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On Paul Tut-tin’s Work in Number Theory 

J. PINTZ 

1 

Number theory has always played a central role in Paul Turan’s wide and 
important work in mathematics. His very first publication, as well as 7 of the 
next 8 papers (1933-1936) are devoted to problems of analytical and 
elementary number theory. He published about one hundred papers dealing 
with number theoretical problems. His main achievement in mathematics, the 
power sum method-now called universally Turin’s method-can be viewed, 
according to Turin’s description, as a chapter in the theory of diophantine 
approximation. The method was created by Turin himself for an attack on 
the Riemann hypothesis. First successes of the method and its most fruitful 
applications were connected with the theory of the zeta-function and the 
distribution of prime numbers. In what follows we shall try to give a short 
account of some of his achievements which perhaps form the most important 
part of this outstanding work in number theory. 

2 

Turin was always interested in finding new pathways in mathematics. His 
first international success, his thesis [3] initiated probabilistic number 
theory-now a large chapter of number theory. In [3] he gave a new and 
very simple elementary proof of the theorem of Hardy and Ramanujan 
according to which if U(n) denotes the number of prime factors of n and 
H(x) + 00 then 

1 U(n) - log log NI < H(N) \/loglogN (2.1) 

for almost all n < N, i.e., apart from o(N) numbers n <N. He proves by an 
easy calculation that 

D(N) !Ef c (U(n) - log log N)2 = O(N log log N) (2.2) 
&N 

of which (2.1) is an immediate consequence. His method-unlike the 
Hardy-Ramanujan method--opened the way for investigating general 
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additive number theoretical functions. This first general theorem in this 
direction, the generalization of (2.1) for strongly additive w’s with 
I@) = O(1) is contained in [6]. 

3 

Turin was very much interested in the theory of the zeta-function. A 
characterisation of the zeta-function can be very important in reaching 
results, e.g., in the direction of the Riemann conjecture. If a proof for a zero- 
free region does not use all characteristic properties of the zeta-function then 
the method is probably too weak for proving the Riemann conjecture. The 
first characterisation by Hamburger and all others prior to Turan’s work 
[ 1121 hinged on a functional equation. Therefore the general impression was 
left that the best method in proving zero-free regions-the method of 
trigonometric sums, which doesn’t use any functional equation-cannot lead 
to the proof of the Riemann conjecture. Turin discovered in 1959 [ 1121 the 
very interesting and surprising fact that a Dirichlet series with positive 
monotonically decreasing coefficients and Euler product is identical with the 
zeta-function apart from a translation. The theorem is the multiplicative form 
of a theorem of Erdos according to which any monotone additive number 
theoretical function has the form c . log n. In [ 1601 he gave a similar charac- 
terisation of Dirichlet’s Y-functions. The theorem of Turin gives a good 
example that not always those theorems are important and beautiful where 
the proof is difftcult and that in many cases not the proof of a theorem but 
the discovery of a new phenomenon is most fruitful in mathematics. He was 
also the first who at the same time as Linnik and Siegel (but independently) 
realised the importance of formulating and proving a so called density 
theorem for the zeros of Dirichlet’s P-functions-which has become now a 
very important area of analytic number theory. He proved in 1943 [26] that 
almost all Y-functions mod k have no zeros in the domain 

His most important results concerning the zeta and Y-functions were proved 
by the power sum method which we shall discuss later. 

4 

Hardy and Littlewood in their famous paper in 1922 introduced a new 
trailblazing method for the investigation of the Goldbach and twin-prime 
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problem. They proved a heuristic formula for the number of solutions of the 
equations 

p + p’ = n and p - p’ = 2, P<X 

resp. and showed that the problem is intimately connected with the 
distribution of zeros of Y-functions. 

Turin created a new method for the investigation of these 
problems-called by him the function theoretical sieve method which can be 
considered as the continuation of Hardy and Littlewood’s heuristic method. 
In his publications [ 154, 158, 167, 170, 173, 1751 he obtained explicit 
formulae for the number of solutions which contained the heuristic main 
term (which he gained in a new and far more simple way) and the error 
terms depending in a relatively easy way on zeros of Y-functions. The 
formulae can be considered as analogs of the exact prime number formula of 
Riemann and von Mangoldt. As consequences of those formulae he proved 
the very surprising fact that the solution of the twin-prime problem, e.g., 
depends only on P-zeros in the domain 

and some analogous phenomenon occurs in case of the Goldbach problem 
too. Of course it is not yet known whether his completely new ideas can lead 
or are helpful to the solution of the Goldbach and the twin-prime problems. 

