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1. INTRODUCTION 

Historically, this note stems from Kirszbraun's Theorem [2], some- 
times called the Kirszbraun-Valentine Theorem, useful in Geometric 
Measure Theory and which was the original tool-theorem for Monotone 
Operator Theory. In 1962, the writer proved a variant on this theorem [3] 
as an attempt to construct a tool-theorem specifically for the latter 
theory, but it was unsuccessful because it lacked any useful feature 
making it applicable to analysis problems in infinite-dimensions. The 
theorem was improved by Debrunner and Flor [1] and is now a standard 
tool in the theory of "variational inequalities." Here, we improve the 
theorem still further by providing an additional feature which is closer 
to the coercivity conditions needed for analysis problems. At the same 
time, we penetrate more deeply into the logical structure of the theorem 
and generalize it so that a large number of useful corollaries flow out of it, 
which are directly applicable to analysis problems currently under 
attack by means of awkward applications of the Debrunner-Flor Lemma 
and Kirszbraun's Theorem. 

The present work is "finite-dimensional" in the sense that no hypo- 
theses are made on the dimensions of the linear spaces introduced, no 
topologies are hypothesized, and in fact it would be quite sufficient to 
prove these results in finite-dimensions. The methods are those of 
"convexity theory." 

2.  RESULTS 

LEMMA 1. Let Z be a linear space over the reals R; let .4, B, C be 
three bilinear forms mapping Z × Z into R (without loss of generality .4 
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and C may be assumed symmetric) such that the two quadratic forms 
Q,(z) ~- ( - 1 )  C(z, z )and  Q2(z) -- A(z ,  z) + B(z,  z) + C(z, z)areboth 
positive semidefinite. Let a sequence {zi: i = I,..., n} in Z be given such 
that A ( z i - -  z j ,  z i - - z i ) > ~  0 for i , j  -~ 1,..., n. Then there exist real 
nonnegative A 1 ,..., A n such that 

A(zi , zi) + B(zi , z) + C(z, z) >1- 0 (i = 1 ..... n) 

where z : ~ i  )~tzi , and also (Lemma 1A) ~ i  hi ~ 1 and 

hiA(zl , zi) -- C(z, z) ~ 0 
i 

or alternatively (Lemma 1B) 5~ ~ = 1. 

Proof. Consider the function 4 :  D × D -+ R defined by 

~ ( ~ ,  Z) = ~, i~i[A(zi , z i)  ~- B ( z i  , z )  2 U C(z ,  z)] 
i 

(i) 

(2) 

+ (/z - - 1 ) [ ~  A~A(zl, z i ) -  C(z, z)] 

where ~ = (t~t .... ,/x~), x = (h I ,..., h,,), z = E ,  Aizi,  tz = ~.i I~i, D 
{X:A i ~ 0 , y . i A i ~ <  1}. The  term in • which is quadratic in x is 
C(z, z) = (--1)  Ql(z), which is a negative semidefinite form considered 
as a function of x. Thus  ¢ is a linear function of ~ and a concave function 
of x, and is continuous in both variables for ~, x ~ R n × R ~. Apply the 
Minimax Theorem of yon Neumann  to see that there exist i~ °, x ° ~ D 
such that for all ~, x e D we have 

~(~, x0) ~ ¢(~o, xo) ~ ¢(~o, x) 

and hence, putting x = ~0, we have: for any ~ ~ D ,  

~(~t, x o) ~ ~ ( # ,  No). 

But 

i,j 

Now, since ~ is still at our disposal, we put  it equal to a Kronecker delta 
to obtain Eq. (1), and then set all/z~ equal to zero to obtain Eq. (2). 
Part A of the Lemma is proved; to prove part B, we repeat the argument,  
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but  with D = {x: h i ~> 0, Yi Ai = 1},/x = 1, and omission of the step 
"set  all/~i ----- 0." 

We now state a corollary which would suffice for most of the applica- 
tions to "monotone  operator theory."  The  interest lies in the insight it 
yields into the meaning of "monotonicity." 

