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In cultured human keratinocytes or murine epidermis, peroxisome proliferator-activated receptor b/d (PPARb/d)
(NR1C2) activators (1) stimulate keratinocyte differentiation; (2) decrease keratinocyte proliferation; (3)
accelerate permeability barrier repair; (4) increase epidermal lipid synthesis; and (5) reduce cutaneous
inflammation. Since these results suggest that PPARb/d could play an important role in cutaneous homeostasis,
we assessed here the skin phenotype of mice deficient in PPARb/d. Gross cutaneous abnormalities were not
evident, and both stratum corneum (SC) skin hydration and surface pH were normal. However, the epidermis
was thickened and proliferating cell nuclear antigen (PCNA) staining was increased, indicating increased cell
proliferation. No change in apoptosis was observed but the expression of differentiation markers, such as
filaggrin, involucrin, and loricrin, was slightly increased in PPARb/d�/� mice. Although basal permeability barrier
function was normal, PPARb/d knockout (KO) mice show a significant delay in barrier recovery rates following
acute barrier disruption by either acetone treatment or tape-stripping. Delayed barrier recovery correlated with
decreased production and secretion of lamellar bodies (LBs), and with reduced numbers of extracellular
lamellar membranes in the SC. Finally, PPARb/d KO mice displayed increased inflammation in response to 12-O-
tetradecanoylphorbol-13-acetate (TPA) treatment. Together, these results further demonstrate that PPARb/d in
the epidermis: (1) is required for permeability barrier homeostasis; (2) regulates keratinocyte proliferation; and
(3) modulates cutaneous inflammation.
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INTRODUCTION
There are three peroxisome proliferator-activated receptor
(PPAR) isoforms, a (NR1C1), b/d (NR1C2), and g (NR1C3).
These receptors heterodimerize with RXR and are activated by
fatty acids, prostaglandins, eicosanoids, and other lipid meta-
bolites; and hence, may function as ‘‘liposensors’’ (Mangelsdorf
and Evans, 1995; Kersten et al., 2000; Chawla et al., 2001).
Braissant and Wahli, using in situ hybridization, reported that
both PPARa and PPARb/d but not PPARg are expressed in the
epidermis during fetal development in rats, whereas in adult

rats, these investigator did not observe the expression of PPARs
in epidermis (Braissant et al., 1996; Braissant and Wahli, 1998).
However, both Rivier et al. (1998) and Westergaard et al. (2003)
found that all three PPAR isoforms were expressed in human
epidermis. Based on the studies of Westergaard et al. (2003)
it appears that PPARb/d is the most abundantly expressed PPAR
in human epidermis. Moreover, PPAR b/d expression increases
in hyperproliferative conditions such as psoriasis, following
12-O-tetradecanoylphorbol-13-acetate (TPA) treatment, and
with inflammatory stimuli such as cytokines, lipopolysaccharide
and UV light (Michalik et al., 2001; Tan et al., 2001;
Westergaard et al., 2003; Schmuth et al., 2004).

Studies by our group and others have shown that
activation of PPAR a, b/d, or g has major effects on
epidermal/keratinocyte function. First, PPARa, b/d, or g ligand
treatment of cultured human keratinocytes and/or topical
application of PPAR ligands to murine skin results in the
increased expression of differentiation related proteins, such
as involucrin, loricrin, profilaggrin, and transglutaminase 1
(Hanley et al., 1998; Komuves et al., 1998, 2000a;
Westergaard et al., 2001; Man et al., 2004; Schmuth et al.,
2004). Second, activation of PPARa, b/d, or g inhibits
keratinocyte proliferation in vivo and/or in vitro models (Ellis
et al., 2000; Komuves et al., 2000b; Demerjian et al., 2006;
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Kim et al., 2006). Third, PPARa, b/d, or g ligands are anti-
inflammatory, decreasing the inflammation evoked in re-
sponse to TPA treatment, a model of irritant contact
dermatitis (Sheu et al., 2002; Man et al., 2004; Schmuth
et al., 2004). Finally, topical treatment of murine skin with
PPAR a, or b/d and to a lesser extent g ligands improves
permeability barrier homeostasis, resulting in an acceleration
of barrier recovery following acute disruption (Komuves
et al., 2000a; Man et al., 2004; Schmuth et al., 2004).
Associated with the PPAR ligand-induced improvement of
permeability barrier homeostasis is an increase in (a)
epidermal cholesterol, fatty acid, and sphingolipid synthesis,
(b) lamellar body (LB) number and secretion, and (c) b-
glucocerebrosidase activity, all of which could contribute to
the enhanced barrier homeostasis (Man et al., 2006).

