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Rational Parametrization of Surfaces

JOSEF SCHICHO†‡

Research Institute for Symbolic Computation, Johannes Kepler University,
A-4040 Linz, Austria

The parametrization problem asks for a parametrization of an implicitly given surface,
in terms of rational functions in two variables. We give an algorithm that decides if such
a parametric representation exists, based on Castelnuovo’s rationality criterion. If the
answer is yes, then we compute such a parametric representation, using the concept of
adjoint functions.

c© 1998 Academic Press

1. Introduction

The parametrization problem is the following. Given is the implicit representation of a
surface, in terms of an equation in three variables. Wanted are three rational functions
in two variables, such that the image of the rational map defined by this triple is a
two-dimensional subset of the surface.

For instance, consider the the unit sphere, with equation x2 + y2 + z2 − 1 = 0. A
parametrization is

(x, y, z) =
(

2s
s2 + t2 + 1

,
2t

s2 + t2 + 1
,
s2 + t2 − 1
s2 + t2 + 1

)
.

The reverse problem (given the three rational functions, find the equation) is called
the implicitization problem. It has been investigated in Canny and Manocha (1992), Gao
and Chou (1992), Kalkbrener (1990) and Chionh and Goldman (1992). An algorithm can
be found in the CASA package (Tran and Winkler, 1997).

There are tasks in computational geometry, for which the parametric representation is
more convenient, and others for which the implicit representation is more convenient. A
task in the second group is to decide whether a given point is lying on the surface. The
first group contains tasks in which many points have to be produced fast. The parametric
representation, especially parametrization by NURBSs (i.e. piecewise rational functions)
is used for many applications in computer aided design and manufacture, such as reliable
surface plotting and display, motion display (computing transformations), computing
cutter offset surfaces, computing curvatures for shading and colouring, and many others
(see also Böhm et al. (1984), Qiulin and Davies (1987) and Farin (1988)). Therefore, the
parametrization problem is important.
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If the rational parametrization map is birational, then we call the parametric repre-
sentation proper. The image of a proper parametrization is almost all of the surface, at
most a one-dimensional subset of X is missing.

For instance, the above example is a proper parametrization, with the stereographic
projection

(s, t) =
(

x

1− z ,
y

1− z

)
as inverse.

In the curve case, the situation is as follows. By a theorem of Riemann, a curve has a
parametrization iff it has a proper parametrization iff its genus (see Shafarevich (1974)
for a definition of this notion) vanishes. Algorithmically, the parametrization problem
for curves has been solved in the following sense. First, the genus can be computed
(Walker, 1978). If it is zero, then there are algorithms (Walker, 1978; Abhyankar and
Bajaj, 1987; Sendra and Winkler, 1991; Schicho, 1992; van Hoeij, 1994; Mñuk et al.,
1996; Mñuk, 1996; Sendra and Winkler, 1997; van Hoeij, 1997) that compute a proper
parametrization.

In the surface case, the theory is well understood, too. By a theorem of Castelnuovo
(1939), a surface has a parametrization iff it has a proper parametrization iff the arith-
metical genus pa and the second plurigenus P2 are both zero (see Shafarevich (1974) for a
definition of these notions). Castelnuovo’s theorem holds for algebraically closed ground
fields of characteristic zero.

Algorithmically, the problem is much more difficult. Before Schicho (1995), there were
no parametrization algorithms except for very limited classes of surfaces, like quadric
and cubic surfaces (Abhyankar and Bajaj, 1987; Sederberg and Snively, 1987) or canal
surfaces (Pottmann, 1996). Parametrization of rational surfaces was posed as an ‘open
problem in computational algebraic geometry’ in Eisenbud (1993).

Our main tool for parametrization is adjoints. These were introduced in the last century
by Clebsch (1868) and Nöether (1871). Adjoints have played a fundamental role in the
surface theory of the Italian school (see Enriques (1949)), similar to the role of the
canonical divisor in more modern treatments (Shafarevich, 1965; Kurke, 1982).

Adjoints computation is a difficult problem. The only algorithm is the one in Schicho
(1995); it is based on an algorithm for the resolution of singularities by Hironaka (1984).

In this paper, we will not go into technical details for adjoint computation. We will just
briefly sketch an algorithm and use adjoints as a black box for the rest of the paper. There
is a two-fold reason for this. First, the techniques for adjoints computation look rather
different from the techniques for parametrization using adjoints. Second, one can do other
things than parametrization using adjoints. Computation of adjoints will, therefore, be
the topic of another paper (we refer to Schicho (1995) in the meantime).

Once we have the adjoints, we compute pa and P2 to decide the existence of a parametr-
ization (possibly over an algebraic extension of the ground field). The formula for P2 was
known to the classical Italians. The formula for pa first appeared in Schicho (1995), it
improves a result in Blass and Lipman (1979).

If both numbers vanish, then we compute a birational map from the given surface to
another surface, which is easier to parameterize. This other surface is one of the following.

1. The projective plane.
2. A quadric surface in P3.
3. A rational scroll (a surface with a pencil of lines).
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4. A surface with a pencil of conics.
5. A Del Pezzo surface.

Theoretically, the possibility for a reduction of the parametrization problem to the
parametrization of one of the types above was shown in Enriques (1895). The main result
of this paper is an algorithm for this reduction (algorithm ParameterizeWithAdjoints).
The algorithm is also contained in Schicho (1995), but this paper is smaller and more
easy to read.

In 1 above, the parametrization problem is already solved. We give algorithms to pa-
rameterize the surfaces 2 and 3 (these are quite easy). In 4, we give a new parametrization
algorithm for algebraically closed ground fields of characteristic 6=2. Also, 5 is solved for
algebraically closed ground fields; here, we refer to the literature (Conforto, 1939; Manin,
1974; Schicho, 1995).

The final step is the inversion of a birational map to the plane. Here, we use the
general method of Gröbner bases (Buchberger, 1965, 1985; Becker and Weispfenning,
1993). Alternatively, one also might apply resultants (Collins, 1967; Brown and Traub,
1971; Buchberger et al., 1982; Mishra, 1993).

2. The Problem

We work in the projective setting, i.e. the surface equation is a homogeneous polynomial
in four variables over some ground field k. Note that homogenization and dehomogeniza-
tion are trivial computations.

We assume that the given equation is absolutely irreducible.
Here is the precise specification of the parametrization problem.

Input: A homogeneous polynomial F∈k[x, y, z, w], representing a surface.
Output: A quadruple (X : Y : Z : W )∈k[s, t]4 of bivariate polynomials,

representing a rational parametrization of the surface, if exists.
NotExist otherwise.

A quadruple (X : Y : Z : W ) is a rational parametrization of the surface F iff the
following two conditions hold.

F (X : Y : Z : W ) = 0 in k[s, t].

The rank of the matrix  X Y Z W
∂sX ∂sY ∂sZ ∂sW
∂tX ∂tY ∂tZ ∂tW


over the field k(s, t) is 3.

The second condition ensures that the image of the (X : Y : Z : W ) in P3 is not just
a point or a curve on the surface.

Example 2.1. A rational parametrization of the unit sphere x2 + y2 + z2 − w2 = 0 is
given by

(X : Y : Z : W ) = (2s : 2t : s2 + t2 − 1 : s2 + t2 + 1).
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In some of our subalgorithms, we have to assume that k is algebraically closed. I do not
want to assume this from the beginning, because some subalgorithms work for a larger
class of fields, and others can maybe be generalized to work for a larger class of fields.

Surfaces which have a parametrization are called unirational, and surfaces which have
a proper parametrization are called rational (see Shafarevich (1974)). In the case where k
has characteristic zero and is algebraically closed, the two properties coincide by Castel-
nuovo’s theorem (Castelnuovo, 1939). There are irrational surfaces, for instance the K3-
surface with equation x4 + y4 + z4 − w4 = 0 (see Shafarevich (1965)). However, the
rational surfaces form an interesting and important class of surfaces (see Conforto (1939)
for a decent theoretical introduction to this topic).

3. Preliminary Techniques

In this section, we introduce some useful techniques and subalgorithms for later perusal
in the parametrization algorithm. Except for the algorithm FindPoint, the material is
basically known. The section also contains references to other algorithms for the same
problems, which are more general or more efficient (but more cumbersome to describe)
than the ones given here.

3.1. quadric surfaces

As one of the base cases in the algorithm, we will have to deal with quadric surfaces
in P3. A parametrization algorithm for this case can be found in Abhyankar and Bajaj
(1987).

For our purpose, we need to compute a birational map from a given quadric surface
F∈P3 to P2. This is easy: if p is a smooth point of F , then the projection from p is
birational onto P2. Note that a quadric surface has at most one point which is not
smooth, namely the vertex of a quadric cone.

