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Abstract

Audit procedures may be planned and audit evidence evaluated using monetary unit

sampling (MUS) techniques within the context of the Dempster±Shafer theory of belief

functions. This article shows: (1) how to determine an appropriate sample size for MUS

in order to obtain a desired degree of belief that the upper bound for misstatements lies

within a given interval; and (2) what level of belief in a speci®ed interval is obtained

given a sample result. The results are consistent with the view that a speci®ed level of

belief in an interval is semantically a stronger claim than the same numerical level of

probability. The paper describes two variants of MUS in both probability and belief-

function forms, emphasizing the systematic similarities and the numerical di�erences

between the two frameworks. The results, based on the Poisson distribution, extend

results already available for mean-per-unit variables sampling, and may readily be de-

veloped to give similar results for the binomial distribution. Ó 2000 Elsevier Science Inc.
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1. Introduction

The assurance provided by the evidence gathered during the audit process is
often represented in analytical models by probabilities, but it has been argued
[1] that Dempster±Shafer belief functions provide a preferable alternative. The
level of assurance provided by certain audit procedures (e.g., inquiry and ob-
servation) may be subjectively assessed by the auditor within this framework,
just as it may within the probability framework. If belief functions are to
provide a reasonable alternative for modeling the aggregation of audit evidence,
however, it is important that they are able to represent the assurance provided
by the application of statistical procedures such as audit sampling. The present
study shows how this may be done in the case of monetary unit sampling
(MUS); the method is ®rst described as it is applied under probability theory,
and then a technique for planning and evaluating monetary unit samples using
belief functions is described and contrasted. It is not the purpose of this paper to
make the case for the advantages of belief functions over probabilities, although
the issue is discussed in outline below. Rather, the study presumes that modelers
will wish to use whatever is the most appropriate form of uncertain reasoning
for the problem in hand, and concentrates on showing how MUS may be
carried out in a belief-function framework. Although the focus of the examples
discussed in detail is clearly on auditing, the methods set forth in this study are
available equally for other accounting applications of MUS.

The process of auditing is essentially concerned with the aggregation of
evidence in support of the auditor's opinion. Indeed, auditing has been de®ned
as ``a systematic process of objectively obtaining and evaluating evidence re-
garding assertions about economic actions and events to ascertain the degree of
correspondence between those assertions and established criteria and com-
municating the results to interested users'' [2, italics added]. Arens and Lo-
ebbecke [3] emphasize the central role of evidence-gathering: ``We believe that
the most fundamental concepts in auditing relate to determining the nature and
amount of evidence the auditor should accumulate after considering the unique
circumstances of each engagement.'' The purpose of this article is to show that
audit evidence obtained using MUS techniques may be combined with other
audit evidence within a Dempster±Shafer belief-function framework. In par-
ticular, the article shows: (1) how to determine an appropriate sample size for
MUS in order to obtain a desired degree of belief that the upper bound for
misstatements lies within a given interval; and (2) what level of belief in a
speci®ed interval is obtained given a sample result.

Although there are a number of di�erent types of audit, this paper is con-
cerned with the audit of ®nancial statements in order to determine their
compliance with generally accepted accounting principles (GAAP). The ®-
nancial statements are the responsibility of management, whose representa-
tions regarding the company's ®nancial position they contain. Implied by the
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®nancial statements are certain management assertions regarding the various
account balances and classes of transactions that are included [4], and these
assertions form the basis of a number of audit objectives investigated by the
auditor. For example, for accounts receivable balances, management asserts
via the ®nancial statements that recorded accounts receivable exist (existence),
that all existing accounts receivable are included (completeness), that accounts
receivable are accurate (valuation), etc. For full details, any standard auditing
text may be consulted; see, for example, [3].

For each of the audit objectives based on management assertions the auditor
will plan to gather evidence (except where the amount involved be considered
immaterial, or the risk is considered insigni®cant). However, audit evidence is
expected to be persuasive rather than conclusive, and even after audit evidence
has been gathered and evaluated, there remains the possibility that an auditor's
conclusion that an account is not materially misstated may still be incorrect.
This possibility is commonly referred to as audit risk, and its e�ective man-
agement is crucial to proper audit planning. In attempting to reduce audit risk
to an acceptable level, the auditor may obtain di�erent types of evidence from a
variety of di�erent sources. Note also that certain items of evidence may bear
on more than one assertion or objective (as for example, the con®rmation of
accounts receivable bears on both existence and valuation assertions) and that
the various audit objectives are not independent of each other. For example,
the existence of sales transactions and the completeness of cash receipts clearly
impact the existence of residual accounts receivable. Proper evaluation of a
large body of evidence gathered during the audit process is, therefore, a rich
and complex problem in the management of uncertainty.

The most widely used and discussed model for the aggregation of audit
evidence is commonly called the audit risk model [5,6]. It proposes that audit
risk is the combined e�ect of inherent risk (the susceptibility of an account
balance or class of transactions to material error, assuming that there were no
related internal accounting controls), control risk (the risk that material error
that could occur in an account balance or class of transactions will not be
prevented or detected on a timely basis by the system of internal accounting
control), and detection risk (the risk that an auditor's procedures will lead to
the conclusion that material error in an account balance or class of transac-
tions does not exist when in fact such error does exist). This model is often
summarized in the formula

AR � IR� CR�DR:

