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a b s t r a c t

Wepropose a new and simple estimating equation for the parameters inmedian regression
modelswith designed censoring variables, and then apply the empirical log likelihood ratio
statistic to construct confidence region for the parameters. The empirical log likelihood
ratio statistic is shown to have a standard chi-square distribution, which makes this
method easy to implement. At the same time, another empirical log likelihood ratio
statistic is proposed based on an existing estimating equation and the limiting distribution
of the empirical likelihood ratio statistic is shown to be a sum of weighted chi-square
distributions. We compare the performance of the empirical likelihood confidence region
based on the new estimating equation, with that based on the existing estimating equation
and a normal approximation method by simulation studies.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Censored data often appear in econometrics, medical follow-up research, industrial life-testing and other studies. There
are several mechanisms that may lead to censoring. The most simple case is the Type I fixed censoring, in which a sample of
subjects are followed for a fixed time C . For example, we follow up with some unemployed people to observe the duration
time without jobs in one study, but the study ends while still a certain percentage remains unemployed. So the only thing
that we know about them is that the duration times of those people are greater than the design censoring time C (for more
examples, see Lee [1]).
The designed censoring we mentioned in the title is a generalization of the fixed censoring scheme, which is also

called the generalized Type I fixed censoring in some literature. Each subject in the studies has a potential censoring time,
which may vary from one subject to another but is nevertheless known by design. For example, in many clinical trials
and epidemiological studies, it is difficult to enroll all subjects simultaneously and recruitment usually takes place over an
interval, but the study ends at a fixed time point, which results in different censoring times for different subjects. Another
generalization of the fixed censoring is random censoring, where it is assumed that the censoring time is not known for
the subject for which we have complete data. However, the fact that the follow-up time is designed in advance may be an
important practical advantage in a follow-up study. In the present paper, we focus on the designed censoring and regard
the censoring times as design points generated from some distribution.
Suppose, in the example mentioned in the first paragraph, we are interested in analyzing the relationship between the

duration time and some exogenous variables, which can be years of education, age, etc. Wemay consider a linear regression
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between the duration time and the exogenous variables. There are two common ways to estimate the parameters in a
linear regression with fixed censoring data. One way is the maximum likelihood method, assuming that the error terms are
normally distributed (see Heckman [2,3]). It is well known that this method is not robust. Another way is to apply more
robust methods. The most often used method is median regression, which assumes that the median of the response, such
as the duration time in the example, is a parametric function of the covariates. Many authors including Powell [4], Rao [5],
McKeague [6] and Subramanian [7] applied median regression in their research.
Our objective in this paper is to conduct inference on the regression parameters in a linear median regression model

with designed censoring variables. Powell [4] considered the least absolute deviation (LAD) method in censored regression
models with fixed censoring variables and established the asymptotic normality of the LAD estimator. They assumed that
the responses are censored at 0. Zhou andWang [8] discussed the LAD estimators for the parameters in nonlinear regression
models with designed censoring variables. They proved the asymptotic normality of the estimator, but the asymptotic
covariance matrices depend on the error density and are therefore difficult to estimate reliably. Hence, it is not easy to
use the asymptotic normality for statistical inference in practice. It is also well known that confidence regions based on the
asymptotic normality could encounter large coverage errors in small and medium sample sizes.
To overcome the difficulty of variance estimation in the normal approximation inference method, we consider an

empirical likelihood based inference as an alternative for the parameters in median regression with designed censoring
variables. Owen [9] introduced empirical likelihood as a general inference procedure for the parameters defined in
estimating equations. Since then, empirical likelihood has proven to be useful in diverse statistical applications, for example,
Chen and Hall [10], Cui and Chen [11], Hall and La Scala [12], Qin and Lawless [13], Qin and Tsao [14], Shi and Lau [15],
among others. Furthermore, empirical likelihood has some attractive properties. For example, the empirical log likelihood
ratio satisfies the nonparametric Wilks’ theorem (Owen [9]) and the confidence regions based on the empirical likelihood
are Bartlett correctable (DiCicco, Hall and Romano [16], Chen and Cui [17]).
Qin and Tsao [14] applied the empirical likelihood method for parameters in median regression models with censored

data based on the estimating equation proposed by Ying et al. [18]. However, the estimating equation was proposed for
the median regression models with random censoring. We adapt the estimating equation to our data structure, which
involved with a secondary estimation of the censoring distribution. Due to the different data structure, we use the empirical
cumulative distribution to replace the Kaplan–Meier estimate for the censoring distribution in our proposed empirical log
likelihood ratio statistic. We show that the limiting distribution of the empirical log likelihood ratio is a weighted sum of
chi-square distributions rather than a standard chi-square distribution.
The main advantage of the empirical likelihood based on the new estimating equation for parameters in median

regression models with designed censoring variables is that the resulting empirical log likelihood ratio statistic satisfies the
standard nonparametric Wilks’ theorem. No secondary estimation is needed when applying the new empirical likelihood
method and thus it is more convenient to use. The new proposed empirical likelihood approach is more accurate than
the normal approximation in many situations when the sample size is not large and the underlying distribution is non-
normal. In addition, it can be readily used when the dependency exists between censoring variables and covariates without
modification.
This paper is organized as follows. We introduce the models and give a new and simple estimating equation in Section 2.

In Section 3, three ways are used to construct confidence regions. The asymptotic distributions of two empirical likelihood
based statistics for inference are derived and the main results are given. We present some simulation results in Section 4.
Summary of the paper is given in Section 5. All the conditions and technical proofs are put in the Appendix.