COROLLARY. Let Z be a linear space over R, with a distinguished 
quadratic form Q(z); let P: Z -+ Z be a linear mapping such that ( - -  1 )Q(Pz)  
and Q ( z -  Pz) are both positive semidefinite quadratic forms. Let 
{zi: i = 1,..., n} be a sequence in Z such that Q(z  i - z s )  >/O, (i, j = 
1,..., n). Then there exist A 1,..., A~ > / 0  such that Q(z i - P z ) > ~  0 
(i --1, . . . ,  n), where z-----EtAizi,  and also (Part A) Z i  ~' < 1  and 
~]i AiQ(z,) - Q(Pz)  ~ O, or (Part B) Z i  A, = 1. 

Proof. Let A, B, C be three bilinear forms mapping Z × Z into R 
such that A(z, z) = Q(z), B(z, w) = - -A(Pz ,  w) -- A(w, Pz), C(z, w) -~ 
A(Pz, Pw), and apply Lemma 1. 

However,  in order to include some special cases of interest which do 
not fit the above corollary, and in order to be closer to applications, 
we introduce a more complex structure. 

THEOREM 1. Let Z, X,  Y be linear spaces over R; let < , ) be a 
bilinear form mapping X × Y into R. Let L, M, P, Q be four linear mappings 
of Z into X,  Y, X,  Y, respectively, such that the two quadratic forms on Z 
given by 

Ql(z) = - (P(z), Q(z)) 

Q2(z) = (L(z) -- P(z), M(z) -- Q(z)) 

are both positive semidefinite. Now let {zi: i = 1 .... , n) be a sequence in Z 
which is monotone with respect to the quadratic form (L(z), M(z)) ;  that is, 
(L(z  i -- zj), M(z  i -- zj)) >/0 (i,j = 1,..., n). Then there exist AI,..., An ~ 0 
such that 

<L(zl) -- P(z), M(zi) -- Q(z)> ~ o (i -= 1,..., n) (3) 

and also (Theorem 1A) ~ i  At ~< 1 and 

h,<L(z,), M(z,)> + Ql(Z) ~ 0 
i 

(4) 

(throughout, z ---- ~,i Aizi), or alternatively (Theorem 1 B) Z i  Ai ---- 1. 
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Proof. Let A, B, C be bilinear forms mapping Z × Z into R, with 
A(z, z) = (L(z), M(z)),  C(z, z)  = ( P ( z ) ,  Q(z)), and B(z, w) = 
- - (P(w) ,  M ( z ) )  --  (L(z), Q(w)); apply Lemma 1. 

In the rest of this paper, we shall always take Z = X + Y (the 
product-space X × Y endowed with the usual linear structure), so we 
write P(x, y), Q(x, y),  L(x, y), M(x,  y). 

3. COROLLARIES 

By taking Z = X ~ - Y  (as prescribed earlier), X = Y, L(x, y ) =  
x + y, M(x,  y) = x - - y ,  P(x, y) = y,  Q(x, y) = - y ,  a n d  assuming 
( , ) is a symmetric, positive definite bilinear form, we obtain by 
Theorem 1B: 

COROLLARY 1. Let X be an inner product space under the bilinear form 
( , ) ,  and let the sequence (x i ,  Yl) (i = 1 .... , n) satisfy 

IlYi--Y~[I ~ ][xi - xill (i , j  = 1,..., n). 

Then there exists a y in the convex hull of { Yi} such that 

11 y~ - y [1 ~ II x~ il ( i  = 1,.. . ,  n).  

This is the Kirszbraun (-Valentine) Theorem referred to earlier. 
This theorem has been generalized in a quite different direction by the 
writer in [5]. 

In all our remaining Corollaries, we shall take L(x, y) = x, M(x,  y) = y,  
as well a s Z =  X +  Y. 

COROLLARY 2. Let K: Y--+ X be a linear mapping whose associated 
quadratic form ( K y ,  y )  is positive semidefinite: ( K y ,  y) > /0  for all 
y ~  Y. Let {(x,,y~): i =  1, n} be a sequence in X × Y such that 
(xi  --  x1, Yi -- Yj)  >/O. Then there exist A1,... , A n > / 0  with 5~i A, <~ 1 
such that 

(x i + Ky, Yi -- Y)  ~ 0 (i -~ 1,..., n) 

where y = Z i  Ai Yi , and furthermore 

hi(xi, Yi) -}- (Ky,  y )  ~ O. 
i 
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Proof. In addition to earlier mentioned specializations, take P(x, y) = 
- - K y ,  Q(x, y) = y, and apply Theorem 1A. This corollary appears to be 
useful for the proof of an existence theorem for Hammerstein's nonlinear 
integral equation, with a weak- or weak*-compactness argument  in 
the space Y. 