Since the beginning, however, this model has been subject to widespread
criticism by academics. Critics have argued that it is inappropriate because the
risks are not properly independent [7], that the probability model is not
properly speci®ed [8,9], that inherent risk should be treated as a Bayesian prior
[10], and that the outcome space is not properly considered [11,12].
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In considering alternative approaches to the audit risk model, some authors,
mindful of the rich interdependencies between assertions, and between audit
procedures and assertions, have suggested that a network approach is appro-
priate [13±16]. These authors have additionally proposed that Dempster±
Shafer belief functions be used to represent uncertainty in the audit process
rather than probability theory [17]. There has been some support for this ap-
proach from other authors in recent years [18,19], partly because of semantic
considerations regarding the representation of ignorance. These issues arise
even in the case of statistical evidence. To illustrate the semantic limitations of
the probability theory model, consider an auditor who, having sent out a
certain number of positive con®rmation requests for accounts receivable, ®nds
that most of them are returned and agree with the recorded amounts, but that
the remainder are not returned. Assuming that the auditor concludes that the
evidence warrants a 70% probability that accounts receivable are not materially
misstated, probability theory imposes the constraint that (absent any other
evidence) there is a 30% probability that accounts receivable are materially
misstated. Yet the auditor has no evidence that accounts receivable are mis-
stated (such as it might have arisen if any of the returned con®rmations had
disagreed with the recorded amounts). There is merely an insu�ciency of ev-
idence in support of the recorded amounts. Belief functions, on the other hand,
allow the auditor to assign a belief that accounts receivable are not misstated
based on the evidence, no belief that accounts receivable are misstated, and a
residual amount that represents ignorance (that may require the gathering of
further evidence). Thus the auditor using belief functions can distinguish this
case from another where all the con®rmations were returned, most agreeing,
but the remainder disagreeing, with the recorded amounts.

The majority of Srivastava and Shafer's published work in this area has
concentrated on introducing belief functions to the auditing literature, showing
how the aggregation of audit evidence may be represented using belief func-
tions, and discussing some of the complexities of a network approach. Whether
audit evidence is represented by probabilities or belief functions, the auditor
will gather a variety of di�erent kinds of evidence: assessments of inherent risk,
tests of controls, analytical procedures, and tests of details of transactions and
balances, some of which may be performed on a sample basis. For some audit
procedures, an estimate of associated risk may be made subjectively within
either framework (for example, inquiry and observation procedures). The
relative ease or di�culty the auditor experiences in formulating estimates of
the assurance provided by such procedures within either the probability or the
belief-function framework is an interesting empirical question that is presently
the subject of behavioral studies. For tests carried out on a sample basis,
however, there are well-known statistical techniques for relating sample sizes
and results to probabilities associated with audit conclusions. How can this be
done for belief functions? Based on principles described in Shafer's seminal
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work [20], this question has been answered for mean-per-unit variables sam-
pling [21]. Concern about the skewed nature of accounting populations, cou-
pled with ever-increasing demands to improve audit e�ciency, however, have
lead to much greater use of an alternative sampling approach, MUS, in cases
where substantive sampling is to be applied. The purpose of this paper is to
show how sample sizes and results may be related to beliefs in speci®ed in-
tervals using MUS, so that a network of both statistical and non-statistical
audit evidence may be represented within the belief-function framework.

The remainder of the paper is divided into four further sections. Section 2 of
the paper describes the main principles of MUS, concentrating on two popular
approaches including the method proposed by Kaplan [22] for controlling al-
pha risk. Section 3 gives an outline of consonant belief functions and their
relation to statistical evidence, and Section 4 provides a belief-function ap-
proach to MUS. Section 5 summarizes and concludes with future research
issues.

2. Monetary unit sampling

The sampling techniques classically used in auditing are divided into two
categories: attribute sampling (including discovery sampling, sequential sam-
pling etc.) and variables sampling (including mean-per-unit sampling, strati®ed
sampling, di�erence and ratio methods etc.). These techniques are described in
a variety of statistical texts such as [23], and their application to auditing is
more fully discussed in such texts as [24] or [25]. The use of attribute sampling
for tests of controls has been relatively uncontroversial; although the hyper-
geometric distribution is theoretically correct for most audit applications, the
binomial distribution or the Poisson distribution have been widely used as
conservative approximations yielding more tractable calculations and simpler
tables prior to the widespread use of computers in the audit process.

Variables sampling, however, relies on the use of the central limit theorem,
and this has given rise to some concern since accounting populations are often
quite skewed. As a result, appropriate sample sizes for the application of the
central limit theorem are likely to be larger than desirable in the audit context.
This di�culty is compounded by the e�ect on sample sizes of variability within
the accounting population. MUS has been developed in response to these
concerns. Although the idea of using an individual dollar as the sampling unit
was suggested by Deming [26], the idea was ®rst introduced into the auditing
literature by van Heerden [27], and into the US auditing profession by Stringer
[28], among others. Its use was popularized, however, by the work of Albert
Teitlebaum in conjunction with Rod Anderson and Donald Leslie [29±31].

Over the intervening years the technique, originally known as dollar unit
sampling (DUS), has also been called MUS in deference to its more general
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application. Since individual dollars (or other monetary units) are used as the
sampling units, higher value items containing more dollars are more likely to
be selected, and the technique is sometimes called sampling with probability
proportional to size (PPS) as a result. One popular method of selection is based
on a systematic sample 1 of the total monetary units, and this has given rise to
the alternative nomenclature: cumulative monetary amount sampling (CMA).
The advantages and disadvantages of the MUS approach are discussed, for
example, in the AICPAÕs audit sampling guide [32].

