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1. INTRODUCTION AND TERMINOLOGY 

The complete graph with n vertices will be denoted K, and the complete 
digraph with n vertices will be denoted DK,. If G is a graph, then (GI will 
denote the number of vertices in G. The notation V(G) will be used for the 
vertex-set of G. 

If H is a subgraph of G, then G\H denotes the subgraph of G that is 
obtained by deleting V(H) from V(G) and all edges incident with any 
vertex of H. 

An m-cycle in a graph G is a sequence of m distinct vertices u,, u2, . . . . u, 
such that ui is adjacent to ui+ , and U, is adjacent to ui. Edges are denoted 
by juxtaposition so that an m-cyc1.e is denoted by u1 u2 . . . u,ui. An 
m-dicycle in a digraph G is a sequence of m distinct vertices u,, u2, . . . . u, 
so that there is an arc from ui to ui+ i and from u, to ui. An m-dicycle will 
be denoted u1 u2 . . . u,u, as well. The notation C, will be used for the cycle 
of length m, that is, with m edges and m vertices. Often H, will be used as 
a notation for a Hamilton cycle when it is desirable to index the Hamilton 
cycles for listing purposes. 

A spanning subgraph H of G is one for which V(H) = V(G). A 2-factor 
of G is a spanning subgraph that is regular of degree 2. Consequently, every 
component of a 2-factor is a cycle. A 2-factorization of a graph G is a 
partition of the edge-set E(G) into 2-factors. Thus, G must be regular 
of even degree. An {r,, r2, . . . . r1 > resolvable cycle decomposition, denoted 
(r,, r2, . . . . r,}-RCD, is a 2-factorization of G so that every cycle that occurs 
in any of the 2-factors has length in {r,, r2, . . . . r,}. 

The Oberwolfach problem was first formulated by Ringel and first 
mentioned in [3]. It asks: Given integers r,, r2, . . . . r, all at least 3 and 
xi=, ri= n odd, is it possible to 2-factorize K,, so that each 2-factor con- 
sists of cycles of lengths r,, rz, . . . . r,? When it comes to cycle decomposition 
problems, the complete graph on an even number n of vertices with a 
l-factor removed, denoted K,, -Z, plays the same role as K,, + , . Conse- 
quently, the Oberwolfach problem now usually includes the obvious 
analogous question for even n. The notation OP(ry’ry ... r:‘) will be used 
for the Oberwolfach problem when there are required to be aj cycles of 
length ri for i= 1, 2, . . . . t. Of course, n = xi=, a,r, and the parity of n 
determines whether K,, or K, -I is under discussion. 

This paper concentrates on the case when all cycles have the same 
length. The notation of [4] will be employed wherein D(m)= 
{mk E N : OP(mk) has a solution} was used and N denotes the set of 
positive integers. 

There are some graph notations that must be presented. If G is a graph, 
then dG will denote the graph with d components each of which is 
isomorphic to G. If G and H are two graphs so that V(G) = V(H) but they 
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have no edges in common, then G 0 H denotes the graph with the same 
vertex-set and E(G @ H) = E(G) u E(H). Finally, G denotes the comple- 
ment of G and K,,=G@G. 

The wreath product G 2 H is obtained by replacing each vertex of G with 
a copy of H and joining two vertices in different copies of H with an edge 
if and only if the corresponding vertices of G are adjacent. That is, for 
V(G) = (w,.: i= 1, 2, . . . . /Cl} and V(H)= (ui: i= 1,2, . . . . /HI}, V(G) H)= 
{Us: i= 1, 2, . . . . IGI and j= 1, 2, . . . . I HI } and uiju,, E E(G 2 H) if and only if 
either i = r and vjvs E E(H) or i # r and wjw, E E(G). 

If G and H are two graphs, then Gu H is the graph satisfying 
V(G u H) = I’(G) u I’(H) and E(G u H) = E(G) u E(H). In almost all 
occurrences of G u H throughout this paper, V(G) and V(H) are disjoint. 

