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Abstract

We solve the problem of finding the technology distribution for profit functions (equivale
production functions) in a discrete setting. This is doneby finding an inversion formula for the profi
function, making use of a sequence of recursively defined polynomials whose behavior is stu
 2004 Elsevier Inc. All rights reserved.

1. Introduction

Production functions are widely used to describe the capabilities of an economic un
A production function is a mathematical expression relating the total production
product to the inputs, typically, labor, capital, land, or other components necessary for
production. The function describes the maximum output obtainable from given amou
the inputs.

There is an equivalence between the production function and the profit function.
each we can obtain the other (cf. [2, p. 217]). In this paper we shall work directly with th
profit function.

Consider an industry with a homogeneous production which utilizesn factors of
production, e.g., hours of work, dollars of capital investment, square feet of work s
etc. Letx = (x1, . . . , xn) be the vector which represents the technology using the “rec
x1 hours of work,x2 dollars of investment, etc., for each unit produced, and letp =
(p1, . . . , pn) be the vector of prices:p1 is the price of an hour of labor,p2 the price of
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one dollar invested, etc. Let us suppose that the unit selling price isp0. Then the profit for
one unit using the technologyx where the production costs arep is

p0 − p · x,

wherep · x = p1x1 + · · · + pnxn is the scalar product.
We may assume that there are many technologies being used simultaneous

example, if a new factory is opened, older factories are not necessarily closed immed
We let µ(x) represent the distribution of technologies with respect to the vectox

in R
n+, whereR+ = [0,∞). That is, ifA ⊂ R

n+, thenµ(A) is the amount of the industr
which uses technologiesx ∈ A. The total profit is given by theprofit function

Π(p,p0) =
∫

R
n+

(p0 − p · x)+ dµ(x),

where byy+ we meany if it is positive, and 0 otherwise. That is, we assume that produc
is halted where a loss is certain.

In [2], Henkin and Shananin studied the inverse problem: given the values oΠ ,
calculate the distributionµ. They assumed that this distribution was continuous—ind
differentiable. In this work, we consider the discrete case, which could be easily applied
concrete situations.

The context of the economic problem will dictate whether it makes sense to talk a
differentiable context (in particular smoothly distributed means of production) or wh
to pass to the discrete setting described here.

By normalizing the size of the units used, we may assume that the support
distribution lies in the setZn+, whereZ+ = {0,1,2, . . .}. For a vectort ∈ Z

n+, we useat

for µ({t}). Thus the discrete function of profit becomes

Π(p,p0) =
∑
t∈Z

n+

(p0 − p · t)+at .

The problem we study is to find the measurea given the functionΠ .
We notice thatΠ satisfies the property thatΠ(p,p0) = p0Π(p/p0,1). Thus, without

loss of generality, we may normalize the problem and assume thatp0 = 1. We write
Π(p) = Π(p,1), wherep ∈ I = [0,1].

We now have the functionΠ : In → R given by

Π(p) =
∑

t∈Z
n+, p·t<1

(1− p · t)at ,

and we want to describe eachat in terms ofΠ .
We shall find an inverse to the operator{at }t∈Z

n+ → Π as follows: First in Section 2
we solve the casen = 1, with the inversion formula given by Theorem 1. In Sectio
we reduce the two-dimensional case to the one-dimensional case by means of a se
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of polynomialsBn(z,w), which act as operators turning functions of two variables
functions of one variable. This resolves the two-dimensional case, which is perha
most important case for economists. In Section 4 we show how to use the operators
by the polynomials in order to reduce the(n + 1)-dimensional case to then-dimensional
case. The proof is virtually identical to that given in Section 3. In Section 5 we des
a second sequence of polynomialsAn(z), which can be used to calculate theBn(z,w).
These polynomials, although given recursively, are very difficult to describe in gene
Section 6 we show how to get some general information about the polynomialsAn(z) by
finding a generating function for them.