2. Models and a new estimating equation

Let Ti be the response of interest, for example, Ti may be the duration time of unemployment for individual i (i =
1, . . . , n). Let Zi be exogenous covariates thought to influence the response. We want to study the relationship between
Ti and Zi. We assume that median of Ti is a linear function of Zi, specifically,

Ti = β ′0Zi + ei, for i = 1, . . . , n (1)

where e1, . . . , en are i.i.d. random variables with zero median and have continuous density h(t) satisfying condition (A1) in
the Appendix, β0 is a p× 1 vector.
Due to designed censoring, we do not observe Ti directly if Ti is greater than Ci. Instead, we observe the vector

(Yi, Z′i, δi, Ci), where Yi = min(Ti, Ci) and δi = I(Ti ≤ Ci) is an indicator variable. We assume that C1, . . . , Cn are design
fixed constants generated from a distribution G(t).
We define the estimator β̂n of β0 to be a solution of the equation

ḡ(β) ≡
1
n

n∑
i=1

gi(β) = 0, (2)

where gi(β) = sgn(Yi −min(Ci, β ′Zi))(1+ sgn(Ci − β ′Zi))Zi and sgn(x) = I(x ≥ 0)− I(x ≤ 0), the sign function. Because
of the discontinuity of ḡ(β), an exact solution to (2) may not exist, but we can define the estimator β̂n satisfying ḡ(β̂n) ≈ 0.
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There are two primary justifications for the estimating equation. Firstly, the estimation equation approximate the
derivation of the objective function of the LAD estimator of β0

β̂LAD = arg min
β∈Rp

n∑
i=1

|Yi −min(Ci, β ′Zi)|. (3)

The definition of the LAD estimator for this model is based on the fact that, for any scalar random variable Y satisfying
E|Y | < +∞, the function E|Y −b| is minimized by choosing b to be themedian of the distribution of Y . Hence, if themedian
of Y given C, Z andβ , is some known functionm(C, Z, β) of the censoring variables, the regressors and unknownparameters,
a sample analogue to the conditional median can be defined by choosing β tominimize the function

∑n
i=1 |Yi−m(Ci, Zi, β)|.

Using amethod similar to that of Powell [4], under condition (A1) in the Appendix, we can verify that the conditionalmedian
(given Ci and Zi) of Yi is m(Ci, Zi, β0) = min(Ci, β ′0Zi). Secondly, letΩ be a bounded parameter space which contains β0 as
an interior point. Then under some mild conditions (A1)–(A4) in the Appendix, we may show that the E[ḡ(β)] = 0 if and
only if β = β0 for β ∈ Ω (see Lemma 1 in the Appendix). So ḡ(β) = 0 is also a reasonable estimating equation for β0 from
this standpoint.
Ying et al. [18] have established an estimating equation for parameters in the median regression model under random

censoring. Under the assumption that Ci are independent of Zi and Ti are independent of Ci given Zi, they used the fact that
E{I(Yi ≥ β ′0Zi)|Zi} = (1 − G(β

′

0Zi))/2 where G(·) is the distribution function of Ci. However, the relationship is no longer
hold if Ci and Zi are dependent. In fact, we need to estimate the conditional distribution of Ci condition on Zi when Ci are
dependent on Zi, which could be difficult in some cases.

3. Confidence regions and main results

3.1. Empirical likelihood based on the new estimating equation

Recall that from the discussion in Section 2, under some conditions, E[ḡ(β)] = 0 if and only if β = β0. This motivates
us to construct empirical likelihood confidence region for β0 in model (1). According to Owen [9], the empirical likelihood
ratio for β can be defined as

R(F) = max
pi

{
n∏
i=1

npi :
n∑
i=1

pi = 1,
n∑
i=1

pigi(β) = 0, pi > 0

}
,

which corresponds to the empirical log likelihood ratio evaluated at β , that is,

`(β) = −2 min
n∑
i=1
pi=1,

n∑
i=1
pigi(β)=0

n∑
i=1

log(npi).

By introducing a Lagrange multiplier λ ∈ Rp, standard derivations in empirical likelihood lead to

`(β) = 2
n∑
i=1

log{1+ λ′gi(β)},

where λ satisfies
n∑
i=1

gi(β)
1+ λ′gi(β)

= 0.

We investigate the nonparametric version ofWilks’ theorem for the empirical log likelihood ratio statistic, the convexity
of the confidence region based on the empirical log likelihood statistic and the power of the empirical log likelihood ratio
test in the following theorems.

Theorem 1. Under conditions (A1)–(A4) in the Appendix, if β0 is the true value of β , then the limiting distribution of `(β0) is
chi-square distributed with p degrees of freedom, that is as n→∞, `(β0)

d
→χ2p , where

d
→ stands for converging in distribution.

We note that the limiting distribution of `(β0) is a standard chi-squared distribution, which is free of any tuning
parameter. This is due to the fact that gi(β0) are independent random variables without any unknown parameter. More

specific reason is that 1n
∑
gi(β0)g ′i (β0) → Vβ0 a.s. and

1
√
n

∑
gi(β0)

d
→ N(0, Vβ0). According to the proof given in the

Appendix,

`(β0) =

{
1
√
n

∑
g ′i (β0)

}{
1
n

∑
gi(β0)g ′i (β0)

}−1 { 1
√
n

∑
gi(β0)

}
+ op(1).
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Hence, `(β0)
d
→ χ2p . By applying Theorem 1, we can construct a 1− α confidence region for β0 as

CRα = {β : `(β) ≤ cα}, (4)

where cα is the 1− α quantile of a χ2p distribution satisfying P{χ
2
p < cα} = 1− α.

Usually convex confidence regions are appealing for purpose of interpretation. In particular, one would hope that as the
sample size increases and we acquire more information near β0, this increased information would be reflected in a high
probability of obtaining a convex and more accurate confidence regions. Theorem 2 says this fact.

Theorem 2. CRα is asymptotically convex, that is the gap between CRα and a convex region attract zero probability, as n→∞.

Let us consider the problem of testing the null hypothesis H0 : β = β0. We can use the empirical log likelihood ratio
`(β) as a test statistic. Therefore, if we want to know the power of the test, the following theorem should be considered.