Input: A homogeneous polynomial F∈k[x, y, z, w] of degree 2,
describing a quadric surface in P3.

Output: Three linear forms (S : T : U) in x, y, z, w, representing a birational map
from the surface to P2.

Algorithm QuadricSurface(F ):
p := a smooth point on F ;
{S, T, U} := three linearly independent linear forms vanishing at p;
return (S : T : U)

Example 3.1. Let F = x2 + y2 + z2 − w2, the equation of the unit sphere. For p, we
choose the north pole (0 : 0 : 1 : 1). The resulting map is the stereographic projection
(x : y : w − z).

3.2. inversion of birational maps

In many cases, it is easier to compute the inverse of a parametrization. To compute a
parametrization, we invert the inverse. Here is an algorithm for doing this.
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Input: A homogeneous polynomial F∈k[x, y, z, w], representing the surface.
A triple of homogeneous polynomials (S : T : U)∈k[x, y, z, w]3 of the same
degree, representing a birational map from the surface to P2.

Output: A quadruple (X : Y : Z : W )∈k[s, t]4 of bivariate polynomials,
representing the inverse of (S : T : U).

Algorithm InvertBirational(F, (S : T : U)):
Cancel common factors in S, T , U ;
G := {S − s, T − t, U − 1, F};
G′ := a Gröbner basis of G over k(s, t)[x, y, z, w] with total degree order;
G′′ := the set of all elements on G′ of degree 1;
(X,Y, Z,W ) := a nontrivial solution of G′

(considered as a linear equation system in (x, y, z, w));
return (X : Y : Z : W );

Example 3.2. Let F = x2 +y2 +z2−w2, the equation of the unit sphere. We will invert
the stereographic projection (x : y : w − z).

We compute a Gröbner base of

G = {x− s, y − t, z − w − 1, x2 + y2 + z2 − w2}
(total degree order, s and t are constants). It consists entirely of linear elements:

G′ = G′′ = {x− s, y − t, 2z + 1− s2 − t2, 2w − 1− s2 − w2}.
We solve for x, y, z, w and obtain

(X : Y : Z : W ) =
(
s : t :

s2 + t2 − 1
2

:
s2 + t2 + 1

2

)
.

Theorem 3.1. The algorithm InvertBirational is correct.

Proof. Let (X ′ : Y ′ : Z ′ : W ′)∈k[s, t]4 be an inverse of (S : T : U). Let q = (s : t : 1) be
a generic point of P2, and let p be its unique preimage. Let k′ be the algebraic closure
of k(s, t). The set G generates a radical ideal in I < k′[x, y, z, w], whose zeros are on the
line corresponding to the projective point p. Moreover, the set G has at least one zero,
namely (X ′/D, Y ′/D,Z ′/D,W ′/D), where D is an nth root of U(X ′, Y ′, Z ′,W ′), where
n is the common degree of S, T , U . Therefore, all solutions of the linear equations in I
correspond to the projective point p, hence are inverse to (S : T : U).

By a well-known property of Gröbner bases, the linear equations in I are generated by
the linear equations in G′.

The first step (cancellation of common factors) is not really necessary, but it speeds
up the rest of the computation.

3.3. parametrization of a generic fibre

Sometimes, we find the necessary parameters sequentially. In an intermediate step, we
will have a rational map

π : F→P1, (x : y : z : w)7→(T : U)
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with two polynomials T,U of the same degree, such that the generic fibre Ft := π−1(t : 1)
is a rational curve. Since Ft is a projective space curve over the ground field k(t), a
parametrization of Ft would be of the form (X : Y : Z : W ), where X, Y , Z, W are
polynomials in k(t)[s]. Since we are in the projective case, we can clear denominators.
By changing the semantics of the t from a generic constant to a variable, we obtain a
parametrization of the surface F .

In our situation, we will have a birational map of the generic fibre Ft to a projective
curve Ct∈Pr, coming from a birational map of F to a surface in Pr. Moreover, Ct will
be either a line or a conic.

It remains to find a parametrization of Ct.

3.3.1. lines

If Ct is a line, then the problem is easy: the second parameter is simply a ratio of two
projective coordinates. Here is an algorithm for this easy case.

Input: A homogeneous polynomial F∈k[x, y, z, w], representing the surface.
A pair of homogeneous polynomials (T : U)∈k[x, y, z, w]2 of the same degree,
representing a rational map from the surface to P1.
An (r + 1)-tuple of homogeneous polynomials (P0 : . . . : Pr)∈k[x, y, z, w]r+1 of
the same degree, representing a birational map which maps the generic
fibre of (T : U) to a line in Pr.

Output: A quadruple (X : Y : Z : W )∈k[s, t]4 of bivariate polynomials,
representing a parametrization of F .

Algorithm FiberIsLine(F, (T : U), (P0, . . ., Pr)):
i := 1;
while Pi∈k(TU )P0 do
i := i+ 1 ;
(S, T ′, U ′) := (PiU,P0T, P0U);
return InvertBirational(F, (S : T ′ : U ′)) ;

Example 3.3. Let

F = (x4 + z4)w2 + (xy + z2)3,

(T : U) = (x : z),

(P0 : P1 : P2 : P3 : P4) = (z2w : xzw : x2w : xyz + z3 : x2y + x2z).

Since P1 and P2 are in k(xz )P0 and P3 is not, we have i = 3 after the while loop. We
find

(S : T ′ : U ′) = (xwz2 : xyz2 + z4 : z3w),

and apply InvertBirational. The result is

(X : Y : Z : W ) = (−s3t2 : t3 + s4t+ t : −st3 : s5 + s).

The correctness of the algorithm FiberIsLine is obvious.
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3.3.2. conics

If Ct is a conic, then the problem is more difficult. The idea is to project the conic
isomorphically to the plane, then find a point on the conic, and then project from this
point. This yields a birational map from the conic to the projective line. Here is an
algorithm.

Input: A homogeneous polynomial F∈k[x, y, z, w], representing the surface.
A pair of homogeneous polynomials (T : U)∈k[x, y, z, w]2 of the same degree,
representing a rational map from the surface to P1.
An (r + 1)-tuple of homogeneous polynomials (P0 : . . . : Pr)∈k[x, y, z, w]r+1 of
the same degree, representing a birational map which maps the generic
fibre of (T : U) to a conic in Pr.

Output: A quadruple (X : Y : Z : W )∈k[s, t]4 of bivariate polynomials,
representing a parametrization of F .

Algorithm FiberIsConic(F, (T : U), (P0, . . ., Pr)):
i := 1;
while Pi∈k(TU )P0 do
i := i+ 1 ;
j := i+ 1;
while Pj∈k(TU )P0 + k(TU )Pi do
j := j + 1 ;
C(p0, p1, p2) := find the relation between P0, Pi, Pj ;
(C is a homogeneous element of k(t)[p0, pi, pj ] of degree 2.)
(Q0 : Qi : Qj) := FindPoint(C);
(Note that Q0, Qi, Qj∈k(t).)
S := Q0( TU )Pi−Qi( TU )P0

Q0( TU )Pj−Qj( TU )P0

(S′, T ′, U ′) := clear denominators in (SU : T : U);
return InvertBirational(F, (S′ : T ′ : U ′)) ;

Example 3.4. Let

F = x2y2 + 8x3y + 4x4 + xyz2 − x2z2 − y2w2 − 7xyw2 + 8x2w2,

(T : U) = (y : x),

(P0 : P1 : P2 : P3) = (x : y : z : w).
Since P1 is in k( yx )P0 and P2 is not, we have i = 2 after the first while loop. Since P3 is
not in k( yx )P0 + k( yx )P2, we have j = 3. The quadratic relation between P0, P2, P3 is

C = (t2 + 8t+ 4)p2
0 + (t− 1)p2

2 + (−t2 − 7t+ 8)p2
3 = 0.

We do not have the subalgorithm Findpoint yet, but it is easily checked that

(Q0 : Q2 : Q3) = (−t+ 1 : 5t+ 34 : t+ 12)

is a point on C. Therefore, we find the second parameter

S =
(− yx + 1)z − (5 yx + 34)x
(− yx + 1)w − ( yx + 12)x
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=
−yz + xz − 5xy − 34x2

−yw + xw − xy − 12x2
.

By clearing denominators, we find

(S′ : T ′ : U ′) = (−xyz + x2z − 5x2y − 34x3 : −y2w + xyw

− xy2 − 12x2y : −xyw + x2w − x2y − 12x3).

We apply InvertBirational and find

(X : Y : Z : W ) = (t2 + 7t− s2t+ s2 − 8 : t3 + 7t2 − s2t2 + s2t− 8t :
−5t2 + 2st2 − 74t− 5s2t+ 40st+ 192s− 34s2 − 272 : t2

−10st+ 20t+ s2t+ 12s2 − 68s+ 96).