In the MUS approach, the underlying idea is to treat the population as
consisting of individual dollars, each of which may or may not be misstated. It
is, therefore, essentially an attribute sampling application. Its use in practice is
nevertheless subject to a wide range of variants. Suppose that an invoice for
$1,000 is selected for audit by virtue of its 850th dollar being randomly se-
lected, and that the audited value of the invoice turns out to be only $800; i.e.,
there is a $200 overstatement. In van Heerden's original formulation, for ex-
ample, the 200 overstated dollars might be allocated to be the ®rst $200 dollars
of the invoice, or the ®nal $200; depending on this choice, the 850th dollar may
be classi®ed as overstated or not. Teitlebaum showed that this leads to obvi-
ously undesirable variability in audit applications [30], and proposed instead
that each of the 1000 dollars in the invoice be considered as 20% overstated.
The present article presumes the use of this method; the associated evaluation
technique is usually referred to as the Stringer bound. Since this technique
mixes attribute sampling with values it has been described as a combined at-
tributes and variables method (CAV).

Individual dollars may be selected for audit by simple random sampling, by a
systematic sample based on cumulative monetary amounts, or by a method
known as cell-selection in which the population is divided into cells of equal
value, and a dollar is selected from each [30,31]. Although cell-selection has
some advantages, the more basic systematic sampling technique is widely
taught and used, and its use will be presumed for the remainder of this paper.

In practice, it is common for auditors using MUS to control only the beta
risk (the risk of incorrect acceptance) and to ignore alpha risk (the risk of
incorrect rejection). However, Kaplan has shown how the technique may be
extended to take account of alpha risk [22], and both methods are considered
below. Teitlebaum's and Kaplan's presentations rely on use of the Poisson
distribution for attribute sampling, and this is still the basis of many modern
auditing texts, see for example, [25]. For consistency with their presentations,

1 In a systematic sample, the population recorded book value B is divided by the calculated

sample size n to give a sampling interval S. From a random start s chosen in the range 1±S, every

Sth monetary unit is selected from a cumulative total of the values of the population items; i.e., the

selected monetary units are s, s� S, s� 3S etc.
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the Poisson distribution is used in this paper, although the binomial distribu-
tion (which gives slightly smaller sample sizes) is used in some texts, e.g., [3], as
well as in certain audit software.

The Stringer bound is widely used, and is presumed in this paper, However,
it has no rigorous mathematical justi®cation, 2 and has been found in many
simulations to be signi®cantly conservative. A number of alternative evaluation
techniques have been proposed, but are not addressed in the present study; for
example, the modi®ed moment bound [34,35], the multinomial-Dirichlet bound
[36], the beta-normal bound [37], or the robust Bayesian bound [38].

2.1. Sample size determination

In a MUS application, let n be the sample size, p the probability of an in-
dividual monetary unit being misstated, k � np the mean number of mis-
statements, k the critical value for the number of misstatements for the
sampling application, B the recorded book value for the population total, T the
tolerable misstatement based on planning materiality, E the expected amount
of misstatement in the population, and b the acceptable level for the risk of
incorrect acceptance. Then since the probability p is given by p � T=B, so that
k � np � nT =B, and up to k errors will be accepted, the sample size for the
application is determined [29] by solvingXk

j�0

eÿk kj

j!
� b �1�

for k, and then letting n � Bk=T .
When no errors are to be accepted, Eq. (1) may be solved explicitly to give

k � ÿ lnb and hence

n � ÿT lnb
B

: �2�

When errors are expected, the solution of (1) rapidly becomes tedious, and
although microcomputers may now readily be used for this purpose, tables
were used previously to provide values for k. Table 1, which is similar to the
table given in [31] may be used for this purpose. Values of k may be found in
the columns headed UEL, the table is accessed in the row for the appropriate
expected number of errors, in the column for con®dence � 1ÿ b.

Consider, for example, a population with a recorded book value of
$5,000,000 that the auditor wishes to audit using MUS with a tolerable mis-
statement of $500,000 and an acceptable risk of incorrect acceptance of 5%;

2 However, an asymptotic result has recently been obtained, see [33].
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suppose also that three of the selected dollars are expected to be in error. From
Table 1, k � 7:754 for three errors and a con®dence of 95%. The required
sample size is therefore for three errors and a con®dence of 95%. The required
sample size is therefore

5;000;000� 7:754

500;000
� 77:54 � 78:

Tolerable misstatement is determined by the auditor in the light of planning
materiality, and the beta risk may be determined by reference to the audit risk
model ± but how is the expected number of errors to be determined? When the
auditor has reason to expect a particular number of errors, the calculation
proceeds in a straightforward manner, as outlined above.

More commonly, the auditor does not have in mind the required expected
number of errors, but rather some amount E of expected misstatement (per-
haps based on the experience of prior years). When MUS is based on binomial
attribute sampling tables, this poses no di�culty. The expected error rate is
calculated as

EER � E � 100%

B
;

the tolerable error rate is calculated as

TER � T � 100%

B

and the tables are used in the normal way to give the appropriate sample size
[32]. In the Poisson distribution approach, matters become a little more
complicated. The (conservative) assumption made in MUS planning is that all
misstatements are 100% misstatements. Thus k=n � E=B or, equivalently

E � B� k
n
� Bk � T

Bk
� kT

k
: �3�

For k � 0; 1; 2; . . ., Eq. (1) may be solved iteratively for k, and the resulting
value used to compute E from Eq. (3) until the required level of expected error
is reached.