Despite the major effects of PPAR ligands on epidermal/
keratinocyte structure and function, animals deficient in
PPARs display few cutaneous changes. Specifically, in PPARa
knockout (KO) mice there are no changes in skin physiology
or general morphology, but a very modest decrease in the
epidermal expression of differentiation markers, such as
profilaggrin and loricrin (Lee et al., 1995; Komuves et al.,
2000a; Schmuth et al., 2002). Additionally, a thinner stratum
granulosum (SG) layer was observed with a decrease in
keratohyalin granules. Of note, electron microscopy revealed
no abnormalities in the LB secretory system, which is
consistent with the normal permeability barrier function in
PPARa KO mice (Komuves et al., 2000a). Similarly, mice
with a localized KO of PPARg in the epidermis exhibit few
changes in cutaneous structure and function (Man et al.,
2004). A modest increase in epidermal thickness occurs in
PPARg-deficient mice, which is associated with increased
proliferating cell nuclear antigen (PCNA) staining indicating
keratinocyte hyperproliferation. Apoptosis, the expression of
keratinocyte differentiation markers, and the LB secretory
system, evaluated by electron microscopy, were unchanged
in the PPAR gamma epidermal KO mice. Finally, stratum
corneum (SC) pH, SC water content, basal permeability
barrier function, barrier recovery following acute disruption,
and the cutaneous inflammatory responses were all normal in
these PPARg-deficient mice.

PPARb/d�/� mice are difficult to obtain due to frequent
gestational lethality from placental defects, but independent
lines of PPAR-b/d-targeted mice have nevertheless been
generated (Peters et al., 2000; Barak et al., 2002). Previous
studies to assess genetic loss of PPARb/d function in skin
utilized PPAR-b�/� mice as described by Peters and co-
workers. Notably, however, these PPAR-b/d-targeted animals
transcribe residual PPAR-b/d RNA encoding a 60-amino-acid
C-terminus deletion of the ligand-binding domain (Peters
et al., 2000). Whether this genetic disruption retains some
residual PPAR b/d activity, or could function in a dominant-
negative manner, remains unsettled. Nevertheless, these
animals are smaller, and display an increased susceptibility
to phorbol ester-induced epidermal hyperplasia and reduced
adipose stores (Peters et al., 2000) and a delayed wound
healing response (Michalik et al., 2001). Epidermal differ-
entiation is not altered in these animals.

Although a more complete knockout of PPAR b/d also
causes reduction of adipose stores and earlier embryonic
lethality (Barak et al., 2002), cutaneous function has not yet
been carefully examined in these animals. The purpose of this
study was to determine if there are any changes in skin
physiology, ultrastructure, epidermal lipid synthesis, as well
as cutaneous inflammatory response in animals with a
complete deficiency of PPAR b/d due to genetic disruption
of the receptor’s DNA-binding domain.