The above algorithm is obviously correct, but it leaves us with the problem of finding
a point on the conic C ′ defined over k(t) (subalgorithm FindPoint).

If k is algebraically closed, then every conic over k(t) has a point (see Greenberg
(1969)). For an efficient algorithm, we use an idea of Clebsch (1868): we find a solution
modulo t = ti for sufficiently many numbers ti, at which the equation of the conic splits
into linear factors. We also assume char k 6=2, to be able to eliminate the mixed terms
by suitable linear transformations.

Input: A homogeneous polynomial G∈k(t)[x, y, z] of degree 2.
Output: A nontrivial solution (X : Y : Z)∈k[t]3.

Algorithm FindPoint:
eliminate the mixed terms by suitable linear transformations;
clear denominators;
eliminate multiple factors of the coefficients by suitable linear transformations;
eliminate common factors of the coefficients:

if two coefficients have a common factor P then
multiply the equation with P ;
eliminate the double factors;

(Now, G = Ax2 +By2 + Cz2 and ABC is squarefree.)
if two polynomials of A,B,C have degree 0 then

(X : Y : Z) := two suitable constants and 0;
else

Make an ansatz with undetermined coefficients:
bx := [degB+degC−1

2 ];
X := x0 + · · ·+ xbxt

bx ;
by := [degA+degC−1

2 ];
Y := y0 + · · ·+ yby t

by ;
bz := [degA+degB−1

2 ];
Z := z0 + · · ·+ zbz t

bz ;
n := bx + by + bz + 2;
(t1, . . ., tn) := n different zeros of ABC;
for i from 1 to n do
L(x, y, z) := a linear factor of G(ti, x, y, z);
Ei := L(X(ti), Y (ti), Z(ti));
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(Ei is linear in x0, . . ., zbz .)
x0, . . ., zbz := a nontrivial solution of (E1, . . ., En);

transform the solution back;
return (X : Y : Z)

Example 3.5. Let

G = (t2 + 8t+ 4)x2 + (t− 1)y2 + (−t2 − 7t+ 8)z2

as in the previous example. There are no mixed terms and no multiple zeros, but t = 1
is a common zero of two of the coefficients. We eliminate the common zero and obtain

G′ = (t2 + 8t+ 4)(t− 1)x2 + y′2 − (t+ 8)z′2

with y′ = (t− 1)y, z′ = (t− 1)z. We find bx = 0, by = bz = 1 and make the ansatz

x = x0, y
′ = y0 + y1t, z

′ = z0 + z1t.

We compute linear equations using the zeros

t1 = 2
√

3− 4, t2 = −2
√

3− 4, t3 = 1, t4 = −8

of the coefficients.
To find an equation using t1, we substitute t = t1 in G′ and factor:

G′(t1) = y′2 − (2
√

3 + 4)z′2 = (y′ − (1−
√

3)z′)(y′ + (1−
√

3)z′).

We substitute the ansatz into the first factor and obtain the equation

y0 + (2
√

3− 4)y1 − (1−
√

3)(z0 + (2 +
√

3)z1) = 0.

The other equations are

y0 + (−2
√

3− 4)y1 − (1 +
√

3)(z0 + (2−
√

3)z1) = 0,

y0 + y1 − 3(z0 + z1) = 0,

6x0 − y0 + 8y1 = 0.

We find the nontrivial solution

x0 = −1, y0 = −34, y1 = 5, z0 = 12, z1 = 1,

which yields the point

(X : Y ′ : Z ′) = (−1 : 5t+ 34 : t+ 12).

We transform back and obtain

(X : Y : Z) =
(
−1 :

5t+ 34
t− 1

:
t+ 12
t− 1

)
= (−t+ 1 : 5t+ 34 : t+ 12).

Theorem 3.2. The algorithm FindPoint is correct.

Proof. The case that two of A, B, C have degree 0 is trivial.
Assume that at most one of A, B, C has degree 0. We have either n = degA+ degB+

degC or n = degA+degB+degC−1, depending on the parities of the degrees. Therefore,
we can find n different zeros of ABC.
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Because of the inequality

max(degA+ 2bx, degB + 2by,degC + 2bz)≤n− 1,

the polynomial AX2 + BY 2 + CZ2 has degree ≤n− 1. Since it vanishes at t1, . . ., tn, it
vanishes identically.

Remark 3.1. The problem of finding a point on a conic over k(t) was recently solved by
Hillgarter (1996) for a large class of fields k. However, it may happen that our quadratic
equation C has no zeros defined over k(t), even in the case where the input surface has
a parametrization.

3.4. rational normal curves

In order to find the first parameter of a parametrization, we will sometimes be con-
cerned with particular rational curves, namely rational normal curves. These are curves
of degree n in Pn (not in some linear subspace), for some n. We want to construct a
birational map from the curve to the projective line.

If C∈Pn is a rational normal curve, and p1, . . ., pn−1 are n − 1 different points on C,
then the projection from the linear (n − 2)-plane spanned by p1, . . ., pn−1 is birational
onto P1 (see Walker (1978)).

Input: A set Γ of homogeneous polynomials in k[x0, . . ., xn],
describing a rational normal curve in Pn.

Output: Two linear forms (T : U) in x0, . . ., xn, representing a birational map
from the curve to P1.

Algorithm RationalNormalCurve(Γ):
PointSet := n− 1 points in the zero set of Γ;
{T,U} := two linearly independent linear forms vanishing at PointSet;
return (T : U)

It can be shown that a rational normal curve can be described by a set of polynomials
of degree 2 (see Shafarevich (1974)).

Example 3.6. Let Γ be the set

{x0x1 + x2x3, x
2
1 + x2

2 − x1x3 − x0x2, x
2
0 − x2

3 + x1x3 − x0x2},
which represents a rational normal curve in P3. As PointSet, we take

{(1 : 0 : 1 : 0), (0 : 1 : 0 : 1)}.
We find the solution

(T : U) = (x0 − x2 : x1 − x3).

If k is algebraically closed, then it is obvious that a PointSet can be found.

Remark 3.2. If k is an arbitrary computable field, then we can solve the problem if we
can find points on a conic (see Sendra and Winkler (1991) and Schicho (1992)).
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3.5. Del Pezzo surfaces

As another base case, we will have to deal with Del Pezzo surfaces. These are surfaces
of degree n in Pn (not in some linear subspace) for some n, which satisfy the following
conditions.

The generic hyperplane section is an elliptic curve. pa = P2 = 0.
For instance, a smooth cubic surface in P3 is a Del Pezzo surface.

Theorem 3.3. The largest possible degree of a Del Pezzo surface is 9.

Proof. See Shafarevich (1965) and Manin (1974).

For n = 1 or 2, Del Pezzo surfaces of degree n are constructed in a nonstandard way,
adapting the definition appropriately. We start with a generalization of the notion of
projective space.

Definition 3.1. Let k be a field. Let w0, . . ., wn be positive integers. The weighted
projective space over k with weights w0, . . ., wn is the set of all elements in kn+1 − {0}
modulo the following equivalence relation. Two elements (p0, . . ., pn) and (q0, . . ., qn) are
equivalent iff there exists an element λ in the algebraic closure of k, such that

(p0, . . ., pn) = (λw0q0, . . ., λ
wnqn).

If all weights are equal, then the weighted projective space is just the old Pn. In
general, the weighted projective space is a projective variety of dimension n, which may
have singularities.

Example 3.7. Let (w0, w1, w2) = (1, 1, 2). This weighted projective space is isomorphic
to a quadratic cone in P3. An isomorphism to the cone with equation xz − y2 = 0 is
given by

(x0 : x1;x2) 7→ (x : y : z : w) = (x2
0 : x0x1 : x2

1 : x2),

(x : y : z : w) 7→ (x0 : x1;x2) = (x : y;xw) = (y : z; zw).
The weighted projective space has a singular point (0 : 0; 1), which is the vertex of the
cone.

A hypersurface in weighted projective space can be described by a weighted homo-
geneous polynomial, with weights w1, . . ., wn. The ‘hyperplanes’ are the zero sets of
weighted homogeneous polynomials of weighted degree 1, i.e. the linear forms in the
coordinates with weight 1.

3.5.1. Del Pezzo surfaces of degree 2

We consider the weighted projective space with weights (w0, w1, w2, w3) = (1, 1, 1, 2).
Let F be a hypersurface (i.e. a surface) given by a weighted homogeneous polynomial of
weighted degree 4. For suitable choices of F , the following are true (see Manin (1974)).

There is a natural projection of F to P2, which is a map of degree 2. The generic
‘hyperplane section’ is an elliptic curve. pa = P2 = 0.