In the example considered earlier, suppose that the expected aggregate
error was $193,449. For k � 0, Table 1 gives k � 2:996, but yields a value for
E of 0. For k � 1, Table 1 gives k � 4:744, giving a value for E of $105,396.
Similarly, for k � 2, Table 1 gives k � 6:296, giving a value for E of $158,831.
Finally, for k � 3, Table 1 gives k � 7:754, giving a value for E of $193,449.
This somewhat complicated procedure is necessary because a given number of
errors correspond to a di�erent amount of error at di�erent levels of beta
risk.
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It does not always happen that the amount of expected error corresponds to
an exact number of errors. If the expected error falls between k and k � 1 er-
rors, giving rise to kk and kk�1, respectively, producing expected errors of
Ek and Ek�1, a conservative procedure would be to use a sample size based on
kk�1. Alternatively, linear interpolation may be used. Thus,

k � kk � E ÿ Ek

Ek�1 ÿ Ek
� kk�1� ÿ kk�: �4�

In the above example, if the auditor expected aggregate error of $172,678, then
Eq. (4) would give

k � 6:296� 172; 678ÿ 158; 831

193; 449ÿ 158; 831
� 7:754� ÿ 6:296� � 6:879

and

n � 5;000;000� 6:879

500;000
� 68:79 � 69:

2.1.1. Controlling alpha risk
The methods described above for determining sample sizes for MUS do not

explicitly control the risk of incorrect rejection. A method for doing this has
been devised [22] as follows. Suppose that the auditor determines some low rate
of error, l, such that it would be undesirable to reject a population with this
error rate more often than alpha percent of the time. Then the sample size is
determined by ®nding the smallest value of k such that

1ÿ
Xk

j�0

eÿnl nl� �j
j!
6 a �5�

and Xk

j�0

eÿnT=B nT=B� �j
j!

b: �6�

Tables 2 and 3 provided by Kaplan [22] are used to reduce the tedious cal-
culation for alpha and beta risks, respectively.

Suppose, for example, that the auditor wishes to audit a balance of
$5,000,000 with a tolerable misstatement of $500,000 at an acceptable risk of
incorrect acceptance of 5%, and an alpha risk of 10% of rejecting the popu-
lation when the misstatement rate is only 0.5%.

If the auditor only accepts the population when there are no errors, then
from Tables 2 and 3 we see that

k � 0:005n6 0:105 or n6 21;
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k � 0:1n P 3:00 or n P 30:

This is clearly inconsistent, and there is no solution for n. However, if the
auditor accepts the population when there is one error or less, then from Tables
2 and 3 we see that

k � 0:005n6 0:532 or n6 106:4;

k � 0:1n P 4:74 or n P 47:4:

A sample of 48 will therefore su�ce, with the population being rejected if
there is more than one error. Of course, if we wish to accept the population
with up to three errors, we see that

k � 0:005n6 1:75 or n6 350;

k � 0:1n P 7:75 or n P 77:5;

so that the sample size of 78 determined earlier will certainly be su�cient to
control both the alpha and beta risks. An alternative possibility suggested by
Kaplan is to adopt a decision rule based on beta risk only, compute the re-
quired sample size and see what this implies about alpha risk. In this case, with
a sample size of 78, Eq. (5) may be used to compute an alpha risk of 0.0007.

Table 3

k�b; k� such that
Pk

j�0 eÿk�kj=j!� � b, where k� number of errors

Number of errors Beta risk b

0.01 0.05 0.10 0.25 0.50

0 4.61 3.00 2.30 1.39 0.693

1 6.64 4.74 3.89 2.69 1.68

2 8.41 6.30 5.32 3.92 2.67

3 10.0 7.75 6.68 5.11 3.67

4 11.6 9.15 7.99 6.27 4.67

5 13.1 10.5 9.27 7.42 5.67

Table 2

k�a; k� such that
Pk

j�0 eÿk�kj=j!� � 1ÿ a, where k� number of errors

Number of errors Alpha risk a

0.01 0.05 0.10 0.25 0.50

0 0.010 0.051 0.105 0.288 0.693

1 0.149 0.355 0.532 0.961 1.68

2 0.436 0.818 1.10 1.73 2.67

3 0.823 1.37 1.74 2.54 3.67

4 1.28 1.97 2.43 3.37 4.67

5 1.79 2.61 3.15 4.22 5.67
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2.2. Sample evaluation

The MUS sample size determined as set out in the previous section gives the
number of individual monetary units to be audited. These units will be iden-
ti®ed by the auditor as falling within the monetary values of certain items in the
audit application; e.g., sales invoices, or accounts receivable. The whole of the
items containing the selected monetary units are audited, and any audit dif-
ferences noted. If no di�erences are discovered, then the upper error limit
(UEL) (for both overstatements and understatements) may be determined by

UEL � B� ÿ lnb� �
n

� 100%: �7�

For a number of values of con®dence � 1ÿ b, the value of ÿ lnb is given in
the ®rst row of Table 1, in the UEL columns. Also, the value B=n � T =k is the
sample interval used in the selection of individual monetary units.

When audit di�erences are found, overstatements and understatements must
be separately evaluated. Suppose that k overstatements are found, and that the
values of these di�erences are d1; . . . ; dk. Suppose further that the ratios of these
di�erences to their respective recorded book values (known as the ``tainting''),
sorted in descending order, 3 are t1; . . . ; tk. Then the gross UEL for overstate-
ments is given by

UELO � B� P0

n
� 100%� B� P1 ÿ P0� �

n
� t1 � � � �

� B� Pk ÿ Pkÿ1� �
n

� tk; �8�

where Pi is given byXi

j�0

eÿPi
Pi� �j
j!
� b: �9�

For a number of values of con®dence � 1ÿ b, the value of Pi is given in the
UEL columns of Table 1, and the value of Pi ÿ Piÿ1 can then be calculated. 4

