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Recently Ali et al. (2009) proposed a Generalized Uncertainty Principle (or GUP) with a linear term 
in momentum (accompanied by Plank length). Inspired by this idea here we calculate the quantum 
corrected value of a Schwarzschild black hole entropy and a Reissner–Nordström black hole with double 
horizon by utilizing the proposed generalized uncertainty principle. We find that the leading order 
correction goes with the square root of the horizon area contributing positively. We also find that 
the prefactor of the logarithmic contribution is negative and the value exactly matches with some 
earlier existing calculations. With the Reissner–Nordström black hole we see that this model-independent 
procedure is not only valid for single horizon spacetime but also valid for spacetimes with inner and 
outer horizons.

© 2011 Elsevier B.V. Open access under CC BY license.
The realization that black holes are thermodynamic objects 
with well defined entropy and temperature is one of the land-
mark achievement in theoretical physics [1–3]. Hawking [3] has 
shown that a Schwarzschild black hole has a thermal radiation 
with a temperature T H = 1 

8π M , where M is the mass of the black 
hole. Also the entropy associated with a Schwarzschild black hole 
is given by the Bekenstein–Hawking entropy–area relation

S B H = A

4l2p
. (1)

Here A is the cross sectional area of the black hole horizon. Re-
cently there has been much attention devoted to resolving the 
quantum corrections to the black hole entropy. As entropy has a 
definite statistical meaning in the thermodynamic system, it ac-
counts for the number of microstates of the system. A thermody-
namic system is composed of atoms and molecules but nothing in 
particular can be said about the black hole except the presence of 
strong gravity. It is now common in literature that black hole en-
tropy can be attributed a definite statistical meaning (though this 
belief warrants a certain degree of caution [4]). The main problem 
in the study of black hole entropy is to identify the microstates 
and count them. Two leading candidate theory of quantum grav-
ity (aimed for a successful quantum theory of gravity) namely, 
string theory and loop quantum gravity, both achieved an enor-
mous amount of success in statistical explanation of the entropy– 
area law (we can see [5,6] for a brief overview). In this discussion 
we will mainly focus on the quantum-corrected entropy. Various
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theories of quantum gravity (e.g., [7–11]) have predicted the fol-
lowing expansive form:

S = A

4l2p
+ c0 ln

(
A

4l2p

)
+

∞∑
n=1 

cn

(
A

4l2p

)−n

+ const, (2)

where the coefficients cn can be regarded as model-dependent pa-
rameters. Many researchers have expressed a vested interest in 
fixing c0 (the coefficient of the subleading logarithmic term) [7]. 
Recent rigorous calculations of loop quantum gravity predicts the 
value of c0 to be −1/2 [11].

For the study of black hole entropy we can also use a model-
independent concept namely the Generalized Uncertainty Principle 
or GUP. The idea that the uncertainty principle could be affected 
by gravity was given by Mead [12]. In the regime when the grav-
ity is strong enough, conventional Heisenberg uncertainty relation 
is no longer satisfactory (though approximately but perfectly valid 
in low gravity regimes). Later modified commutation relations be-
tween position and momenta commonly known as Generalized 
Uncertainty Principle were given by candidate theories of quantum 
gravity (String Theory, Doubly Special Relativity (or DSR) Theory 
and Black Hole Physics) with the prediction of a minimum mea-
surable length [13–15]. Similar kind of commutation relation can 
also be found in the context of Polymer Quantization in terms of 
polymer mass scale [16]. Importance of the GUP can also be re-
alized on the basis of simple gedanken experiments without any 
reference of a particular fundamental theory [14]. So we can think 
the GUP as a model-independent concept, ideally perfect for the 
study of black hole entropy. Many authors have applied the GUP 
for a heuristic analysis of the black hole entropy (we can see [8, 
17–19] for a brief idea).
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The authors in [20] proposed a GUP which is consistent with
DSR theory, string theory and black hole physics and which says

[xi, x j] = [pi, p j] = 0, (3)

[xi, p j] = ih̄

[
δi j − l

(
pδi j + pi p j

p

)
+ l2

(
p2δi j + 3pi p j

)]
, (4)

δx δp � h̄

2

[
1 − 2l〈p〉 + 4l2

〈
p2〉]