2. The one-dimensional case

Let us look at the casen = 1. ThenΠ(p) = ∑∞
t=0, pt<1(1−pt)at , for p ∈ I . Form � 1,

set

pm = Π(1/m) =
m−1∑
k=0

(1− k/m)ak,

and setp−1 = p0 = 0. We claim that

am = (m + 1)pm+1 − 2mpm + (m − 1)pm−1.

The first three claimed values area0 = p1, a1 = 2p2 − 2p1, a2 = 3p3 − 4p2 + p1. Notice
that they all follow easily from the definitions:

p1 = a0, p2 = a0 + 1

2
a1, p3 = a0 + 2

3
a1 + 1

3
a2.

We prove the full result by induction.

Theorem 1. Assume thatΠ(p) = ∑∞
t=0, pt<1(1− pt)at , for p ∈ I . Then

am = (m + 1)Π
(
1/(m + 1)

) − 2mΠ(1/m) + (m − 1)Π
(
1/(m − 1)

)
.

Proof. To prove the inductive step, assume that for somem � 3 the formula holds for
a0, a1, . . . , am−1. Multiplying the definition ofpm+1 by m + 1 yields

(m + 1)pm+1 =
m∑

k=0

(m + 1− k)ak =
m−1∑
k=0

(m + 1− k)ak + am.

Using the inductive hypothesis, we have
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m−1∑
k=0

(m + 1− k)ak =
m−1∑
k=0

(m + 1− k)
(
(k + 1)pk+1 − 2kpk + (k − 1)pk−1

)

=
m−1∑
k=0

(m + 1− k)(k + 1)pk+1 −
m−2∑
k=0

(m − k)2(k + 1)pk+1

+
m−3∑
k=0

(m − 1− k)(k + 1)pk+1.

For eachk = 0, . . . ,m − 3 the coefficient ofpk+1 is identically zero. The coefficien
of pm−1 is −(m − 1), and the coefficient ofpm is 2m. Thus we have just shown th∑m−1

k=0 (m + 1− k)ak = −(m − 1)pm−1 + 2mpm. This shows that

am = (m + 1)pm+1 − 2mpm + (m − 1)pm−1. �

3. The two-dimensional case

The case of two variables, typically the cost of labor and the cost of capital,
sufficiently important (cf. [3]) that we describe the results separately.

We shall use a sequence of polynomials,{Bn(z,w)}, given by

B1(z,w) = z2w2, Bn(z,w) = zn+1wn+1 −
n−1∑
j=1

Bn−j+1
(
zj ,w

)
.

The method we will use to solve this case is to reduce the two-dimensional case
one-dimensional by means of the polynomialsBm. GivenΠ a function onI2, we shall
defineBmΠ as a function onI . Note thatBm(z,w) is a sum of monomials of the form
zkwm, wherek,m � 1. The action ofBm(z,w) on Π(p1,p2) will be given by linearizing
the following formula:

zmwnΠ(p) = m
{
Π(p/m,1/n) − Π(p/m,1)

}
.

We now describe the reduction of the two-dimensional case to the one-dimension
solved in Theorem 1.

Theorem 2. For each value ofm � 1,

∞∑
t=0, pt<1

(1− pt)at,m = BmΠ(p) and
∑

t∈Z+, pt<1

(1− pt)at,0 = Π(p,1).

Remark 1. Form = 0, this together with Theorem 1 imply that
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at,0 = (t + 1)Π
(
1/(t + 1),1

) − 2tΠ(1/t,1) + (t − 1)Π
(
1/(t − 1),1

)
.

Form = 1, we have

∞∑
t=0, pt<1

(1− pt)at,1 = B1Π(p) = z2w2Π(p) = 2
{
Π(p/2,1/2) − Π(p/2,1)

}
.

Thus Theorem 1 yields

at,1 = 2(t + 1)Π
(
1/2(t + 1),1/2

) − 4tΠ(1/2t,1/2) + 2(t − 1)Π
(
1/2(t − 1),1/2

)
− 2(t + 1)Π

(
1/2(t + 1),1

) + 4tΠ(1/2t,1) − 2(t − 1)Π
(
1/2(t − 1),1

)
.