RESULTS
Epidermal structure and function in PPARd KO mice

The skin of PPARb/d KO mice appeared grossly normal.
Additionally, there were no alterations in basal skin
physiology such as surface pH, water holding capacity, or
permeability barrier function in PPARb/d KO mice (Table 1).
However, increased epidermal thickness was seen in the
PPARb/d KO epidermis (Figure 1). Increased epidermal
thickness, in turn, was associated with an increase in
epidermal PCNA immunostaining (Figure 1; Figure S1).
Additionally, in the PPARb/d KO mice, there also was
increased PCNA-positive staining in the dermis, localized to
hair follicles. The increase in keratinocyte proliferation in the
epidermis of PPARb/d KO mice was further demonstrated by
increased staining of proliferation makers k14 and P63 in the
basal layer (Figure S2). In contrast, there was no change in the
level of apoptosis, as detected by TUNEL staining in PPARb/d
KO mice (Figure S3). Finally, expression of keratinocyte
differentiation markers, particularly involucrin and loricrin,
was moderately increased in PPARb/d KO mice in compari-
son to wild type mice (Figure S4). In addition, the mRNA
levels of loricrin were increased 225732% in PPARb/d KO
compared to wild type mice. The mRNA levels of PPAR a and
PPAR g were not changed in PPAR b/d KO epidermis. PPARb/d
mRNA was present in wild type mice but as expected was not
seen in PPARb/d KO mice.

Increased skin inflammatory response in PPARd KO mice

To determine the role of PPARb/d in regulating cutaneous
inflammation, we next measured changes in ear thickness
in KO versus wild type mice following TPA treatment.

Table 1. Basal skin physiology in PPAR b/d KO and
wild-type mice

Groups
Surface

pH
Skin capacitance (arbitrary

unit)
TEWL (mg/cm2/

hour)

Wild type

(n=5)

5.0270.07 56.2071.70 0.1870.03

PPAR b/d
KO (n=5)

5.1770.05 57.3071.29 0.1670.03

Significance NS NS NS

LOR, loricrin; KO, knockout; NS, not significant; PPAR, peroxisome
proliferator-activated receptor; TEWL, transepidermal water loss.
The animals were 6–8 weeks old. Measurement was obtained from both
flanks of wild-type (n=5) and PPARb/d KO (n=5) mice, one reading per
flank. The unit for capacitance is arbitrary unit, and for TEWL is mg/cm2/
hour. The results are presented as mean7SEM.
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As expected, ethanol (vehicle for TPA) treatment did not
increase ear thickness. However, TPA treatment resulted in a
greater increase in ear thickness in PPARb/d KO as compared
to wild-type mice (Figure 2). This result, coupled with
previous studies (Peters et al., 2000; Schmuth et al., 2004),
provides further evidence that PPARb/d regulates cutaneous
inflammation.

PPARd KO mice exhibit delayed permeability barrier recovery
after acute injury

To determine the role of PPARb/d in permeability barrier
homeostasis, we next measured barrier recovery following
acute disruption induced by either acetone treatment or
repeated tape-stripping. As shown in Figure 3, a significant
delay in barrier recovery at both 2 and 4 hours post-disruption
was seen in PPARb/d KO mice following either tape-stripping
or acetone treatment. These results demonstrate the impor-
tance of PPARb/d in regulating epidermal permeability barrier
homeostasis.

Epidermal lipid synthesis rate in PPARb/d KO epidermis

We next asked whether PPARb/d regulates epidermal lipid
synthesis. Cutaneous permeability barrier recovery following
acute disruption requires augmented production of lipids for
the formation of additional LBs. Epidermal lipid synthesis
provides these lipids, and inhibition of epidermal cholesterol,
fatty acids or sphingolipid synthesis delays barrier recovery
(Feingold et al., 1990; Holleran et al., 1991; Mao-Qiang

et al., 1993). The synthesis rates of cholesterol, fatty acids,
and ceramides was comparable in PPARb/d KO and wild-
type mouse epidermis under basal conditions (Figure 4). In
addition, no decrease in epidermal lipid synthesis in PPARb/d
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Figure 1. Increased epidermal thickness accompanied by increased PCNA

staining is observed in PPARb/d KO mice. Epidermal thickness of the

nucleated cell layer was measured in 100�hematoxylin & eosin-treated

sections. The measurement was taken at every 2 cm points along the

epidermis. The data are presented as the mean of all measured points

(a, n¼31 for both groups). The number of PCNA-positive cells was

counted on every 2 cm segment along the epidermis (b, n¼ 11 for both

groups). The data are presented as the mean of all segments counted7SEM.
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Figure 2. Increased inflammatory response to TPA treatment in PPARb/d KO

mice. A 10ml volume of 0.03%TPA in ethanol was applied to the inner and

outer surfaces of the right ears, and the left ears were treated with ethanol

alone. Ear thickness was measured before and 18 hours after TPA or ethanol

applications. Ethanol alone did not alter ear thickness. Data are expressed as

mean7SEM (n¼ 11 for each group).