� h̄

2

[
1 +

(
l√〈p2〉 + 4l2

)
(δp)2 + 4l2〈p〉2 − 2l

√〈
p2

〉 ]
, (5)

where l = l0lp
h̄ . Here lp is the Plank length (≈ 10−35 m). It is nor-

mally assumed that the dimensionless parameter l0 is of the order
unity. If this is the case then the l-dependent terms are only im-
portant at or near the Plank regime. But here we expect the ex-
istence of a new intermediate physical length scale of the order
of lh̄ = l0lp . We also note that this unobserved length scale cannot
exceed the electroweak length scale [20] which implies l0 � 1017.
These equations are approximately covariant under DSR transfor-
mations but not Lorentz covariant [15]. These equations also imply

δx � (δx)min ≈ l0lp (6)

and

δp � (δp)max ≈ Mpc

l0
(7)

where M p is the Plank mass and c is the velocity of light in vac-
uum. With a lower bound for position fluctuations we can claim
that there is a minimum measurable distance and from an up-
per bound of momentum fluctuations we claim that momentum
measurements cannot be arbitrarily imprecise. The effect of this
proposed GUP is well studied recently for some well-known phys-
ical systems in [20–22].

In this Letter we apply this newly proposed GUP for a pertur-
bative calculation of the quantum-corrected entropy which can be
readily extended to any desired order. In the first half we consider
a Schwarzschild black hole. In the next half we do the same anal-
ysis for a Reissner–Nordström spacetime with double horizons.

Eqs. (4) and (5) represents modified Heisenberg algebra. But the
interesting part of these two relation is the term which is linear
in l(= l0lp/h̄) with p. Inspired by this idea, for our purpose we
will consider the modified Heisenberg algebra (modified Heisen-
berg principle) with a small change in notation where x and p
obeys the relation (α > 0)

δxδp � h̄

[
1 − αlp

h̄
δp + α2l2p

h̄2
(δp)2

]
. (8)

In writing Eq. (8) we made an approximation that (δp) ≈ √〈p2〉.
This means 〈p〉 ≈ 0. Now this seems to be a valid approximation
as we are going to study the Schwarzschild black hole which is
spherically symmetric.1 We can see that if α = 2l0 this is the same
relation as that of (5). Here δx and δp are the position and mo-
mentum uncertainty for a quantum particle and α is a dimension-
less positive parameter (also known as deformation parameter in

the literature of non-commutative geometry). As lp =
√

h̄G
c3 , where

G is the Newtonian coupling constant, we can imply that the extra
terms in the uncertainty relation is a consequence of gravity. We

1 Also in many problems of usual quantum mechanics we find 〈p〉 = 〈x〉 = 0 (for
ex. ground state of harmonic oscillator).
can re express the modified Heisenberg principle (or MUP) of (8)
in the following form

δp �
h̄(δx + αlp) − h̄

√
(δx + αlp)2 − 4α2l2p

2α2l2p
, (9)

where a negative sign choice is made by taking the classical limit.
As lp is normally viewed as an ultraviolet cut-off on spacetime
geometry (e.g., [23]), it is quite justified that we can consider the
dimensionless ratio lp

δx relatively small as compared to unity. So
we can Taylor expand Eq. (9) and rewrite the same equation after
some simple manipulation as

δp � 1

δx

[
1 − αlp

2(δx)
+ α2l2p

2(δx)2
− α3l3p

2(δx)3
+ 9

16

α4l4p
(δx)4

− · · ·
]
, (10)

where we have considered a choice of unit with h̄ = 1. The Heisen-
berg uncertainty principle (δpδx � 1) can be translated to the
lower bound Eδx � 1 with the arguments used in [24,10], where
E is the energy of a quantum particle. The measurement process
considered here uses a photon to specify the position of the quan-
tum particle. If we imply our MUP, we can rebuild the lower bound
as

E � 1

δx

[
1 − αlp

2(δx)
+ α2l2p

2(δx)2
− α3l3p

2(δx)3
+ 9

16

α4l4p
(δx)4

− · · ·
]
. (11)

Now we will consider the picture where a quantum particle in the
immediate vicinity of an event horizon is absorbed by the black
hole. From the knowledge of general relativity we know that for a
black hole, absorbing a classical particle with energy E and size R ,
the minimum increase in area is expressed as