In this situation, we say that F is a Del Pezzo surface of degree 2.
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Example 3.8. Let F be given by the equation

x4
0 + x4

1 − x4
2 − x2

3 = 0.

The surface F is a two-sheeted branched covering of P2, and the branch curve is a smooth
quartic with equation x4

0 + x4
1 − x4

2 = 0.
Let C be the intersection with a generic ‘hyperplane’ x0 + sx1 + tx2 = 0. We have a

degree 2 map from C to the projective line with four branch points (the intersections
with the branch curves). By the Hurwitz genus formula (see Hartshorne (1977)), we see
that C is elliptic.

3.5.2. Del Pezzo surfaces of degree 1

We consider the weighted projective space with weights (w0, w1, w2, w3) = (1, 1, 2, 3).
Let F be a surface given by a weighted homogeneous polynomial of weighted degree 6.
For suitable choices of F , the following are true (see Manin (1974)).

There is a natural projection of F to P1.
The generic ‘hyperplane section’ is an elliptic curve.
The number of intersections of two generic ‘hyperplane sections’ is 1.
pa = P2 = 0.

In this situation, we say that F is a Del Pezzo surface of degree 1.

Example 3.9. Let F be given by the equation

x5
0x1 + x3

2 + x2
3 = 0.

The surface F is a two-sheeted branched covering of the weighted homogeneous space
with weights (w0, w1, w2) = (1, 1, 2). The branch locus consists of the the curve with
equation x5

0x1 + x3
2 = 0 and an isolated branch point (0 : 0; 1) (which is the singular

point on the weighted projective space).
The generic ‘hyperplane section’ C has equations

x5
0x1 + x3

2 + x2
3 = x0 + tx1 = 0.

We have a degree 2 map from C to the projective line with four branch points, namely
the isolated branch point and three intersection points with the branch curve. By the
Hurwitz genus formula, we see that C is elliptic.

3.5.3. parametrization of Del Pezzo surfaces

If k is algebraically closed, then the Del Pezzo surfaces allow a proper parametrization
(see Conforto (1939) and Shafarevich (1965)).

For our purpose, we will need an algorithm that computes the inverse of a proper
parametrization.

Input: A set Γ of homogeneous polynomials in k[x0, . . ., xn], 3≤n≤9,
describing a Del Pezzo surface of degree n;

Or a weighted homogeneous polynomial with weights (1, 1, 1, 2) of weighted
degree 4, describing a Del Pezzo surface of degree 2;

Or a weighted homogeneous polynomial with weights (1, 1, 2, 3) of weighted
degree 6, describing a Del Pezzo surface of degree 1.



Parametrization of Surfaces 13

Output: Three (weighted) homogeneous polynomials (S : T : U) of the same degree,
representing a birational map from the Del Pezzo surface to P2.

A Del Pezzo surface of degree ≥4 can be described by a set of polynomials of degree 2
(see Griffiths and Harris (1978) for the case r = 4; the general case can be reduced to
this case).

Example 3.10. Let F be given by the equation

x5
0x1 + x3

2 + x2
3 = 0.

A birational map from F to P2 is given by

(x0 : x1;x2;x3) 7→ (s : t : u) = (x0x2 : x3 : x3
0).

Its inverse is

(s : t : u) 7→ (x0 : x1;x2;x3) = (u3 : −s3 − t2u : su5 : tu8).

Theorem 3.4. There exists an algorithm DelPezzo for the specification above, which is
of ‘formula type’: it requires only the computation of the roots of a polynomial of constant
degree, a constant number of field operations.

Proof. We have an upper bound for the degree of the Del Pezzo surface (Theorem 3.3).
Moreover, there exists always a solution with polynomials of degree ≤6 (see Conforto
(1939) and Schicho (1995)). The number of involved variables is also bounded. Therefore,
we have to find the solution of a system of algebraic equations and inequalities with
bounded degree in a constant number of unknowns (the coefficients of the solution).
Obviously, such a problem has always a solution of ‘formula type’.

For explicit algorithms, we refer to Conforto (1939), Manin (1974) and Schicho (1995).

Remark 3.3. If k is not algebraically closed, then the situation is as follows. If we can
find a single point on a Del Pezzo surface of degree n, then we can compute a proper
parametrization for 5≤n≤9, and an improper parametrization for 2≤n≤4. There are Del
Pezzo surfaces of degrees 1, 2, 3 and 4 with enough points (i.e. the points do not all lie
on a curve), which have no proper parametrization. It is not known whether there exists
a Del Pezzo surface of degree 1 with enough points having no improper parametrization
(see also Manin (1974) and Schicho (1995)).

4. Adjoints

In this section, we introduce the main tool for parametrization, namely adjoint func-
tions. Using adjoints, one can reduce the parametrization problem to one of the problems
in the previous section.

The theory of adjoints is classical (Enriques, 1949; Zariski, 1971). The first adjoints
computation algorithm has appeared in Schicho (1995). Here, we explain the basic idea
of this algorithm.

Finally, we show how to compute the arithmetical genus, the geometrical genus and
the plurigeni, using adjoints.
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4.1. what are adjoints

Let F∈k[x, y, z, w] be a homogeneous polynomial of degree d, representing a surface.
(As always, we assume that F is absolutely irreducible.) A form on the surface is an
equivalence class of polynomials modulo multiples of F . We will represent forms by ho-
mogeneous polynomials which are reduced modulo F , with respect to the lexicographical
term order.

For m≥0, a form G is an m-adjoint iff it vanishes with order ≥m(r− 1) at each r-fold
curve singularity of F and with order ≥m(r − 2) at each r-fold point singularity of F .
Obviously, any form is a 0-adjoint. Singularities must be computed over the algebraic
closure of k. ‘Infinitely near singularities’ (see Walker (1978)) must also be taken into
account.

Example 4.1. Let F := x4 + y4 − z2w2, m = 1. The surface has two isolated double
points (0 : 0 : 0 : 1) and (0 : 0 : 1 : 0), which impose no conditions for the adjoints. But
each of the two double points has a double line in the infinitely near (this can be seen
when the points are blown up). The 1-adjoints have to vanish at the these double lines,
and therefore also on the isolated double points.

Using the algorithm in the next subsection, one can show vice versa that all forms
vanishing at the two double points are 1-adjoints.

The m-adjoints of fixed degree form a finite-dimensional vectorspace over k. The vec-
torspace of all m-adjoints of dimension n+m(d−4) is denoted by Vn,m, and its dimension
is denoted by vn,m.

Here are some basic properties of the adjoints.

Proposition 4.1. The m-adjoints have the following properties.

1. If F is smooth, then every form is an m-adjoint.
2. The question if G is an m-adjoint can be decided locally.
3. We have the inclusion Vn,m·Vn′,m′⊂Vn+n′,m+m′ .

Proof. Obvious.

4.2. adjoints computation

The algorithm AdjointSpace has the following specification.

Input: A homogeneous polynomial F∈k[x, y, z, w] of degree d, representing a surface.
Two integers n,m.

Output: A basis for the vectorspace Vn,m of m-adjoints of degree n+m(d− 4).

To compute the ‘infinitely near singularities’ which occur in the definition of adjoints,
we have to compute a resolution of the singularities by blowing ups (see Hartshorne
(1977)). Here, we use the resolution method described in Hironaka (1984).

For convenience of the recursive description of the algorithm, we change the specifica-
tion slightly. It is obvious how to reduce the original problem to the one below.
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Input: A surface F in 3-space, given implicitly.
A vectorspace V of forms on X.
An integer m > 0.

Output: A basis for the subvectorspace of m-adjoints.

Algorithm AdjointSubspace(F, V,m):
if F is smooth then

return V ;
else

choose a singularity S;
r := the multiplicity of F at S;
if S is a curve then
p := m(r − 1);

else (S is a point)
p := m(r − 2);

V1 := the subvectorspace of the elements that vanish with order ≥p at S;
(F̃ , e) := (BlowUp(F, S), equation of the exceptional divisor);
f : V1→{forms on F̃} := division by ep ◦ pullback;
V2 := AdjointSubspace(F̃ , f(V1),m);
return f−1(V2);

The singularity S must be chosen according to the following rules.

1. S must be either a point or a smooth curve.
2. If S is a point, then it must not lie on a smooth curve with the same multiplicity.
3. If S is a curve, then it all its points must have the same multiplicity.

The rules ensure termination (Hironaka, 1984).

Example 4.2. Let F := x4 + y4 − z2w2, as in the previous example. We compute V1,1,
the vectorspace of 1-adjoints of degree 1.