P<0.05

Time (hours)

P<0.05

P<0.01
P<0.01

Wild typea

b

2.0 4.0

2.0 4.0

%
 B

ar
rie

r 
re

co
ve

ry
%

 B
ar

rie
r 

re
co

ve
ry

50

40

30

20

10

0

40

30

20

10

0

PPAR � KO

Figure 3. Permeability barrier recovery is delayed in PPARb/d KO mice.

Permeability barrier was disrupted with either (a) tape-stripping (b) or acetone.

Transepidermal water loss was measured 2 and 4 hours after barrier

disruption. A significant delay in barrier recovery was observed at both

2 and 4 hours in both models in PPARb/d KO animals. Data are expressed

as percent of barrier recovery and mean7SEM (n¼ 9–12 for wild type,

n¼ 10–11 for KO).
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KO mice was observed even at 2 hours following tape-
stripping (data not shown). These results suggest that the
defective barrier homeostasis in PPARb/d KO mice is not due
to the changes in epidermal lipid synthesis, because lack of
PPARb/d does not significantly affect the rate of lipid
synthesis in the epidermis.

Ultrastructural basis for defective barrier homeostasis in
PPARb/d KO mice

Following barrier disruption, the events required for barrier
restoration include not only epidermal lipid synthesis, but
also accelerated secretion of preformed LBs, new LB
formation, and post-secretory processing of secreted lipid,
which ultimately leads to membrane bilayer maturation
(Menon et al., 1992; Holleran et al., 1993). Since changes
in lipid synthesis were not observed in PPARb/d KO mice, we
next examined whether there were changes in LB formation,
secretion, and/or lipid processing. Ultrastructurally there was
no evidence of a lamellar membrane processing abnormality
in PPARb/d KO mice (Figure 5a vs b). Additionally, in situ
zymography demonstrated that the activity of b-glucocerebro-
sidase, a key enzyme required for lamellar membrane
processing, was similar in PPARb/d KO compared to wild-
type mice (Figure S5). In contrast, a significant decrease in LB
density was observed in PPARb/d KO mice (Figure 6). In
addition, the secreted material at the SG/SC (SG/SC) interface
was reduced in PPARb/d KO versus wild-type mice (Figure 5c
and d). Thus, changes in either LB formation or secretion
could account for the delay in recovery of permeability
barrier function in PPARb/d KO mice.

DISCUSSION
In contrast to our previous studies of PPARa- and PPARg-
deficient mice, in which we observed minimal changes in
epidermal structure and function (Komuves et al., 2000a;
Schmuth et al., 2002; Man et al., 2004), in this study we
observe that mice devoid of PPARb/d display a number of
cutaneous abnormalities, including (1) increased epidermal

thickness due to increased keratinocyte proliferation; (2)
increased inflammatory response to TPA treatment, a model
of irritant contact dermatitis; and (3) delayed permeability
barrier repair following acute barrier disruption due to
decreased LB formation and secretion. Studies have sug-
gested that PPARb/d is the most abundant of the PPARs in the
epidermis and with inflammation the levels of this receptor
increase while the levels of the other PPARs decrease
(Braissant and Wahli, 1998; Peters et al., 2000; Kippenberger
et al., 2001; Schmuth et al., 2004). For example, in epidermis
from TPA-treated mouse skin or patients with psoriasis the
expression of PPARb/d is increased (Rivier et al., 1998;
Westergaard et al., 2003; Kim et al., 2006). Additionally,
treatment of cultured keratinocytes with cytokines, lipopoly-
saccharide, or UV light increase PPARb/d and decrease the
other PPARs (Michalik et al., 2001; Tan et al., 2001; Schmuth
et al., 2004). This increased abundance and upregulation of
PPARb/d in response to inflammation and injury may
contribute to alterations in epidermal structure and function
in mice deficient in PPARb/d. In PPARa- and PPARg-deficient
mice it is possible that the presence of the other PPARs could
in part compensate for the absence of the receptor, whereas
in PPARb/d-deficient mice, such redundancy cannot totally
compensate, resulting in cutaneous abnormalities.
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Figure 4. Epidermal PPAR b/d KO does not alter epidermal lipid synthesis.

