Dickkopf related genes are components of the positional value gradient in Hydra

René Augustin, André Franke, Konstantin Khalturin, Rainer Kiko, Stefan Siebert, Georg Hemmrich, Thomas C.G. Bosch

Zoological Institute, Christian-Albrechts-University, Olshausenstrasse 40, 24098 Kiel, Germany

Received for publication 9 August 2005; revised 7 March 2006; accepted 4 April 2006
Available online 21 April 2006

Abstract

Hydra is a classical model organism to understand fundamental developmental biological processes such as regeneration and axis formation. Here, we show that two genes which share some similarity with members of the Dickkopf family of proteins, HyDkk1/2/4-A and HyDkk1/2/4-C, are co-expressed in gland cells and regulated by the positional value gradient. While HyDkk1/2/4-A is expressed throughout the gastric region, HyDkk1/2/4-C has a graded expression pattern with a high level of transcripts just below the tentacle zone and absence of expression in the budding zone. Blocking the activity of GSK-3β caused a drastic downregulation of HyDkk1/2/4-C expression in the gastric tissue. Experimental reduction of the number of HyDkk1/2/4-C-expressing cells resulted in expansion of the HyWnt expression domain in the hypostome. Thus, similar to Dickkopf proteins in vertebrates, one of the functions of HyDkk1/2/4-C in hydra may be to antagonize Wnt signalling.

Keywords: Hydra; Regeneration; Dickkopf; Wnt signalling; Gradients; Axial patterning; Gland cells

Introduction

Hydra represents an important invertebrate organism for evolutionary, developmental and regeneration studies (Galliot and Schmid, 2002; Bode, 2003). The single body axis is composed of a head, a body column and a foot. The tissue consists of three independent cell lineages. While the ectodermal and endodermal epithelial cells constitute the principal structural element, the interstitial stem cell system is located primarily in the ectoderm where interstitial cells are homogeneously distributed throughout the gastric region. In the hypostome and subhypostomal region as well as in the region adjacent to the basal disk, interstitial cells are absent. Interstitial cells differentiate into nematocytes, nerve cells, male and female gametes and are also capable of differentiating into gland cells (Schmidt and David, 1986; Bode et al., 1987).

The developmental processes governing the formation and maintenance of the hydra body plan are well understood at the tissue and cellular level (Bode, 2003; Bosch and Fujisawa, 2001; Steele, 2002; Bosch, 2003). The continuous cell proliferation of epithelial cells as well as interstitial cells in adult hydra results in continuous tissue displacement towards the extremities. Morphogenetic mechanisms, therefore, are continuously active in adult polyps and used for the remarkable regenerative ability, the maintenance of body shape and proportions, and the establishment of a new body axis. Crucial for axis formation is a head organizer located in the hypostome (Broun and Bode, 2002) which is thought to transmit signals to the body column (see Bode, 2003).

Numerous transplantation and tissue manipulation experiments provided experimental data for theoretical models describing the various patterning processes in hydra (Berking, 2003; Meinhardt, 1993; Meinhardt and Gierer, 2000). These models, in brief, propose that the single body axis is maintained by a morphogenetic gradient. The gradient is maximal near the head and decreases down the body column to a minimal value near the foot (Wolpert, 1971; Gierer and
Meinhardt, 1972; MacWilliams, 1983a,b; Muller, 1996). Setting up the gradient has been proposed to involve a local autocatalytic activator that produces a long-ranging inhibitor that, in turn, antagonizes the self-activation (Meinhardt, 2004). The head forms at high levels of positional value while the foot forms at low levels.

Within the last few years, the theoretical models of axial patterning controlled by head activating and inhibiting diffusible substances have been complemented by molecular data. In particular, two sets of data point to a crucial role of Wnt genes in axial patterning. First, genes of the Wnt pathway such as HyWnt, Hyβ-cat and HyTcf are strongly expressed in the hypostome (Hobmayer et al., 2000). Second, blocking the activity of glycogen synthase kinase 3- beta (GSK-3β) leads to ectopic head organizer activity in the hydra body column (Broun et al., 2005). GSK-3β is an intracellular serine–threonine kinase which in the absence of a Wnt ligand targets β-catenin by phosphorylation for degradation by the proteosome (Amit et al., 2002; Liu et al., 2002).