If G and H are two graphs, then the direct product G x H satisfies 
l’(G x H) = V(G) x V(H) and u+,, E E(G x H) if and only if both 
wiw, E E(G) and vjus E E(H). 

Let SE { 1, 2, . . . . n ) satisfy the property that i E S if and only if n - i E S. 
The circulant graph Circ(n; S) has vertex-set {uO, ui, . . . . u,- i } and ui 
adjacent to uj if and only if j- i is in S modulo n. The length of an edge 
uiui is the minimum of the two elements of S congruent to j- i and i-j 
modulo n. 

Let V(K,) = {u,, u2, . . . . U, > and H be a subgraph of K,. If cr is a permuta- 
tion of { 1, 2, . . . . n>, then o(H) denotes the subgraph of K,, with vertex-set 
U( V(H)) and edge-set {o(ui) o(uj): uiuj E E(H)}. In this paper, H is always 
a spanning subgraph so that H and o(H) have the same vertex-set. 

Early papers on the Oberwolfach problem are [4,6, 71. A more recent 
paper [5] contains a good history of the earlier work together with 
improvements. However, most of the results have now been superseded by 
the present paper and [ 11. In the latter paper, it is shown that D(m) = mN 
for all even m > 4. In the present paper, it is shown that D(m)~mN\{4m} 
for all m > 5. Ray-Chaudhuri and Wilson have shown [9] that there exists 
a Kirkman triple system of order 3m for every odd integer m. It is also 
known [lo] that there is a nearly Kirkman triple system of order 3m for 
every even integer m > 4. Nearly Kirkman triple systems of orders 6 and 12 
do not exist. Thus, 0(3)=3N\{6, 12). 

2. MAIN RESULT AND OUTLINE OF ITS PROOF 

The main result of this paper, Theorem 1 below, essentially settles the 
Oberwolfach problem for 2-factors all of whose cycles have the same length 
in that only one small case is left unsettled. 

THEOREM 1. For m odd and ma 5, D(m)zmN\{4m}. In addition, 
D(3)=3N\(6, 12). 
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The proof of Theorem 1 is long. An outline of the proof is now presented 
in order to consolidate the details of the remaining sections. 

The first essential step is to break Kdm or Kd,,, -Z into d blocks of 
cardinality m and to work with the resulting subgraphs. That is, write 

when d is odd and when d is even, write 

Since dK,,, and (d/2)(K,, -I) can both easily be decomposed into the 
desired 2-factors, the proof concentrates on Kd \ K,,, and (Kd - I) 2 K,,,. 

If G has a 2-factorization F, @ F, 0 . . . @ Ir,, then 

Furthermore, if Fi is a union of cycles Ci,, C,, . . . . C,, then 

In Sections 4 and 5 it is shown that Kd has a { 3,5}-RCD when d is odd 
and d$ {1,7, 111, and Kd- Z has a {3,5}-RCD when d is even and 
d# {2,4,6, 12). In Section 3, it is shown that for k an odd integer, Ck \ KP 
can be decomposed into 2-factors made up entirely of p-cycles whenever 
p 2 k is a prime. In Section 6, these results are used to show that Kd{ EP 
or (Kd- I) { IQ can be decomposed into 2-factors each of which is 
composed of p-cycles. The proof of Theorem 1 is completed by directly 
verifying it for the few small values of dm not covered by the previous 
arguments. 

3. A DIRECT CONSTRUCTION 

DEFINITION. Consider the graph C, 2 R, where t 2s > 3 and both s 
and t are odd. Let H = uj,ujl ... u;iluj, be a Hamilton dicycle of DK,. The 
i-projection of H onto C, { K, is the t-cycle ui, j,ui+ i, j2ui+2, i,. . . 
ui+s-l,j,ui,j,+,ui+I,j,+l~i,j,+~ “-ui+ l,j,ui,j,y where the first subscript is 
reduced modulo s. 

