-

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Elsevier - Publisher Connector

JOURNAL OF COMBINATORIAL THEORY, Series A 52, 2043 (1989)

The Oberwolfach Problem and
Factors of Uniform Odd Length Cycles

BRIAN ALSPACH*

Department of Mathematics and Statistics,
Simon Fraser University, Burnaby, British Columbia, Canada

P. J. SCHELLENBERG*

Department of Combinatorics and Optimization
University of Waterloo, Waterloo, Ontario, Canada

D. R. STINSON*

Department of Computer Science
University of Manitoba, Winnipeg, Manitoba, Canada

AND

DAvID WAGNER'

Department of Mathematics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Communicated by the Managing Editors
Received July 22, 1986

Let m>3 be an odd integer. In this paper it is shown that if n>m is odd and
m divides n, then the edge-set of the complete graph K, can be partitioned into
2-factors each of which is comprised of m-cycles only. Similarly, if n is an even
multiple of m, n#4m and n> 6, then the edge-set of the complete graph on n
vertices with a 1-factor removed can also be partitioned into 2-factors each of which
is comprised of m-cycles.  © 1989 Academic Press, Inc.

* Partial support provided by the Natural Sciences and Engineering Research Council of
Canada under Grants A-4792, A-8509, and U-0217, respectively.

T Supported by a Summer Undergraduate Scholarship from the Natural Sciences and
Engineering Research Council of Canada at Simon Fraser University when this research was
carried out.

20

0097-3165/89 $3.00

Copyright @) 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82520859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

THE OBERWOLFACH PROBLEM 21
1. INTRODUCTION AND TERMINOLOGY

The complete graph with n vertices will be denoted K, and the complete
digraph with n vertices will be denoted DK,,. If G is a graph, then |G| will
denote the number of vertices in G. The notation V(G) will be used for the
vertex-set of G.

If H is a subgraph of G, then G\H denotes the subgraph of G that is
obtained by deleting V(H) from V(G) and all edges incident with any
vertex of H.

An m-cycle in a graph G is a sequence of m distinct vertices u,, u,, ..., 4,
such that u, is adjacent to u,, ; and u,, is adjacent to u,. Edges are denoted
by juxtaposition so that an m-cycle is denoted by w,u,---u,u,. An
m-dicycle in a digraph G is a sequence of m distinct vertices uy, u,, ..., 4,
so that there is an arc from u; to u;, ; and from u,, to u;. An m-dicycle will
be denoted u,u, - -u,,u, as well. The notation C,, will be used for the cycle
of length m, that is, with m edges and m vertices. Often H; will be used as
a notation for a Hamilton cycle when it is desirable to index the Hamilton
cycles for listing purposes.

A spanning subgraph H of G is one for which V(H)= V(G). A 2-factor
of G is a spanning subgraph that is regular of degree 2. Consequently, every
component of a 2-factor is a cycle. A 2-factorization of a graph G is a
partition of the edge-set E(G) into 2-factors. Thus, G must be regular
of even degree. An {r,r,, .., r,} resolvable cycle decomposition, denoted
{ry, rs, .., r,}-RCD, is a 2-factorization of G so that every cycle that occurs
in any of the 2-factors has length in {r, r,, .., r,}.

The Oberwolfach problem was first formulated by Ringel and first
mentioned in [3]. It asks: Given integers r,,r,, .., , all at least 3 and
>, r,=n odd, is it possible to 2-factorize K, so that each 2-factor con-
sists of cycles of lengths r,, r,, ..., r,? When it comes to cycle decomposition
problems, the complete graph on an even number » of vertices with a
I-factor removed, denoted K, — 1, plays the same role as K, ,,. Conse-
quently, the Oberwolfach problem now usually includes the obvious
analogous question for even n. The notation OP(r{'r4?---r?) will be used
for the Oberwolfach problem when there are required to be a; cycles of
length r; for i=1,2,..,t Of course, n=>!_, a,r, and the parity of n
determines whether K, or K, — I is under discussion.

This paper concentrates on the case when all cycles have the same
length. The notation of [4] will be employed wherein D(m)=
{mk e N: OP(m*) has a solution} was used and N denotes the set of
positive integers.

There are some graph notations that must be presented. If G is a graph,
then dG will denote the graph with 4 components each of which is
isomorphic to G. If G and H are two graphs so that V(G)= V(H) but they
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have no edges in common, then G@ H denotes the graph with the same
vertex-set and E(G @ H)= E(G)u E(H). Finally, G denotes the comple-
ment of G and K,=G®G.

The wreath product G} H is obtained by replacing each vertex of G with
a copy of H and joining two vertices in different copies of H with an edge
if and only if the corresponding vertices of G are adjacent. That is, for
V(G)={w;:i=1,2,., |G|} and V(H)={v;:i=1,2,..,|H|}, V(G}H)=
{u;:i=1,2,.,|Gl and j=1,2,.., |H|} and u;u, € E(GQ H) if and only if
either i=r and v,v,€ E(H) or i #r and w,w, € E(G).

If G and H are two graphs, then GuUH is the graph satisfying
VIGUH)=V(G)u V(H) and E(Gu H)=E(G)u E(H). In almost all
occurrences of G u H throughout this paper, V(G) and V(H) are disjoint.

If G and H are two graphs, then the direct product G x H satisfies
V(GxH)Y=V(G)x V(H) and wu;u, eE(GxH) if and only if both
w;w, € E(G) and v,v, e E(H).

Let S< {1, 2, .., n} satisfy the property that i€ S if and only if n— i€ S.
The circulant graph Circ(n; S) has vertex-set {ug, #;,..,u,_,} and u;
adjacent to u; if and only if j—i is in S modulo n. The length of an edge
u,;u; is the minimum of the two elements of S congruent to j—i and i—j
modulo #.

Let V(K,)= {u,, u,, .., u,} and H be a subgraph of K,. If ¢ is a permuta-
tion of {1,2,..,n}, then o(H) denotes the subgraph of K, with vertex-set
o(V(H)) and edge-set {o(u;) 6(u;): w,u;€ E(H)}. In this paper, H is always
a spanning subgraph so that H and o(H) have the same vertex-set.