Form = 2, the situation becomes more complicated, since

∞∑
t=0, pt<1

(1− pt)at,2 = B2Π(p) = (
z3w3 − z2w2)Π(p)

= 3
{
Π(p/3,1/3) − Π(p/3,1)

} − 2
{
Π(p/2,1/2) − Π(p/2,1)

}
.

So using Theorem 1, we get that the formula forat,2 contains 12 terms!

Proof. Note thatΠ(p1,1) = ∑
(t1,t2)∈Z

2+, p1t1+t2<1(1 − p1t1 + p2t2)at , so that the only

value oft2 in the sum is 0. ThusΠ(p,1) = ∑
t∈Z+, pt<1(1− pt)at,0.

We start the induction withm = 1. Look at

Π(p/2,1/2) =
∑

s=0,1

∑
t�0, (p/2)t+s/2<1

(
1− (p/2)t − s/2

)
at,s

=
∑

t�0, (p/2)t<1

(
1− (p/2)t

)
at,0 +

∑
t�0, (p/2)t+1/2<1

(
1− (p/2)t − 1/2

)
at,1

= Π(p/2,1) + (1/2)
∑

t�0, p<1

(1− p)at,1.

Thus

∑
t�0, p<1

(1− p)at,1 = 2
{
Π(p/2,1/2) − Π(p/2,1)

}

= z2w2Π(p,1) = B1(z,w)Π(p,1),

completing the first step of the induction.
A direct calculation shows thatkzmwnΠ(p/k) = zmkwnΠ(p). In particular, ifQ(z,w)

is any polynomial divisible byzw, thenkQ(z,w)Π(p/k) = Q(zk,w)Π(p). Assume by
induction that

∑∞
t=0, pt<1(1− pt)at,s = BsΠ(p) for s < m.
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In analogy to the case ofΠ(p,1), we have

Π

(
p,

1

m + 1

)
=

m∑
s=0

∑
t∈Z+, pt+ s

m+1<1

(
1− pt − s

m + 1

)
at,s

=
m∑

s=0

∑
t∈Z+, pt< m+1−s

m+1

(
m + 1− s

m + 1
− pt

)
at,s

=
m∑

s=0

m + 1− s

m + 1

∑
t∈Z+, m+1

m+1−s pt<1

(
1− m + 1

m + 1− s
pt

)
at,s .

Thus

Π

(
p

m + 1
,

1

m + 1

)
=

m∑
s=0

m + 1− s

m + 1

∑
t∈Z+,

p
m+1−s t<1

(
1− p

m + 1− s
t

)
at,s .

Using the inductive hypothesis, we get

(m + 1)Π

(
p

m + 1
,

1

m + 1

)

=
m−1∑
s=0

(m + 1− s)Bs(z,w)Π

(
p

m + s − 1

)
+

∑
t∈Z+, pt<1

(1− pt)at,m

= (m + 1)Π

(
p

m + 1
,1

)
+

m−1∑
s=1

Bs

(
zm+s−1,w

)
Π(p) +

∑
t∈Z+, pt<1

(1− pt)at,m.

This yields

∑
t∈Z+, pt<1

(1− pt)at,m = (m + 1)Π

(
p

m + 1
,

1

m + 1

)
− (m + 1)Π

(
p

m + 1
,1

)

−
m−1∑
s=1

Bs

(
zm+s−1,w

)
Π(p)

=
(

zm+1wm+1 −
m−1∑
s=1

Bs

(
zm+s−1,w

))
Π(p) = Bm(z,w)Π(p).

This completes the proof.�
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We can now generalize the ideas to higher dimensions. In the above proof,Π is a
function of two variables, whereasBm(z,w)Π is a function of one variable. In the gene
case, ifΠ is a function ofn+1 variables, thenBm(z,w)Π will be a function ofn variables
as follows.