Although these studies have identified some of the molecular mechanisms underlying hydra pattern formation, we are far from understanding the genetic program of morphogenesis. In particular, the critical molecular mechanisms that control regeneration and budding as well as the molecules which could act as carrier for positional information along the body axis are yet to be determined. To gain an overview of the transcripts controlling regeneration and budding we have performed a suppression subtractive hybridisation (SSH) analysis. This screen identified two genes belonging to the Dickkopf family, HyDkk1/2/4-A and HyDkk1/2/4-C. Both genes are coexpressed in gland cells. While HyDkk1/2/4-A is expressed throughout the body column, HyDkk1/2/4-C is expressed in a gradient like pattern with maximum expression in the subtentacle region. We provide several lines of evidence that both genes are controlled by the positional value gradient. First, we show that the expression of HyDkk1/2/4-C and HyDkk1/2/4-A is sensitive to LiCl treatment, a reagent known to affect the positional value along the body column. Second, we describe a direct influence of head and foot tissue on HyDkk1/2/4-C and HyDkk1/2/4-A expression. Third, we examine the involvement of Wnt signalling in control of HyDkk1/2/4-C and HyDkk1/2/4-A expression and show that activation of the Wnt signalling pathway by inhibition of GSK-3β inhibits expression of HyDkk1/2/4-C. Finally, we show that reducing the number of HyDkk1/2/4-C-expressing cells is correlated with increased Wnt expression in the head. We, therefore, propose that one of the functions of HyDkk1/2/4-C in hydra appears to be inhibition of Wnt signalling. Thus, the function of Dickkopf proteins may be conserved throughout the animal kingdom.

While this manuscript was under review, an article appeared (Guder et al., 2006) in which the authors have cloned HyDkk1/2/4-A by using an independent unbiased strategy. Thus, the complementary results of these two studies define an intriguing system of generating and interpreting positional value gradients in hydra in which short Dickkopf related proteins may play an essential role.

Materials and methods

Animals and culture conditions

Experiments were carried out with Hydra magnipapillata and Hydra vulgaris (Zürich strain). The animals where cultured according to standard procedures at 18°C.

Interstitial cell elimination to reduce the number of HyDkk1/2/4-C-expressing gland cells

To eliminate the interstitial cells, H. magnipapillata st-f1 animals raised at 18°C (permissive temperature) were incubated for 48 h at 28°C (nonpermissive temperature) and then cultured at 18°C for 3 weeks. Interstitial cells are eliminated from the treated tissue within the first 12–16 h of treatment (Marcum et al., 1989). Nematoblasts decrease within 48 h of treatment. Elimination of gland cells occurs at a slower rate and requires more than 15 days for a significant loss. Due to the loss of nerve cells and nematocytes, animals become unable to eat by themselves. These nonfeeding epithelial animals were cultured in standard medium, fed by hand, and cleaned daily using methods described (Bosch and David, 1987).

Treatment with lithium–chloride and alsterpaullone

Lithium–chloride treatment was performed as described before (Grens et al., 1996). To lower the head activation gradient along the hydra body column, 40 animals of H. vulgaris (Zürich strain) were incubated continuously for 14 days in 0.5 mM LiCl in hydra medium. The animals were fed every second day and washed daily. To raise the head activation gradient along the body column and to induce ectopic tentacle formation, 40 H. vulgaris (Zürich strain) polyps were treated with 4 mM LiCl in hydra medium for 2 days (Hassel et al., 1993). After that, they were transferred to 0.5 mM LiCl in hydra medium. The animals were fed every second day during LiCl treatment. Treatment with alsterpaullone was performed as described (Broun et al., 2005).