Suppose, for example, that an auditor is auditing a population with a re-
corded book value of $5,000,000 with a tolerable misstatement of $500,000 and
an acceptable risk of incorrect acceptance of 5%, and that based on a sample of
78 the audited values for recorded amounts of $1,000, $2,000 and $3,000 are
$500, $1,400, and $2,400, respectively. Then the taintings in descending order

3 A recent simulation study by Lucassen et al. [39] has shown that other bounds are also

conservative; the authors of this study favor a bound in which misstatements are ranked in

descending order of the magnitude of the misstatements.
4 The Pi notation commonly used in practice is of course, simply an alternative to k.
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are 0.5, 0.3 and 0.2. From Table 1, the values of Pi ÿ Piÿ1 for 1, 2 and 3 errors,
respectively are 1.748, 1.552 and 1.458. Thus Eq. (8) gives

UELO � 5;000;000� 2:996

78
� 100%� 5;000;000� 1:748

78
� 0:5

� 5;000;000� 1:552

78
� 0:3� 5;000;000� 1:458

78
� 0:2

� $296;615:

It is apparent that each additional error increases the UEL; since the values
of Pi ÿ Piÿ1 are greater than 1, each error contributes a greater amount to the
increased UEL than its own value. In other words, errors diminish the preci-
sion of the sample. This e�ect is often referred to as precision gap widening
(PGW), and the PGW columns of Table 1 indicate by how much the precision
gap between the upper error level and the most likely error is increased by each
successive error.

Of course, the decision to evaluate the misstatements in descending order of
tainting is one reason why the Stringer bound is generally conservative. When
both k overstatements and l understatements are found, the UEL for over-
statements is reduced to take account of the understatements found, and the
most commonly used method is to subtract from UEL the value of the most
likely error for understatements

MLEU � 1

n
�
Xl

1

sl � B; �10�

where s1; . . . ; sl are the understatement taintings for the l understatements.
Suppose in the example above that recorded amounts of $1,000 and $800

had audited values of $1,100 and $1,000, respectively, giving rise to taintings of
0.10 and 0.25. Based on Eq. (10), MLEU � 1=78� 0:10� 0:25� � � 5;000;000
� $22;436. Thus the net upper bound UBO for overstatements given by
UELO ÿMLEU is $296,615 ) $22,436� $274,179.

A net lower bound for understatements can then be calculated by reversing
the roles of the overstatement and understatement taintings in the above cal-
culations. The resulting lower bound UBU for understatements is therefore
given by UELU ) MLEO� $230,013 ) $64,103� $165,910.

3. Consonant belief functions and statistical evidence

A belief function [20] on a frame H is a function Bel: 2H ! �0; 1� (where 2H is
the set of all subsets of H) satisfying the conditions:
1. Bel�;� � 0;
2. Bel�H� � 1;
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3. for every positive integer n and every collection A1 . . . An of subsets of H,

Bel�A1 [ � � � [ An�P
X

i

Bel�Ai�

ÿ
X
i<j

Bel�Ai \ Aj� � � � � � �ÿ1�n�1
Bel�A1 \ � � � \ An�:

We may then de®ne the plausibility function as a function Pl : 2H ! �0; 1�
given by

Pl�A� � 1ÿ Bel�� A� forA � H:

An alternative formulation of belief functions begins with a basic probability
assignment, which is a function m : 2H ! �0; 1� such that:
1. m�;� � 0;
2.
P

A�H m�A� � 1.
Then we may de®ne a belief function by Bel�A� �PB�A m�B�. Furthermore,

the basic probability assignment is unique, and can be recovered from

m�A� �
X
B�A

�ÿ1�jAÿBj
Bel�B� for all A � H: �11�

Belief functions allow for a simple representation of ignorance, by assigning
mass to non-singleton subsets (or, of course, the frame itself). The focal ele-
ments of a belief function are subsets A � H such that m�A� > 0 (i.e., to which
non-zero mass is assigned).

In modeling audit evidence, a suitable frame might contain two values such
as: ``accounts receivable are not materially overstated'' and ``accounts receiv-
able are materially overstated.'' Probability theory requires that if 70% prob-
ability is assigned to ``accounts receivable are not materially overstated,'' 30%
probability is assigned to ``accounts receivable are materially overstated.''
Suppose, however, that in the belief-function framework a 70% belief is as-
signed to ``accounts receivable are not materially overstated.'' The remaining
30% belief may be assigned to ``accounts receivable are materially overstated''
(representing con¯icting evidence), or to the set containing both options (rep-
resenting ignorance as to which option is correct). Alternatively, part of it may
be assigned to con¯icting evidence (say, 10%) and the remainder (20%) will
then represent ignorance. This additional ¯exibility (non-speci®city) gives rise
to the distinctive characteristics of belief functions, their claimed advantages in
representing certain situations, and a variety of computational complexities
that are not addressed here.

Among belief functions, consonant belief functions are of particular rele-
vance to this paper. A belief function is said to be consonant if its focal ele-
ments are nested; i.e., if its focal elements can be arranged in order so that each
is contained in the following one. In this situation, the di�erent subsets of
outcomes to which positive belief is assigned do not contradict each other;
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rather, some are simply more precisely focused than others. This is a form of
consistency in a belief system.

Given a frame H, and probability density functions fh : X ! �0; 1� for each
h 2 H, how can we build a belief function in support of the elements of H?
Shafer [20] describes two conventions for deriving such a belief function:
1. the plausibility should be proportional to the probability; i.e.,

for h 2 H;Plx�fhg� � cfh�x�;
2. Belx��� given by Belx�A� � 1ÿ Plx�� A� is a consonant belief function.