LEMMA 2. Zf H = uj, ujz . . uj,uj, is a Hamilton dicycle of DK,, then the 
i-projections of H onto C, < R,, i = 1,2, . . . . s, yield a 2-factor composed of s 
cycles all of length t. Furthermore, if the edge ui, jui, ,,/ appears in one of the 
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t-cycles of the 2-factor, then the edge u~,~u~+ 1., for k = 1,2, .,., s appears in 
the 2-factor. 

ProoJ The lemma follows immediately from the definition of i-projec- 
tion of H onto C, \ R,. 1 

The following lemma is an immediate consequence of the definitions of 
direct product, wreath product, and circulant graph but it is useful to 
explicitly state it. 

LEMMA 3. Let s and t be odd with t$5 and ~33. Then Cs{R,= 
(C, x Circ(t; (3, 4, . . . . t - 3))) @ (C, x Circ(t; { 1, 2, t - 2, t - 1))) @ 
{u~u~+~,~: i= 1, 2, . . . . s and 1 <j< t}. 

We now wish to show that C, 2 R, can be decomposed into 2-factors all 
of whose cycles have length t when s < t and both are odd. The idea is 
to prove it separately for the two subgraphs arising from Lemma 3. The 
following lemma provides a tool for handling one of the subgraphs. 

It is worth pointing out that the following two results, Lemma 4 and 
Theorem’S, are true for all odd t 2 7 and odd t b s, respectively. However, 
all that is needed later in this paper for the main result is for t to be an odd 
prime. Since the proof of Lemma 4 without the restriction that t is a prime 
is technically much more involved, it is omitted here. Similarly, Theorem 6 
is true if t is not restricted to being a prime. 

LEMMA 4. The circulant graph Circ(t; { 3,4, . . . . t - 3)) has a Hamilton 
decomposition when t > 7 and t is a prime. 

Proof. The proof is immediate because all the edges of the same length 
form a Hamilton cycle. g 

THEOREM 5. Let s be an odd integer and t be a prime so that 3 <s 6 t. 
Then C, { R, has a 2-factorization so that each 2-factor is composed of s 
cycles of length t. Moreover, the number of 2-factors is t which is independent 
of s. 

Proof: By Lemma 3, C, 2 R, is the edge-disjoint union of two graphs 
one of which is C, x Circ(t; { 3, 4, . . . . t - 3)). The latter graph has a 
Hamilton decomposition for t 2 7. For t = 5, there is only one graph in the 
edge-disjoint union of Lemma 3, namely, (C, x Circ(t; { 1,2, 3,4})) @ 
{ uiiui+ ,, j: 1 Q i < s and 1 < j < 5 } which will be treated shortly. When 
t = 3, s = 3 must hold and the result is true in this case by simply consider- 
ing a Kirkman triple system on nine elements. 

For t > 7 consider a Hamilton decomposition of Circ( t; { 3,4, . . . . t - 3) ). 
For a given Hamilton cycle H, give it an arbitrary orientation producing 
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a Hamilton dicycle Hi. The i-projections of H, onto C, 2 R, for i = 1,2, . . . . s 
yield a 2-factor of C, l R, of the desired kind. Then give H, the opposite 
orientation producing another Hamilton dicycle H,. Again use Lemma 2 to 
show that the i-projections of H, onto C, 2 R, produce an appropriate 
2-factor. Doing this for each Hamilton cycle in the decomposition of 
Circ( t; { 3,4, . . . . t - 3)) gives a 2-factorization of C, x Circ( t; { 3,4, . . . . 
t - 3 }) into the appropriate 2-factors. 

Let G denote the graph (C,xCirc(t;{1,2,t-2,t-l}))@(u,u,+,.,: 
i = 1, 2, . . . . s and 1 <j< t}. It remains to find a decomposition of G into 
2-factors each of which is composed of s cycles of length t. Let the vertices 
have the coordinates (i, j), 0 < i < s - 1 and 0 < j < t - 1. Define the 
following sets of edges for each i, 0 < i < s: 

A = (i,jNi+ l,j-1) 