Molecular techniques and sequence analysis

Nucleic acid isolation, cDNA cloning, generation and characterization of the suppression subtractive hybridization (SSH) libraries, and DNA sequence analysis were carried out as described recently (Genikhovich et al., 2006). Nucleotide, protein and translated BLAST engines at the NCBI server (http://www.ncbi.nlm.gov/BLAST) were used for homology searches in public databases. The predicted amino acid sequence of HyDkk1/2/4-A and HyDkk1/2/4-C was analysed for signal peptide sequences with the help of the SignalP V3.0 (Bendtsen et al., 2004; Nielsen et al., 1997). For alignment of multiple sequences of the Dickkopf family, sequences corresponding to cysteine rich domain 2 were analysed using the Clustal W program (http://www.ebi.ac.uk/clustalw/). The following sequences were taken from the National Center for Biotechnology Information (NCBI) server: MusDkk1 (NP_034181), XenDkk1 (AA002427), MusDkk2 (QQQY7Z), XenDkk2 (CAC17815), HomDkk3 (Q9UBP4), GagaDkk3 (Q90839), HyDkk3 (AAQ91437), MusDkk4 (NP_063567), HyDkk1/2/4-C (DQ127904) and HyDkk1/2/4-A (DQ127903).

In situ hybridization

Methods for whole mount in situ hybridisations were adapted from previous work (Grens et al., 1996; Mitgutsch et al., 1999) and as follows: Digoxigenin- or biotin-labeled RNA probes were prepared according to the manufacturer’s instructions (Roche). For double in situ hybridisation, after fixation animals were cut longitudinally to enable better probe penetration and better visualization of cells in the endoderm. Proteinase K treatment (10 μg/ml) was for 20 min at 20°C. Hybridisation was performed for 60 h at 57°C. For double in situ hybridisation, first only the biotin labelled probe was added, after 24 h also the digoxigenin labelled probe was added to the hybridisation solution. Following hybridization, unhybridised probes were removed as described by Grens et al. (1996).
Samples were incubated overnight at 4°C in 80% MAB + BSA~20% sheep serum (blocking solution) to which Alkaline phosphatase-conjugated anti-digoxigenin Fab fragments (Boehringer-Mannheim) and, for the double in situ hybridization horseradish peroxidase-conjugated anti-biotin Fab fragments (Boehringer-Mannheim) were added. To perform the staining of the double-labeling in situ hybridization, after the NTMT washing steps the samples were washed three times 5 min with water and then two times 10 min with sodium acetate-buffer at 37°C for 10 to 60 min. The aminoethylcabazole (Sigma) as substrate for the horseradish peroxidase and acetate-buffer (pH 5.0). The staining reaction was carried out with 6.4 mM washed three times 5 min with water and then two times 10 min with sodium hydperoxide in sodium acetate-buffer at 37°C for 10 to 60 min. The reaction was stopped and the substrate removed by three 10-min and one overnight washing step with water. After the red staining was documented, the second staining reaction with NBT/BCIP was carried out as above described. The double-staining was documented and thereafter the red, ethanol-soluble substrate removed and the samples dehydrated.

Results

Identification of two Dickkopf related genes expressed along the body axis

To identify genes that are differentially expressed during regeneration and budding, we performed suppression subtractive hybridisation and generated subtracted cDNA libraries enriched for cDNAs differentially expressed in regenerating and budding tissue (data not shown). One of the subtracted cDNA libraries contained a sequence cluster, which had some similarity to HyDkk3, the previously described hydra Dickkopf gene (Fedders et al., 2004). The 312 base pairs (bp) sequence was completed by means of the EST database, and a full-length cDNA of 528 bp containing a 5′ UTR, a start codon at position 104, an open reading frame consisting of 95 amino acids, and a 3′ UTR ending with poly-A tail was obtained (see Fig. 1A; GenBank DQ127904). Hydrophobicity analysis revealed a 19-amino acid signal peptide at the N terminus indicating that the protein may be secreted into the extracellular space. We note that whereas all members of the Dickkopf family have two cysteine rich domains, this cDNA encodes a signal peptide and a single Dickkopf-like cysteine rich domain 2 (Figs. 1A, B). We termed this gene HyDkk1/2/4-C. To localize HyDkk1/2/4-C transcripts at the cellular level, we performed in situ hybridization. HyDkk1/2/4-C is expressed in endodermal gland cells in a graded pattern along the body column with high expressing level in the subtentacle region (Fig. 2A). In the hypostome and subhypostomal region, as well as in the foot region, HyDkk1/2/4-C expression cannot be detected. Analysis of polyps in various stages of budding demonstrates that HyDkk1/2/4-C transcripts can be detected from intermediate budding stages on when gland cells are present (Figs. 2B–E).