It is a next to impossible task to sketch the power sum method and its 
applications, even in number theory. More than a hundred publications of 
Turin himself and many of the other authors from four continents, 3 books 
with the same title but with increasingly richer material [66-67, 
92, 2441, edited in Hungarian, German, Chinese and English deal with the 
method. The completely rewritten and enlarged new edition [244] which 
shall appear in the near future also can not cover the full spectrum of that 
epoch-making theory. The theory gained applications in various branches of 
mathematics as, e.g., number theory, theory of complex functions, differential 
equations, numerical analysis. 

Turin succeeded in deriving from relatively simple inequalities-con- 
cerning oscillation of power sums of finitely many complex numbers-deep 
theorems in analysis. He himself considered this as the partial execution of a 
program which was conjectured to be possible by Weierstrass: to derive 
analysis from algebra. 

From the many possible inequalities which have important applications 
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we shall quote 3 main theorems here. They 
oscillation of the power sum 

g(v) = 5 bjzi” 
j=l 

on successive v-values, where in general the 
complex numbers, but for simplicity’s sake we 
the z,‘s. 

The first main theorem asserts 

give lower bounds for the 

(5-l) 

b,‘s and zis are arbitrary 
use some normalization for 

(5.2) 

if (m > 0 is arbitrary and) 

,$zn lzjl = ‘* (5.3) 

This had important consequences in the theory of complex functions, 
differential equations and (indirectly) in transcendental number theory. 

The second main theorem applied in analytical number theory and 
numerical analysis states in terms of the deeper normalization 

1 = IZll 2 lz212 *** 2 IZ”I (5.4) 

the inequality 

Turin worked for a long time until he could get what he called one-sided 
power sum inequalities, where one can guarantee oscillation in both 
directions for Re g(v). Those inequalities were needed for the application in 
analytic number theory, in the comparative prime number theory 
named by himself and S. Knapowski. A characteristic inequality 
operates with the normalization (5.4); assuming further that 

O<K<)argz,I<rr, (j = 1, 2,..., n) 

it asserts that 

max 
m+l<u<m+(ZOd~) 

Re g(v) 

created and 
of this type 

(5.6) 

(5.7) 
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which gives “large” negative values for Re g(v) too if applied for -b, instead 
Of bj, 

It is an interesting phenomenon in connection with the previously 
mentioned program of Weierstrass that though all the power sum theorems 
have purely algebraic features their proof is analytic in most cases. 

6 

Many of Turin’s results in the theory of the Riemann zeta-function were 
helpful in elucidating the mysterious connection between zeta-function and 
primes. The starting point for one part of his investigations was a remark in 
Landau’s Handbuch: 

“Die Tatsache, dass C, Y/p gerade in der Niche der Primzahlen und hliheren 
Primzahlpotenzen und sonst in der Niihe keiner Belle ungleichmPssig konvergiert, 
deutet auf einen arithmetischen Zusammenhang zwischen komplexen Wurzeln p der 
Zetafunktion und den Primzahlen hin. Ich habe keine Ahnung, worin derselbe 
besteht.” 

In 1947 he proved [3 1 ] that if for the constants a, /3 and for a given 
t, > ~(a,/?) the inequality 

holds for all N,, N, with 

ta < N < N, < N, < 2N < exp(ti”“) 01 1 

then C(s) # 0 on the segment 

c-lob3 o> l----, 
.* 

t=t,. 

(6.2) 

One can formulate the global form of this theorem if one requires (6.1) for 
all t > c(ar,p). Then we get as consequence the existence of a non-trivial 
zero-free half plane, i.e., the truth of the so called quasi-Riemann conjecture. 
It is not known at present whether better estimates for exponential sums can 
lead in the future to a proof of the quasi-Riemann conjecture through (6.1). 
He also showed [209, 2451 that it is enough to assume (6.1) for the far 
shorter prime range 

I;“-” <N < N, < N, Q 2N < tf”+” (6.4) 

which comes closer to the problem of localized connection between primes 
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and zeta-roots. In [245] he got results which assert that at least under the 
assumption of the Lindelijf conjecture roughly speaking primes in certain 
ranges are dependent only on zeta-roots in certain corresponding ranges, and 
conversely. 