Full-thickness skin was incubated with 40mCi acetate for 2 hours at 371C, and

the incorporation of 14C acetate into lipids was determined as described in

Materials and Methods. The total ceramides includes both ceramides and
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Figure 5. Secretion of LB contents is decreased, but post-secretory lipid

processing is normal in PPARb/d KO epidermis. Skin biopsies from 6- to

8-week-old wild-type and PPARb/d KO mice were fixed in Karnovsky’s fixative

overnight, and post-fixed with 0.25% ruthenium tetroxide or 1% aqueous

osmium tetroxide. Ultrathin sections were visualized with an electron

microscope. Post-secretory processing of secreted LB contents in lamellar

membranes (a and b, arrows) begins at the SG–SC interface in both PPARb/d
KO and wild-type (wt) mice. Decreased quantities of secreted LB contents are

apparent in (c) KO (arrowheads) versus (d) wt mice (arrows). (a, b) ruthenium

tetroxide post-fixation; (c, d) osmium tetroxide post-fixation. Bar¼ 0.2mm.
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The increase in epidermal thickness and keratinocyte
proliferation is consistent with previous observations (Tan
et al., 2001; Kim et al., 2006). Other investigators have
shown that treatment of cultured keratinocytes with PPARb/d
activators inhibits keratinocyte proliferation (Kim et al., 2005,
2006), and thus it is not surprising that the absence of PPARb/d
in the epidermis results in an increase in epidermal thickness.
The increase in epidermal thickness in PPARb/d-deficient
mice is due to increased keratinocyte proliferation, as shown
by the increased PCNA staining, and the absence of
alterations in apoptosis by TUNEL staining. However, others
have observed no difference in epidermal proliferation
between PPARb/d-deficient and wild-type mice in postnatal
day 1–4 animals (Di-Poi et al., 2005). This difference in
results between adult and neonatal animals may reflect the
different roles of PPARb/d during different developmental
stages. Of note is that while treatment of either mouse skin or
cultured keratinocytes with PPARb/d activators stimulates the
expression of key genes required for keratinocyte differentia-
tion, including loricrin, involucrin, filaggrin, and transglut-
aminase 1 (Westergaard et al., 2001; Schmuth et al., 2004), the
expression of these differentiation related proteins was not
greatly altered in mice deficient in PPARb/d in the epidermis.
Moreover, it has been shown that in cultured keratinocytes
derived from PPARb/d-deficient mice, the expression of
differentiation markers following treatment with either high
calcium or TPA increased similar to what is observed in wild-

type keratinocytes (Kim et al., 2006). In this study, we
paradoxically noted a slight increase in the expression of
involucrin and loricrin, which may have been secondary to
the increase in epidermal thickness. However, Kim et al.
(2006) noted a decrease in cornified envelope formation in
PPARb/d-deficient mice. Taken together, these observations
indicate that while PPARb/d plays a key role in regulating
keratinocyte proliferation, the effects of PPARb/d on diffe-
rentiation are not crucial, and the absence of PPARb/d in the
epidermis can be compensated for by other regulatory
pathways.