Blast searches (data not shown) indicated that in addition to HyDkk1/2/4-C there is a second gene in the SSH library with similar structural features. The corresponding full-length sequence was obtained using the hydra EST database. The full-length cDNA of 311 bp contains a 5′ UTR, an open reading frame consisting of 93 amino acids, and a 3′ UTR (Fig. 1A; GenBank DQ127903). Hydrophobicity analysis revealed a 20 amino acid signal peptide at the N terminus. Since the predicted protein has a cysteine-rich domain, is 50% identical in amino acid sequence to HyDkk1/2/4-C, and is 100% identical to one of the dickkopf related genes reported in the article by Guder et al. (2006), we termed this gene HyDkk1/2/4-A. The amino acid alignment using the cysteine rich domain 2 shows that HyDkk1/2/4-A and HyDkk1/2/4-C are closely related to Dkk proteins in hydra, chicken, and man (Fig. 1C).

Coexpression of HyDkk1/2/4-A and HyDkk1/2/4-C in gland cells in the body column

Both genes are expressed in endodermal gland cells throughout the gastric region and are absent in the hypostome and subhypostomal region, as well as in the foot region (Fig. 2 and Fig. 3). There are two interesting differences in the expression between HyDkk1/2/4-A and HyDkk1/2/4-C. First, HyDkk1/2/4-C is expressed as a gradient along the body axis (Fig. 2A, Fig. 3B) while HyDkk1/2/4-A is uniformly expressed throughout the gastric region (Fig. 3A). The apical border of expression of both HyDkk1/2/4-C and HyDkk1/2/4-A is strikingly sharp. In contrast, the basal border of HyDkk1/2/4-C expression is blurred suggesting that the closer gland cells come into the vicinity of the foot the less they express HyDkk1/2/4-C. Second, both genes differ in their responses to signals released from regenerating tissue. In animals (n = 22) undergoing head regeneration for 2 h and 6 h, no changes in the expression of HyDkk1/2/4-C could be observed (Figs. 2F, G). In contrast, and in detail shown in the study by Guder et al. (Fig. 4, 2006), HyDkk1/2/4-A is upregulated during head regeneration (data not shown).

Since HyDkk1/2/4-C has a striking spatial expression pattern in the form of a gradient, and since HyDkk1/2/4-A and HyDkk1/2/4-C are closely related genes expressed in endodermal gland cells, next we asked whether the same class of gland cells coexpresses both genes. To address this question, we carried out double- in situ hybridisation experiments. As shown in Fig. 3, in the apical gastric region the same subset of gland cells expresses both genes (Figs. 3D–F). In the basal body region, the gland cells express only HyDkk1/2/4-A and the graded expression of HyDkk1/2/4-C is not due to a graded distribution of gland cells per se but due to differential gene expression in a cell population which is uniformly distributed throughout the body column. This observation points to the presence of a graded positional signal controlling HyDkk1/2/4-C expression in gland cells.