Let p ∈ In andp′ ∈ I . If Π(p,p′) is given, let

zkwmΠ(p) = k
{
Π(p/k,1/m) − Π(p/k,1)

}
,

and extend linearly to get the definition ofBm(z,w)Π(p).
We then get the generalization of Theorem 2, writingBmΠ(p) = Bm(z,w)Π(p):

Theorem 3. Assume that

Π
(
p,p′) =

∑
t∈Z

n+, t ′∈Z+, p·t+p′t ′<1

(
1− p · t − p′t ′

)
at,t ′.

Then for each value ofm � 1,

∞∑
t=0, p·t<1

(1− p · t)at,m = BmΠ(p) and
∑

t∈Z+, p·t<1

(1− p · t)at,0 = Π(p,1).

The proof of Theorem 4 is identicalto that of Theorem 3, except thatp and t should
now be considered as vectors, and their product is the inner product.

We can thus reduce everything to a dimension one, where we can solve the prob
Theorem 1.

Example. To calculateam,1,2: First we calculateB3Π(p1,p2). This is

3
(
Π(p1/3,p2/3,1/3)

) − (
Π(p1/3,p2/3,1)

) − 4
(
Π(p1/4,p2/4,1/2)

)
− (

Π(p1/4,p2/4,1)
)
.

Now applyingB2 to this we get

6
(
Π(p/6,1/6,1/3) − Π(p/6,1/3,1/3) − Π(p/6,1/6,1) − Π(p/6,1/3,1)

)
− 8

(
Π(p/8,1/8,1/2) − Π(p/8,1/4,1/2) − Π(p/8,1/8,1) − Π(p/8,1/4,1)

)
.

Finally, we can getan,1,2 by simply applying Theorem 1 to this value ofΠ .
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Let us define another sequence of polynomials,{An(z)}, where

A1(z) = z, An+1(z) = −
n∑

j=1

Aj

(
zn−j+2).

We use theAn(z) to calculate theBn(z,w) by means of the following result:

Theorem 4. Bn(z,w) = ∑n
j=1 Aj(z

n−j+2)wn−j+2.

Proof. We show this by induction. Forn = 1 we getA1(z
2)w2 = z2w2 = B1(z,w), as

required.
Assume now thatBm(z,w) = ∑m

j=1 Aj(z
m−j+1)wm−j+1, for all m < n. Then we have

Bn(z,w) = zn+1wn+1 −
n∑

s=2

n−s+1∑
j=1

Aj

(
zs(n−s−j+2)

)
wn−s−j+2

= zn+1wn+1 −
n∑

s=2

n∑
k=s

Ak−s+1
(
zs(n−k+2)

)
wn−k+2

= A1
(
zn+1)wn+1 −

n∑
k=2

k∑
s=2

Ak−s+1
(
zs(n−k+2)

)
wn−k+2.

Since
∑k

s=2 Ak−s+1(z
s) = −Ak(z), we get

Bn(z,w) =
n∑

j=1

Aj

(
zn−j+2)wn−j+2,

which completes the proof of the inductive step.�

6. A generating function for the An

Although we are not able to find a useful generating function for the polynomialsAn,
we will construct a generating function that does yield some interesting results about t
polynomials. At the end of this section, however, we shall present a closed form wh
elegant, but not practical.

Define a generating functionG(z,u) by the formula

G(z,u) =
∞∑

Am+1(z)u
m.
m=0
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Then we get the following result.

Theorem 5.

∞∑
m=0

G
(
zm+1, u

)
um = z. (1)

Proof. Notice that from the definition of the polynomialsAn, we have that

k∑
j=0

Ak+1−j

(
zj+1) =

{
z for k = 0,
0 for k � 0.

From this we get the following directly:

∞∑
m=0

G
(
zm+1, u

)
um =

∞∑
m=0

( ∞∑
n=0

An+1
(
zm+1)un

)
um =

∞∑
m=0

∞∑
n=0

An+1
(
zm+1)un+m

=
∞∑

k=0

k∑
n=0

An+1
(
zk−n+1)uk =

∞∑
k=0

k∑
j=0

Ak+1−j

(
zj+1)uk = z. �

An example of the use of this is the following. Setz = 1. Then we get
∑∞

m=0 G(1, u)um

= 1. Since
∑∞

m=0 um = 1/(1− u), this yieldsG(1, u) = 1− u, so

An(1) =
{1, n = 1,

−1, n = 2,
0, n � 2.