Early papers on the Oberwoifach problem are [4, 6, 7]. A more recent
paper [5] contains a good history of the earlier work together with
improvements. However, most of the results have now been superseded by
the present paper and [1]. In the latter paper, it is shown that D(m)=mN
for all even m > 4. In the present paper, it is shown that D(m) 2 mN\ {4m}
for all m = 5. Ray-Chaudhuri and Wilson have shown [9] that there exists
a Kirkman triple system of order 3m for every odd integer m. It is also
known [10] that there is a nearly Kirkman triple system of order 3m for
every even integer m > 4. Nearly Kirkman triple systems of orders 6 and 12
do not exist. Thus, D(3)=3N\{6, 12}.

2. MAIN RESULT AND OUTLINE OF ITS PROOF

The main result of this paper, Theorem 1 below, essentially settles the
Oberwolfach problem for 2-factors all of whose cycles have the same length
in that only one small case is left unsettled.

THEOREM 1. For m odd and m>=5, D(m)=2mN\{4m}. In addition,
D(3)=3N\{6, 121.
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The proof of Theorem 1 is long. An outline of the proof is now presented
in order to consolidate the details of the remaining sections.

The first essential step is to break K,, or K,,—1I into d blocks of
cardinality m and to work with the resulting subgraphs. That is, write

Kdm = de @ (Kdz Km)

when d is odd and when d is even, write
d _
Kdm_1=§ (Ko — D@ ((K,— D0 K,,)

Since dK,, and (d/2)(K,,, —I) can both easily be decomposed into the
desired 2-factors, the proof concentrates on K, K,, and (K,—I)} K,,,.
If G has a 2-factorization F @ F,® --- @ F,, then

GUK,=(FK,)®(F1K,)® - ®(F,1K,).

Furthermore, if F; is a union of cycles C,, C,,, .., C,, then

Fi2Km=(C112Km)U(CiZZKm)U Tt U(Ci,zfm)'

In Sections 4 and 5 it is shown that K, has a {3, 5}-RCD when d is odd
and d¢{1,7,11}, and K,—1I has a {3,5}-RCD when d is even and
dé¢ {2,4,6,12}. In Section 3, it is shown that for k an odd integer, C, ) K,
can be decomposed into 2-factors made up entirely of p-cycles whenever
p=k is a prime. In Section 6, these results are used to show that K, K,
or (K,—I){ K, can be decomposed into 2-factors each of which is
composed of p-cycles. The proof of Theorem 1 is completed by directly
verifying it for the few small values of dm not covered by the previous
arguments.

3. A DirRecTt CONSTRUCTION

DEerINITION.  Consider the graph C,) K, where t>s5s>3 and both s
and ¢ are odd. Let H=u,u;---u,u; be a Hamilton dicycle of DK,. The
i-projection of H onto C,QK, is the rcycle wu,;u;,, Uiss ;5 "
Uiy s 1, jys Mivt s, U where the first subscript is
reduced modulo s. ‘

ijses Wi 1, Wiy

LemMma 2. If H=u,u,, ---w,u, is a Hamilton dicycle of DK,, then the

i-projections of H onto C.}K,, i=1,2,..,s, yield a 2-factor composed of s
cycles all of length t. Furthermore, if the edge u; ;u;, , , appears in one of the
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t-cycles of the 2-factor, then the edge u, u, ., for k=1,2, .., s appears in
the 2-factor.

Proof. The lemma follows immediately from the definition of i-projec-
tion of H onto C.) K,. |

The following lemma is an immediate consequence of the definitions of
direct product, wreath product, and circulant graph but it is useful to
explicitly state it.

LEMMA 3. Let s and t be odd with t>5 and s>3. Then C.} K,
(C, x Cire(t; {3,4,.,t—3})) & (C,xCirc(t; {1,2,t—2,1—1}))
{ugu; oy ;0i=1,2, ., 5 and 1 <j<t}.

®

We now wish to show that C, K, can be decomposed into 2-factors all
of whose cycles have length ¢ when s<t and both are odd. The idea is
to prove it separately for the two subgraphs arising from Lemma 3. The
following lemma provides a tool for handling one of the subgraphs.

It is worth pointing out that the following two results, Lemma 4 and
Theorem'S, are true for all odd ¢ > 7 and odd ¢t = s, respectively. However,
all that is needed later in this paper for the main result is for ¢ to be an odd
prime. Since the proof of Lemma 4 without the restriction that ¢ is a prime
is technically much more involved, it is omitted here. Similarly, Theorem 6
is true if ¢ is not restricted to being a prime.

LEMMA 4. The circulant graph Circ(t; {3, 4, .., t—3}) has a Hamilton
decomposition when t 27 and t is a prime.

Proof. The proof is immediate because all the edges of the same length
form a Hamilton cycle. |}

THEOREM 5. Let s be an odd integer and t be a prime so that 3<s<1t.
Then C ) K, has a 2-factorization so that each 2-factor is composed of s
cycles of length t. Moreover, the number of 2-factors is t which is independent

of s.

Proof. By Lemma 3, C,} K, is the edge-disjoint union of two graphs
one of which is C;xCirc(t; {3,4,..,1—3}). The latter graph has a
Hamilton decomposition for 1> 7. For =15, there is only one graph in the
edge-disjoint union of Lemma 3, namely, (C,xCirc(s; {1,2,3,4}))®
{uju; 4y ;2 1<i<s and 1<,;<5} which will be treated shortly. When
t =3, s =3 must hold and the result is true in this case by simply consider-
ing a Kirkman triple system on nine elements.

For 127 consider a Hamilton decomposition of Circ(t; {3, 4, ..., t —3}).
For a given Hamilton cycle H, give it an arbitrary orientation producing
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a Hamilton dicycle H,. The i-projections of H, onto C,) K, fori=1,2, ... s
yield a 2-factor of C,) K, of the desired kind. Then give H, the opposite
orientation producing another Hamilton dicycle H,. Again use Lemma 2 to
show that the i-projections of H, onto C,} K, produce an appropriate
2-factor. Doing this for each Hamilton cycle in the decomposition of
Circ(t; {3,4,..,t—3}) gives a 2-factorization of C,xCirc(s;{3,4, ..,
t—3}) into the appropriate 2-factors.