’ { 

if O<j<sorsdj<t--landjisodd 
(i,j)(i+ l,j+ 1) if s<jdt- 1 andjisodd 

B,= (i,j- l)(i+ LA 

’ { 

if Odj<sorsdjdt-landjisodd 

(i,j+ lhi+ 1,j) if sdjbt-1 andjisodd 

D = (i,jNi+ 1Y.d 

’ 1 

if O<j<sorsdjdt--1 andjisodd 
(ij)(i+l,j+2) if sdj<t-landjisodd 

E-= (i,j+ l)(i+ Lj- 1) 

’ { 

if Obj<sorsdjdt-1 andjisodd 
(i, j+ l)(i+ 1, j+ 1) if sdjdt-landjisodd 

C&j- lIti+ l,j+ 1) if Odj<sorsdjbt-1 and jisodd 
(i, j+2)(i+ 1, j) if sdj<t-landjisodd. 

The sets of edges Ai, Bi, Dj, Ei, F, for i = 0, 1, . . . . s - 1 are pairwise disjoint 
and partition the edges of G. Now let 

R,=A,uD,uE,uD,uE,u ... uD,+~uE,~,, 

R,=D,uE,uD,vE,uD,u ... uD,~.~,uE,~~uA,~~,, 

R,=E,uA,uA,u ... uA,-.,uA,- zuDs-,, 

R,=B,vB,u ... uB,-,,and 

R,=FOvF,u ... vF,+,. 

Each of the subgraphs R, , R,, R,, R,, and R, is a 2-factor made up of 
s cycles of length t (an example is shown in Fig. 1 with s = 5 and t = 9). 
This completes the proof of Theorem 5. 1 

THEOREM 6. If s is an odd integer and t is a prime so that t b s, then 
SIE D(t). 
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FIGURE 1 

Proof: Write KS, = KS 2 R, @ SK,. Each K, has a Hamilton decomposi- 
tion so that sK, can be easily decomposed into (t - 1)/2 2-factors of 
the appropriate type. Next, KS has a Hamilton decomposition 
H,, H2, . . . . Hf,-l)/2 and K,?R,=H,2R,QH,ti?,Q -QH,,-,,,,tK 
Each Hi \ i& can be decomposed into the appropriate 2-factors by 
Theorem 5 and the result follows. 1 

THEOREM 7. Zf st is odd and st E D(t), then stl E D( tl) for every positive 
integer 1. 

Proof Since st E D(t), there is a 2-factorization of K,,, say F,, F,, . . . . F,, 
in which every cycle has length t. 

If 1 is odd, then 

and, if 1 is even, then 

KS,I-Z=K,,~(K,-Z)=F,<(K,-Z)OF,~~~@ ... OF,\& 
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Each component of F, 2 K,, F, { (K, - I), Fi { Z?,, i = 2, 3, . . . . r is isomorphic 
to C, 2 K,, C, 2 (K, - I), C, < RI,, respectively. 

Now Baranyai and Szasz have shown [2] that if G and H can be decom- 
posed into Hamilton cycles, then so can G 2 H, Hence, each of C, 2 K,, 
C, \ (K, - I), and C, 2 K, can be decomposed into Hamilton cycles, which 
implies stZG D( tZ). 1 

4. A RECURSIVE CONSTRUCTION FOR ODD n 

The major result of this section is the following and its proof is 
developed in the section. A definition is needed for the statement. 

Let J be a set of positive integers. An (n, J)-resolvable cycle design 
(denoted (n, J)-RCD) is a 2-factorization of K,,, n odd, or K,, - Z, n even, 
such that the length of any cycle in the 2-factorization is from J. 

THEOREM 8. For n odd there exists an (n, { 3, 5 } )-RCD if and only if 
n#7 or 11. 

Let G be a complete multipartite graph and let J be a set of positive 
integers. A(G, J)-cycle frame is an edge decomposition of G, say 9 = 
{F, > F,, . . . . F,}, such that 

(1) every F, is a 2-factor of G\P for some part P of the multiparti- 
tion of G, and 

(2) for every cycle CE Fi, i= 1, 2, . . . . r, JCJ E J. 