Theorem 3. Under conditions (A1)–(A4) in the Appendix, limn→∞ P{β̃ ∈ CRα} = 0 for any fixed β̃ 6= β0 and limn→∞ P{β̃n ∈
CRα} = P{χ2p (‖γ ‖

2) < cα} for any fixed β̃n = β0 + 1
√
nh(0)

−1V−1/2β0
γ , where χ2p (‖γ ‖

2) stands for the noncentral χ2 random

variable with p degrees of freedom and noncentrality parameter ‖γ ‖2, for a fixed γ ∈ Rp and Vβ0 = limn→∞
4
n

∑n
i=1 E[ZiZ

′

i(1−
G(β ′0Zi))].

The first result of Theorem 3 reveals that the power of test H0 : β = β0 is asymptotically 1 as n→∞. The second result
of this Theorem gives the asymptotic distribution of `(β) under the local alternativeH1 : β = β0+ 1

√
nh(0)

−1V−1/2β0
γ ,where

Vβ0 was given in Theorem 3. The result tells us that the empirical log likelihood ratio test has a non-trivial power to test the
departure from the null hypothesis of order O(1/

√
n).

3.2. Empirical likelihood based on the existing estimating equation

In this section, we present an alternativeway to construct empirical likelihood confidence region based on the estimating
equation proposed by Ying et al. [18]. The estimating equation was proposed for a different data structure with random
censoring, i.e., Ci are only observed when δi = 0. Based on this estimating equation, Qin and Tsao [14] have constructed an
empirical likelihood confidence region for the regression coefficients inmedian regressionwith randomcensoring. However,
in designed censoring situation, the complete observations of Ci can be obtained. It seems reasonable and useful to use all
the observations of Ci rather than part of them. By replacing the Kaplan–Meier estimate in Ying et al. with an empirical
distribution function of Ci, i.e., Ĝn(t) = 1

n

∑n
i=1 I(Ci ≤ t), we propose the following estimating equation

Wn(β) =
1
n

n∑
i=1

Wni(β) ≡
1
n

n∑
i=1

Zi
[
I(Yi ≥ β ′Zi)−

1
2
(1− Ĝn(β ′Zi))

]
= 0. (5)

As the same as Section 3.1, we can define the following empirical log likelihood ratio based on (5),

`E(β) = 2
n∑
i=1

log{1+ λ′EWni(β)},

where λE satisfies
∑n
i=1

Wni(β)
1+λ′EWni(β)

= 0.

Let Bij(β0) = G(β ′0Zi)(1− G(β
′

0Zj)) and denote

Γ1 = lim
n→∞

n−1
n∑
i=1

E

[{
I(Yi ≥ β ′0Zi)−

1
2
(1− G(β ′0Zi))

}2
ZiZ′i

]

Γ2 = lim
n→∞

1
4n2

∑
i6=j

E
[
Bij(β0)(ZiZ′j + ZjZ′i)−min{Bij(β0), Bji(β0)}ZiZ

′

j

]
.

We give the following limiting distribution of `E(β0):

Theorem 4. Suppose that the conditions (A1)–(A4) in the Appendix hold. If β0 is the true value of β , then the limiting distribution
of `E(β0) is a weighted sum of chi-square distributions with 1 degree of freedom, that is,

`E(β0)
d
→ l1χ21,1 + · · · + lpχ

2
p,1,

where theweights li’s are the eigenvalues of Γ −11 (Γ1−Γ2) andχ2i,1(i = 1, 2, . . . , p) are independent chi-square randomvariables
each with one degree of freedom.

To apply Theorem 4 for constructing confidence region for β0, we have to estimate the weights li. We first estimate Γ1
and Γ2 by replacing G(t)with Ĝn(t), the empirical cumulative distribution function and β0 with β̂LAD or β̂n, a solution to (5).
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Then estimating the li’s by the eigenvalues of Γ̂ −11 (Γ̂1 − Γ̂2). Now a 1− α confidence region for β0 can be formed as

CREα = {β : `E(β) < c
E
α},

where cEα is the 1− α quantile of the weighted sum of chi-square distributions l̂1χ
2
1,1 + · · · + l̂pχ

2
p,1.

As compared with Theorem 1, we notice that the limiting distribution is a weighted sum of chi-square distributions
rather than a standard chi-square distribution. This is essentially due to the estimation of G(·), which causes the dependency
between Wni(β0). Because of the estimation of Γ1,Γ2, β0 and cEα , the procedure for constructing confidence region CR

E
α

become much complicated than using CRα as a confidence region.

3.3. Normal approximation based confidence region

Under the same data structure with us and certain conditions, Zhou and Wang [8] have shown that
√
n(β̂LAD − β0)

d
→N(0, (4h2(0)S)−1), (6)

where S = limn→∞ n−1
∑n
i=1 ZiZ

′

i

∫
+∞

(β ′0Zi)−
dG(u) and (a)− = −min(a, 0).

Now let

Ŝ =
1
n

n∑
i=1

ZiZ′i

∫
+∞

(β̂ ′LADZi)−
dĜ(u), ĥ(0) =

∫
Kb(u)dF̂KM(u),

where Ĝ(u) = 1
n

∑n
i=1

∫ u
−∞
Ka(t− Ci)dt, F̂KM(u) is the Kaplan–Meier estimate of the distribution function of Ti− β̂ ′LADZi and

Ka(·) = K(·/a)/a, K(·) is a symmetric probability kernel function and a, b are two bandwidths.
Therefore, we can formulate the following normal approximation based confidence region with significant level 1− α:

NCRα = {β : 4nĥ2(0)(β̂LAD − β)′Ŝ(β̂LAD − β) ≤ cα},

where cα is the 1− α quantile of the standard chi-square distribution with p-degrees of freedom.
The empirical likelihood for constructing confidence regions in the previous sections is known as a computer intensive

method. However, to apply the normal approximationmethod to construct confidence region forβ0, one also has to estimate
βLAD first. Because the objective function Fn(β) =

∑n
i=1 |Yi − min(Ci, β

′Zi)| is not convex, Newton-type algorithm is not
guaranteed to converge to a global minimum, we applied the Genetic algorithm to find the global minimum (see, Zhou and
Wang [19]). This increases computation time for using the normal approximation method.