In Schicho (1995), the blowing up is realized as a union of affine charts. The decompo-
sition business starts with the input surface, so we dehomogenize with respect to w and
restrict our attention to this patch for the moment. The input to AdjointSubspace is

x4 + y4 − z2, 〈x, y, z, 1〉, 1.
The only singularity is the origin. It is a double point, so p = 0, and the subspace V1

is equal to the input vectorspace.
In the blowing-up patch with affine coordinates x, ỹ = y

x , z̃ = z
x , the blown up surface

has the equation F̃1 = x2 + x2ỹ4 − z̃2. The equation of the exceptional divisor is x. We
find

f(V1) = 〈x, xỹ, xz̃, 1〉.
There are also other patches of F̃ , but we restrict our attention for the moment.

We call AdjointSubspace with input

x2 + x2ỹ4 + z̃2, 〈x, xỹ, xz̃, 1〉, 1.
As the singularity, we choose the double line x = z̃ = 0. Then p = 1, and V1 = 〈x, xỹ, xz̃〉.
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The next blowing up is smooth. Therefore, the next recursion does not make the
vectorspace any smaller, and we obtain the result

〈x, xỹ, xz̃〉.
Now, we have to compute the inverse image (in the outer recursion). The result is

〈x, y, z〉.
Checking also the other patches, one finds that the whole vectorspace 〈x, y, z〉 consists

of 1-adjoints of the affine surface x4 + y4 − z2 = 0. A new restriction comes from the
affine patch obtained by dehomogenization with respect to z (x4 + y4 − w2 = 0). The
final result is

V1,1 = 〈x, y〉.

For technical details, especially how to perform the blowing ups of curves, consult
(Schicho, 1995). Another blowing-up method can be found in Kurke (1982).

Obviously, one can always find a singularity S matching the rules, provided that F is
not smooth. Computationally, this amounts to solving a system of algebraic equations
over the algebraic closure of k. This can be done with Gröbner bases (Buchberger, 1965,
1985; Becker and Weispfenning, 1993) as suggested in Schicho (1995) or with resultants
(Collins, 1967; Brown and Traub, 1971; Buchberger et al., 1982; Mishra, 1993), or with
characteristic sets (Wu, 1986; Pfalzgraf and Wang, 1995). An equation solver specialized
to three unknowns can be found in Kalkbrener (1995).

If S is not defined over the coefficient field k (but in some algebraic extension), then
the subvectorspace V1 cannot be generated by elements with coefficient in k. However,
singularities which are not defined over k come in conjugated sets. Therefore, it is always
possible to eliminate the algebraic coeffients in basis elements at some later step.

The precise meaning of “infinitely near points” is implicitly contained in the algorithm:
a singularity in the infinitely near to a singularity S is a singularity on the blowing up
along S. Therefore, we see that the algorithm “matches the definition”. For a correctness
proof, we refer to Schicho (1995).

Remark 4.1. A weakness of the algorithm AdjointSubspace is that we cannot give a
bound for the worst-case complexity. The reason is that nobody knows a bound for the
number of blowing ups required by Hironaka’s resolution algorithm.

A consolation is the observation that surfaces are typically far less singular than they
could be. Generically, there will only be a few, rather simple, singularities (see also
Teitelbaum (1990)).

Remark 4.2. It is worthwhile trying improve the algorithm by choosing a different res-
olution method, as in Jung (1908), Walker (1935), Zariski (1939), Abhyankar (1969),
Hironaka (1984), Lipman (1978), Villamayor (1989) and Bierstone and Milman (1991).
For quasi-ordinary singularities, one might think of computing adjoints using two-dimensional
Puiseaux-expansions (Alonso et al., 1988).

4.3. simple applications

Here are formulae for the arithmetical genus pa and for the plurigeni Pm, including the
geometrical genus pg = P1 (see Shafarevich (1974)) for a discussion of these numbers).
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Theorem 4.1. For any surface in P3 of degree d, the following hold.

(a) pa = d+ 2v1,1 − v2,1 − 1.
(b) Pm = v0,m.

Proof. For (b) see Enriques (1949). For (a) the function n7→vn,1 is a polynomial for
sufficiently large n, whose constant term is pa + 1 (see Blass and Lipman (1979)). In the
last section, we will show that the function coincides with the polynomial for n≥1, that
the degree of the polynomial is 2, and that the leading coefficient is d

2 . Therefore, the
constant term is d+ 2v1,1 − v2,1.

Using these formulae and Castelnuovo’s rationality criterion, it is easy to decide the
existence of a parametrization (possibly over an algebraic extension of k).

Input: A homogeneous polynomial F∈k[x, y, z, w] of degree d, representing a surface.
Output: Exist if there is a parametrization of F over the algebraic closure of k,

NotExist otherwise.

Algorithm DecideRationality(F ):
v1,1 := # AdjointSpace(F, 1, 1);
v2,1 := # AdjointSpace(F, 2, 1);
v0,2 := # AdjointSpace(F, 0, 2);
if d+ 2v1,1 − v2,1 − 1 = v0,2 = 0 then

return Exist;
else

return NotExist;

The correctness of the algorithm DecideRationality follows immediately by Castel-
nuovo’s criterion pa = P2 = 0 for the existence of a parametrization, and from the
correctness of the subalgorithm AdjointSpace (the dimension vn,m is the cardinality of
the basis returned by AdjointSpace).

5. The Parametrization Algorithm

Using the subalgorithm AdjointSpace, we construct a birational map φ : F→B, where
B is one of the following.

1. The projective plane.
2. A quadric surface in P3.
3. A rational scroll (a surface with a pencil of lines).
4. A surface with a pencil of conics.
5. A Del Pezzo surface.

The map φ is represented by a basis Λ of Vn,m (i.e. by the Output of AdjointSpace),
where n, m are suitable integers. The choice of the basis is not important: a different
basis leads to a variety B′ which is projectively isomorphic to B. We say that φ is defined
by Vn,m.
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In 1 above, all we have to do is to invert the birational map φ.
In order to compute the equations of B in 2 and 5, we have to compute the algebraic

relations between the forms in Λ. In general, these relations can be found with methods
from elimination theory, for instance with Gröbner bases. In our situation, we know the
degree of the relations in advance. Therefore, it suffices to compute the linear relations
in the set Λd, where d is the degree. Once we have the equations of B, we compute a
birational map ψ : B→P2 by QuadricSurface or DelPezzo. Then, we invert the composed
map F→B→P2.

In 3 and 4, it is not necessary to compute the equations of B. Instead, we construct
an auxiliary rational map φ′ : F→C, where C is a rational normal curve, such that φ
maps the generic fibre of φ′ to a line or conic. The map φ′ is also defined by Vn′,m′ ,
for suitable integers n′, m′. Then, we construct a birational map τ : C→P1 using the
algorithm RationalNormalScroll, and apply the algorithm FiberIsLine or FiberIsConic.

5.1. the weighted projective case

The case where weighted projective spaces occur (Del Pezzo surfaces of degree 2 and
1) is an exception. Here, more than one vectorspace Vn,m is involved in the definition of
the map φ : F→B.

Suppose that there are integers n,m, such that the following hold.
We have vn,m = 3. If {X0, X1, X2} is a basis for Vn,m, then X0, X1, X2 are algebraically

independent. We have v2n,2m = 7. There is an element X3∈V2n,2m, such that

X2
0 , X0X1, X0X2, X

2
1 , X1X2, X

2
2 , X3

is a basis. The forms X0, X1, X2, X3 fulfill an algebraic relation of weighted degree 4,
where (w0, w1, w2, w3) = (1, 1, 1, 2).

We say that the map (X0 : X1 : X2;X3) is defined by the pair (Vn,m;V2n,2m). The
image is a surface in weighted projective space with an equation of weighted degree 4.
This could be a Del Pezzo surface of degree 2.

Del Pezzo surfaces of degree 1 are obtained in a similar way. Here we need a triple of
vectorspaces (Vn,m;V2n,2m;V3n,3m) to define the map.

5.2. how to find suitable integers

This question is answered by a group of lemmas. We globally assume that the surface
has positively passed the test DecideRationality.

The proofs for the lemmas appear in the Appendix.

Lemma 5.1. There is an integer m such that v1,m = 0.

Throughout, let µ be the smallest integer with v1,µ+1 = 0. Note that µ cannot be −1,
because v1,0 = 4.

Lemma 5.2. (Case 1) Suppose that v1,µ = 3 and v2,2µ = 6. Then V1,µ defines a
birational map to P2.

Lemma 5.3. (Case 2) Suppose that v2,2µ+1 = 1. Then v1,µ = 4, and V1,µ defines a
birational map to a quadric surface.
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Lemma 5.4. (Case 3) Suppose that v2,2µ+1≥2. Let φ′ be the map defined by V2,2µ+1.
Then one of the following two cases holds.

