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Abstract

We solve the problem of finding the technology distribution for profit functions (equivalently
production functions) in a discrete setting. This is dbgdinding an inversion formula for the profit
function, making use of a sequence of recursively defined polynomials whose behavior is studied.
0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Production functions are widely used to dabe the capabilities of an economic unit.

A production function is a mathematical expression relating the total production of a
product to the inputs, typically, labor, cagittand, or other components necessary for its
production. The function describes the maximum output obtainable from given amounts of
the inputs.

There is an equivalence between the production function and the profit function. From
each we can obtain the other (cf. [2, p. 217]). listhbaper we shall work directly with the
profit function.

Consider an industry with a homogeneous production which utilizéactors of
production, e.g., hours of work, dollars of capital investment, square feet of work space,
etc. Letx = (x1, ..., x,) be the vector which represents the technology using the “recipe”
x1 hours of work,x> dollars of investment, etc., for each unit produced, andplet
(p1, ..., pn) be the vector of pricesp is the price of an hour of labop, the price of
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one dollar invested, etc. Let us suppose that the unit selling prigg iBhen the profit for
one unit using the technologywhere the production costs apes

po—p-X,

wherep - x = p1x1 + - - - + pnxy is the scalar product.
We may assume that there are many technologies being used simultaneously. For
example, if a new factory is opened, older factories are not necessarily closed immediately.
We let 1 (x) represent the distribution of technologies with respect to the vegtors
in R, whereR, = [0, c0). Thatis, if A C R}, thenu(A) is the amount of the industry
which uses technologiese A. The total profit is given by thprofit function

I (p, po) = /(po —p-x)4du(x),
RY,

where byy we meary ifitis positive, and 0 otherwise. That is, we assume that production
is halted where a loss is certain.

In [2], Henkin and Shananin studied the inverse problem: given the valudg, of
calculate the distributiop. They assumed that this distribution was continuous—indeed
differentiable. In this work, we consider thesdrete case, which could be easily applied to
concrete situations.

The context of the economic problem will dictate whether it makes sense to talk about a
differentiable context (in particular smoothly distributed means of production) or whether
to pass to the discrete setting described here.

By normalizing the size of the units used, we may assume that the support of the
distribution lies in the seZ’, , whereZ, = {0,1,2,...}. For a vector € Z'| , we useq,
for u({r}). Thus the discrete function of profit becomes

I(p,po)= Y _(po—p )ya.

n
teZl

The problem we study is to find the measurgiven the functionT.

We notice thatlT satisfies the property thal (p, po) = pol1(p/po, 1). Thus, without
loss of generality, we may normalize the problem and assumepihat 1. We write
II(p)=I(p,1), wherep € I =[O0, 1].

We now have the functiofv : I" — R given by

op)y= Y, @=p-na,

teZly, pt<1

and we want to describe eaghin terms of/7.
We shall find an inverse to the operatat};cz» — IT as follows: First in Section 2
we solve the case = 1, with the inversion formula given by Theorem 1. In Section 3
we reduce the two-dimensional case to the one-dimensional case by means of a sequence
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of polynomialsB, (z, w), which act as operators turning functions of two variables into
functions of one variable. This resolves the two-dimensional case, which is perhaps the
most important case for economists. In Section 4 we show how to use the operators defined
by the polynomials in order to reduce tlve+ 1)-dimensional case to the-dimensional

case. The proof is virtually identical to that given in Section 3. In Section 5 we describe
a second sequence of polynomialg(z), which can be used to calculate tBg(z, w).

These polynomials, although given recursively, are very difficult to describe in general. In
Section 6 we show how to get some general information about the polyna#iéds by

finding a generating function for them.

2. Theone-dimensional case

Letus look at the case= 1. Then/1(p) = Z?io, pi<1(l=pbay, forpel.Form>1,
set

m—1
pm=T(L/m) ="y " (L—k/m)a,
k=0
and setp_1 = po = 0. We claim that

am = (m + D pmi1 — 2mpym + (m — D) pp—1.

The first three claimed values atg= p1, a1 = 2p2 — 2p1, ap = 3p3 — 4p2 + p1. Notice
that they all follow easily from the definitions:

_ . 1 . 2 L 1
p1=ao, p2=do+ 5d1, p3 =do+ za1+ zdz.
We prove the full result by induction.
Theorem 1. Assume thafl (p) = Z?io, pt<l(1 — pt)as, for p e I. Then
am = (m+ DI (1/(m + 1)) — 2mIT(1/m) + (m — DI (1/(m — 1)).