�Amin � 8π l2p E R. (12)

For a quantum particle R can never be less than the intrinsic un-
certainty in the position of the particle [2]. Hence for a quantum
particle equation (12) reduces to

�Amin � 8π l2p Eδx. (13)

Considering MUP we can re express equation (13) as

�Amin � εl2p

[
1 − αlp

2(δx)
+ α2l2p

2(δx)2
− α3l3p

2(δx)3

+ 9

16

α4l4p
(δx)4

− · · ·
]
. (14)

Here ε is a numerical factor greater than the order of 8π .
Let us now consider a Schwarzschild black hole of constant

mass immersed in a bath of radiation in its own temperature. So
the framework is in principle microcanonical. The particles consid-
ered in the last section should have a Compton wave length of the
order of the inverse of the Hawking temperature [3]. Usually the
inverse of surface gravity is the best choice of length scale near
horizon. Here also we will choose (we can see [25,17] for a brief
argument)

δx ∼ 2rs. (15)

Identifying δx ∼
√

A
π and putting this in Eq. (14) we get

�Amin � εl2p

[
1 − αlpπ

1/2

2A1/2
+ α2l2pπ

2A
− α3l3pπ

3/2

2 A3/2

+ 9α4l4pπ
2

2
− · · ·

]
. (16)
16A
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Bekenstein first argued [2] that the black hole entropy should de-
pend on the horizon area. Also the minimum increase of entropy
is one bit b and generally it is considered that b = ln 2. Using this
we now write

dS

dA
� �Smin

�Amin

� b

εl2p
[
1 − αlpπ1/2

2A1/2 + α2l2pπ
2A − α3l3pπ3/2

2A3/2 + 9α4l4pπ2

16A2 − · · ·] . (17)

Following the same procedure as before (for performing Taylor ex-
pansion) we write the same equation as

dS

dA
� b

εl2p

[
1 + αlpπ

1/2

2A1/2
− α2l2pπ

4A
+ α3l3pπ

3/2

8A3/2

− α4l4pπ
2

8A2
+ · · ·

]
. (18)

Integrating we get (up to an additive constant factor of integration)

S � A

4 l2p
+ π1/2α

2

√
A

4l2p
− πα2

16
ln

A

4l2p
− π3/2α3

32

(
A

4l2p

)−1/2

+ π2α4

128

(
A

4l2p

)−1

− · · · + const. (19)

Here we have compared the first term with Bekenstein–Hawking
entropy–area relation which says b/ε should be 1/4. Eq. (19) can
be written in the form of an expansion

S � A

4l2p
+ π1/2α

2

√
A

4l2p
− πα2

16
ln

A

4l2p

−
∞∑

m= 1
2 , 3

2 ,...

dm

(
A

4l2p

)−m

+
∞∑

n=1,2,...

cn

(
A

4l2p

)−n

+ const. (20)

Here m denotes positive half-integers and n positive integers. If
we compare this equation with (2) we can see that there are ex-
tra terms in this equation. One of the leading contribution to the
entropy is from the new second term ∼ √

Area. In the context of
Eqs. (4) and (5) this was first pointed out in [22]. Also we have
terms proportional to (Area)−m . This is a consequence of the form
of the modified uncertainty relation which we have used.2 A lin-
ear term in Plank length accompanied by p in the commutation
relation of x and p gives this new contribution to the quantum
corrected entropy–area relation.

Let us now consider the case of a Reissner–Nordström black
hole with double horizon. The line element of this spacetime is
given by

ds2 = −
(

1 − 2M

r
+ Q 2

r2

)
dt2 +

(
1 − 2M

r
+ Q 2

r2

)−1

dr2

+ r2 dΩ2
2 , (21)

2 The hypothesis of modified energy–momentum dispersion relation (commonly
known as MDR) is popular among those adopting a spacetime foam intuition in the
study of the quantum gravity problem. In most cases one is led to consider a dis-
persion relation of the type

p2 � E2 − μ2 + α1lp E3 + α2l2p E4 + · · · ,
where μ is termed as mass parameter and it is directly related to the rest energy
of the particle. This type of modified dispersion relations are used to evaluate black
hole entropy. If the cubic term α1lp E3 is present in the energy–momentum disper-
sion relation then the leading correction goes like