4. Simulation study

In this section, we useMonte Carlo simulation to evaluate the performance of the empirical likelihoodmethods proposed
in Sections 3.1 and 3.2, and compare them with the normal approximation inference method of Zhou and Wang [8].
Throughout this section, we use NCRα to denote the 1 − α confidence region constructed by the normal approximation
method, CRα for the 1 − α empirical likelihood based confidence region proposed in Section 3.1 and CREα for the 1 − α
empirical likelihood confidence region proposed in Section 3.2. Let Rα be the 1 − α empirical likelihood confidence region
for median regression with random censoring proposed by Qin and Tsao.
Firstly, to show the asymptotic convexity of the confidence region CRα and compare the coverage probabilities and

interval lengths between CRα and NCRα , we simulated the following model:
Model I: Let Ti = β0Zi + ei, where β0 = 1, Zi ∼ U[0, 1] and ei ∼ N(0, 1). The censoring variable Ci ∼ logUi, where
Ui ∼ U[0, c] and Yi = min(Ti, Ci). The value of the constant c in the model determines the censoring proportion.

In Fig. 1, we present two curves to demonstrate the asymptotic convexity of the confidence region CRα for β0 in model
I with censoring rate 15%. We see that as the sample size increased from 60 to 300, the curve near the true value is almost
convex. We also note that the confidence interval became narrower as the sample size increased and both of them included
the true value β0 = 1, as we would expect.
Next, we compare CRα with NCRα using model I. The coverage probabilities of CRα and NCRα are summarized in Table 1,

which were estimated by the frequency of the true values falling into the confidence intervals in 1000 simulations. On our
PC with 2 G memory and Vista system, the average CPU time for constructing one confidence interval using NCRα in model
I was 0.42 s, while the CPU time using CRα was 1.36 s. The confidence intervals based on CRα were consistently superior
than that based on NCRα in term of coverage probabilities. The coverage probabilities of NCRα were usually lower than the
nominal levels, especially when the censoring proportion was large. In contrast, the intervals CRα maintained the nominal
level well even as the censoring proportion increases.
Furthermore, the improved coverage probabilities of CRα does not come at the expense of the increased interval width.

Table 1 also compares the length of CRα (denote as Lel) with the length of NCRα (denote as Lnorm) for various sample sizes,
censoring proportions and nominal levels based on 100 simulations. It revealed that the length of CRα usually approximately
equals to the length of NCRα , even with 40% censoring proportion. In small censoring proportion (15%), the length of NCRα
was usually longer than that of CRα . As the sample size increased, the difference between Lnorm and Lel decreased.
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Fig. 1. The asymptotic convexity of the confidence interval CRα is shown in the plot. The solid curve is the value of `(β) against β with sample size n = 60
and the dashed line is for sample size n = 300. The horizontal line is the cut-off line at 3.84.

Table 1
Comparison of coverage probability (CP) and interval length between the empirical likelihood CRα and the normal approximation confidence intervalNCRα .
Defining LD = Lnorm − Lel , where Lnorm is the length of NCRα and Lel is the length of CRα .

α Model Sample size Censoring proportion NCRα, CP CRα , CP Mean of LD Std. of LD Proportion of LD > 0

5 I 60 15 0.930 0.947 −0.004 0.378 0.57
25 0.920 0.946 −0.096 0.490 0.48
40 0.864 0.948 −0.060 0.240 0.35

I 100 15 0.926 0.938 0.001 0.227 0.52
25 0.932 0.956 −0.017 0.225 0.50
40 0.889 0.963 −0.072 0.212 0.36

10 I 60 15 0.869 0.894 0.080 0.270 0.68
25 0.851 0.897 −0.047 0.334 0.54
40 0.825 0.908 −0.053 0.379 0.46

I 100 15 0.843 0.861 0.050 0.225 0.70
25 0.852 0.890 −0.015 0.236 0.55
40 0.845 0.927 −0.027 0.189 0.43

Table 2
Empirical power and size for testing H0 : (β01, β02) = (1, 1). The tests were based on the empirical likelihood ratio statistic proposed in Section 3.1 and
the normal approximation method (given in parenthesis).

α (%) Censoring proportion (%) Models for (β01, β02)
(1, 1) (0, 1) (1, 0.5) (0, 0)

5 15 5.6 (3.6) 76.1 (61.4) 73.7 (68.1) 100.0 (100.0)
25 3.9 (5.8) 80.1 (71.8) 82.9 (85.0) 100.0 (100.0)
40 6.7 (14.3) 88.4 (84.8) 40.3 (42.3) 100.0 (100.0)

10 15 14.3 (8.0) 84.2 (76.6) 83.3 (78.7) 100.0 (100.0)
25 10.3 (8.4) 88.9 (83.2) 92.5 (90.9) 100.0 (100.0)
40 13.2 (18.3) 95.1 (92.6) 96.7 (97.9) 100.0 (100.0)

Secondly, to illustrate Theorem 3 and compare CRα with the normal approximation method, we simulated data from the
following model:

Model II: Ti = Zi1β01 + Zi2β02 + ei, where Zi1 and Zi2 are two i.i.d. random variables from U(0, 1) and Exponential(1)
respectively, Zi1 and Zi2 are independent, and ei ∼ N(0, 1). The censoring variable Ci ∼ logUi, where Ui ∼ U[0, c] and
Yi = min(Ti, Ci), where c is also used to adjust censoring proportion as in Model I.