The increase in cutaneous inflammation in response to
TPA is also consistent with previous studies (Peters et al.,
2000; Michalik et al., 2001). First, as noted above,
inflammation increases PPARb/d expression in keratinocytes,
while decreasing the expression of other PPARs (Rivier et al.,
1998; Tan et al., 2001; Schmuth et al., 2004). Second,
previous studies have shown that PPARb/d activators reduce
cutaneous inflammation (Schmuth et al., 2004; Kim et al.,
2006). Finally, studies on PPARb/d-deficient mice have
shown increased epidermal thickness in response to TPA
treatment (Peters et al., 2000). In this study, we show that
mice with complete deficiency of PPARb/d have an increase
in ear thickness following TPA treatment compared with
wild-type mice, indicative of an enhanced inflammatory
response. Thus, PPARb/d plays a key role in regulating the
response of the skin to inflammatory stimuli.

In our previous studies, we have shown that topical
treatment with PPARb/d activators for three days before acute
barrier disruption accelerated permeability barrier recovery
(Schmuth et al., 2004). This acceleration in barrier recovery
was associated with an increased number of LBs in SG cells,
which resulted in the increased secretion of lamellar material
following barrier disruption (Man et al., 2006). The mecha-
nism accounting for the increase in LB number with PPARb/d
treatment is unknown, but we did observe an increase in
epidermal lipid synthesis, which is required to provide the
structural lipid components required for LB formation.
Additionally, the activity of b-glucocerebrosidase, a key
enzyme required for the extracellular processing of
glucosylceramides to ceramides, is increased in PPARb/d
ligand-treated animals (Man et al., 2006). This enzyme is
incorporated into LBs for secretion into the extracellular spaces.

The final key observation from this study is that deficiency
of PPARb/d in the epidermis results in a delay in permeability
barrier recovery following acute disruption by either repeated
tape-stripping or acetone treatment. This delay in repair was
associated with a decreased number of LBs in SG cells, which
resulted in the decreased secretion of LBs following barrier
disruption, an essential step in the recovery of permeability
barrier function. The decrease in lamellar membranes in the
extracellular spaces in PPARb/d-deficient mice is likely due to
the decrease in LBs, and could account for the delay in
permeability barrier repair. However, epidermal cholesterol,
fatty acid, and ceramide synthesis in the PPARb/d-deficient
mice was similar to wild-type mice, indicating that a
deficiency in bulk lipids was not the etiology for the decrease
in LB formation in the SG cells. It is of course possible that

a

b 2 �m

Figure 6. The number of LB is decreased in PPARb/d KO epidermis.

Skin samples from both wild-type and PPARb/d KO mice were fixed with

osmium tetroxide as described in Materials and Methods. (a) There is

abundant LB in the SG in wild-type epidermis (arrows). (b) In contrast, there

are only a few partially filled LB found in PPARb/d KO epidermis (arrows).

Bar¼2 mm.

374 Journal of Investigative Dermatology (2008), Volume 128

M-Q Man et al.
Defective Barrier Homeostasis and Increased Inflammation in PPARb/d Knockout Mice



specific lipid subclasses that are required for LB formation are
deficient in PPARb/d KO mice. Alternatively, structural
proteins required for LB formation or transporters required
for the entry of lipid into LBs could be limiting in PPARb/d-
deficient mice. Recent studies have shown that ABCA12 is
required for LB formation (Lefevre et al., 2003; Hovnanian,
2005; Akiyama, 2006). However, in preliminary studies,
mRNA levels of ABCA12 were not decreased in PPARb/d-
deficient mice. Thus, at this time, the alterations that account
for the decrease in LBs in PPARb/d-deficient mice are
unknown. Nevertheless, a decrease in LBs would adversely
affect permeability barrier homeostasis. The delay in repair-
ing permeability barrier function following acute injury is
consistent with studies that have shown delays in wound
healing in PPARb/d-deficient mice (Michalik et al., 2001).

Since the animals that we studied are deficient in PPARb/d
in all tissues, we can not be certain whether the changes in
epidermal structure and function are due to the absence of
PPARb/d in the epidermis or other tissues. It is worth noting
that studies by Matsuura et al. (1999) have shown, using in
situ hybridization, that PPARb/d is expressed in the supraba-
sal layers of human epidermis, and it is therefore possible that
the effects of PPARb/d on LB formation and permeability
barrier function are direct effects.