Proof. To prove the inductive step, assume that for samg 3 the formula holds for
ao, ai, . . ., ay—1. Multiplying the definition ofp,,+1 by m + 1 yields

m m—1
m+Dpnpr =) (m+1=Kax= ) (n+1—kai+an.
k=0 k=0

Using the inductive hypothesis, we have
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m—1 m—1
Yo m+l=Rag= ) (m+1=k)((k+Dpers— 2kpi + (k — D pi-1)
k=0 k=0

m—1 m—2

=Y m+1-RBk+Dpir1— ) (m—k2k+Dpis1
k=0 k=0

m—3

+Y m—1-k)k+ Dpesa.
k=0

For eachk = 0,...,m — 3 the coefficient ofpi+1 is identically zero. The coefficient
of pn—1is —(m — 1), and the coefficient op,, is 2n. Thus we have just shown that

m—

" m 41— k)ax = —(m — 1) pu—1+ 2mp,,. This shows that

am =M+ D ppy1—2mpy + (m — L)pp_1. O

3. Thetwo-dimensional case

The case of two variables, typically éhcost of labor and the cost of capital, is
sufficiently important (cf. [3]) that we describe the results separately.
We shall use a sequence of polynomi&l, (z, w)}, given by

n—1
Bi(z,w)=z?w?,  By(z,w) ="t =3 By (2, w).
=1

The method we will use to solve this case is to reduce the two-dimensional case to the
one-dimensional by means of the polynomigls. Given IT a function on/?, we shall
define B,,IT as a function on/. Note thatB,,(z, w) is a sum of monomials of the form
ZFw™, wherek, m > 1. The action ofB,, (z, w) on IT(p1, p2) will be given by linearizing
the following formula:

"W (p) =m{M(p/m,1/n) — I (p/m,D)}.

We now describe the reduction of the two-dimensional case to the one-dimensional case
solved in Theorem 1.

Theorem 2. For each value ofn > 1,

oo
Y. A=pnawm=BuM(p) and 3 (1-pnao=I(p.1).
t=0, pt<1 telq, pt<1

Remark 1. Form = 0, this together with Theorem 1 imply that
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aro=(t+DIT(L/(t +1),1) — 20T (1)1, 1) + (¢ — HIT(L/( — 1), 1).

Form =1, we have

o0

Y. (= pha,i=Bil(p) = 2w’ (p) = 2{11(p/2,1/2) = M (p/2, D}
t=0, pr<1

Thus Theorem 1 yields

a1 =20t + DIT(1/2(t + 1), 1/2) — 4TT(1/21,1/2) + 2(t — DIT(1/2(t — 1), 1/2)
— 2t + DI (/20 + 1), 1) + 4 11(1/2, 1) — 2t — DI (1/2( — 1), 1).

Form = 2, the situation becomes more complicated, since

o0
> (A= ptaz=Ball(p) = (*w® — 22w?) [ (p)
t=0, pt<1

=3{(p/3,1/3) —M(p/3, 1)} - 2{T(p/2,1/2) — I (p/2, D)}.

So using Theorem 1, we get that the formuladgs contains 12 terms!

Proof. Note that/T(p1, 1) =3, 1,)ez2 . pinytr,<1(1 = P171 + pat2)a;, SO that the only

value oftz inthe sumis 0. Thu$l (p, 1) =3,z ,-1(1— ptaso.
We start the induction with = 1. Look at

M(p/2,1/2)=) Yo (A= (p/Di—s/2)ars

5s=0,1120, (p/2t+s/2<1

= > (-@20ao+ Y. (1-p/2t-1/2a

130, (p/2)t <1 120, (p/2)t+1/2<1

=0(p/2.D)+1/2) Y (A-phas.

120, p<1

Thus

> A-pa=2{(p/2.1/2) - [1(p/2, D)}
>0, p<1

=22w?M(p, 1) = B1(z, w)I1(p, 1),

completing the first step of the induction.