HyDkk1/2/4-C expression is controlled by the positional value gradient and factors released from the foot

Since HyDkk1/2/4-C is expressed in gland cells of the upper gastric region, but not in gland cells near the budding zone or the foot, we reasoned that examining HyDkk1/2/4-C expression in polyps having altered levels of positional value along the body column may reveal whether HyDkk1/2/4-C is inhibited in response to positional values below a specific threshold. LiCl is a reagent known to affect axial patterning and the level of the gradient throughout the hydra body column (Hassel et al., 1993). Treatment of polyps with 0.5 mM LiCl decreases the level of positional value, causing polyps to generate ectopic feet in the body column (Hassel et al., 1993; Hassel and Bieller,
As shown in Fig. 4B, 14 days after beginning of treatment, in about 80% of the polyps (31/39), the expression of HyDkk1/2/4-C was reduced to a region close to the apical border of the original expression domain. In contrast to HyDkk1/2/4-C, treatment with 0.5 mM LiCl had no influence on the expression of HyDkk1/2/4-A (Figs. 4C, D). The experiment shows that the graded HyDkk1/2/4-C expression along the body column is affected by the positional value gradient.
To demonstrate that the foot is directly involved in regulation of HyDkk1/2/4-C expression, we performed two series of grafting experiments, axial and lateral grafting. First, we bisected polyps directly beneath the tentacle zone, removed the foot, and grafted the foot to the apical end of the body column \((n = 23)\). As shown in Figs. 4G–I, due to the presence of the ectopic foot, expression of HyDkk1/2/4-C in gland cells is restricted to a region in the middle of the animal and absent at both ends of the graft in 86% of the grafts. A similar observation can be made in “lateral” grafts. When a foot is attached to the gastric region by “lateral” transplantation as shown in Figs. 4E–F, HyDkk1/2/4-C expression disappears in the vicinity of the ectopic foot in 75% \((6/8)\) of the grafts (Fig. 4E). Both transplantation experiments demonstrate the potential of the foot to repress HyDkk1/2/4-C expression.

HyDkk1/2/4-C expression is transiently upregulated in tissue with high positional value

Although absent in head tissue, most gland cells expressing HyDkk1/2/4-C are close to the apical border near the head (Fig. 2A). Do signals from the head tissue positively influence HyDkk1/2/4-C expression? Prolonged treatment of animals with high concentration of LiCl raises the gradient of positional value along the body column and causes the formation of ectopic heads and individual ectopic tentacles (Hassel and Bieller, 1996). As shown in Fig. 5, two days after start of LiCl treatment ectopic head structures began to emerge in the middle of the animals \((n \geq 79)\). In most cases \((38\) out of \(42, 90\%)\) HyDkk1/2/4-C expression is strongly upregulated near the emerging ectopic head (Fig. 5B). In a fully developed ectopic head (Fig. 5C), however, similar to the situation in a normal head, HyDkk1/2/4-C expression is inhibited in 25 out of 37 samples \((67\%)\). Thus, under these experimental conditions HyDkk1/2/4-C appears to be upregulated in tissue determined for head formation but not in mature heads. In contrast to HyDkk1/2/4-C, raising the positional value level does not increase but rather decreases the expression of HyDkk1/2/4-A transiently in 26 out of 37 samples (Fig. 5E). These experiments demonstrate that expression of HyDkk1/2/4-C and HyDkk1/2/4-A is controlled by factors related to axial patterning.

Activation of Wnt signalling pathway inhibits expression of HyDkk1/2/4-C

Wnt signalling involves the interaction of Wnt with the Frizzled receptor and the subsequent inhibition of glycogen synthase kinase 3-beta (GSK-3β), leading, through stabilisation of β-catenin, to transcriptional activation of target genes (Figs. 6A, B). In Hydra, GSK-3β can be inhibited effectively by alsterpaullone (Broun et al., 2005). To determine whether the Wnt signalling cascade is involved in transcriptional control of HyDkk1/2/4-C, we, therefore, treated polyps with alsterpaullone. As expected, after 6 days of treatment, nearly all animals \((n \geq 80)\) developed numerous ectopic tentacles (Fig. 6E). Strikingly, in situ hybridization revealed (Figs. 6E–F) that in these animals there is a drastic downregulation of HyDkk1/2/4-C expression. We note that in these animals ectopic tentacles start to appear first in the basal part of body region where gland cells do not express HyDkk1/2/4-C (see Fig. 6E). Since Wnt activation by alsterpaullone treatment leads to repression of HyDkk1/2/4-C expression in the gastric region, activation of the Wnt signalling cascade appears to antagonize HyDkk1/2/4-C expression.