In Table 2, the regression parameter β0 = (β01, β02) in the model II was chosen from one of the following four cases:
(1, 1), (0, 1), (1, 0.5) and (0, 0). We applied the empirical likelihood method based on the new estimating equation and the
normal approximation method to test the null hypothesis H0 : β0 = (1, 1).
Each entry in Table 2 is based on 1000 simulations. The numbers in Table 2 are the empirical powers or sizes (in %) of tests

applying the empirical likelihood method proposed in Section 3.1 and the normal approximation inference method of Zhou
and Wang [8] (given in parentheses). From the results we see that both tests give the appropriate type I errors when the
null hypotheses are true. The power of empirical likelihood test was usually bigger than that of the normal approximation
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Table 3
Comparison of coverage probability of three types of empirical likelihood confidence regions. Rα stands for the empirical likelihood confidence region for
median regression with random censoring suggested by Qin and Tsao (we quote the column for comparison), CREα is the empirical likelihood proposed in
Section 3.2 and CRα is the empirical likelihood proposed in Section 3.1.

Nominal levels Models Censoring proportion (%) Rα CREα CRα

0.90 A 15 0.87 0.896 0.894
25 0.90 0.894 0.896
40 0.84 0.905 0.908

B 15 0.87 0.891 0.903
25 0.91 0.893 0.895
40 0.75 0.901 0.895

C 15 0.89 0.743 0.884
25 0.88 0.666 0.890
40 0.85 0.598 0.885

D 15 0.90 0.774 0.894
25 0.91 0.704 0.896
40 0.85 0.570 0.905

0.95 A 15 0.93 0.950 0.950
25 0.95 0.949 0.948
40 0.90 0.954 0.962

B 15 0.94 0.945 0.950
25 0.95 0.939 0.941
40 0.82 0.943 0.940

C 15 0.95 0.836 0.936
25 0.93 0.784 0.947
40 0.91 0.725 0.957

D 15 0.95 0.847 0.933
25 0.94 0.774 0.941
40 0.90 0.686 0.938

method. When β was far away from β0, for example in the last column of Table 2, we observe that both methods had an
empirical power 1.
Finally, for comparisons among Rα , CREα and CRα , we assume the following four simple linearmodelswhere the true values

of intercept and slope parameters are 0 and 1, respectively and let Zi = (1, Zi2)τ . The confidence region for β0 = (0, 1)′ is
of interest here.

Model A: The covariates Zi2 are i.i.d random variables from uniform distributionU[0, 1], and ei are random variables with
standard normal distribution. The censoring time is given by Ci = logUi, where Ui ∼ U[0, c].
Model B: The same as Model A except that ei are generated from a normal distribution with mean 0 and variance Zi2.
Model C: For this model, we set Zi2 = Ui, Ti = Zi2 + 0.5ei, Ci = c + Zi2 + 0.5ηi. where Ui are i.i.d. U[0, 1], and ei’s and
ηi’s are i.i.d. standard normal, which are independent.
Model D: The same model as Model C except that the covariates are now set to Zi2 = i/n, i = 1, . . . , n.
As in models I and II, we set c to achieve 15%, 25% and 40% censoring proportions, Cp. In models A and B we use

E(1 − Φ(c)) = Cp to determine c , and in models C and D, Φ(1 − Cp) was used as c , where Φ is the distribution function
of the standard normal distribution. The sample size was set to be n = 60. We note that models A and B satisfy our model
assumption, but models C and D do not, because Ci are no longer independent of Zi. Under the model structure C, Ci has
marginal distribution G(u) =

∫ u
−∞
(Φ(2y−2c)−Φ(2y−2c−2))dy and P(Ci > β ′0Zi|Zi) is 1−Φ(−2c). Then the conditional

probability P(Ci > β ′0Zi|Zi) 6= 1 − G(β
′

0Zi). Thus, we would expect that the empirical likelihood confidence region CR
E
α is

not valid in models C and D.
Table 3 summarizes the empirical coverage accuracy of Rα, CREα and CRα based on 1000 simulations. The empirical

coverage of Rα , where Ci were assumed to be only observedwhen δi = 0, was quoted fromQin and Tsao [14] for comparison.
From Table 3, we can get the following observations: firstly, CREα and CRα both had good coverage probabilities in models
A and B. As we would expect, CREα and CRα obtain more information about censoring variables Ci such that we should have
better coverage accuracy than Rα . Indeed, when the censoring proportion attained 40%, we find that CREα and CRα had better
coverage probabilities in models A and B. Secondly, two proposed empirical likelihood confidence regions CREα and CRα had
almost the same coverage accuracy in models A and B. Thirdly, we notice that the coverage probabilities of CREα in models C
and D were consistently lower than the nominal levels 1− α as we would expect from the previous analysis. However, we
did not see much effect of the dependence of Ci and Zi on the coverage probabilities of CRα . These phenomena revealed that
the CREα was sensitive to the dependence between Ci and Zi and CRα was more robust in this case.

5. Summary

In this paper, we propose two empirical likelihoodmethods tomake inference for the parameters in amedian regression
model with designed censoring variables. The empirical likelihood proposed based on the new estimating equation is much
simple and easy to implement than the empirical likelihood based on the existing estimating equation and the normal
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approximation method. The limiting distribution of the two empirical log likelihood ratio statistics evaluated at the true
parameter were derived for constructing confidence regions. It was shown that one of the limiting distribution is a standard
chi-square distribution and the other one is a weighted sum of chi-square distributions.
We note that, the difference between the designed censoring data we assumed in this paper and the random censoring

data is that we may obtain more information about the censoring variables. As we can see from the simulation studies,
the proposed empirical likelihood methods make use of the additional information about censoring variable to make more
accurate the confidence region of the parameters inmedian regression than that from random censoring data. The proposed
empirical likelihood based on the existing estimating equation is not robust against the departure from the independence
of the censoring variable Ci’s and covariate Zi’s. However, the empirical likelihood based on the new estimating equation
performed well.
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Appendix. Proofs of the main results

In this section, we give the assumptions and the proofs of the results given in Section 3.
A1. The ei (i = 1, . . . , n) are i.i.d. random variables with H(0) = 1/2, where H(t) is the distribution function of ei with a
symmetric continuous density h(t) satisfying h(0) > 0.