Under these intuitively appealing conditions, the plausibility function is
uniquely de®ned, and the constant c is given by 1=maxh2Hfh�x�. Suppose that
f ��� is a real valued function with:
1. 06 f �h�6 1 for all h 2 H;
2. f �h� � 1 for at least one h 2 H.

Then, [21], the relevant plausibility function is given by Pl�A� � maxh2Af �h�.
The technique may be extended to the continuous case, where it becomes
Pl�A� � suph2Af �h�. How should we choose the function f meeting these con-
ditions? Srivastava and Shafer propose that we use the renormalized likelihood
function (i.e., the likelihood function normalized by its maximum value). The
value of this method is that the resulting plausibilities are proportional to the
likelihood function; in addition, we will have increasing belief in wider intervals
around the true value.

Consider the case of the Poisson distribution. The likelihood function is
given by

L�k; x� � eÿkkx

x!
: �12�

Di�erentiating this with respect to k and setting the result equal to zero
shows that the maximum value is reached when k � x. The value of L�k; x� at
this point is eÿxxx=x!, and the renormalized likelihood function becomes

f �A� � supk2A eÿkkx=x!� �
eÿxxx=x!� � � sup

k2A
exÿk k

x

� �x� �
:

Thus we can de®ne the belief function for an interval A as

Belx�A� � 1ÿ sup
k62A

exÿk k
x

� �x� �
: �13�

Suppose that the interval A is �kL; kU�. We have already seen that f �A�
reaches its maximum value at x; hence, provided that x 2 �kL; kU�, the supre-
mum outside �kL; kU� is reached at whichever of the endpoints of the tails has
the higher value; i.e.

Belx�A� � 1ÿmax exÿkL
kL

x

� �x

; exÿkU
kU

x

� �x� �
: �14�

When x 62 �kL; kU�, Eq. (14) yields Belx��kL; kU�� � 0.
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When the Poisson distribution is used for MUS, bounds are estimated
separately for overstatements and understatements, so that, for example,
�kL; kU� will usually be �0; kU�, and Eq. (14) reduces to

Belx�A� � 1ÿ exÿkU
kU

x

� �x

: �15�

4. A belief-function approach to MUS

As described in Section 3, belief in an interval �kL; kU� for the value of the
parameter in a Poisson distribution may be given by

Belx�A� � 1ÿmax exÿkL
kL

x

� �x

; exÿkU
kU

x

� �x� �
:

This provides us with a means of implementing MUS within a belief-func-
tion framework, based on the use of the Poisson distribution. The derivation of
similar results for the Binomial distribution is straightforward, but is not given
here. 5 As a matter of notational convenience, the subscript on the belief
function Bel will be omitted in what follows.

Fig. 1 illustrates belief in the interval [1,6] given three observed errors. The
belief in this interval, as described in Section 3, is equal to the complement of
the plausibility of the regions outside the interval; i.e., (1 ± the maximum value
of the renormalized likelihood function outside the interval). However, the
maximum values in the two tails are achieved at the critical values 1 and 6, and
the corresponding values are 0.2737 and 0.3983. Belief in the interval [1,6] is
therefore the complement of the larger value, 1ÿ 0:3983 � 0:6017.

4.1. Sample size determination

As in the statistical approach described earlier, suppose that the auditor
wishes to calculate the sample size n, in order to obtain a belief of at least b that
an account balance with a recorded book value of B is not materially misstated
(i.e., any misstatement falls within the interval [)T, T]), when up to k errors
will be accepted. What is required is the smallest value for n such that the
auditor has a belief b that the interval �0;UBO� for overstatements and the
interval �0;UBU� for understatements are both contained within the interval

5 It may be shown that the normalized likelihood function for the Binomial distribution is given

by f �p� � np=k� �k �nÿ np�=�nÿ k�� �nÿk .
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[0, T]. As usual, MUS samples are planned based on acceptable overstate-
ments, assuming 100% errors. The sample size may be found by solving

Bel��kL; kU�� � 1ÿ ekÿkU
kU

k

� �k

� b; �16�

for kU. This gives the largest kU such that if up to k 100% errors are acceptable,
Bel��kL; kU�� � b. This is equivalent to a belief b in the interval for misstate-
ments of �kL=n�B; �kU=n�B� �; however, we want this interval to be contained in
the interval �0; T �, and in the limit this is achieved when �kU=n�B � T . Thus we
will have a belief of at least b in the interval �0; T � for misstatements (i.e.,
Bel��0; T ��P b) when n � BkU=T .

When no errors are to be accepted, Eq. (16) may be solved explicitly to give
kU � ÿ ln�1ÿ b�, and hence

n � ÿT ln�1ÿ b�
B

;

as for the statistical procedure, and we see that in this case b � 1ÿ b. Deter-
mining the desired level of belief b plays the same role in the belief-function

Fig. 1. Belief in intervals based on three observed errors.
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framework as controlling beta risk in the probability framework, and when no
errors are anticipated the two methods give the same results.

However, when errors are to be accepted, the solution of (16) is again
tedious, and Table 4 may be used for this purpose. As in Table 1, values
of kU may be found in the columns headed UEL; the table is accessed in
the row for the appropriate expected number of errors, in the column for
belief b.