A direct calculation shows that™ w” IT(p/ k) = 2™ w" IT1(p). In particular, ifQ (z, w)
is any polynomial divisible byw, thenkQ(z, w)IT(p/k) = Q(z*, w)IT(p). Assume by
induction thaty ;2 ,, _1(1— pt)a, s = ByI1(p) fors < m.
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In analogy to the case df (p, 1), we have

(o) 5 T, e

§=0 1€Zy, pt+57 <1

m
X X (ST
m+l—s

s=0 tely, pt<

m+1
m
1- 1
22m+ s Z 1_ m+ ot )a .
m+1 m+l—s ’
s=0 tely, ”7+1S pt<1l
Thus
p 1 S om4+1—s p
nf——1»\= _ 1-——¢ »
(m+1 m+1) Z m+1 Z < m+1—s)at“S
s=0 teZy, m+pl—:t<1
Using the inductive hypothesis, we get
p 1
DI
o+ 1D ( +1’ m+1>
m—1 P
:Z(m+1—s)BS(Z, U))H<m)+ Z (1—pt)a,,m
s=0 tely, pt<1

(m+1)n<— 1) ZB " hw)de+ Y A= parm.

tely, pt<1
This yields
Y @ pnan=m+0i( Lo ) —mnn (L
m+1 m+1 m+1
tely, pt<1l

m—1

_ Z Bs (Zm+s—l7 w)n(p)

m—1
— (Zm-i-lwm-‘rl _ Z B, (Zm-‘rs—l’ w))n(p) = By (z, w)I1(p).

s=1

This completes the proof.O0
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4. Thegeneral case

We can now generalize the ideas to higher dimensions. In the above proisf,a
function of two variables, whereds, (z, w)IT is a function of one variable. In the general
case, iflT is a function ofz + 1 variables, them,, (z, w)IT will be a function ofz variables
as follows.

LetpeI™andp’ 1. If [T(p, p’) is given, let

W I (p) = k{ [ (p/k, 1/m) — M (p/k, D},

and extend linearly to get the definition Bf, (z, w)IT(p).
We then get the generalization of Theorem 2, writBygl7(p) = B, (z, w)IT1(p):

Theorem 3. Assume that

o(p.p)= Z (1=p-t=p'ta..

teZh  t'ely, p-t+p't'<l

Then for each value ofi > 1,

oo
Y. A-pnam=BuI(p) and Y (A-p-Dao=1(p.1).
t=0, p-r<1 tely, pt<l

The proof of Theorem 4 is identic& that of Theorem 3, except thatand: should
now be considered as vectors, and their product is the inner product.

We can thus reduce everything to a dimension one, where we can solve the problem by
Theorem 1.

Example. To calculates,, 1. 2: First we calculateB3I7(p1, p2). Thisis

3(M(p1/3, p2/3.1/3)) — (I1(p1/3. p2/3, 1)) — 41 (p1/4, p2/4.1/2))
— (M (p1/4, p2/4.1)).

Now applyingB; to this we get

6(IT(p/6,1/6,1/3) — M(p/6,1/3,1/3) — [1(p/6,1/6,1) — [1(p/6,1/3, 1))
—8(M(p/8,1/8,1/2) — M(p/8,1/4,1/2) — [1(p/8,1/8,1) — M (p/8,1/4,1)).

Finally, we can get;, 1.2 by simply applying Theorem 1 to this value Bf.
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5. Calculating B, (z, w)
Let us define another sequence of polynomigis,(z)}, where
n .
A1) =z, Ama@=-)_ A;("7T?).
j=1
We use thed,, (z) to calculate theB, (z, w) by means of the following resuilt:

Theorem 4. B, (z, w) =34 Aj(ITyunit2,

Proof. We show this by induction. For = 1 we getA1(z%)w? = z2w? = B1(z, w), as
required.

Assume now thaB,, (z, w) = Z?zlAj(zm*/'“)wm*Hl, for all m < n. Then we have

n n—s+1
By (z, w)_ZnJrl n+1 Z Z s(n s— ]+2)) n—s—j+2

s=2 j=1
non

— Zn+lwn+l _ Z Z Ak_s+l(zs(n7k+2))wn7k+2
s=2k=s

= A1(z")w ZZAk— (25 (kD) k42,

k=2 s5=2

Sinced ¥, Ar_11(z*) = —Ax(z), we get
B (Z w)_ZA n— ]+2 n j+2,

which completes the proof of the inductive step

6. A generatingfunction for the A,

Although we are not able to find a useful generating function for the polynomijals
we will construct a generating function that dogeld some interesting results about the
polynomials. At the end of this section, however, we shall present a closed form which is
elegant, but not practical.

