]. T-cell lines

produced from Brown-Norway rats showing a Th2 phe- been specifically sought, but the lack of “proliferation”
and the absence of crescent formation argue against anotype (IL-4 producing) or a Th0 phenotype (expressing

IL-4 and some IFN-g) can transfer the disease to CD8- significant glomerular T-cell involvement. This form of
GN has immunohistological features similar to humandepleted Brown-Norway rats [96]. These studies impli-

cate IL-4 in the pathogenesis of this model. Further to membranous GN. Similar forms of Th2-mediated auto-
immunity can be induced in Brown-Norway rats by thethis, T-cell lines from Lewis rats producing IL-2, IFN-g,

and TGF-b protected Lewis/Brown Norway F1 hybrids administration of gold salts or D-penicillamine [207].
These observations in experimental GN, together withfrom HgCl2-induced autoimmunity [216].

Mice expressing H-2As are also susceptible to poly- the fact that human HgCl2, gold or penicillamine associ-
ated nephropathy results in a membranous pattern ofclonal B-cell activation following exposure to HgCl2.

They develop increased serum levels of IgG1 and IgE injury [5, 223] support the evidence that human membra-
nous GN results from Th2-predominant nephritogenicand immune complex GN [217]. This susceptibility in

B10.S mice and the resistance to HgCl2 in B10.D2 mice immune responses.
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Fig. 3. Hypothesized immune response pat-
terns in crescentic GN (Th1 predominance)
and membranous GN (Th2 predominance).

Table 4. Hypothesized Th1/Th2 responses in glomerulonephritis DTH effectors. Glomerular T cells are the predominant
(GN), based on currently available human and experimental data

initiators of injury, and manipulation of Th1 and Th2
A. Histological patterns of GN with dominant Th1 immune response cytokines confirms Th1 predominance. The administra-Anti-GBM GN

tion of Th1 cytokines exacerbates injury, whereas Th2“Pauci immune” (ANCA associated) GN
Membranoproliferative GN cytokines (IL-4 and IL-10) attenuate the nephritogenic

B. Histological patterns of GN with dominant Th2 immune response immune responses and the severity of GN.Membranous GN
Human membranous GN is associated with IgG4 de-Minimal change GN

C. Histological patterns of GN with heterogeneous Th1/Th2 predomi- position without DTH effectors, suggesting Th2 predom-
nance inance. Animal models of GN associated with polyclonalIgA nephropathy (crescentic, Th1; non-crescentic, Th2/indetermi-

B cell activation and autoimmunity (HgCl2-induced GNnant)
Lupus nephritis (crescentic, Th1; non-crescentic/membranous, and GN associated with chronic GVH and HVG disease)

Th2/indeterminant)
with Th2-predominant immune responses. They develop
GN with similar immunopathological features to human
membranous GN. The inhibition of Th2 cytokines and
administration of Th1 cytokines in these experimentalSUMMARY
models attenuated both the nephritogenic immune re-It is generally accepted that GN results from cognate
sponse and the associated GN.immune responses. Over the last decade, the recognition

In IgA nephropathy and lupus nephritis, the evidencethat two major subsets of T helper cells direct different
suggests heterogeneity of Th1/Th2 predominance. Cres-patterns of immune effectors has revised our understand-
centic subgroups, however, show evidence of Th1 polar-ing of host immune responses and autoimmune diseases.
ization, whereas membranous lupus has immunopatholog-However, the consequences of variable Th1/Th2 pre-
ical features similar to idiopathic membranous nephritis,dominance in immune responses leading to GN have
consistent with Th2 polarization of the associated immunenot been widely considered. GN exhibits a variety of
responses. Murine models of lupus nephritis demon-histopathological subtypes with different outcomes.
strate that both Th1 and Th2 subsets contribute to auto-These subtypes have variable deposition and accumula-
antibody production and the consequent immune com-tion of Th1 and Th2 immune effectors. The available
plex nephritis. Th1 immune effectors, however, appearevidence suggests that some forms of human GN, includ-
to induce more severe glomerular injury in these models.ing crescentic GN and membranoproliferative GN, are

The variable predominance of Th1 or Th2 nephrito-directed by Th1-predominant nephritogenic immune re-
genic immune responses helps explain the different par-sponses (Fig. 3 and Table 4). The strongest evidence
ticipation of immune effectors and the pattern of histopa-for this comes from the renal biopsy demonstration of
thology seen in several forms of GN. Understanding theprominent Th1-directed DTH effectors in these forms
predominance of either subset suggests the mechanismsof GN. Experimental models of GN support this view,
of cytokine regulation of injury. Such knowledge mayas Th1-prone strains are more sensitive to the induction

crescentic GN with prominent glomerular deposition of provide a rational basis for biological manipulation of
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