Consider the earlier example of a population with a recorded book value of
$5,000,000 that the auditor wishes to audit using MUS with a tolerable mis-
statement of $500,000 and belief of at least 95%. Suppose that the auditor is
willing to accept up to 3 of the selected dollars being in error. From Table 4,
kU � 9:432 for three errors and a belief of 95%. The required sample size is

therefore 5;000;000�9:432
500;000

� 94:32 � 95: Of course, a 95% belief in the interval �0; T �,
with no belief outside the interval, makes stronger epistemological demands
than 95% con®dence (with a 5% risk). Intuitively, then, it is reasonable that the
necessary sample size be larger. The issue of what level of belief is appropriate
for an auditor who would have been satis®ed with a 5% beta risk is not ad-
dressed in this paper: presumably, it may well be less than 95%. Canons for
acceptable levels of belief will need to be developed by audit practitioners in
light of experience using belief functions.

As before, when the auditor has assessed an expected level of misstatements
by value rather than an expected number of errors, we may proceed iteratively,
recalling from Eq. (3) that E � B� k=n � Bk � T=Bk � kT=k. For
k � 0; 1; 2; . . ., Eq. (16) may be solved for kU, and the result used to compute E
from Eq. (3) until the required level of expected error is reached.

In the example considered earlier, suppose that the expected aggregate error
was $159,033.

For k � 0, Table 4 gives kU � 2:996, but yields a value for E of 0. For k � 1,
Table 4 gives kU � 5:744, giving a value for E of $87,047. Similarly, for k � 2,
Table 4 gives kU � 7:689, giving a value for E of $130,056. Finally, for k � 3,
Table 4 gives kU � 9:432, giving a value for E of $159,033.

If the expected error falls between k and k+1 errors, giving rise to
kk and kk�1, respectively, producing expected errors of Ek and Ek�1, a conser-
vative procedure would again be to use a sample size based on kk�1, but linear
interpolation may be used.

In the above example, if the auditor expected aggregate error of $141,647,
then interpolation would give

k � 7:689� 141;647ÿ 130;056

159;033ÿ 130;056
� 9:432� ÿ 7:689� � 8:386

and

n � 5;000;000� 8:386

500;000
� 83:86 � 84:
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This calculation for $141,647 expected aggregate error interpolates based on
2.4 errors; in the belief-function case, Eq. (16) may be solved directly to give a
more accurate estimate for k of 8.403, leading to a sample size of

n � 5;000;000� 8:403

500;000
� 84:03 � 85:

4.1.1. Controlling alpha risk
The methods described above for determining sample sizes for MUS do not

explicitly control the risk of incorrect rejection. Suppose that the auditor de-
termines some low proportion of error, l, such that it would be undesirable to
reject a population with this error too often. Suppose, in fact, that the auditor
wishes to have a belief a that the interval �kL; kU� marginally contains ln. Then
the sample size is determined by ®nding the smallest value n such that

1ÿ ekÿkL
kL

k

� �k

P a; where kL � ln �17�

and simultaneously

1ÿ ekÿkU
kU

k

� �k

6 b; where kU � nT
B
: �18�

Eq. (17) ®nds the smallest value of kL for which the belief is not more than
a, if kL were any smaller, the belief would be less than a. At the same time,
Eq. (18) ®nds the largest value of kU for which belief does not exceed b. Tables 5
and 6 are provided to facilitate the necessary calculations.

Fig. 2 illustrates a belief 0.90 that rejected populations contain ln � 0:632
errors, and a belief 0.95 that accepted populations contain no more than
nT=B � 9:432 errors, given three observed errors.

Suppose, for example, that the auditor wishes to audit a balance of
$5,000,000 with a 90% belief that there are at least 0.5% errors, and a 95%
belief that the total misstatement does not exceed $500,000. If the auditor

Table 5

kL�a; k� such that 1ÿ ekÿkL �kL=k�k � a, where k� number of errors

Number of errors Belief a in the interval �k;1�
0.50 0.75 0.90 0.95 0.99

0 ± ± ± ± ±

1 0.232 0.102 0.038 0.019 0.004

2 0.761 0.464 0.266 0.180 0.076

3 1.394 0.956 0.632 0.477 0.259

4 2.083 1.522 1.085 0.863 0.531

5 2.808 2.138 1.597 1.314 0.872
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accepts the population only when there is one error or less, then from Tables 5
and 6 we see that

kL � 0:005n6 0:038 or n6 7:6

and

kU � 0:1n P 5:744 or n P 57:44:

Table 6

kU�b; k� such that 1ÿ ekÿkU �kU=k�k � b, where k�number of errors

Number of errors Belief b in the interval �0; k�
0.50 0.75 0.90 0.95 0.99

0 0.693 1.386 2.303 2.996 4.605

1 2.678 3.693 4.890 5.744 7.638

2 4.156 5.357 6.729 7.689 9.779

3 5.525 6.873 8.387 9.432 11.684

4 6.838 8.312 9.946 11.066 13.458

5 8.114 9.699 11.442 12.628 15.147

Fig. 2. Beliefs a and b in intervals based on three observed errors.
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This is clearly inconsistent. If the auditor accepts the population when there
are two errors or less, we see from Tables 5 and 6 that

kL � 0:005n6 0:266 or n6 53:2;

kU � 0:1n P 7:689 or n P 76:89:

This is still not consistent. However, if the auditor is willing to accept up to
three errors, we see that

kL � 0:005n6 0:632 or n6 126:4;

kU � 0:1n P 9:432 or n P 94:32;

so that the sample size of 95 determined earlier will certainly be su�cient to
achieve the desired beliefs. Note that Table 5 cannot provide a lower limit when
the expected number of errors is zero.

4.2. Sample evaluation

Within the belief-function framework, MUS samples may be evaluated as in
the statistical case, but using Table 4. If no di�erences are discovered, then the
UEL (for both overstatements and understatements) may be determined by

UEL � B� ÿ ln�1ÿ b�� �
n

� 100%: �19�

For a number of levels of belief b, the value of ÿ ln�1ÿ b� is given in the ®rst
row of Table 4, in the UEL columns.