In conclusion, this study demonstrates that PPARb/d plays
important roles in the epidermis and is essential in regulating
keratinocyte proliferation, the cutaneous response to inflam-
mation, and permeability barrier homeostasis.

MATERIALS AND METHODS
All animal procedures were approved by the Animal Studies

Subcommittee of the San Francisco Veterans Administration Medical

Center, and were performed in accordance with their guidelines.

Materials

Generation of PPARb/d-deficient animal. The mice used in this

study were generated using a similar strategy as described previously

(Barak et al., 2002), differing only in that the wild-type exon 4 was

replaced with a b-galactosidase gene, rather than a deletion,

upstream of the PPARd DNA-binding domain. Homozygous lacZ

knock-in mice (PPARdki/ki) are backcrossed four generations into the

SV129 inbred strain. These mice lack almost the entire PPARd gene

product, including the DNA-binding domain. Male wild-type and

PPARd KO mice, 6–8 weeks of age, were used in this study. Animals

were maintained on mouse diet (Ralston-Purina Co., St Louis, MO)

and water ad lib.

Chemicals. Acetone was purchased from Fisher Scientific (Fairlane,

NJ). TPA was purchased from Sigma (St Louis, MO). 14C-labeled

acetate (56 mCi/mmol) was purchased from American Radiolabeled

Chemicals Inc. (St Louis, MO).

Experimental protocols and functional studies

All measurements were made on the flanks of the mice 24 hours after

shaving. Basal cutaneous permeability barrier function was deter-

mined by measuring transepidermal water loss with an electronic

water analyzer (MEECO, Warrington, PA). The raw data for

transepidermal water loss were in ppm/0.5 cm2/hour and were

converted to mg/cm2/hour. The kinetics of barrier recovery were

determined after acute barrier disruption either by sequential

applications of cellophane tape (Scotch tape, 3 m) or repeated

topical applications of acetone (transepidermal water lossX2–8 mg/

cm2/hour) at 2 and 4 hours post-disruption, as described previously

(Man et al., 1997a, b). SC hydration was measured with the

capacitance-based Corneometer CM 825 (Courage&Khazaka,

Cologne, Germany), with values reported in arbitrary units (Man et al.,

1997a). Surface pH was measured with a flat, glass surface electrode

from Mettler-Toledo (Giessen, Germany), attached to a pH meter (Skin

pH Meter PH 900, Courage & Khazaka, Cologne, Germany).

Epidermal lipid synthesis

Skin samples were incubated for 2 hours at 371C in 2 ml of 10 mM

EDTA in PBS–calcium and magnesium free, containing 40 mCi
14C-labeled acetate, as described previously (Mao-Qiang et al.,

1993). After stopping the reaction by placing on ice, the epidermis

was separated from the dermis. The incorporation rates of [14C-

labeled acetate into lipids in epidermis were determined following

Bligh/Dyer extraction, and thin-layer chromatography, as described

previously (Holleran et al., 1991; Mao-Qiang et al., 1993). The

sphingolipid components were separated by high-performance thin-

layer chromatography developed in the following solvent mixtures:

(1) chloroform/methanol/water (40:10:1, v/v) for 2 and 5 cm;

(2) chloroform/methanol/acetic acid (47:2:05, v/v) for 8.5 cm; and

(3) N-hexane/diethylether/acetic acid (30:15:0.5, v/v) for 9 cm. The

plates for neutral lipids were developed in the following solvent

systems: (1) Benzene/hexane(1:1, v/v) for 8 cm and (2) hexane/ether/

acetic acid(70/30/1) for 5 cm. The corresponding lipid bands were

collected and counted with a scintillation counter. The incorporation

rates of 14C-labeled acetate into lipids were expressed as nM/g wet

epidermal weight/hour.