A2. The Ci are design censoring variables, which are generated from a distribution G(t) and G(t) < 1 for any bounded t . Ci
are assumed to be independent of Zi and conditionally independent of Ti given covariates Zi.

A3. The matrix limn→∞ 1
n

∑n
i=1 E{ZiZ

′

i} exists and is positive definite. In addition, limM→∞ supi E{‖Zi‖
2I(‖Zi‖ ≥ M)} → 0.

A4. There exists a distribution function F(z) such that supz |Fn(z) − F(z)| → 0 and
∫
zz ′dFn(z) →

∫
zz ′dF(z) < +∞,

where Fn(z) = 1
n

∑n
i=1 I(Zi ≤ z).

Remark 1. The condition (A1) was used inWang and Zhou [8]. The independence between Ci and Zi in condition (A2) is not
necessary for the empirical likelihood proposed in Section 3.1, but it is necessary for the empirical likelihood proposed in
Section 3.2. (A3) is a similar condition with that in Ying et al. [18]. (A4) assures the existence of the limits of

∫
ϕ(z)zz ′dFn(z)

for any bounded function ϕ(z).

Lemma 1. Let Ω be a bounded parameter space which contains β0 as an interior point. Assume that (A1)–(A4) hold, then
E(ḡ(β)) = 0 holds for β ∈ Ω if and only if β = β0.

Proof. We are going to show that if β = β0, then E(gi(β)) = 0. In fact, we have

gi(β0) = sgn(min(Ci, Ti)−min(Ci, β ′0Zi))(1+ sgn(Ci − β
′

0Zi))ZiI(Ci > β ′0Zi)
+ sgn(min(Ci, Ti)−min(Ci, β ′0Zi))(1+ sgn(Ci − β

′

0Zi))ZiI(Ci = β
′

0Zi)
+ sgn(min(Ci, Ti)−min(Ci, β ′0Zi))(1+ sgn(Ci − β

′

0Zi))ZiI(Ci < β ′0Zi).

Therefore, taking expectation on both side yields

E(gi(β0)) = 2E(sgn(min(Ci, Ti)−min(Ci, β ′0Zi))ZiI(Ci > β ′0Zi))+ E(sgn(min(Ci, Ti)−min(Ci, β
′

0Zi))ZiI(Ci = β
′

0Zi))
= −2E(ZiI(Ci > β ′0Zi)I(Ti < β ′0Zi))
+ 2E(sgn(min(Ci, Ti)− β ′0Zi)ZiI(Ci > β ′0Zi)I(Ti > β ′0Zi)I(Ci > Ti))
+ 2E(sgn(min(Ci, Ti)− β ′0Zi)ZiI(Ci > β ′0Zi)I(Ti > β ′0Zi)I(Ci ≤ Ti))− E(ZiI(Ci = β

′

0Zi)I(Ti < β ′0Zi))
= −2E(ZiI(Ci > β ′0Zi)I(Ti < β ′0Zi))+ 2E(ZiI(Ci > β ′0Zi)I(Ti > β ′0Zi))− E(ZiI(Ci = β

′

0Zi)I(Ti < β ′0Zi)).
Since Ci’s and Ti’s are independent given Zi, it follows that

E(ZiI(Ci > β ′0Zi)I(Ti < β ′0Zi)) = E
{
E(ZiI(Ci > β ′0Zi)I(Ti < β ′0Zi)|Zi)

}
= E

{
ZiP(Ci > β ′0Zi|Zi)P(Ti < β ′0Zi|Zi)

}
.

From the assumption that ei’s have continuous density functions, which have median 0, we know that P(Ti < β ′0Zi|Zi) =
P(Ti > β ′0Zi|Zi) and P(Ci = β

′

0Zi) = 0 which implies that E(gi(β0)) = 0.
On the other hand, we know that E(gi(β)) = 0 if and only if

E{ZiI(Ci > β ′Zi)(I(Ti > β ′Zi)− I(Ti < β ′Zi))} = 0. (7)

This is equivalent to

E{(β − β0)′Zi(1− G(β ′Zi))(1− 2H((β − β0)′Zi))} = 0.
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Since H(0) = 1/2, we have

(β − β0)
′E{Zi(1− G(β ′Zi))(H(0)− H((β − β0)′Zi))} = 0.

Now supposeβ 6= β0 andβ ∈ Ω . By condition (A1), then |H(t)−H(0)| ≥ b|t|/(1+|t|) and t[H(t)−H(0)] > bt2/(1+|t|)
with some b > 0. ForM0 large enough, we get

1
n

n∑
i=1

(β − β0)
′E{Zi(1− G(β ′Zi))(H((β − β0)′Zi)− H(0))}

≥ b(β − β0)′
1
n

n∑
i=1

E
{
ZiZ′i

1− G(β ′Zi)
1+ |(β − β0)′Zi|

}
(β − β0)

≥ b(β − β0)′
1
n

n∑
i=1

E
{
ZiZ′iI(‖Zi‖ < M0)

1− G(β ′Zi)
1+ |(β − β0)′Zi|

}
(β − β0)

≥ b(β − β0)′
1
n

n∑
i=1

E{ZiZ′iI(‖Zi‖ < M0)}(β − β0)
1− G(‖β‖M0)
1+ ‖β − β0‖M0

. (8)