To examine whether the gastric region of alsterpaullone treated polyps indeed has obtained “head-like” quality, we analyzed the expression pattern of Hym-301 in alsterpaullone treated polyps \((n \geq 40)\). Normally Hym-301 is expressed in the tentacle zone and hypostome of H. magnipapillata (Takahashi et al., 2005). Hym-301 is not expressed in the most apical tip of the hypostome or the tip of the bud protrusion where the HyWnt transcripts are localized (Hobmayer et al., 2000; Broun et al., 2005). As shown in Fig. 6G–L, after treatment with alsterpaullone Hym-301 becomes expressed throughout the body column. Thus, as expected Wnt activation transfers head-like characteristics to the gastric column. As also shown in Fig. 6H, treatment with alsterpaullone for 6 h caused a drastic regression of Hym-301 transcripts from the hypostome.
expression domain. Interestingly, Broun et al. (2005) have reported previously that treatment of hydra with alsterpaullone causes an expansion of the HyWnt domain from the apical tip of the hypostome to cover a larger area of the hypostome. Thus, the data shown in Figs. 6C–F indicate that activation of the Wnt signalling cascade appears to antagonize HyDkk1/2/4-C expression.

In vertebrates, Dickkopf proteins are antagonists of Wnt signalling. To examine whether in hydra HyDkk1/2/4-C also antagonizes Wnt signalling, we generated tissue which had the number of HyDkk1/2/4-C-expressing gland cells reduced by about 75% (see Supplementary Fig. 1) compared to controls by using H. magnipapillata mutant strain sf1 polyps. Fig. 6N indicates that similar to the effects of alsterpaullone on Wnt expression reported by Broun et al. (2005) – in tissue with a reduced number of HyDkk1/2/4-C-expressing cells, the HyWnt expression domain is expanded. Moreover, the depletion of HyDkk1/2/4-C causes a drastic regression of both the Hym301 and knl expression domains in the hypostome (Figs. 6P and R). Normally, in control polyps (Figs. 6O; see also Endl et al., 1999; Takahashi et al., 2005) these effector genes for head formation are expressed throughout the hypostome but not in the most apical tip of the hypostome where HyWnt transcripts are localized. Thus, removal of HyDkk1/2/4-C-expressing cells appears to have the same effects as activation of the Wnt signalling cascade by alsterpaullone treatment. Based on these data, we conclude that similar to Dickkopf in higher animals, one of the functions of HyDkk1/2/4-C may be to antagonize Wnt signalling.

Discussion

Regeneration and mechanisms controlling axis formation in hydra are both complex and dynamic. They require positional information, involve self-regulation, and lead to the establishment of polarity and position dependent differentiation. Here, we provide evidence that Dickkopf related proteins are elements of the positional value system in hydra.