Define a generating functio@(z, u) by the formula

Gu)y= ) Aprr(@u".

m=0
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Then we get the following result.

Theorem 5.
Z G(z" 1, u)u™ =z. 1)

Proof. Notice that from the definition of the polynomials,, we have that

k

i+l z fork=0,
ZoAk“*f (") = {0 fork > 0.
j:

From this we get the following directly:

00 [ 00 00 00
Z G(Zerl, u)um — Z (ZAn+l(Zm+l)un>um — Z ZAn+l(Zm+l)un+m

m=0 m=0 \n=0 m=0 n=0

oo k ook
- Z Z A ()b = Z Z Arpr—j (@@ Nu* =z, O

k=0 n=0 k=0 j=0

An example of the use of this is the following. Set 1. Thenwe ge} "> (G (1, u)u™
=1.Sinced o o u™ =1/(1— u), this yieldsG (1, u) =1—u, S0

1, n
Ay(LD={-1, n
0, n

Thus we have that — 1 is a factor ofA, (z) for all n > 2. Taking the partial derivative
of G(z, u) with respect taz and evaluating at the poigt= 1, we also get that/, (1) =0
for n > 4. Thus(z — 1)2 is a factor ofA, (z) for all n > 4.

Next we look atA, (—1). Settingz = —1 in (1) yields:

> G=Lwu® 4+ Gl =1,
m m

which gives usG (—1) = 2u? — u — 1, since we already know the formula f6r(1, u).
Thus

-1, n=12,
A= =12, n=3,
0, n=4.

Thus(z + 1)(z — 1)2 is a factor ofA, (z) for n > 4.
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Now let us look at the case af= A = ¢27//3, Using the same ideas as above, we get
G u) + G, u)u + G(Luyu? = 1(1—ud).

Since all of the coefficients ofi (z, u) are real (indeed they are integer€)i, u) =
G (A, u). Thus we get

3
G(A,u)=k+ku—Xu2+

14+u’
a rational function, but not a polynomial.
This yields
A, n=12,
A, n=23,
An() = 1, nevenx4,
—1, nodd>5.

This does not yield new factors, but still gives us information about everi).
Specifically, we know that — A is a factor ofA,,(z) — (—1)".
Similarly for z = i, we get

4ud + 2u°

Gli.u)=i— 14 2 ’
(Gwy=i—u+A+Du“+ 14

which among other things yields the fact thatfoe 5 odd, we havet,, (i) = 0. This given
us thatA, (i) = 0, soz2 + 1 is a factor ofd, (z) for n > 5 odd.
Now we show the following in general:

Theorem 6. G (X, u) is a rational function of: if A is a root of unity.

Proof. We have already shown this result fowherer™ = 1 andm =1, 2, 3, 4. Assume
the result holds fom < n, wheren > 4. SinceA™ = A’ for m =t modn, (1) yields:

iG(Ak,u)ukflzk(l—u”). 2
k=1

Letu = r?7i/n sothath = u!, for somer =1, ..., n. We shall refer to (2) a€); in this
case. Ifr andn are not relatively prime, then by induction we already know thét*, u)
is a rational function. So we shall consider thé:) equations(2), for gcdz, n) = 1.
In addition, fork not relatively prime to:, we already know thaG (A, u) is a rational
function. Thus each equatid@), is linear ing(n) unknowns, which we may think of as
G(u’) forged(j, n) = 1.

Thus the solution is a rational function ofitronal functions—and hence a rational
function—as long as we can show that the determinant of the coefficients 6f(jn&),
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which is a polynomial int, is nonzero. But the coefficient 6f(./) in (2); is u*~1, where

u'* =1k =/, i.e., therek = j modn, wherer, k, j are relatively prime ta. For each

t the coefficient ofG (') is 1, and all the other coefficients are higher powers.cfFhus

the constant term in the determinant of the coefficients is 1, so the determinant is not zero,
and the result is proved.O

Finally we end this with a closed form for the polynomials(z) which appears in [1]
along with many other facts concerning the polynomials. The restrictions on the sum are
such that calculating the value is almost amplicated as using the recursion formula

a! ay

Ana(@) =) (=D et

lag!---a,!

where the sum is taken ford x1 < --- < x, <n + 1, Z;’:lajxj =n+a, anda =
Z;zlaj <n.
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