Because of the positive definite of limn→∞ 1
n

∑n
i=1 E{ZiZ

′

i} from condition (A3), for large n and M0,
1
n

∑n
i=1 E{ZiZ

′

iI(‖Zi‖ <
M0)} is positive definite. Condition (A2) and ‖β‖ <∞ assure that

1−G(‖β‖M0)
1+‖β−β0‖M0

is positive. It follows that (8) is positive. This
is a contradiction to (7), thus we conclude that E(ḡ(β)) = 0 implies β = β0. Hence Lemma 1 is proved. �

Proof of Theorem 1. We firstly note that

0 =
1
n

n∑
i=1

gi(β0)
1+ λ′gi(β0)

(9)

and by central limit theorem, if Zi’s are i.i.d random variables,

1
√
n
V
−
1
2

β0

n∑
i=1

gi(β0)
d
→N(0, Ip), (10)

where Vβ0 =
1
n

∑n
i=1 Var(gi(β0)) =

4
n

∑n
i=1 E{ZiZ

′

i(1−G(β
′

0Zi))} and it is positive from assumption (A3).When Zi’s are fixed
design points, gi(β0)’s are independent but not identically distributed. Form condition (A4), the Lindberg condition holds in
this case, then the CLT also holds for gi(β0). Then, we have

1
n

n∑
i=1

gi(β0) = Op(n−
1
2 )

and by using the same approach as Owen [9], we get ‖λ‖ = Op(n−
1
2 ).

Employing the Taylor expansion, we have

`(β0) = 2
n∑
i=1

log{1+ λ′gi(β0)} = 2
n∑
i=1

[
λ′gi(β0)−

1
2
(λ′gi(β0))2

]
+ ηn, (11)

with

|ηn| ≤ C
n∑
i=1

(λ′gi(β0))3.

From assumption (A4), with probability 1,

max
1≤i≤n
‖gi(β0)‖ ≤ 2 max

1≤i≤n
‖Zi‖ = op(

√
n)

and it follows that |ηn| ≤ Cn‖λ‖3max1≤i≤n ‖gi(β0)‖ = op(1).
From (9), we know that

0 =
1
n

n∑
i=1

gi(β0)
1+ λ′gi(β0)

=
1
n

n∑
i=1

gi(β0)−
1
n

(
n∑
i=1

gi(β0)g ′i (β0)

)
λ+

1
n

n∑
i=1

gi(β0)(λ′gi(β0))2

1+ λ′gi(β0)
. (12)
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The final term in (12) is bounded by 1n
∑n
i=1 ‖gi(β0)‖

3
‖λ‖2|1+ λ′gi(β0)|−1 = op(n−

1
2 ), where we use 1n

∑n
i=1 ‖gi(β0)‖

3
=

o(n
1
2 ),which can be derived from E‖gi(β0)‖2 <∞. This is right using assumption (A4). Then

λ =

(
n∑
i=1

gi(β0)g ′i (β0)

)−1 n∑
i=1

gi(β0)+ op(1).

From (12), we have
∑n
i=1 λ

′gi(β0) =
∑n
i=1(λ

′gi(β0))2 + op(1). Combining it with (11) and the above expression for λ,
we get

`(β0) =

(
1
√
n

n∑
i=1

g ′i (β0)

)(
1
n

n∑
i=1

gi(β0)g ′i (β0)

)−1 (
1
√
n

n∑
i=1

gi(β0)

)
+ op(1)

=

(
1
√
n

n∑
i=1

g ′i (β0)

)
V−1β0

(
1
√
n

n∑
i=1

gi(β0)

)
+ op(1).

Using (10), we have(
1
√
n

n∑
i=1

g ′i (β0)

)
V−1β0

(
1
√
n

n∑
i=1

gi(β0)

)
→ χ2p .

Therefore, `(β0)
d
→χ2p . Thus, Theorem 1 is proved. �

Proof of Theorem 2. From the proof of Lemma 1,

E(gi(β)) = −2E(ZiI(Ci > β ′Zi)I(Ti < β ′Zi))+ 2E(ZiI(Ci > β ′Zi)I(Ti > β ′Zi))
= −2E

[
ZiP(Ci > β ′Zi|Zi){P(Ti < β ′Zi|Zi)− P(Ti > β ′Zi|Zi)}

]
= −2E

[
Zi{1− G(β ′Zi)}{2H((β − β0)′Zi)− 1}

]
.

Because ei’s have density functions h(t) and H(0) = 1/2. A Taylor expansion may lead to

E(gi(β)) = −2E[Zi(1− G(β ′0Zi))(2H(0)− 1)] − 4E[Zi(1− G(β
′

0Zi))h(0)Z
′

i(β − β0)] + O{(β − β0)
2
}

= −4E[Zi(1− G(β ′0Zi))h(0)Z
′

i(β − β0)] + O{(β − β0)
2
}.

And we know that

Var(gi(β)) = E[(1+ sign(Ci − β ′Zi))2Z′iZi] − E{gi(β)}E{g
′

i (β)}

= 4E[ZiZ′iP(Ci > β ′Zi|Zi)] − 4E{Zi[1− G(β ′Zi)][2H((β − β0)′Zi)− 1]}⊗2

where A⊗2 = AA′. Plugging in β0, we get

Vβ0 =
1
n

n∑
i=1

Var(gi(β0)) =
4
n

n∑
i=1

E{ZiZ′i(1− G(β
′

0Zi))}.

From the proof of Theorem 1, we know that

`(β) = nE

(
1
n

n∑
i=1

gi(β)

)′
V−1β0 E

(
1
n

n∑
i=1

gi(β)

)
+ op(1).

For β = β0 + O(n−1/2), it follows that

`(β) = nh(0)2(β − β0)′Vβ0(β − β0)+ op(1).