(a) The image of the map φ′ is a rational normal curve. The map defined by V1,µ is
birational and maps the generic fibre of φ′ to a line.

(b) We have v2,2µ+1 = 3, and φ′ is birational onto P2.

Lemma 5.5. (Case 4) Suppose that v1,µ≥2, and v2,2µ+1 = 0, and either v1,µ 6=3 or v2,2µ

6=6. Let φ′ be the map defined by V1,µ. Then the map defined by V2,2µ−1 is birational and
maps the generic fibre of φ′ to a conic.

Lemma 5.6. (Case 5a) Suppose that µ≥2 and v1,µ = 1. Then 2≤v1,µ−1≤10, and one
of the following holds.

(a) If v1,µ−1≥4, then V1,µ−1 defines a birational map to a Del Pezzo surface of degree
v1,µ−1 − 1.

(b) If v1,µ−1 = 3, then (V1,µ−1;V2,2µ−2) defines a birational map to a Del Pezzo surface
of degree 2.

(c) If v1,µ−1 = 2, then (V1,µ−1;V2,2µ−2;V3,3µ−3) defines a birational map to a Del Pezzo
surface of degree 1.

Lemma 5.7. Case 5b Suppose that µ≤1 and v1,µ = 1. Then µ = 1, and 4≥v2,1≥10,
and V2,1 defines a birational map to a Del Pezzo surface of degree v2,1 − 1.

As one can easily check, the above lemmas cover all possibilities. Here is an algorithm
that tries to avoid unnecessary calls of the subalgorithm AdjointSpace.

Input: A homogeneous polynomial F∈k[x, y, z, w], representing a surface.
Output: A quadruple (X : Y : Z : W )∈k[s, t]4 of bivariate polynomials,

representing a rational parametrization of the surface.

Algorithm ParameterizeWithAdjoints(F ):
m := 0;
while AdjointSpace(F, 1,m+ 1) is not zero do

m := m+ 1;
V := AdjointSpace(F, 1,m); r := # V −1;
if r = 0 (Case 5) then

V ′ := AdjointSpace(F, 1,m− 1); r′ := # V ′ −1;
if m = 1 (Case 5b) then

V ′ := AdjointSpace(F, 2, 1); r′ := # V −1;
d := 3 for r = 3, 2 otherwise;
if r′ = 2 then

X3 := an element in AdjointSpace(F, 2, 2m− 2), linearly independent of V 2;
append X3 to V ′; r′ := 3;
d := 4;

if r′ = 1 then
X2 := an element in AdjointSpace(F, 2, 2m− 2), linearly independent of V 2;
X3 := an element in AdjointSpace(F, 3, 3m− 3), linearly independent of V 3,
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V ·X2;
append X2, X3 to V ′; r′ := 3;
d := 6;

G(x0, . . ., xr) := find the relations in V ′ (degree d);
(S : T : U) := DelPezzo(G);
substitute (x0, . . ., xr) := V ′ in (S : T : U);
(X : Y : Z : W ) := InvertBirational(F, (S : T : U));

else if r = 2 and # AdjointSpace (F, 2, 2m) = 6 (Case 1) then
(X : Y : Z : W ) := InvertBirational(F, V );

else if AdjointSpace(F, 2, 2m+ 1) is not zero do
V ′ := AdjointSpace(F, 2, 2m+ 1); r′ := # V ′ −1;
if r′ = 0 then (Case 2)

Q(x0, . . ., x3) := find the relation in V (degree 2);
(S : T : U) := QuadricSurface(Q);
substitute (x0, . . ., x3) := V in (S : T : U);
(X : Y : Z : W ) := InvertBirational(F, (S : T : U));

else
Γ(x0, . . ., x

′
r) := find the relations in V ′ (degree 2);

if r′ = 2 and Γ is empty then (Case 1)
(X : Y : Z : W ) := InvertBirational(F, V ′);

else (Case 3)
(T : U) := RationalNormalCurve(Γ);
substitute (x0, . . ., x

′
r) := V ′ in (T : U);

(X : Y : Z : W ) := FiberIsLine(F, (T : U), V );
else (Case 4)

Γ(x0, . . ., xr) := find the relations in V (degree 2);
(T : U) := RationalNormalCurve(Γ);
substitute (x0, . . ., xr) := V in (T : U);
V ′ := AdjointSpace(F, 2, 2m− 1);
(X : Y : Z : W ) := FiberIsConic(F, (T : U), V ′);

return (X : Y : Z : W );

Example 5.1. Let F = x2w3 + y3w2 + z5.
After the while loop, we have m = 3, because V1,1, V1,2, V1,3 are not zero and V1,4 is

zero. Since v1,3 = 1, we have r = 0, and we are in the case (5). We have

V ′ = V1,2 = 〈zw2, w3〉
and r = 1, so we have a Del Pezzo surface of degree 1.

An element in V2,4 which is not in V 2
1,2 is X2 = yw5. An element in V3,6 which is not

in V2,4·V1,3 is X3 = xw8. The algebraic relation between X0 = zw2,X1 = w3,X2,X3 is

G(x0, x1, x2, x3) = x5
0x1 + x3

2 + x2
3 = 0.

We apply the algorithm DelPezzo and obtain the birational map (x0x2 : x3 : x3
0) (see

Example 3.10). By substitution, we obtain the composed map

(S : T : U) = (yzw7 : xw8 : z3w6) = (yzw : xw2 : z3).

We apply InvertBirational and obtain

(X : Y : Z : W ) = (t : −s5 − s2t2 : 1 : −(s3 + t2)3).
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Example 5.2. Let F = (x4 + z4)w2 + (xy + z2)3.
After the while loop, we have m = 1, because V1,1 is not zero and V1,2 is zero. Then,

V = V1,1 = 〈z2w, xzw, x2w, xyz + z3, x2y + x2z〉
and r = 4.

Next, we find that V2,3 is not zero. We have

V ′ = V2,3 = 〈xz5w2, z6w2〉
and r′ = 1. Therefore, we are in Case 3. The image of the map φ′ = (xz5w2 : z6w2) is a
rational normal curve C, and its generic fibre is mapped to a line by the birational map

φ = (z2w : xzw : x2w : xyz + z3 : x2y + x2z).

In this case, the rational normal curve is already P1, so the algorithm RationalNor-
malCurve just returns its input. We apply the algorithm FiberIsLine to the input

F, (xz5w2 : z6w2) = (x : z), φ

and obtain
(X : Y : Z : W ) = (−s3t2 : t3 + s4t+ t : −st3 : s5 + s)

(see Example 3.3).

Theorem 5.1. The Algorithm ParameterizeWithAdjoints is correct.

Proof. Termination follows from Lemma 5.1. The correctness follows from Lemmas 5.2–
5.7, and from the correctness of the subalgorithms. The proof of all these lemmas is the
main content of the appendix.

Remark 5.1. Sometimes, we can save calls of AdjointSpace by using the fact

Vn,m·Vn′,m′⊂Vn+n′,m+m′

(see Section 4.1).
In Case 5, when the Del Pezzo surface has degree 2, we need an element in V2,2µ−2,

which is not contained in V 2
1,µ−1. Since µ≥2 must hold, we have already computed V1,µ−2

and V1,µ before. It might be the case that their product contains such an element. A
similar thing is possible for in the case of Del Pezzo surfaces of degree 1.

In Case 4, we use the vectorspace V2,2µ−1 as an input for FiberIsConic. But the sub-
algorithm FiberIsConic does not use all basis elements in general: it just looks for three
elements fulfilling a certain independence condition. Now, we have already computed
V1,µ−1 and V1,µ before. It might be the case that their product contains three such
elements.

Another option is always to compute the image of the map defined by V1,µ, in order
to tell the case in which we are in. This might save the computation of V2,2µ or V2,2µ+1.
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Appendix: The Correctness Proof

In order to show the correctness of the algorithm ParameterizeWithAdjoints, we have
to prove Lemmas 5.1–5.7. We also have to finish the proof of Lemma 4.1, which is needed
for the correctness of DecideRationality.

For the proof of all lemmas, we may assume that k is algebraically closed, since all
involved statements are stable under field extensions.

Most proofs are written in the language of divisors on smooth surfaces. In two excep-
tions (Lemma 4.1 and Theorem 5.2), it is necessary to use sheaf theory.

Theorem 5.2. Let F∈P3 be a surface of degree d. Let π : F̃→F be a desingularization
of F . Let H∈ClF̃ be the class of the pullback of a plane section. Let K∈ClF̃ be the
canonical class. Let m > 0, n≥0 be integers.

Then dim|nH + mK| = vn,m − 1. If this number is ≥0, and φ is the map defined by
Vn,m, then φ◦π is associated to the linear system |nH +mK|.