Immunohistochemistry
The methods for assessment of both the differentiation markers and

proliferation were carried out as published previously (Komuves

et al., 1998, 2000b). Briefly, after deparaffinization and blocking

with 4% BSA, 5 mm paraffin sections were incubated with primary

rabbit anti-mouse antibodies (Covance/BabCo., Berkely, CA) at

dilutions of 1:2,000 for filaggrin, 1:1,000 for involucrin, and 1:500

for loricrin, for overnight at 41C. After washing with 10 mM citrate

buffer, sections were incubated with goat anti-rabbit antibody

(1:400) for 30 minutes at room temperature, followed by ABC-

peroxidase (Vector, Burlingame, CA) reaction. For PCNA staining,

sections were incubated with biotinylated monoclonal anti-PCNA

antibody (CalTag Laboratories, Burlingame, CA) for 2 hours at room

temperature. For anti-K14 and anti-P63 stainings, methods described

by Mikaelian and Bilal were followed (Bilal et al., 2003; Mikaelian

et al., 2006). The sections were visualized with a Zeiss (Axioplan 2)

microscope (Jena, Germany). Digital images were captured with

AxioVision software 2.05 (Carl Zeiss Vision, Munich, Germany).

Keratinocyte apoptosis

TUNEL assay kit (Roche Molecular Diagnostics, Indianapolis, IN)

was used to assess keratinocyte apoptosis, according to the

manufacturer’s instruction. Briefly, after deparaffinization, tissue

sections were incubated with proteinase K (20mg/ml) in 10 mM Tris-

HCl for 30 minutes at 371C. Then the sections were incubated with
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TUNEL mix for 60 minutes at 371C in dark. Sections were examined

with a microscope as described above.

Real-time PCR
Real-time PCR was carried out as described previously (Jiang et al.,

2006). Briefly, following RNA isolation, cDNA was synthesized to

measure the relative mRNA levels of target genes. The primer

sequences for PCR are listed in Table 2. A mixture of individual PCR

reaction contains cDNA, forward or reverse primers and 2� SYBR

Green Q-PCR Master Mix (BIO-RAD, Hercules, CA). The PCR

reaction was performed at 501C for 2 minutes, 951C for 10 minutes,

and then 40 cycles of amplification of melting at 951C for

30 seconds, annealing at 601C for 30 seconds, and extension at

721C for 45 seconds, respectively. The PCR reaction was performed

in duplicate, with 4B5 samples in each group (n¼ 4B5). Gel

electrophoresis and melting curve analyses were performed to

confirm accurate PCR product sizes and absence of nonspecific

bands. The expression levels of each gene were normalized against

36B4 (an invariant transcript) using the comparative CT method, and

expressed as percentage of control, with the control as 100%.

Inflammatory response

A 10 ml volume of 0.03% TPA in ethanol was applied to the inner

and outer surfaces of the right ears, and the left ears were treated

with ethanol alone. Ear thickness was measured with a digital

micrometer (Mitutuyo, Japan) before and 18 hours after TPA or

ethanol applications (Sheu et al., 2002). Data are expressed as

percentage increase in ear thickness.

Electron microscopy

Skin biopsies of wild-type and PPARd KO mice were fixed in

Karnovsky’s fixative overnight, and post-fixed with either 0.25%.

ruthenium tetroxide or 1% aqueous osmium tetroxide, containing

1.5% potassium ferrocyanide, as described previously (Hou et al.,

1991). Ultrathin sections were examined using an electron micro-

scope (Zeiss 10A, Carl Zeiss, Thornwood, NY) operated at 60 kV. LB

density and secretion were assessed visually in randomly photo-

graphed, coded micrographs by Peter M. Elias, without knowledge of

the experimental group.

Statistical analyses
All statistical analyses were performed using the two-tailed Student’s

t-test. Data were expressed as mean7SEM.
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SUPPLEMENTARY MATERIAL

Figure S1. Epidermal proliferation is increased in PPARb/d KO mice.

Figure S2. Both K14 and P63 staining are increased in PPARb/d KO mice.

Figure S3. No change in the level of apoptosis is detected in PPARb/d KO
mice.

Figure S4. Expression of differentiation markers is slightly increased in PPARb/d
KO mice.

Figure S5. Epidermal b-glucocerebrosidase activity in PPARb/d KO mice is
similar to that in wild type.
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