Let G denote the graph (C,xCirc(s; {1,2,1—2,t—1}))® {uyu,, . ;:
i=1,2,.,s and 1< <t}. It remains to find a decomposition of G into
2-factors each of which is composed of s cycles of length ¢. Let the vertices
have the coordinates (i,j), 0<i<s—1 and 0<j<r—1. Define the
following sets of edges for each i, 0 <i<s:

4= (G DE+1,j—1) if 0<j<sors<j<tr—1andjisodd
R (ES IS if s<j<t—1andisodd
B (Lj—1)i+1,)) if 0<j<sors<j<t—1land isodd
TG+ D+ ) if s<j<t—1andisodd
G Hi+1,j) if O0<j<sors<j<t—1and isodd
TGN+, 4 2) if s<j<t—1landjisodd
E— GJj+DE+1,j—-1) if 0<j<sors<j<t—1andjisodd
a (l]+1)l+1,]+1) if s<j<t—1andjisodd
(Lj—D+1,j+1) if 0<j<sors<j<t—1andjisodd
TG 2N+, ) if s<j<t—1and jisodd.

The sets of edges 4,, B;, D,, E,, F, for i=0, 1, .., s — 1 arc pairwise disjoint
and partition the edges of G. Now let

Ri=A,uD VE,uD;OE,L ---UD, ,UE, |,
R,=DyVE, D, VE;uD,u ---uD, UE, VA, |,
Ri=E, A, VA --- VA, _3UA, 0D, |,
R,=ByuB,u---uUB,_,,and
Ri=F,uF,u---UF, |

Each of the subgraphs R,, R,, R;, R,, and R, is a 2-factor made up of
s cycles of length ¢ (an example is shown in Fig. 1 with s=5 and 1=9).
This completes the proof of Theorem 5. |

THEOREM 6. If s is an odd integer and t is a prime so that t=s, then
ste D(1).
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FIGURE 1

Proof. Write K, =K ) K,®sK,. Each K, has a Hamilton decomposi-
tion so that sK, can be easily decomposed into (z—1)/2 2-factors of
the appropriate type. Next, K, has a Hamilton decomposition
H, H,, .., f_[(:~l)/2 and KK, =H,!K,®H,!K.® - ®H(s~l)/22i€‘
Each H;} K, can be decomposed into the appropriate 2-factors by
Theorem 5 and the result follows. |

THEOREM 7. If st is odd and st € D(t), then stie D(tl) for every positive
integer 1.

Proof. Since st € D(t), there is a 2-factorization of K,,, say F,, F5, .., F.,
in which every cycle has length r.
If I is odd, then

Ks,/=Kﬂ2K1=F12K/€r)FzU?1® @FJKI
and, if / is even, then

Ksrl_lzKuZ(K/_I)zFlZ(KI_I)@F22K1® @F,ZI?I-
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Each component of F\ ) K,, F,\ 0 (K,—I), F;} K,, i=2,3, ..., r is isomorphic
to C,l K, C,0 (K,— 1), C,0 K,, respectively.

Now Baranyai and Szasz have shown [2] that if G and H can be decom-
posed into Hamilton cycles, then so can G H. Hence, each of C,} K,
C.U(K,— 1), and C,) K, can be decomposed into Hamilton cycles, which
implies st/e D(tl). 1

4. A REecURSIVE CONSTRUCTION FOR ODD n

The major result of this section is the following and its proof is
developed in the section. A definition is needed for the statement.

Let J be a set of positive integers. An (n, J)-resolvable cycle design
(denoted (n, J)-RCD) is a 2-factorization of K, n odd, or K, — I, n even,
such that the length of any cycle in the 2-factorization is from J.

THEOREM 8. For n odd there exists an (n, {3,5})-RCD if and only if
n#7 or 11

Let G be a complete multipartite graph and let J be a set of positive
integers. A(G, J)-cycle frame is an edge decomposition of G, say F =
{F,, F,, .., F,}, such that

(1) every F,is a 2-factor of G\P for some part P of the multiparti-
tion of G, and

(2) for every cycle CeF;, i=1,2,..,r1, |Clel.

From this definition, it follows that r=|G|/2 and that for each part P of
G, |P|/2 of the F/s are 2-factors of G\ P.

Suppose % is an (n, J)-RCD and let H be a subgraph X, or K,—1
(depending on the parity of ¢) of K, or K,,— I. If # restricted to H induces
a (¢, J)-RCD on H, then this (¢, J)-RCD is called a subdesign of # and is
designated as a sub-(z, J)-RCD.

Clearly there is no (7, {3,5})-RCD. In [8] it is shown that the
Oberwolfach problem OP(325) has no solution. This implies there is no
(11, {3, 5})-RCD. In the remainder of this section it will be shown that
(n, {3,5})-RCDs exist for all other odd n>3.

Note that an (n, {3, 5})-RCD & has a sub-(3, {3, 5})-RCD if and only if
there is a 3-cycle in some 2-factor of #. It has a sub-(5, {3, 5})-RCD if and
only if there are two 5-cycles of the form u,u,usu,usu, and u u usu,u u,
in the 2-factors of #. Also, any vertex gives rise to a sub-(1, {3, 5})-RCD.

Resolvable cycle designs are constructed by first constructing cycle
frames and then “filling in holes.” The main recursive construction for cycle
frames follows the next collection of definitions.
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A group divisible design is a triple (X, 4, «/), where

(1) X is a set of points,

(2) % is a class of nonempty subsets of X (called groups) which parti-
tion X,

(3) o is a class of subsets of X (called blocks), each containing two
or more points,

(4) no block meets a group in more than one point, and

(5) each pair of points not contained in a group is contained in
precisely one block.

A transversal design, or TD(1, n), is a group divisible design with tn
points, 7 groups of # points each and such that every block has cardinality
t. A resolvable transversal design, or RTD(t, n), is a TD(¢, n) where the
blocks can be partitioned into parallel classes.

A group divisible design can be thought of as an edge partition of a
complete multipartite graph into complete subgraphs. A TD(¢, n) can be
thought of as an edge partition of K, K, into K,’s and an RTD(¢, ) as an
edge partition of K, K, into subgraphs isomorphic to nkK,.

Construction 1 (fundamental cycle frame construction). Let (X, ¥, /)
be a group divisible design, let w: X - N (w is called a weighting), and let
J be a set of positive integers. For every block 4 € o, let G(A) be the com-
plete multipartite graph with parts {x} x {1,2, .., w(x)}, x€ A. Suppose
there is a (G(A4), J)-cycle frame for every 4 € o/. Then there is a (G(x), J)-
cycle frame, where G(x) is a complete multipartite graph having parts
{(x, i) 1gigsw(x), xeG}, Ge¥.