Proof. Let Am be the ideal sheaf generated by the m-adjoints. The formula

π∗(OF̃ (mK))∼=Am⊗OF (m(d− 4))

is well known (see Blass and Lipman (1979)). By the projection formula, we have

π∗(OF̃ (nH +mK))∼=Am(n+m(d− 4)).
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The theorem is proved if we can show that all global sections of the right-hand side are
forms (of degree n+m(d− 4)).

Let f : O
P

3→OF be the natural map, and let A′m := f−1(A), so that we have an exact
sequence

0→OP3(n+m(d− 4)− d)→A′m(n+m(d− 4))→Am(n+m(d− 4))→ 0

of sheafs on P3. Since the kernel sheaf has no cohomology in degree 1, every global section
of the quotient sheaf comes from a global section of the middle sheaf.

Proof of Theorem 4.1. Let h : N→N be the function n7→vn,1. We have to show that
h is a polynomial for n≥1, that the degree of the polynomial is 2, and that the leading
coefficient is d

2 .
Let F̃ , H and K as in Theorem 5.2. Since H is semi-ample and H2 = d > 0, higher

cohomology of L(nH +K) vanishes for n≥1, by the Grauert–Riemenschneider vanishing
theorem Grauert and Riemenschneider (1970). Hence

vn,1 = dim|nH +K| − 1 =
d

2
n2 +

H·K
2

n+ 1 + pa

by the Riemann–Roch theorem.2

Proof of Lemma 5.1. By Castelnuovo’s criterion, there is a proper parametrization
σ : P2→F . Let n be the degree of the polynomials defining σ.

By resolving the base points of σ, we obtain a desingularization σ′ : Y→F of F . Let
L be the pullback of the class of lines in P2, let H be the class of a pullback of a plane
section in F , and let K be the canonical class. Then, we have L·H = n, L·K = −3, and
L is numerically eventually free (nef) (a divisor L is nef iff L·C≥0 for every curve C). If
m is such that 3m > n, then

(H +mK)·L = n− 3m < 0,

hence |H +mK| is empty. Therefore, v1,m = 0 by Theorem 5.2.2

From now on, we assume the vanishing of pa and P2. Note that P2 = 0 implies pg = 0,
where pg is the geometrical genus (see Shafarevich (1965)).

We study pairs (X,D), where X is a smooth projective surface over an algebraically
closed field, and D is a divisor class of X.

A curve E is called a −1-curve iff E2 = E·K = −1. A pair (X,D) is called minimal
iff there exists no −1-curve E such that D·E = 0. If (X,D) is not minimal, then we
construct a minimalization of (X,D) recursively by blowing down some −1-curve E with
D·E = 0. Eventually, we arrive at a minimal pair (X0, D0), and a birational regular
minimalization map π : X→X0, such that π∗D0 = D.

Let (X,D) be a minimal pair. Let K be the canonical class of X. A minimalization
(X ′, D′) of (X,D +K) is called an adjoint pair of (X,D).

A curve C is called rigid iff dim|C| = 0 (the only divisor in |C| is C itself).

Lemma 5.8. Let C be a rigid curve. Then C·K≥ − 1, and equality holds iff C is a
−1-curve.

Proof. The genus formula gives C·K + C2≥ − 2. The Riemann–Roch formula gives
C·K − C2≥0. This shows the inequality. In case of equality, we have C2 = C·K = −1,
i.e. C is a −1-curve.
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Lemma 5.9. Let (X,D) a minimal pair, and let (X ′, D′) be an adjoint pair. Suppose
that D is nef, and the linear systems |D|, |D′| are not empty. Then D′ is also nef.

Proof. Minimalization does not change the nef property and the dimension. Hence, we
may equivalently show that D + K is nef under the assumption that |D + K| is not
empty.

Assume, indirectly, that there is a curve C with (D + K)·C < 0. Then C must be a
fixed component of the nonempty linear system |D +K|. By Lemma 5.8 and nefness of
D, C is a −1-curve and C·D = 0. But this contradicts minimality of (X,D).

Lemma 5.10. Let (X,D) a minimal pair such that pa = pg = 0. Let (X ′, D′) be an
adjoint pair. Suppose that D is nef, D2 > 0, the linear systems |D|, |D′|, |D′ + K ′| are
not empty (where K ′ is the canonical class of X ′). Then D′2 > 0.

Proof. The direct image of D is D′ −K ′. By factoring the map X→X ′ into blowing
downs, one shows easily that D′ −K ′ is nef and (D′ −K ′)2≥D2 > 0.

By Lemma 5.9, D′ is nef. Hence,

0 ≤ D′·(D′ +K ′) +D′·(D′ −K ′) = 2D′2.

Assume, indirectly, that equality holds. Then D′·(D′ −K ′) = 0, hence D′ is numerically
zero by the Hodge index theorem. But |D′| is not empty, hence D′ = 0. But then, |K ′|
is not empty, contradicting pg = 0.

From now on, we fix the following notation. Starting from the input surface F∈P3, we
construct a chain of minimal pairs in the following way.

Let π : X0→F be the minimal desingularization of F . Let D0 be the class of the
pullback of a plane section. Obviously, (X0, D0) is minimal.

For i≥0, define (Xi+1, Di+1) as an adjoint pair of (Xi, Di). Denote by τi : X0→Xi

the composite of the minimalization maps σi : Xi−1→Xi. Define πi : Xi→F as π◦τ−1
i .

Finally, Ki is the canonical class of Xi.
The following lemma is a refinement of Theorem 5.2.

Lemma 5.11. Let n≥0, q≥0, r≥0, such that m := qn+ r > 0.

(a) dim|nDq + rKq| = vn,m − 1.
(b) If the integer above is ≥0, and φ is the map defined by Vn,m, then the rational map

φ◦πq is associated to the linear system |nDq + rKq|.

Proof. For fixed n,m we proceed by induction on q. For q = 0, the statement follows
from Theorem 5.2. For the induction step, we have to consider the linear system |nDq+1+
(r − n)Kq+1|, where r − n≥0. Its pullback along σq+1 is

|n(σq+1)∗Dq+1 + (r − n)(σq+1)∗Kq+1| = |nDq + nKq + (r − n)(σq+1)∗Kq+1|.
By induction hypotheses, it suffices to show that the pullback system and the linear
system |nDq + rKq| have the same dimension and, if the dimension is nonnegative, the
same associated map. (Note that also (c) follows, because the composition of regular
maps is regular.)

More general, let f : X→Y be a birational regular map. Let D be a class on Y
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that lies in the image of f∗. Then we show the linear systems Γ1 := |D + rK(X)| and
Γ2 := |D + rf∗K(Y )| have same dimension and, if the dimension is nonnegative, same
associated map.

First, we assume that f is the blowing down of a −1-curve E. Then Γ1 = Γ2 + rE.
But E is an r-fold fixed component of Γ1, because D·E = 0 and E·K(X) = E2 = −1.

In the general case, f is a composite of blowing downs (see Shafarevich (1974)). Since
the statement holds for each component, it also holds for f .

Lemma 5.12. For i≤µ, Di is nef. For i < µ, (Di)2 > 0.

Proof. This follows immediately by induction on i, using Lemmas 5.9–5.10.

Lemma 5.13. Let (X,D) a minimal pair, such that |D| is not empty, D is nef, D2 > 0,
and dim|D +K| = 0. Then D = −K.

Proof. By the Riemann–Roch formula, we have D·(D + K)≤0. Since D is nef and
|D +K| is not empty, we have D·(D +K) = 0. By the Hodge index theorem, D +K is
numerically zero. But |D +K| is not empty, hence D +K = 0.

Proof of Lemmas 5.6 and 5.7. Suppose that v1,µ = 1. Then µ≥1 because v1,0 = 4. We
have dim|Dµ−1 +Kµ−1| = 0 by Lemma 5.11 (n = 1, q = µ− 1, r = 1). By Lemma 5.13,
Dµ−1 = −Kµ−1. Moreover, Dµ−1 is nef and n := (Dµ−1)2 > 0 by Lemma 5.9 and
Lemma 5.10.

If X is a surface with pa = P2 = 0 and K nef and K2 > 0, then the map associated
with | − K| (in the case K2≥3), | − 2K| (in the case K2 = 2) or | − 3K| (in the case
K2 = 1) is an embedding except for the blowing down of −2-curves, and the image is a
Del Pezzo surface of degree K2 (see Manin (1974) and Kurke (1982)).