Thus we have thatz − 1 is a factor ofAn(z) for all n � 2. Taking the partial derivativ
of G(z,u) with respect toz and evaluating at the pointz = 1, we also get thatA′

n(1) = 0
for n � 4. Thus(z − 1)2 is a factor ofAn(z) for all n � 4.

Next we look atAn(−1). Settingz = −1 in (1) yields:

∑
m

G(−1, u)u2m +
∑
m

G(1, u)u2m+1 = −1,

which gives usG(−1) = 2u2 − u − 1, since we already know the formula forG(1, u).
Thus

An(−1) =
{−1, n = 1,2,

2, n = 3,
0, n � 4.

Thus(z + 1)(z − 1)2 is a factor ofAn(z) for n � 4.
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Now let us look at the case ofz = λ = e2πi/3. Using the same ideas as above, we ge

G(λ,u) + G
(
λ,u

)
u + G(1, u)u2 = λ

(
1− u3).

Since all of the coefficients ofG(z,u) are real (indeed they are integers),G(λ,u) =
G(λ,u). Thus we get

G(λ,u) = λ + λu − λu2 + u3

1+ u
,

a rational function, but not a polynomial.
This yields

An(λ) =




λ, n = 1,2,
−λ, n = 3,
1, n even� 4,
−1, n odd� 5.

This does not yield new factors, but still gives us information about everyAn(z).
Specifically, we know thatz − λ is a factor ofAn(z) − (−1)n.

Similarly for z = i, we get

G(i,u) = i − u + (1+ i)u2 + 4u3 + 2u5

1− u4 ,

which among other things yields the fact that forn � 5 odd, we haveAn(i) = 0. This given
us thatAn(i) = 0, soz2 + 1 is a factor ofAn(z) for n � 5 odd.

Now we show the following in general:

Theorem 6. G(λ,u) is a rational function ofu if λ is a root of unity.

Proof. We have already shown this result forλ whereλm = 1 andm = 1,2,3,4. Assume
the result holds form < n, wheren > 4. Sinceλm = λt for m ≡ t modn, (1) yields:

n∑
k=1

G
(
λk,u

)
uk−1 = λ

(
1− un

)
. (2)

Letµ = r2πi/n, so thatλ = µt , for somet = 1, . . . , n. We shall refer to (2) as(2)t in this
case. Ift andn are not relatively prime, then by induction we already know thatG(λk,u)

is a rational function. So we shall consider theϕ(n) equations(2)t for gcd(t, n) = 1.
In addition, fork not relatively prime ton, we already know thatG(λk,u) is a rational
function. Thus each equation(2)t is linear inϕ(n) unknowns, which we may think of a
G(µj ) for gcd(j, n) = 1.

Thus the solution is a rational function of rational functions—and hence a ration
function—as long as we can show that the determinant of the coefficients of theG(µj ),
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]
m are

ra,

on
which is a polynomial inu, is nonzero. But the coefficient ofG(µj ) in (2)t is uk−1, where
µtk = λk = µj , i.e., theretk ≡ j modn, wheret , k, j are relatively prime ton. For each
t the coefficient ofG(µt) is 1, and all the other coefficients are higher powers ofu. Thus
the constant term in the determinant of the coefficients is 1, so the determinant is no
and the result is proved.�

Finally we end this with a closed form for the polynomialsAn(z) which appears in [1
along with many other facts concerning the polynomials. The restrictions on the su
such that calculating the value is almost as complicated as using the recursion formula

An+1(z) =
∑

(−1)a
a!

a1!a2! · · ·ar !z
x

a1
1 ···xar

r

where the sum is taken for 1< x1 < · · · < xr � n + 1,
∑r

j=1 ajxj = n + a, anda =∑r
j=1 aj � n.
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