A multipartite graph (a cycle frame) has type ¢{'¢% ... if there are a, parts
of cardinality ¢,, i=1, 2, .... The next construction prov1des a means of
producing RCDs given certain cycle frames.

Construction 2 (filling in holes). Suppose there exists a (G, J)-cycle
frame of type 19'--- ¢y and let w>= 1 be odd.

(1) Suppose that there exists a (¢;+w, J)-RCD which contains a
sub-(w, J)-RCD for i=1,2, ..,/ Then there is a (3/_, t,a,+w, J)-RCD
which contains a sub-(w, J)-RCD.

(2) Suppose that a,=1, there exists a (1,+w,J)-RCD, and for

1<i<I—1, there is a (¢,+ w, J)-RCD which contains a sub-(w, J)-RCD.
Then there is a (3/_, t,a;+ w, J)-RCD.

There are two useful cycle frames for the following recursive construc-
tions.
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LEMMA 9. The cycle frames (K 5,4, {3}) and (K;35.2.4, {3,5}) both
exist.

Proof. A (K12, {3})-cycle frame is obtained by deleting a point from
a Kirkman triple system on nine points. A (K, 55,4, {3, 5})-cycle frame is
presented in Fig.2. |

CorOLLARY 10. Suppose there exists a TD(5,m), a 2m+1, {3,5})-
RCD and a (41+1, {3,5})-RCD for some O0<t<m. Then there exists an
(8m+4t+ 1, {3, 5})-RCD which contains a sub-(3, {3, 5})-RCD.

Proof. Delete m — t points from one group G of a TD(5, m). Give every
point remaining in G weight 4 and all other points weight 2. Now apply
Construction 1 using the frames of types 2% and 2*4' in Lemma9. An
(8m + 41, {3, 5})-cycle frame of type 2m*4t' is obtained.

Now apply part (1) of Construction 2, with w=1, to produce an
(8m+4r+1, {3,5})-RCD. It contains a sub-(3, {3, 5})-RCD because the
input frames for the construction each contained a 3-cycle. |

COROLLARY 11. If, for some Q0<t<m, there exists a TD(5 m), a
(2m+3, {3,5)})-RCD with a sub-(3, {3, 5})-RCD, and a (4t+3, {3,5})-
RCD, then there exists an (8m+4t+3, {3,5})-RCD which contains a
sub-(3, {3, 5})-RCD.

Proof. As in the proof of Corollary 10, construct an (8m+4t, {3,5})-
cycle frame of type 2m*4t'. Then apply part 2 of Construction2 with
w=3. |

A variety of useful small RCDs are now constructed by direct methods.

LeEmMMA 12. There is an (n, {3})-RCD for all n=3 (mod 6).

Proof. These are just Kirkman triple systems and were constructed by
Ray-Chaudhuri and Wilson [9]. |

Lemma 12 means that ne D(3) for all n=3 (mod 6).

Part Factors

Uy, Uy UsUsUgUelly Uz, Uyl U U7 U g U
Uy, Uy U UgUUstgly, UsUipUgUgly Us
Uz, Ug UpUsUjplaUgldy, UplUgla Uy Uy
Us, Ug UsUgU pUgltgUy, Uyl Uzl Uy
Ug, Uyp, Uyys Uy UUgUgUy, UpUqUzUgUsls,

UpUaUzlly, UgUslgUzUglly

FIGURE 2
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LEMMA 13. There is a (5, {5})-RCD.

Proof. The cycles u,u,usu usu, and u,ususu,u u, provide the desired
decomposition. |

LEMMA 14. There is a (13, {3, 5})-RCD.

Proof. Apply the permutation ¢ and ¢2 to the two 2-factors xu,w,x,
uoulvzz]ZOuo, UOUIWOZZWIDO and xZOsz, uovou]ZZWZUO, Wowlvlzluz"v(),
where

0 = (Uouy Uy)(VoV1 V) (Wow  W2)(202, 25),
to obtain six 2-factors that partition K;5. |

Notice that the above factorization does more than provide a
(13, {3,5})-RCD. In fact, it solves OP(3'5%). Also, Lemma 14 can be
proved from Corollary 10 by choosing m =1 and t=1. The above explicit
construction is needed later.

LEMMA 15. There is a (K4 444, {3})-cycle frame and hence there exists
a (17, {3, 5})-RCD.

Proof. The frame is easily described in Fig. 3. In each of the four
diagrams, let the four vertices correspond to the partition sets of K4 4 4.4.
Suppose that the vertices of each partition set are labelled 0, 1, 2, and 3.
Then each of the 3-dicycles in the diagrams of Fig. 3 give rise to four
3-cycles in Ky 4 4.4 in two different ways. If x, y, z are the labels on the arcs
of the 3-dicycle made up of the first (second) elements of each pair, then
let vertex i be adjacent to vertex i + x in the next partition set which in turn
is adjacent to i+ x + y in the next partition set which is then adjacent to
i+ x+ y+z=1iin the original parition set since x + y +z=0 (mod 4) and
all arithmetic is done modulo 4.

Construction 2 is used to deduce that there is a (17, {3, 5})-RCD. |

A (K, 444, {3})cycle frame is presented in [12] and can be gleaned
from Piotrowski’s work [8]. The above factorization also solves OP(345’).

[
, 0,1 s o 2,3 ,2 3.2 1
0, y
L J
e 2,3
0,2 0,3 1,3 2,1
®

FIGURE 3
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LEMMA 16. There is a (19, {3,5})-RCD that is also a solution to
OP(3%5?).
Proof. The 2-factor

XUgUg X, Uyl Dgly, Uy UyUgls, U U3V UsUsY s UjUsUgU Vst

under the permutation (ugu, -+ ug)(vov, - -+ vg) and its powers produce the
desired factorization. |

LemMa 17 (E. Seah [11]). There is a (23, {3, 5})-RCD that is also a
solution to OP(3°5").

Proof. The 2-factor

Ul VoV, V35U, UsUpllyolUs, DsligloUs, UaUeUg Vs,
u3u7vsu3, U4U7u91.74, xu5D9x
under the permutation (ugu, --- 1o )(vo0, - - o) and its powers produce the

desired factorization. |

LemMa 18 (E. Seah [11]). There is a (K4 4.4.4.4.4> 13, 5})-cycle frame
and hence a (25, {3, 5})-RCD.