In case K is identically zero, we obtain the Debrunner-Flor Lemma; 
or to be more precise, we would have obtained this Lemma if we had 
applied Theorem lB. By relaxing the requirement Z¢Ai-----1 to 
5ZiAi ~< 1, we obtain in addition the extremely useful cOndition 
~i  )~i(xi, Yi} ~ O, which is related to "coercivity conditions" in the 
theory of "monotone operators and variational inequalities." 

In the remaining applications, we take X = Y and ( , } as a form 
whose associated quadratic form (x, y} is positive semidefinite. (For 
concreteness, one may assume i t  also symmetric,  though we shall not 
need this hypothesis.) 

COROLLARY 3. Let X ,  ( , } be as above; let U be a linear subspace of 
X 5r X such that ( p, q} ~ 0 for all ( p, q) e U, and enjoying the "unique 
decomposition property": any vector v ~ X can be represented as a sum 
v = p + q ,  where ( p , q )  e U .  Define the mappings P and Q by 
- -P(x ,  y) + Q(x, y) = - x  + y, ( - P ( x ,  y), Q(x, y)) ~ u.  Let {(xt, Yi): 
i = 1,..., n} be such that ( x  i - - x j  , Y i -  Yj} ~ 0 for i , j  = 1,..., n. 
Then there exist h i ,..., A s ~ 0 with ~.i ;~, ~ 1 such that 

and also 

where 

(x i -- P(x, y), Yi -- Q( x, Y)) > 0 (i = 1 ..... n) 

ai(xi , Yi> -- (P(x, y), Q(x, y)} ~ 0 
i 

x = ~A~x,, y = ~ A i y  i .  
i i 

Proof. The specializations needed are obvious. It is a routine matter 
to prove that the mappings P and Q are linear mappings. Observe that 
q2(x, y) = ( x  - P(x, y), y - Q(x, y)} = (x  - P(x, y), x - P(x, y )}  
and thus Q2 is pc;sitive semidefinite. 

The most interesting special case is when X is a Hilbert space, and U 
is a "maximal monotone" linear subspace. A subset U of X × X is 
called "monotone" provided: for any ( P l ,  ql), (P2,  q2) ~ U, we have 
( P l  -- P~, ql --  q2} /> 0, and "maximal monotone" if it is not properly 
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contained in another monotone set. The "unique decomposition 
property" for maximal monotone sets in X × X is proved in [4]. 

The product of two orthogonal complementary subspaces of a Hilbert 
space is a maximal monotone subspace of X ~- X. Thus we have the 
following. 

COROLLARY 4. Let X be a Hilbert space with inner product ( , ) ,  
and let .4 and B be the orthogonal projection operators onto a closed linear 
subspace and its orthogonal complement, respectively. Let (x i ,  Yi) be a 
monotone sequence in X × X.  Then there exist h i > / 0  with ~ i  Ai <~ 1 
such that 

(x~--  Ax, y , - -  By)  >~ 0 (i ---- 1 .... ,n) 

where x = ~ i  Ai'xi and y = Z i  hi Yi , and furthermore 

ai(xi ,Yi)  ~ O. 
t 

This corollary has applications to the theory of differential equations. 

3. PROJECTED APPLICATIONS 

We are not really interested in the solution of a finite system of 
inequalities; this Theorem and Corollaries are designed as tools for 
existence-theorems for solutions of infinite systems. The methods are 
(weak- or weak*-) compactness arguments: one chooses a large "ball" 
in a topological vector space which is compact, and solves the inequalities 
"finitely many at a time" in the ball. The conditions like ~ ~.(x t , Yi)  <~ 0 
are inputs to a coercivity argument to show the existence of a suitably 
large ball. Under suitable hypotheses, each inequality cuts out a closed 
subset from the ball (the inequalities we are solving describe convex 
sets). In order to keep this paper uncluttered with such topological 
considerations, we postpone these arguments to another paper. 
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