From this definition, it follows that r = lGl/2 and that for each part P of 
G, /P//2 of the Fis are a-factors of G\P. 

Suppose 9 is an (n, J)-RCD and let H be a subgraph K, or K, - Z 
(depending on the parity of t) of K, or K, - I. If 9 restricted to H induces 
a (t, J)-RCD on H, then this (t, J)-RCD is called a subdesign of 9 and is 
designated as a sub-(& J)-RCD. 

Clearly there is no (7, (3,5})-RCD. In [S] it is shown that the 
Oberwolfach problem OP(325) has no solution. This implies there is no 
(11, { 3, 5})-RCD. In the remainder of this section it will be shown that 
(n, (3, 5})-RCDs exist for all other odd n > 3. 

Note that an (n, { 3, 5})-RCD 9 has a sub-(3, { 3, 5})-RCD if and only if 
there is a 3-cycle in some 2-factor of 9. It has a sub-(5, {3,5})-RCD if and 
only if there are two 5-cycles of the form uiu2u3u4u5u, and u,u3u5u2u.,u1 
in the 2-factors of 9:. Also, any vertex gives rise to a sub-(1, (3, 5})-RCD. 

Resolvable cycle designs are constructed by first constructing cycle 
frames and then “tilling in holes.” The main recursive construction for cycle 
frames follows the next collection of definitions. 
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A group divisible design is a triple (X, 9, &), where 

(1) X is a set of points, 

(2) 9 is a class of nonempty subsets of X (called groups) which parti- 
tion X, 

(3) JYI is a class of subsets of X (called blocks), each containing two 
or more points, 

(4) no block meets a group in more than one point, and 

(5) each pair of points not contained in a group is contained in 
precisely one block. 

A transuersaE design, or TD(t, n), is a group divisible design with tn 
points, t groups of n points each and such that every block has cardinality 
t. A resolvable transversal design, or RTD(t, n), is a TD(t, n) w,here the 
blocks can be partitioned into parallel classes. 

A group divisible design can be thought of as an edge partition of a 
complete multipartite graph into complete subgraphs. A TD(t, n) can be 
thought of as an edge partition of K, { K,, into K,‘s and an RTD(t, n) as an 
edge partition of K, 2 K,, into subgraphs isomorphic to nK,. 

Construction 1 (fundamental cycle frame construction). Let (X, ‘9, &) 
be a group divisible design, let w: X + N (w is called a weighting), and let 
J be a set of positive integers. For every block A EJZ?, let G(A) be the com- 
plete multipartite graph with parts {x} x (1, 2, . . . . w(x)}, x E A. Suppose 
there is a (G(A), J)-cycle frame for every A E d. Then there is a (G(x), J)- 
cycle frame, where G(x) is a complete multipartite graph having parts 
{(x, i): ldi<w(x), XEG}, GEM. 

A multipartite graph (a cycle frame) has type t’;‘ty . . . if there are ai parts 
of cardinality ti, i = 1, 2, . . . . . The next construction provides a means of 
producing RCDs given certain cycle frames. 

Construction 2 (tilling in holes). Suppose there exists a (G, J)-cycle 
frame of type t4’ ... t? and let w  > 1 be odd. 

(1) Suppose that there exists a (ti + w, J)-RCD which contains a 
sub-(w, .I)-RCD for i= 1,2, . . . . 1. Then there is a (cf=, tiai+ w, J)-RCD 
which contains a sub-( w, J)-RCD. 

(2) Suppose that a, = 1, there exists a (t, + w, J)-RCD, and for 
1 < i < I- 1, there is a (ti + w, J)-RCD which contains a sub-(w, J)-RCD. 
Then there is a (xi= I t,u, + w, J)-RCD. 

There are two useful cycle frames for the following recursive construc- 
tions. 
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LEMMA 9. The cycle frames (K2,2,2,2r (3)) and (K2,2,2,2,4, (3, 5}) both 
exist. 