√
Area. For a brief discussion we

can see [19].
where r± = M ±
√

M2 − Q 2 are the locations of outer and in-
ner horizons. Q is the electric charge of the black hole and we
will consider it as constant. For simplicity we have considered the
choice of unit where G = c = 1. Using similar arguments as in the
case of a Schwarzschild black hole we will consider

δx ∼ 2(r+ − r−). (22)

With a simple manipulation we can write this as

δx ∼
√

A

π

(
1 − 4π Q 2

A

)
. (23)

Here the minimum increase in the horizon area can be expressed
as

�Amin � εl2p

[
1 − αlpπ

1/2

2A1/2

(
1 − 4π Q 2

A

)−1

+ α2l2pπ

2A

(
1 − 4π Q 2

A

)−2

− α3l3pπ
3/2

2A3/2

(
1 − 4π Q 2

A

)−3

+ 9α4l4pπ
2

16A2

(
1 − 4π Q 2

A

)−4

− · · ·
]
. (24)

We now write the differential entropy–area relation for this black
hole as

dS

dA
� b

εl2p

[
1 + αlpπ

1/2

2A1/2

(
1 + 4π Q 2

A
+ 16π2 Q 4

A2

)

− α2l2pπ

4A

(
1 + 8π Q 2

A
+ 48π2 Q 4

A2

)

+ α3l3pπ
3/2

8A3/2

(
1 + 12π Q 2

A
+ 96π2 Q 4

A2

)

− α4l4pπ
2

8A2

(
1 + 16π Q 2

A
+ 160π2 Q 4

A2

)
+ · · ·

]
. (25)

Here we have considered terms up to the O( Q 4

A2 ) while performing
the Taylor expansion. Higher order terms are neglected with the
assumption A 	 Q . With the calibrated value of b/ε = 1/4, the
final expression of the quantum corrected entropy–area relation
(up to an additive constant factor of integration) for the Reissner–
Nordström black hole with double horizon is written as

S � A

4l2p
+ απ1/2

4lp

(
A1/2 − 4π Q 2

A1/2
− 16π2 Q 4

3A3/2

)

− α2π

16

(
ln A − 8π Q 2

A
− 24π2 Q 4

A2

)

− α3l3pπ
3/2

16

(
1

A1/2
+ 4π Q 2

A3/2
+ 96π2 Q 4

5A5/2

)

+ α4l2pπ
2

32

(
1

A
+ 8π Q 2

A2
+ 160π2 Q 4

3A3

)
− · · · + const. (26)

Clearly we can see the if Q = 0, we get back Eq. (19).
So in this Letter, we have exploited the generalized uncertainty

principle as proposed by Ali et al. [20] to evaluate the quantum
corrected black hole entropy for a Schwarzschild black hole and a
Reissner–Nordström black hole with double horizon. We found that
the leading order correction to the Bekenstein–Hawking entropy–
area relation goes as

√
Area contributing positively. This term can
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also be obtained if we use the modified energy–momentum dis-
persion relation containing a term proportional to lp × (Energy)3

for the calculation of black hole entropy. Some models of quantum
gravity disregard this term. The next leading order contribution to
the entropy goes as the logarithm of the area but it contributes
negatively. Apart from these two corrections we also found two
series expansion which goes with the negative power of Area. One
series is consistent with the calculation performed with the ear-
lier version of GUP (e.g., [8]). The other one goes with negative
half-integer powers of Area contributing negatively to the entropy.
Here we have found that the logarithmic prefactor takes on the

value −πα2

16 . If we look back at Eq. (5) this value is −π l20
4 (ac-

cording to the newly proposed GUP [20]). Though we are unable
to make a precise statement about l0 but still this is exactly the
same value as deduced by the authors in [26,8]. We have con-
sidered that the black hole is immersed in a bath of radiation at
its own temperature, hence we have computed the microcanonical
entropy. Later we have utilized the same procedure for a Reissner–
Nordström black hole with double horizon. We also found that this
procedure as mentioned in [27] is not only valid for single horizon
spacetime but also valid for spacetimes with outer and inner hori-
zons.
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