Dickkopf related genes in hydra

Our screen for transcripts essential for tissue remodelling/regeneration in hydra resulted in the identification of two genes with similarity to members of the Dickkopf family. In both genes, HyDkk1/2/4-A and HyDkk1/2/4-A, only a Dickkopf-like cysteine rich domain 2 is present. Both HyDkk1/2/4-A and HyDkk1/2/4-C are structurally very similar (Fig. 1) and are produced in endodermal gland cells. Although this cell type is uniformly distributed along the
both human degenerative diseases and cancer (Logan and Nusse, 2004). Dickkopf proteins have been identified as inhibitors of Wnt signalling by binding to the LRP5/LRP6 component of the Wnt receptor complex (Kawano and Kypta, 2003). Can this function be traced back to the origin of metazoan evolution? Two lines of evidence presented here show that HyDkk1/2/4-C in hydra is involved in position dependent cell-signalling along the body axis. First, along the oral–aboral axis HyDkk1/2/4-C is expressed in a gradient-like pattern (Fig. 2A and Fig. 3). Since expression of the gene is continuously down-regulated in cells which leave the gastric column and enter head or foot tissue, expression of HyDkk1/2/4-C is connected to, or regulated by the positional value gradient. Second, treatments with reagents such as LiCl or alsterpaullone as well as transplantation experiments demonstrate that expression of HyDkk1/2/4-C is dependent on the positional value gradient. Interestingly, although both LiCl and alsterpaullone treatment increase the positional value, their influence on the expression of HyDkk1/2/4-C is different: in alsterpaullone treated polyps (see Fig. 6) HyDkk1/2/4-C expression is repressed throughout the whole gastric column, whereas in LiCl treated animals HyDkk1/2/4-C expression is activated in regions where ectopic heads will be formed (Fig. 5B). We assume that the different influence on the expression of HyDkk1/2/4-C reflects different functions of the two compounds. While alsterpaullone is capable to transform the whole gastric region into head like tissue, LiCl is not only able to transform the gastric tissue into head like tissue but in addition can induce ectopic heads. In Fig. 5C, we show that in LiCl treated polyps an ectopic head is formed right next to HyDkk1/2/4-C-expressing cells. The newly formed head contains no HyDkk1/2/4-C-expressing cells—similar to gastric tissue treated with alsterpaullone (see Fig. 6F). Thus, although both alsterpaullone as well as LiCl increase the positional value, they seem to function in a different way.

Reducing the number of HyDkk1/2/4-C-expressing cells leads to an increase in the expression domain of Wnt in the hypostome (Fig. 6N). Enlargement of the Wnt expression domain is correlated with disappearance of ks1 and Hym301 transcripts from the upper part of the hypostome (Figs. 6P and R) indicating that both genes may be controlled by the Wnt pathway. Interestingly, a recent report by Broun et al. (2005) shows that blocking the activity of GSK-3β by alsterpaullone also leads to an expanded HyWnt expression domain covering a large area of the hypostome. Thus, reducing the number of HyDkk1/2/4-C-expressing cells seems to have the same effect as activation of Wnt. This may indicate that—similar to Dickkopf proteins in vertebrates—HyDkk1/2/4-C in hydra may act as extracellular inhibitor of the Wnt pathway. In this context it is interesting to note that in mammalian Dkk-1 and Dkk-2 the Wnt inhibiting function is localized in the second cysteine rich domain (Li et al., 2002; Kawano and Kypta, 2003). Since in hydra activation of HyWnt by blocking the activity of GSK-3β drastically represses HyDkk1/2/4-C expression (Fig. 6), not only HyDkk1/2/4-C appears to interact negatively with Wnt but
Wnt itself seems to be involved in control of HyDkk1/2/4-C expression. Based on the observations we propose that HyDkk1/2/4-C protein in hydra confines Wnt activation to the apical tip of the hypostome or the evaginating bud. Moreover, since buds only develop in a body region where the HyDkk1/2/4-C level is low or absent (Fig. 2B), HyDkk1/2/4-C may act as repressor of bud formation in the upper part of the body column.

Acknowledgments

We would like to thank Dr. Thomas Holstein (Heidelberg) and Dr. Corina Guder (Darmstadt) for sharing unpublished data on Dickkopf-related genes in hydra; Nicole Pinnow for technical assistance; and all members of the Bosch laboratory for useful discussion. This work was supported, in part, by grants from the Deutsche Forschungsgemeinschaft (to TCGB).
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ydbio.2006.04.003.

References

Hassel, M., Bieller, A., 1996. Stepwise transfer from high to low lithium concentrations increases the head-forming potential in hydra vulgaris and possibly activates the PI cycle. Dev. Biol. 177 (2), 439–448.