Proof: A WZ,UZ, (3 } )-cycle frame is obtained by deleting a point from 
a Kirkman triple system on nine points. A (K,,,,,,,.,, { 3, 5 ) )-cycle frame is 
presented in Fig. 2. 1 

COROLLARY 10. Suppose there exists a TD( 5, m), a (2m + 1, (3, 5) )- 
RCD and a (4t + 1, { 3,5})-RCD f or some 0 d t dm. Then there exists an 
(8m + 4t + 1, {3,5})-RCD which contains a sub-(3, (3, 5})-RCD. 

Proof: Delete m - t points from one group G of a TD(5, m). Give every 
point remaining in G weight 4 and all other points weight 2. Now apply 
Construction 1 using the frames of types 24 and 244’ in Lemma 9. An 
(8m + 4t, (3, 5))-cycle frame of type 2m44t’ is obtained. 

Now apply part (1) of Construction 2, with w  = 1, to produce an 
(8m+4t+ 1, (3, 5})-RCD. It contains a sub-(3, {3, 5})-RCD because the 
input frames for the construction each contained a 3-cycle. 1 

COROLLARY il. If, for some 0 < t < m, there exists a TD(5, m), a 
(2m + 3, (3, 5})-RCD with a sub-(3, {3,5})-RCD, and a (4t + 3, {3,5})- 
RCD, then there exists an (8m + 4t + 3, { 3, 5 ))-RCD which contains a 
sub-( 3, { 3, 5} )-RCD. 

Proof As in the proof of Corollary 10, construct an (8m + 4t, {3, 5})- 
cycle frame of type 2m 4t . 4 ’ Then apply part 2 of Construction 2 with 
w=3. 1 

A variety of useful small RCDs are now constructed by direct methods. 

LEMMA 12. There is an (n, { 3 } )-RCD for all n z 3 (mod 6). 

Proof These are just Kirkman triple systems and were constructed by 
Ray-Chaudhuri and Wilson [9]. 1 

Lemma 12 means that n~0(3) for all n- 3 (mod 6). 

Part Factors 

Ul, U8 “3”5”9”6”11”3. “2”12”4”7”10”2 

u2, u4 “1”7”9”3”IO”I~ u5”12u6u8”11u5 

“3, % ~1”5”10”4~‘3~l~ “2”8”12u7u11u2 

u5. *7 “2”6”10”8”9”2r u1u12u3u4ullul 

“9, UIO, “11. “12 “l”4”b”I. “2”7”3”8”5”2> 

UI”2”3”1, “4”5”6”7”8”4 

FIGURE 2 
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LEMMA 13. There is a (5, { 5})-RCD. 

Proof: The cycles uiu2u3u4usui and u~u~z.~~u~u~u, provide the desired 
decomposition. 1 

LEMMA 14. There is a (13, {3,5})-RCD. 

Proof: Apply the permutation (T and a2 to the two 2-factors xu2w2x, 
~ou1v2zlzouo, uo~lwoz2wluo and xzou2x, uououlz2w2uo, wow1u1z1u2wo, 
where 

to obtain six a-factors that partition K,,. 1 

Notice that the above factorization does more than provide a 
(13, (3, 5})-RCD. In fact, it solves OP(3’52). Also, Lemma 14 can be 
proved from Corollary 10 by choosing m = 1 and t = 1. The above explicit 
construction is needed later. 

LEMMA 15. There is a (K4,4,4,4r { 3 } )-cycle frame and hence there exists 
a (17, (3, 5})-RCD. 

Proof The frame is easily described in Fig. 3. In each of the four 
diagrams, let the four vertices correspond to the partition sets of K4,++,. 
Suppose that the vertices of each partition set are labelled 0, 1,2, and 3. 
Then each of the 3-dicycles in the diagrams of Fig. 3 give rise to four 
3-cycles in K,,,,,,, in two different ways. If x, y, z are the labels on the arcs 
of the 3-dicycle made up of the first (second) elements of each pair, then 
let vertex i be adjacent to vertex i + x in the next partition set which in turn 
is adjacent to i+ x + y in the next partition set which is then adjacent to 
i + x + y + z = i in the original parition set since x + y + z E 0 (mod 4) and 
all arithmetic is done modulo 4. 