Proof. Let the parts be {u;, ug, ;, v,y ;,¢:0<i<5}. The 2-regular sub-
graph usvgugD7VoUs, U Uy U Uy, U D2UsVy, UsllyoDy U3, Vallyly Uy, U3lgligls
under the permutation (ugu, ---u; )(vov, ---v,) and its powers produces
the cycle frame. The RCD comes from Construction 2. |

a (29, {3,5})-RCD that is also a solution to OP(3%5").

Proof. The cycle frame is presented in Fig. 4 and by Construction 2, the
remaining conclusions follows. To obtain the cycle frame from Fig. 4,
obtain seven digraphs from A by cyclically rotating it through each of its
seven positions. For each such digraph, place B around the three parts
corresponding to the vertices of the 3-dicycle a4, placing the column x in
place of vertex x and following B in the direction of the arrow above it.
This replaces a with four edge-disjoint 3-cycles. Do the same with C
around 3-dicycle . Then repeat with D and E. ||

LemMMa 20 (E. Seah [11]). There is a (31, {3, 5})-RCD that is also a
solution to OP(3%5%).

Proof. The 2-factor wugu vov v3ug, U U U,UsUgUy, UsUqlotUsU 3 Us,
UgUy3UgligV aUg, U3VaVU 1 VgV U3, Uyl gl 4 Uy, XUgiy; X under the permuta-

582a/52/1-3
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tion (uguy ---uy4)(vov, ---vy4) and its powers gives the appropriate 2-fac-
torization. ||

LEMMA 21. There is a (35, {3,5})-RCD that is also a solution to
OP(3'%51),

Proof. The 2-factor XugvgUolsX, U U V3u;, UsU,DaUs, Ugliy Uyllg,
UppUieUy Uy, UgllaVelly, UaligUigly, UzU 3V i6Us, UglisUsle, Vigly30 15010,
v, 0,050, under the permutation (ugu, ---uy6)(vov,---v6) and its powers
gives a desired 2-factorization. |

LEMMA 22. There exists a (43, {3, 5})-RCD.

Proof. This is an application of Construction 1. Add a point to the
groups of a TD(4, 5), producing a pairwise balanced design on 21 points
with blocks of sizes 4 and 6. Consider this pairwise balanced design to be
a group divisible design with groups of size 1 and give every point weight 2.

As input frames, the (K, ,,,, {3})-cycle frame constructed earlier and a
(K>, 2.2, 22,2, {5})-cycle frame obtained by deleting the vertex x from the
RCD of Lemma 14 are needed. A frame of type 2*' results. The desired
RCD is obtained by applying Conctruction 2. |

Lemma 23. There is a (47, {3,5})-RCD that is also a solution to
OP(3!45").

Proof. The 2-factor xugvgv,gUgX, U U203Uy, UsUsDaUz, UalqUiqUg,
UpaU7UysUys,  Up UgeUalyy,  UglaUpUg,  UisUypUglys,  UgllygUgalyg,
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UppUp Usllyy, UgligliUe, UglingUslly, Vigli9lUxnUig, UglielUz Vg, Ugl1alsUs
under the permutation (ugu, --- U (0o, ---Uy;) and its powers yields an
appropriate 2-factorization. |

LEMMA 24. There exists a (53, {3, 5})-RCD.

Proof. Obtain a cycle frame of type 10*8' as in the beginning of the
proof of Corollary 10 with m=35 and t=2. Now apply the first part of
Construction 2 with w=35. In order to do this, a (13, {3,5})-RCD is
needed and it is provided by Lemma 14. Additionally, a (15, {3, 5})-RCD
containing a sub-(5, {3, 5})-RCD is needed. Such a RCD is easy to find by
using Theorem 5 with s=3 and t=35. |

The groundwork has now been prepared for the proof of Theorem 8. In
preparation for a recursive attack, the necessary small resolvable cycle
designs have been constructed above. The results are summarized in the
following result.

LEMMA 25. For n odd, 3<n<53 and n+#5,7, 11, 37, 41, or 49, there
exists an (n, {3, 5})-RCD which contains a sub-(3, {3, 5})-RCD. Also, there
exists a (5, {5})-RCD and there exists neither a (7, {3,5})-RCD nor an
(11, {3,5))-RCD.

Proof. It suffices to observe that all the RCDs of Lemmas 12 through
24 contain at least one C; except for the (5, {5})-RCD. It is clear for those
constructed directly. For those constructed recursively, observe that there
is an input cycle frame containing a C;. ||

The proof of Theorem 8 is by induction on n with two cases dis-
tinguished: n=1 (mod 4) and n=3 (mod 4). It should be pointed out that
a TD(5, m) exists whenever there are three mutually orthogonal Latin
squares of order m. Their existence for the values of m required in this
proof are given in [ 13, 14]. First, let =1 (mod 4). It may be assumed that
n = 37, n+#53. Corollary 10 may be applied as long as m#2, 3, 5, 6, 10 and
0<t<m. Any n=37, n# 53, can be written as n=8m+ 47+ 1 where m
and ¢ satisfy the above conditions.

Now let n=3 (mod 4). It may be assumed that n > 55. Corollary 11 can
be applied for m#2, 3,4, 6, 10 and one of t=0 or 3 <t <m. The stated n
can be written as n =8m + 41+ 3 with m and ¢ as above.

The result now follows by induction.

5. A RECURSIVE CONSTRUCTION FOR EVEN n

The major result of this section is the analogue of Theorem 8 for n even,
It is now stated.
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THEOREM 26. If n is even, then there exists an (n, {3,5})-RCD if and
only if n#4,6, or 12.

It is easy to see that there can be no (n, {3,5})-RCD when n=4 or
n=6. A (12, {3, 5})-RCD would have to be a solution to OP(3*) which is
known to not exist [6]. An (n, {3,5})-RCD will be constructed for all
other even n.

A construction analogous to Construction 2 for filling in the holes of
cycle frames for even n is necessary. Any (n, J)-RCD has a trivial sub-
(2, J)-RCD when 7 is even. No (n, {3, 5})-RCD has a sub-(4, {3, 5})-RCD
since the subdesign does not exist. As a consequence, it is a useful concept
to allow RCDs to be missing subdesigns, since it does not matter if a
missing subdesign exists or not. The final definition is somewhat messy, but
is more easily understood if one keeps in mind that what one has is what
remains when a subdesign is removed.