Following from the quadratic form of the leading term of `(β), we conclude that CRα is asymptotic convex. �

Proof of Theorem 3. From the standard empirical likelihood theory, we have `(β̃) → ∞ a.s. as n → ∞. Therefore,
P{β̃ ∈ CRα} = P{`(β̃) < cα} → 0.
For notation simplification, we denote c = h(0)−1V−1/2β0

. From the proof of Lemma 1, without loss of generality, assume
c ′Zi > 0 a.s., then we know that ḡ(β̃n) = g(β0)+ Rn, where g(·) = 1

n

∑n
i=1 gi(·) and

Rn =
1
n

n∑
i=1

{
−4ZiI(Ci > β ′0Zi)I

((
β0 +

1
√
n
c
)′

Zi > Ti > β ′0Zi
)

(13)
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+ 2ZiI
((
β0 +

1
√
n
c
)′

Zi > Ci > β ′0Zi
)
I(Ti < β ′0Zi) (14)

− 2ZiI
((
β0 +

1
√
n
c
)′

Zi > Ci > β ′0Zi
)
I(Ti > β ′0Zi) (15)

+ 4ZiI
((
β0 +

1
√
n
c
)′

Zi > Ci > β ′0Zi
)
I
((
β0 +

1
√
n
c
)′

Zi > Ti > β ′0Zi
)}
. (16)

Now we show that (13)–(15) are Op(1/
√
n), and (16) is Op(1/n). Since the proofs are similar, we only show that (13) is

Op(1/
√
n). In fact, if Zij is the jth component of vector Zi, then

Var
{
ZijI(Ci > β ′0Zi)I

((
β0 +

1
√
n
c
)′

Zi > Ti > β ′0Zi
)}

=
1
√
n
E
{
Z2ij(1− G(β

′

0Zi))h(0)c
′Zi
}
+ o

(
1
√
n

)
= O

(
1
√
n

)
and

E
{
ZiI(Ci > β ′0Zi)I

((
β0 +

1
√
n
c
)′

Zi > Ti > β ′0Zi
)}

=
1
√
n
E(Zi(1− G(β ′0Zi))h(0)c

′Zi)+ o
(
1
√
n

)
.

Therefore (13) is Op( 1√n ). It follows that

ḡ(β̃n) = ḡ(β0)−
1
√
n
V 1/2β0

γ + op

(
1
√
n

)
,

where Vβ0 is defined in Theorem 3. From the proof of Theorem 1, we know that

`(β̃n) = nḡ ′(β̃n)V−1β0 ḡ(β̃n)+ op(1)

= n
[
ḡ(β0)−

1
√
n
V 1/2β0

γ

]′
V−1β0

[
ḡ(β0)−

1
√
n
V 1/2β0

γ

]
+ op(1)

d
→ χ2p (‖γ ‖

2).

This completes the proof of Theorem 3. �

In order to prove Theorem 4, we need to show the following Lemmas.

Lemma 2. Under conditions (A1)–(A4), we have
√
nWn(β0)

d
→ N(0,Γ1 − Γ2)

where Γ1,Γ2 are defined in Section 3.2.

Proof. From the definition ofWn(β0), we know that

Wn(β0) =
1
n

n∑
i=1

[
I(Yi ≥ β ′0Zi)−

1
2
(1− G(β ′0Zi))

]
Zi −

1
2n

n∑
i=1

(G(β ′0Zi)− Ĝn(β
′

0Zi))Zi

≡ P1 − P2.

Thus, it is easy to see that
√
nP1 is normal distributed with mean 0 and variance

Γ1 ≡ lim
n→∞

1
n

n∑
i=1

E

{[
I(Yi ≥ β ′0Zi)−

1
2
(1− G(β ′0Zi))

]2
ZiZ′i

}
.

For the second part, we know that P2 is a two sample U-statistics with kernel

φ(Cj; Zi) = (G(β ′0Zi)− Ĝn(β
′

0Zi))Zi.
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Using the standardU-statistics theory (Randles andWolfe [20]), one can show that the distribution of
√
nP2 is asymptotically

normal with mean 0 and variance 1
4n2
∑n
i6=j[E(φ(C1; Zi)φ

′(C1; Zj))+ E(φ(Ci; Z1)φ′(Cj; Z1))].We see that

E{φ(Ci; Z1)φ(Cj; Z1)} = E{E(φ(C1; Z1)φ(C2; Z1)|Z1)} = 0

and from a simple calculation, we have

E{φ(C1; Zi)φ′(C1; Zj)} = E
{
min(Bji(β0), Bij(β0))ZiZ′j

}
,

where Bij(β0) = G(β ′0Zi)(1− G(β
′

0Zj)).Moreover, the covariance between
√
nP1 and

√
nP2 is

Cov(
√
nP1,
√
nP2) =

1
2n

n∑
i=1

n∑
j=1

E
{[
1
2
(1− G(β ′0Zi))− I{Yi≥β ′0Zi}

]
Ĝn(β ′0Zj)ZiZ

′

j

}

=
1
4n2

n∑
i=1

n∑
j=1

E
{
G(β ′0Zi)(1− G(β

′

0Zj))ZiZ
′

j

}
and then Cov(

√
nP2,
√
nP1) = 1

4n2
∑n
i=1
∑n
j=1 E

{
G(β ′0Zi)(1− G(β

′

0Zj))ZjZ
′

i

}
.

It follows that E(
√
nWn(β0))2 = Γ1−Γ2,where Γ1 and Γ2 are defined in Theorem 4. Therefore, applying the center limit

theorem, the proof of this lemma is completed. �

Lemma 3. Under conditions (A1)–(A4), we have

1
n

n∑
i=1

Wni(β0)Wni(β0)′
p
→ Γ1,

where Γ1 is defined in Section 3.2.

By virtue of the Glivenko–Cantelli Theorem, Lemma 2 and the Law of Large Numbers, the proof of Lemma 3 follows
immediately.

Proof of Theorem 4. Applying Lemmas 2 and 3, we can use the same method as we prove Theorem 1. �
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