7 

Another area of the theory of the zeta-function is the problem of the 
density hypothesis 

N(o, T) = 1= o(p(l--o)tc) (7.1) 
S(P) =o 

Reo>u,O<lmp<T 

and related questions were the power sum theory has its most important 
application in all of mathematics. The significance of (7.1) is that from it 
follows easily that every interval [x,x + xC1’*)+‘] for x > x0(s) contains 
prime numbers. Even assuming the Riemann conjecture we get only slightly 
more. Turan proved approximately (7.1) near 1 already in 195 1 [54], more 
precisely he gave the estimate: 

N(~, q  = 0(~2(1-~)+600(l-~~“~‘lon~T), 
(7.2) 

which was one of the first great successes of his method. In 1969 Turin and 
G. Hal&z [ 1811 could first prove the density hypothesis for a definite range 
co < (T < 1 (with co < 1). They even proved the stronger estimate 

jqo, T >  = o(~l-o~“~log3~l/1-o~)~ 
(7.3) 

Another interesting problem is the connection of the Lindelof conjecture 

((4 + it) = O(l ll’) (7.4) 

with possible density type theorems. The first surprising result proved by 
Ingham in 1937 was that it implies the truth of the density hypothesis. Turin 
gave a new proof for this phenomenon in 1954. In [77] he stated the 
corollary that it implies even the far stronger inequality 

WA T) = OG-‘) (7.5) 

for f < u < 1. This surprising fact was proved at least for % < u by himself 
and G. Hal&z [ 1811. The method was the same as applied for the proof of 
(7.3~showing that unconditional theorems and conditional theorems being 
perhaps “only of theoretical interest” are much closer to one another than 
one should think. 
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8 

The power sum method was successful also in demonstrating a connection 
between zero-free region and distribution of primes. In [48]-solving a 
problem of Littlewood- he gave the first explicit Q-type estimate for the 
remainder term d(x) = v(x) - x = xnGx A(n) -X of the prime number 
formula in dependence of one C-zero p,, =/I, + iy,. His estimate is 

T40 
y; IO)1 > IPo~lOlogT/loglogT exp 

log T log log log T 
-cl log log T (8-l) 

for T > max(c,, exp(]po]60)) with explicit absolute constants c, and c2. 
Another important problem of Heilbronn and Ingham whether non-trivial 

bounds for the error term d(x) imply zero-free region for C(s). The other 
direction is well known and the classical theorem of Ingham states, e.g., that 
from 

C(s) f 0 for c~>l--~, 
log4 ItI 

ItlaG 

follows 

d(x) = 0(x exp(-c, log”” + O) x)) (8.3 > 

but nearly nothing was known in the other direction. Turan’s method led to a 
positive answer for this problem in 1950. Namely, he could show [50] that 
conversely (8.3) implies (8.2), proving again a conditional theorem of high 
theoretical interest and giving a new contribution to the task of discovering 
the mysterious connection between primes and zeta-roots. 

9 

The problem of finding “one sided” power sum theorems (as given in 
(5.6)-(5.7)) was stated in the first edition of Turan’s book ([66] = [67]) as 
one of the main open problems of the theory. These theorems were 
investigated originally for the purpose of attacking an old problem 1 of 
Riemann and Littlewood. Riemann stated in his famous memoir without 
proof the assertion that 

7(x) < Ii x = 
i 

x dr 
- 

o log r 
for x > 2. 

Riemann’s assertion though checked by D. N. Lehmer for all x Q 10’ in 
1914 was disproved by Littlewood in the same year, who showed that 

641/13/3-Z 
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X(X) - li x changes sign infinitely often as x + co. Curiously enough his 
proof was incapable of exhibiting any explicit upper bound for the first sign 
change and the problem was solved only in 1955 by Skewes. 

But Knapowski was the first who using one-sided power sum theorems 
could prove in 196 1-1962 weaker effective (c log, Y) and stronger ineffective 
(c log, Y) lower bounds for the number V(Y) of sign changes of n(x) - li x in 
the interval [2, Y].’ It is again of theoretical and historical interest that later 
Turin and Knapowski could investigate this “one-sided” problem with two- 
sided power sum theorems-which were developed earlier, nearly ten years 
before Skewes’s proof-with even greater success. Namely, they proved the 
effective inequality [ 2261 

‘(Y) > c6 l”fh ’ for Y>c, (9.2) 

and the stronger ineffective one (2231 

1% 
l/4 y 

v(“> > c8 (log, Y)” 
for Y> Y,, (9.3) 

where c,, c,, c8 are explicitly calculable but Y, is an ineffective absolute 
constant. 