Let G be the graph K, — (K, v ) where n and m are both even, and [/
is a 1-factor of K, which contains a 1-factor of the K,,. An (n, J)-RCD
missing a sub-(m, J)-RCD is a set # = {F,, .., F,,,_,} which satisfies:

(1) F,, F,,..,F,;,  are2-factors of G\V(K,,),

(2) F,p, ... F,, , are 2-factors of G,

(3) the Fs are mutually edge-disjoint and ()72, ! E(F,)= E(G), and
(4) for every cycle CeF,, i=1,2,..,n/2—1,|C|eJ.

Construction 3 (filling in holes). Suppose there exists a (G, J)-cycle
frame of type ¢{'--- %" (where the s are all even) and let w2 be even.
For 1<i</, suppose that there exists a (¢;,+ w, J)-RCD missing a sub-
(w, J)-RCD. Also, suppose that for some j, 1<j</ there exists a
(t;+w, J)-RCD. Then there exists a (3i_, t;a,+ w, J)-RCD.

There are again some special cases that must be done directly as they do
not follow from general results.

LemMa 27 (Huang, Kotzig, and Rosa [6]). There exist (n, {3,5})-
RCDs for n=38, 10, 14 and 16 that are also solutions for OP(3'5'), OP(5?),
OP(335'), and OP(3252), respectively.

LemMA 28. There is a (20, {3,5})-RCD that is also a solution to
OP(3°5").

Proof. The 2-factor xu,yvov,X, 0,03040,, U U305, U lsU4ls,
UqUglsUy, Ugl;V U under the permutation (ugu, ---ug)(vev, ---vg) and its
powers gives the appropriate 2-factorization of K,,— I The missing
1-factor is xy together with uw,v,, i=0,1,..,8. |
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LEmMA 29. There is a (22, {3,5})-RCD that is also a solution to
OP(345%).

Proof. The two 2-factors wusw,w,0,z,Us5, U0 W3Z3Z5U,, XlglyX,
YWoZo Vs UglaW Uy, Z 0202y and uyuyW Z30 Uy, Ugl3Zaliy Waly, XWoZ (X,
VU3V, Y, U3 WoWab,, UgZo2Z, Uy Under the permutation (ugu, - - - uy)(vov, -+ - v,)
(wow -+ wyl(zgz, ---24) and its powers provide the appropriate factoriza-
tion. The missing 1-factor is xy, u;v;, 1, w,z,,3, i=0, 1,2, 3,4, where the
subscripts are reduced modulo 5. |

LEMMA 30. There exists a (28, {3,5})-RCD that is also a solution to
OP(3%5?).

Proof. The 2-factor ugxv,v; yug, 005070, 0g0;, Ul 3Dty Ustiy V) alis,
UsligUsUs, UgUoU,Ug, UsUgbaUs, UgU,Dolg under the permutation
(uguy -+ up)(vgv, -+ vy,) and its powers yields the appropriate 2-factoriza-
tion of K,; — I. The missing 1-factor is xy, u,v;, where i=0,1, .., 12. |

LeMMA 31. There exists a (40, {3,5})-RCD that is also a solution to
OP(3'952).

Proof. The 2-factor u,xvq yugl;, UstzUgll gl Us, Ugtytally, UsV3U,ls,
UgV1U 16U, Ui3U7V ol 3, UiaU2Uolyg, Upglgl Uy, UjsUy Uy3lys, Ualelials,
U VsV gy, Uil sty under the permutation (ugwy ---ug) (Vo) ---Ug)
and its powers yields the appropriate 2-factorization. |

Various congruences classes of # in Theorem 26 can now be eliminated.

LemMA 32, Ifn=0 (mod 6), there exists an (n, {3, 5})-RCD if and only
ifn=18.

Proof. The non-existence of a (6, {3,5})-RCD and (12, {3,5})-RCD
was noted earlier. A solution to OP(3"?) for n> 18 is given in [10]. |

LemMa 33. If n=2 (mod 6), there is an (n, {3, 5})-RCD that is also a
solution to OP(3"—31351),

Proof. The values n =38, 14, and 20 were done above so that # > 26 may
be assumed. By the results in [12], there exists a cycle frame of type
6" 2% with cycles of length 3. Apply Construction3 with w=2 using
solutions to OP(3'5'). |

LEMMA 34. For n=10 (mod 24), there exists an (n, {3, 5})-RCD that is
also a solution to QP(3"~10/352),

Proof. The case n=10 was done earlier. For n > 34, start with a cycle-
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frame of type 8"~ 2% and cycles of length 3 which exists by [127]. Apply
Construction 3 with w =2 using solutions to OP(5%). [

A particular RCD missing a sub-(4, {3, 5})-RCD is necessary for the
next class of RCDs. It is constructed in the next lemma and used in the
lemma immediately following.

LeMMA 35. There exists a (16, {3, 5})-RCD missing a sub-(4, {3,5})-
RCD.

Proof. Let the vertex-set V= {x,x,, x3, X3} {u;:1<i<4 and
0<j<2} with W={x,x,,x3,x4}. The rest of the missing 1-factor
outside of W is {uuy and uyu, ;. ,:j=0,1,2}. The 2-factor of V\W is
Uil Uyplyos UggUayUaatag, Usols Usalhzg, UsolarUazUso- The remaining six
2-factors of ¥ are obtained by taking the two 2-factors x;uqusgtUsgUaoX;,
XoUpyUgplly U3y Xy, XUz UppXs,  XalgUpXs and X upoltyyUgos Xy,
XyUjols  Usolsy Xay X3Upallsz X3, XaUjplzX, under the powers of the
permutation (”vlounulz)(uzouzluzz)(uso Us U )(Uaottaraz). |1

LeMMA 36. For n=4 (mod 12), there is an (n, {3, 5})-RCD if and only
if nz16.

Proof. 1t was observed earlier that no such RCD exists when n=4 and
showed that they do exist when n=16, 28, and 40. Assume n>52. The
results of [12] yield a cycle frame of type 12""~*/'2 with cycles of
length 3. Apply Construction 3 with w=4, filling in (16, {3, 5})-RCDs
missing a sub-(4, {3, 5})-RCD and one (16, {3, 5})-RCD. |

LemMMA 37. For n=22 (mod 24), there exists an (n, {3, 5})-RCD.