As before, when audit di�erences are found, overstatements and under-
statements must be evaluated separately. Suppose that k overstatements are
found, and that the values of these di�erences are d1; . . . ; dk. Suppose also that
the taintings, sorted in descending order, are t1; . . . ; tk. Then the gross UEL for
overstatements is given by

UELO � B� B0

n
� 100%� B� B1 ÿ B0� �

n
� t1

� � � � � B� Bk ÿ Bkÿ1� �
n

� tk; �20�

where Bi is given by

ekÿBi
Bi

k

� �k

� 1ÿ b:

For a number of levels of belief b, the value of Bi is given in the UEL columns
of Table 4, and the value of Bi ÿ Biÿ1 can then be calculated.
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Suppose, as before, that an auditor is auditing a population with a recorded
book value of $5,000,000 with a tolerable misstatement of $500,000, and de-
sires a 95% belief in the interval [0, 500,000]; suppose also that based on a
sample of 78 the audited values for recorded amounts of $1,000, $2,000 and
$3,000 are $500, $1,400, $2,400, respectively. Then the taintings in descending
order are 0.5, 0.3 and 0.2. From Table 4, the values of Bi ÿ Biÿ1 for 1, 2 and 3
errors, respectively, are 2.748, 1.945 and 1.743. Thus Eq. (20) gives

UELO � 5;000;000� 2:996

78
� 100%� 5;000;000� 2:748

78
� 0:5

� 5;000;000� 1:945

78
� 0:3� 5;000;000� 1:743

78
� 0:2

� $339;878:

Note that, consistent with the view that a belief of 95% is a stronger claim than
95% con®dence, the UEL is larger than for the probabilistic analysis given
earlier. Table 4 also provides belief-function equivalents of the precision gap
wideners.

When both k overstatements and l understatements are found, the UEL for
overstatements may be reduced as before to take account of the understate-
ments by subtracting from UEL the value of

MLEU � 1

n
�
Xl

1

sl � B;

where s1; . . . ; sl are the understatement taintings for the l understatements. The
auditor then has a belief b that misstatements fall in the interval �0;UBO�,
where UBO � UELO ÿMLEU.

Suppose in the example above that recorded amounts of $1,000 and $800
had audited values of $1,100 and $1,000, respectively, giving rise to tainting of
0.10 and 0.25. Then, based on Eq. (10)

MLEU � 1

78
� 0:10� � 0:25� � 5;000;000 � $22;436:

Thus the net upper bound for overstatements given by

UELO ÿMLEU is $339;878ÿ $22;436 � $317;442:

Although this method of recognizing the net e�ect on UELO of under-
statements discovered in the sample is intuitively appealing here, as in the
statistical case, it is not based on a theoretical analysis, and there are at present
no empirical studies supporting its use in the belief-function case. The audit
conclusion from this sampling procedure is, therefore, that the auditor has a
belief at least 0.95 that the overstatements fall in the interval [0, 317, 442]; this
is within the original desired interval, based on planning materiality.
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An upper bound for understatements may similarly be obtained, giving the
result that the auditor has a belief at least 0.95 that the understatements fall in
the interval [0, 184, 455]. Since both the overstatement and understatement
intervals are contained within the tolerable interval for misstatements of
[0, 500,000], the auditor has a belief at least 0.95 that the account is not ma-
terially misstated.

In general, provided that the intervals �0;UBO� and �0;UBU� both fall within
the tolerable misstatement interval �0; T �, the auditor will have a belief b that
the account is not materially misstated, and a zero belief that the account is
misstated. If either the overstatement or the understatement interval is not
contained within �0; T �, however, the auditor may wish to perform additional
audit procedures and accept a lower level of belief, to increase the sample size
and re-evaluate the sample, or to propose an adjustment based on the errors
discovered, so that the revised intervals �0;UBO� and �0;UBU� both become
acceptable.

As in the probability theory case, each additional error increases the UEL,
and each error contributes a greater amount to the increased UEL than its own
value. The PGW columns of Table 4 indicate by how much the precision gap
(between the upper error level used in the belief interval and the most likely
error) is increased by each successive error.

5. Summary and conclusions

This paper has described several methods of MUS, and demonstrated how
these methods may be used in the context of a belief-function framework.
Formulae and Tables for planning and evaluating MUS within belief functions
are provided. The methods are illustrated with reference to an auditing ex-
ample, showing how a sample size is calculated to obtain a given level of belief
in a planned interval for misstatements �0; T �, and how sample results may be
evaluated to give a desired level of belief in an achieved misstatement interval
�0;UB�. Consistent with intuition, sample sizes for a given level of belief are
somewhat larger than (though comparable with) those for the same numerical
level of statistical con®dence. For a ®xed sample size, higher upper bounds are
obtained using beliefs than using the same level of statistical con®dence. While
the tables are correspondingly di�erent, application of the method is proce-
durally identical to the normal statistical method. Statistical evidence in the
form of belief in intervals may be integrated with non-statistical evidence using
DempsterÕs Rule for the combination of beliefs in the normal way.

Future simulation work is desirable to support the use of the MLE ad-
justment to UEL in the belief-function case. Although details are not given of
extensions to the use of the Binomial distribution in MUS, this extension is
straightforward; it may be best considered, however, in the context of an
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extension of this paper to cover the cell-selection methods that some authors
favor [30,31]. Finally, future research is needed on the use of alternatives to the
Stringer bound within the belief-function framework.
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