If µ≥2, then we apply Lemma 5.11 (n = 1, q = µ− 1, r = 0), and Lemma 5.6 follows.
If µ = 1, then we apply Lemma 5.11 (n = 2, q = 0, r = 1). If V1,1 is generated by

G, then V2,1 has at least four linearly independent elements xG, yG, zG,wG. Whence
Lemma 5.7.2

Lemma 5.14. Let (X,D) a minimal pair, and let (X ′, D′) be an adjoint pair. Suppose
that D is nef, D2 > 0, D′2 = 0, D′ 6=0, and the linear systems |D|, |D′| are not empty.
Then D′ = nP for some n > 0 and P , P 2 = 0, P ·K ′ = −2. The map associated with
|D′ = nP | is equal to the map associated with |P | (with image P1) composed with the
embedding of P1 as a rational normal curve in Pn.

Proof. By Lemma 5.9, D′ is nef. By Lemma 5.10, |D′ +K ′| is empty.
Let C be any prime component of a divisor in |D′|. Then D′·C = 0 since D′ is nef.
We show that C is not rigid. Assume the contrary. By Lemma 5.8 and minimality of

(X ′, D′), we have C·K ′≥0. The class D′ −K ′ is nef (since it is the direct image of D),
hence C·K ′ = 0. Moreover, (D′ − K ′)2≥D2 > 0. Hence, C is numerically zero by the
Hodge index theorem. But this is absurd, because C is positive.

Because C is not rigid, we have C2≥0. This holds for any component of a divisor
in D′. But D′2 = 0, hence C1·C2 = 0 for any two components of two divisors in |D′|.
This implies that all possible components lie in one pencil |P |, every divisor in |P | is
irreducible and P 2 = 0. This implies the assertion on the associated map.
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It remains to show P ·K ′ = −2. Suppose, indirectly, that this were not the case. Since
the divisors in |P | are irreducible, P ·K ′≥0 by the genus formula. Then D′·K ′≥0 and
|D′ +K ′| is not empty by Riemann–Roch. But this contradicts Lemma 5.10.

Lemma 5.15. Let (X,D) be a minimal pair such that X is a rational surface, D is nef,
D2 > 0, |D| is not empty, and |D +K| is empty. Then |D| has no base points, and the
associated map is birational. Moreover, one of the following is true.

(a) X = P2, and D = L (the class of lines).
(b) X = P2, and D = 2L.
(c) X is a rational ruled surface. There is a ruling |P |, such that P 2 = 0, P ·K = −2,

and 2D +K = nP for some n≥0.

Proof. We use the following facts from the theory of rational surfaces (see Kurke (1982)
and Schicho (1995)).

Let X be a rational surface. Then K(X)2≤9. Equality holds only if X = P2. If
K2 = 8, then X is a ruled.

Let C be a class on a rational ruled surface. If C is nef, then |C| has no base
points. If C is nef and C2 > 0, then the associated map is birational. If C2 = 0
and |C| is not empty, then C = nP for a rational pencil P and n≥0.

By Riemann–Roch and the assumption that |D+K| is empty, we have D2 +D·K≤−2,
and also D·K≤− 3.

Let m > 1 be the integer uniquely defined by the inequality

0≤mD2 +D·K≤D2 − 1.

By Riemann–Roch, |mD + K| is not empty. mD is nef, hence also mD + K is nef by
Lemma 5.9. Then

0 ≤ (mD +K)2 = m2D2 +mD·K +mD·K +K2

≤mD2 −m+D·K + (m− 1)D·K +K2

≤ D2 − 1−m+D·K + (m− 2)D·K +K2

≤ −2− 1−m+ (m− 2)(−3) +K2 = 3− 4m+K2 ≤ 12− 4m,

hence m≤3.
If m = 3, then we must have equality everywhere: D2 = 1, D·K = −3, K2 = 9.

Obviously, (a) holds, and the map associated to |D| is the identity X→P2.
If m = 2, then

0 ≤ (2D +K)2 = 4(D2 +D·K) +K2 ≤ −8 +K2.

The right inequality must be an equation: D2 +D·K = −2 (because K2 < 12).
If K2 = 9, then D2 = 4, D·K = −6. Obviously, (b) holds, and the map associated to
|D| is the Veronese embedding X = P2↪→P5.

If K2 = 8, then (2D + K)2 = 0. Hence X is ruled, |D| has no base points, the map
associated is birational, and (c) holds.
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Proof of Lemma 5.2. Suppose that v1,µ = 3 and v2,2µ = 6. Then µ≥1, since v1,0 = 4.
By Lemma 5.11 (n = 1, q = µ, r = 0), we have dim|Dµ| = 2. We distinguish two cases.

If (Dµ)2 = 0, then Dµ = 2P , and dim|2Dµ| = dim|4P | = 4. By Lemma 5.11 (n = 2,
q = µ, r = 0), we obtain v2,2µ = 5, a contradiction. This case is therefore impossible.

If (Dµ)2 > 0, then the map associated to |Dµ| is birational to P2 (by Lemma 5.15).
Then the map defined by V1,µ is also birational.2

Proof of Lemmas 5.3 and 5.4. Suppose that v2,2µ+1≥1. By Lemma 5.11 (n = 2,
q = µ, r = 1), we have dim|2Dµ +Kµ|≥0. This implies Dµ 6=0. We distinguish two cases.

If (Dµ)2 = 0, then Dµ = nP with P ·K = −2 by Lemma 5.14. Then P ·(2Dµ +Kµ) =
−2. This is a contradiction, because P is nef. This case is therefore impossible.

If (Dµ)2 > 0, then the map associated with |Dµ| is birational, and one of the subcases
(a), (b) or (c) in Lemma 5.15 holds. We treat the subcases separately.

In Subcase (a), 2Dµ +Kµ = −L, which contradicts dim|2Dµ +Kµ|≥0.
In Subcase (b), 2Dµ +Kµ = L. Therefore, the map associated with |2Dµ +Kµ| is the

identity. By Lemma 5.11 again, the map φ′ defined by V2,2µ+1 is birational to P2.
In Subcase (d), we have 2Dµ + Kµ = nP and n = dim|2Dµ + Kµ| = v2,2µ+1 − 1.

If n = 0, then then (Dµ)2 = (Kµ)2/4 = 2, and the map associated with |Dµ| maps
Xµ birationally to a quadric surface in P3. If µ≥1, then we apply Lemma 5.11 (n = 1,
q = µ, r = 0), and find that the map defined by V1,µ maps birationally to a quadric
surface to P3. If µ = 0, then F must have been a quadric surface itself, because X0 is
a desingularization, D0 is the class of the pullback of a plane section, and (D0)2 = 2.
Thus, we have proved Lemma 5.3.

If n≥1, then the image map associated with |2Dµ + Kµ| = |nP | is a rational normal
curve. The fibres are the divisors in |P |. The map associated to |Dµ| maps these divisors
to projective curves of degree

Dµ·P =
(nP −Kµ)·P

2
= 1,

i.e. to lines. In the case µ≥1, we conclude Lemma 5.4 from Lemma 5.11 (n = 1, q = µ,
r = 0). In the case µ = 0, we have D0·P = 1, where D0 is the class of the pullback of a
hyperplane section. Therefore, the divisors in |P | are mapped to lines on F . This finishes
the proof of Lemma 5.4.2

Proof of Lemma 5.5. Suppose that v1,µ≥2, and v2,2µ+1 = 0, and either v1,µ 6=3 or
v2,2µ 6=6. By Lemma 5.11, we have that |2Dµ + Kµ| is empty, dim|Dµ|≥2, and either
dim|Dµ|6=2 or dim|2Dµ|6=5. Thus, we can rule out the three cases with (Dµ)2 > 0 in
Lemma 5.15; it remains only the case Dµ 6=0 and (Dµ)2 = 0.

By Lemma 5.14, Dµ = nP for some n≥1 and P with P 2 = 0, P ·Kµ = −2. Let P ′ be
the pullback of P on Xµ−1. We distinguish two cases.2

Case 1: µ≥2. Then Dµ−1 −Kµ−1 is nef, and (Dµ−1 −Kµ−1)2 = 4(Dµ−1)2 − 8n > 0 by
Lemma refseries. Hence (Dµ−1)2 > 2 and (2Dµ−1)2≥11. By a theorem of Reider (1988),
|2Dµ−1 +Kµ−1| has no base points and the associated map is birational (see also Schicho
(1995)). Since P ′·(2Dµ−1 +Kµ−1) = 2, the generic divisor of |P ′| is mapped to a conic.
By Lemma 5.11 (n = 2, q = µ− 1, r = 1), the map defined by V2,2µ−1 is birational and
maps the generic fibre of φ′ to a conic.

Case 2: µ = 1. Since 2D0 + K = D0 + nP ′, the map associated to |D0| is birational,
and both |D0| and |nP ′| do not have base points, we conclude that |2D0 +K| does not
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have base points and the associated map is birational. As in Case 1, the generic divisor
in |P ′| is mapped to a conic.
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