10 

Though one-sided power sum theorems could be eliminated from the 
problem of investigation of sign changes of the remainder term of the prime 
number formula they were useful and also now necessary in another closely 
related theory, in the so called comparative prime number theory. This 
theory which was founded and developed in nearly 20 papers of Turin and 
Knapowski had as its aim finding irregularities in the distribution of primes 
in arithmetic progressions. 

The starting point for such a theory was the mysterious assertion of 
Chebyshev in 1853, stating 

lim C (_l)(p-‘)‘2 e-p/X = --oo 

x-cc p>2 

(10.1) 

without any proof or even background. The only results in 100 years after it 
were 3 papers of Hardy and Littlewood and Landau in which they proved 
that (10.1) is equivalent to the very deep analog of the Riemann conjecture 

W,X’)’ -T (-1)” 
,fh’ (2n+ l)SfO 

for u > k, (10.2) 

’ log,, x stands for the v-times iterated logarithm function. 
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further the result of Littlewood that 

K*(X) - 713(x) = c (-l)(p-‘V2 (10.3) 

changes sign infinitely often. The small number of results was probably not 
due to lack of interest-Chebyshev’s assertion seemed to be sufficiently 
attractive especially in view of the equivalence with (10.2)--but due to the 
fact that these problems were indeed as characterized by 0. Toeplitz in a 
lecture in the 1930s as “fast unangreifbar bei dem heutigen Stand der 
Wissenschaft.” The main problem is what can one prove on possible sign 
changes of the functions yl(x, k, II) - ~(x, k, I,) and x(x, k, l,) - x(x, k, l,), 
where 

Y@, k, 1) = x A(n), II(X, k, I) = c 1 (10.4) 
n<x P<X 

n=/(k) P4kl 

and (II, k) = (I,, k) = 1, I, & 1, (mod k). A necessary disadvantage of the 
theory is that for general modulus k one has to assume that the .Y-functions 
mod k have no real zeros or more explicitly they don’t vanish in the region 

O<a< 1, I4 <A(k). (10.5) 

This is verified for k < 25 by calculations of Hazelgrove and Spira but it is 
very deep and was unknown generally until now. The necessity of this 
assumption can be seen easily from the formula 

v(x, k, 1) = & -cm c ;+o(log2w (10.6) 
x P=PX 

Ihpl<x 

where in case of existence of a real zero being right from all complex zeros 
~(x, k, 1r) > ~(x, k, I,) is possible for all x > x,,. 

Now Turan and Knapowski could prove under the assumption (10.5) that 
all the functions ~(x, k, I,) - ~(x, k, I,) change their sign in every interval of 
the form [o, exp(2 fi)] if 

w  > max(e”‘, e(uA(k))3). (10.7) 

The problem of finding sign changes for the functions X(X, k, II) - x(x, k, I,) 
turned to be far deeper. Here they had to assume beside the natural (10.5) 
also a finite form of the Riemann-Piltz conjecture (Y(s, x) # 0 for c > f, 
] t( < ck”). Under these assumptions they could prove the occurrence of 
intinitely many sign changes in the case were both I, and I, are quadratic 
residues mod k or both are non-residues. However, in the important special 
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case I, = 1 they were able to show sign changes in every interval [log, T, T] 
for 

T > max (c, exp exp exp exp exp k, exp( l/A (k)) (10.8) 

assuming only (10.5) independently from the quadratic nature of 1,. An 
interesting feature of the problems discussed in Sections 8-10 is that no other 
known method can lead to the results mentioned there. 

The comparative prime number theory like other areas where Turin 
worked is now also full of deep unsolved problems which will be solved 
perhaps with other methods in the future. However, his pioneering 
contribution to many branches of mathematics can never be forgotten. We 
hope that this relatively short paper also can give an adequate idea of the 
main characteristics of Paul Turin’s number theoretical work, of the 
richness and importance of his results, of the new and exciting art of 
proposing the questions and of working out methods for solving the new 
problems, of his endeavor of always searching for new paths in mathematics. 