Proof. Proceed by induction on n. The value n=22 was done in
Lemma 29. Do the following when n # 94. By the methods of the proof of
Corollary 10, construct a cycle frame of type 2m*12'. Since 1=3, m=
(n—14)/8=1 (mod 3), there is a TD(5, m). Now apply Construction 3
with w=2; filling in (2m+2, {3, 5})-RCDs and (14, {3, 5})-RCDs. (Note
that 2m+ 2 may be congruent to 22 modulo 24 so that the induction
hypothesis is required.)

The exceptional value n=94 is handled as above but with m=9 and
t=5. The RCDs filled in are (20, {3, 5})-RCDs and (22, {3, 5})-RCDs. |

All the possibilities have been covered and the proof of Theorem 26 is
complete.



THE OBERWOLFACH PROBLEM 37
6. PROOF OF THE MAIN RESULT

We now combine the results of Sections3 and 4 and exhibit three
particular 2-factorizations to establish the following resuit.

Lemma 38. If d is an odd integer and p is an odd prime, there is a
2-factorization of K, K, which consists entirely of p-cycles.

Proof. For p=23, removing any single resolution class of a Kirkman
triple system of order 3d yields a {3}-RCD of K,} K;. Since it is well
known [9] that such triple systems exist for every odd integer d, the result
holds for p=3.

Now consider prime p such that p>5. If d¢ {7, 11}, there exists a
(d, {3,5})-RCD by Theorem 8. Let Fy, F,, .., F,, where r=(d—1)/2, be
the 2-factors of this design. Hence,

KdzgszlBKp®F22Kp@ (—DFrzKp’

furthermore, each component of F;} Kp, i=1,2,..,r is isomorphic to
C;lK, or C)K,. Since p>5, Theorem 5 implies that each of these
graphs can be decomposed into p 2-factors consisting entirely of p-cycles.
Hence, there is a { p}-RCD of K, K,.

If de {7,11} and p is a prime satisfying p > d, then Theorem 6 implies
dp € D(p). Observe that in the proof of Theorem 6 it is shown that K, K,
has a { p}-RCD.

To complete the proof, we exhibit a 2-factorization of K, K, consisting
entirely of p-cycles for (d, p)= (7, 5), (11, 5), and (11, 7).

Designate the vertices of Ky5 by X X5, .y X5, Ug, Uyy s Uggs Vgs Ugs wes Uyg-
Obtain a graph isomorphic to K, K5 by removing the edges of the seven
vertex-disjoint K’s induced by the vertex sets

{xla x2’ X3, X4, xS}a
{u;:i=k (mod 3)} for k=0,1,2
and

{v,;i=k (mod 3)} for k=0,1,2.

The required fifteen 2-factors are obtained by taking the 2-factor

UpgljUgUgU plUg, Dol Ugl6V1p0g,
XiUxUsUy Uy Xy, XaUpU3V 14U X5,
X3UsV UV X3, XqUsUypVglhyy Xy,

XsUzV 3U1307 X5
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under the powers of the permutation

(toty -+~ U Wvgby -+ 014).

Designate the vertices of Kss by x, X5, ..., X5, Ug, Uy, ey Usgs Ugs Uy weey Vg
As in the above case, remove the edges of the eleven vertex-disjoint KJ's
induced by the vertex sets,

{xy, X3, X3, X4, X5},
{u;;i=k (mod 5)} for k=0,1,2,3,4,
and

{v;:i=k (mod 5)} for k=0,1,2,3,4,

to obtain a graph isomorphic to K, ? Ks. The required twenty-five
2-factors are obtained by taking the 2-factors

UgUszlUyp U 4U Uy, UgU3015V 140 Uy,

UylgUsUpaUyols, UaUgUsUzaUyols,

UisUaz Uyl Uys, Vy1sUa3Upa Uyl Uys,

UgU 3UgD 17X U, Vsl 3U7U 7 X206,

UgDy U eV 9 X3Ug, Vg1 V16U 9 XgqUsg,
UgU gl 1g Vg Xsliy

under the permutation
(otty -+ uq)(VoUy -~ V34)

and its powers.

Designate the vertices of Ko, by x,, Xa, ey X735 Ug, Uy s ey Usgs Vgs Uyy wer Ugge
Remove the edges of the eleven vertex-disjoint K,’s induced by the vertex
sets

{xla xZ, X3, X4, x5, x6’ x7}’

{u;:i=k (mod 5)} for k=0,1,2,3,4,

and
{v;:i=k (mod 5)} for k=0,1,2,3,4,

to obtain a graph isomorphic to K, ? K,. The required 2-factorization is
obtained by letting the permutation

(touy - U3 )(Vo0) - V34)
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and its powers act on the 2-factors

UpU UzqUyUzzUglUs Uy, DoV V340203304032 Vg,
Uzl UglUyolzUnzUsplds, V3009050 V35U3303003,
U0 3U1g 012U 19V X Uy 7, Up7U 308U 120 19Uy X017,
UzeUrglhysVa7 U6V X3Usg, Uylog U sU7V 16U X 40265
UpaUpoUpUsqUpsU7 X sUyg, VigUpUigUz4UasU7 X604,

UgUsls U3 UsUg XqUs.

This completes the proof. |

In a similar vein, we establish the following result for even integers d.

LemMA 39. If de2N\{4, 6} and p is a prime, p>5, then (K,,—I)ZI?,,
has a { p}-RCD.

Proof. By Theorem 26, there exists a (d, {3,5})-RCD for
de2N\{4,6,12}. Let F|, F,, .., F,, for r=(d—2)/2, be the 2-factors of
such a decomposition. Then

(Kd'—l)zl?szlzK_vp@FZZKp@ "'@Frzl?pa

where each component of F;? K, i=1,2, .., r, is isomorphic to C;2 K, or
Cs!K,. As in Lemma 38, Theorem 5 implies (K,—I)? K, has a { p}-RCD.

Next we consider (K, —I) K, for p a prime, p>7. Huang, Kotzig, and
Rosa have shown [6] that there is a (12, {5, 7})-RCD. Let its 2-factors be
F,,F,, .., Fs. Then

(KIZ—I)zlzszlZK'p@FZZK_'p@ "'@FSZKP’

where each component of F;? K,, i=1,2, .., 5, is isomorphic to Cs K, or
C;K,. Since p>7 then, as above, Theorem 5 implies that (K, — 1) K,
has a {p}-RCD.

Finally, we exhibit a {5}-RCD of (K, I) ! K;. Designate the vertices of
Koo bY X1, X3, ey X105 Ugs Uys ey Uags Ug, Ups .y U2g. TO obtain a graph
isomorphic to (K,,—1I)? K, remove the edges of the six vertex-disjoint
K,o’s induced by the vertex sets

{x;:i=1,2,..,10}
and

{u;,v;:i=k (mod 5)} for k=0,1,2,3,4.
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The required 2-factorization is obtained by letting the permutation

(tguy -~ Uz VoV - -+ U2g)

and its powers act on

Ul UzUgUyaUyg, VoV U3060 1400,

X Up3UyUysUpr Xy, XaU)30qU sUpp Xy,
X3UgUy7V16V12 X3, XqUgly7U16U12 X4,
XslUyUa3UsVyXs, XeUaoUa3UarUyXe,
XqUgUp U ol19 X7, XgUgly VyoUo Xy,
XgUsUy gl Vg X9, XyoUzaVUsUy1 V15X 10-

This completes the proof. |

Next, the result of Lemma 39 is extended to include d=6.

LemMa 40. If m is an odd integer, m>S5, then (K¢—I)VK,, has an
{m}-RCD.

Proof. Observe that (K¢ —I)? K,, is isomorphic to K, K,,,. Designate
the vertices of Kg,, BY Xg, X15 e Xapm— 15 Ugo Uis coes U 15 Vgs Ups vy Uy - 1-
To obtain a graph isomorphic to K5 K,,,, remove the edges of the vertex
disjoint K,,’s induced by the three vertex sets

X={x:i=0,1,.,2m—1},
U={u;:i=0,1,..,2m—1},
V={v;:i=0,1,.,2m—1}.

The required 2-factorization is obtained by letting the permutation
(Uothy - Uz WUy -+ Vo 1)

and its powers act on an initial 2-factor. All that remains is to describe an
appropriate initial 2-factor.

Casel. m=2r+1=1 (mod4), m>35. Let two m-cycles of the desired
initial 2-factor be

Us Vs 3UaV2p 4 U Uy XUy XU, 4 1 X2 U3,

UsUpp 3Vl 4" - VpUpy  X3Ug XU, 1 X503,
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The remaining four m-cycles include, as four consecutive vertices,

UiVop— 1 Us Vo — 2,y
ViU — 1U2U2pm — 25
uovmumflvm+4»

Uy 3V 3Up 44U 15

respectively. These four m-cycles are then completed by alternating vertices
of X with vertices of Uu V, with the requirement that each x,€ X must be
adjacent to one vertex of U and one of V.

For example, for m =13, an appropriate initial 2-factor is

UVa3UaUpplUsly UgVrg XU 3 X U7X U3,

Ualpa Ul Usly Uglipg X3 Vg XqlU7 X5U3,

U UxsUy Uy XeUg X709 XgllyoXgly X olUy,
DyUpsUaUag Xy Vg XypUg X 3010 X 14Uy X5V,

UV 13U a0 17 X 16U 14X 17014 X 18U 18X 19V 18 X0 Up,
UV eU17012 X1 U5 X0 U015 X 93U 19 X4 Vg XosU 6

Case2. m=2r+1=3(mod4), m>3. Let two m-cycles of the desired
initial 2-factor be
U Vg UV 5 U Vs 1 XUy,

UyUpp (V2o Upllpy X1 Uy
The remaining four m-cycles include, as adjacent vertices,

UgVyys vr+]ur+la ur+20r+3, and Dr+2ur+37

respectively. These four m-cycles are completed just as in Case 1.
As an example, an appropriate initial 2-factor for m=7 is

U U3UsUyp 3V Xolly,
Uily3UgUyp Uzl X Uy,
UgUg XUy X3UgXalUg,
DaqUg XsUgXgUg X704y,
UsUgXglUgXgUigX1oUs,
UsUeX 11 UgX 12U 09X 130s.

This completes the proof of Lemma 40. ||
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Before proceeding with the proof of Theorem 1, we recall the following
result of Huang, Kotzig, and Rosa.

THEOREM 41 [6]. For any integer m> 3, 2me D(m).

Now let us proceed with the proof of Theorem 1. For any odd integer d
and any odd prime p,

K,=dK,® K K,.

Since K, has a decomposition into Hamilton cycles, there is a { p}-RCD of
dK,. By Lemma 38, there is a { p}-RCD of K, K,. Hence, dpe D(p). By
Theorem 7, it follows that for any odd integers d and m, dm e D(m).

Now consider any even integer d and any odd prime p. Let r =d/2 and
consider the decomposition

Ky—1=r(K,,—~®(K,— 1) K,.

Observe that for p =3, this decomposition is not effective for decomposing
K,,— I into 2-factors of 3-cycles since it is known that K,— I cannot be
decomposed into 2-factors of 3-cycles. However, as mentioned in the
Introduction, it is known that D(3)=3N\{6, 12}. Hence, we consider
primes p = 5.

By Theorem 41, there is a { p}-RCD of K,,—I and, hence, a { p}-RCD
of r(K,, —I). Lemmas 39 and 40 imply there is a { p}-RCD of (K,—I)? K,
for all de2N\{4} and all primes p>5 except possibly for (d, p) = (6, 5).
Hence, dp € D( p) for all such d and p. A direct construction establishes that
30 e D(5). Let the permutation

(uouy -+~ uy3)(vovy -+~ 0y3)

and its powers act on the initial 2-factor,

UpUyU30305Uy, UolipUyrUsUy Uy,
Ui D7 X Uglgly, UiUgXy04U70y,
UsVgU ol Uy Us, DiglgV12U6Vy1 Vg0,

to give the necessary 2-factorization.
Since 2m e D(m) for all m>3, D(3)=3N\{6, 12} and D(p)=2 pN\{4p}
for all primes p> 5, Theorem 7 implies that, for any odd integer m > 3,

D(m)2mN\{4m};

furthermore, D(3)=3N\{6, 12}. This establishes Theorem 1.
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We close this paper by observing that the result of Baranyai and Szasz

referred to in Theorem 7 permits us to strengthen the results of
Lemmas 38, 39, and 40 as follows.

THEOREM 42. (a) If d and m are both odd integers, there is a 2-factoriza-

tion of K, K,, which consists entirely of m-cycles.

3

(b) If de2N\{4} and m is any odd number which is not a power of
and (d, m) # (6, 5), then there is a 2-factorization of (K,— 1)} K,, which

consists entirely of m-cycles.

1
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