Construction 2 is used to deduce that there is a (17, (3, 5})-RCD. 1 

A W+w.4r { 3 } )-cycle frame is presented in [ 121 and can be gleaned 
from Piotrowski’s work [8]. The above factorization also solves OP(345’). 

FIGURE 3 
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LEMMA 16. There is a ( 19, (3, 5})-RCD that is also a solution to 
OP(3352). 

Proof The 2-factor 

xuo VOX, u2”7u8u2, v2v7u8v2~ V1~3V6~4~SVI~ uI”3u6v4vSu1 

under the permutation (z+,u, ~~~u~)(v,,v, . ..v8) and its powers produce the 
desired factorization. 1 

LEMMA 17 (E. Seah [ll]). There is a (23, (3,5})-RCD that is also a 
solution to OP( 3651 ). 

Proof. The 2-factor 

UOUl~O~l U3UO? u2”4uIOu2~ u5”8uIOv5~ v2”6v6v2? 

U3U7v8U3r v4v7u9u4, xus v9x 

under the permutation (u. u, . . . u,~)(L)~ D, . u ,“) and its powers produce the 
desired factorization. 1 

LEMMA 18 (E. Seah [ll]). There is a (K 4.4.4 4.4.4Y (3, 5) )-cycle frame , 
and hence a (25, { 3, 5})-RCD. 

Proof: Let the parts be (ui, u6+ ;, u,, IJ;+~: 0 <id 5}. The 2-regular sub- 
graph u5v8u9v7u9u5~ uI”2u4u1? ~IuZu5ul? ~3~10~11~3? 04u7ullu4, u3uXu10~‘3 

under the permutation (uou, ~~~ul,)(vou, . ..v.,) and its powers produces 
the cycle frame. The RCD comes from Construction 2. 1 

LEMMA 19. There is a (K4,4,4,4.4,4,4r { 3 } )-cycle frame and hence there is 
a (29, (3, 5})-RCD that is also a solution to OP(3’5’). 

Proof: The cycle frame is presented in Fig. 4 and by Construction 2, the 
remaining conclusions follows. To obtain the cycle frame from Fig. 4, 
obtain seven digraphs from A by cyclically rotating it through each of its 
seven positions. For each such digraph, place B around the three parts 
corresponding to the vertices of the 3-dicycle a, placing the column x in 
place of vertex x and following B in the direction of the arrow above it. 
This replaces a with four edge-disjoint 3-cycles. Do the same with C 
around 3-dicycle b. Then repeat with D and E. 1 

LEMMA 20 (E. Seah [ll]). There is a (31, (3, 5})-RCD that is also a 
solution to OP(3255). 

Proof: The 2-factor uo~Ivou,u3~o, u2u4v2usu9u2, u~v~u,~u~u~~u~, 
u8”13u9u6u14u8~ u3v4vllv6v12u3~ uIO”IO~14~IO~ xv8 ur r x under the permuta- 
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FIGURE 4 

tion (~~24~ ~~~z414)(vOvl~ . . vr4) and its powers gives the appropriate 2-fac- 
torization. 1 

LEMMA 21. There is a (35, { 3, 5 } )-RCD that is also a solution to 

OP(3V). 

Proof The 2-factor .~~~v~v~v~~, uluzuJu,, u~u,v~~u~, u8u11u2u8, 
u12”16”11u12~ u9”14v6u9> u4”10”14u4~ u3”13”16u3~ u6”15v4~6~ “10”13”15”10~ 

v,v,~~v, under the permutation (uouI ...u~~)(u~v~ . ..vr6) and its powers 
gives a desired 2-factorization. 1 

LEMMA 22. There exists a (43, (3, 5})-RCD. 

Proof: This is an application of Construction 1. Add a point to the 
groups of a TD(4, 5) producing a pairwise balanced design on 21 points 
with blocks of sizes 4 and 6. Consider this pairwise balanced design to be 
a group divisible design with groups of size 1 and give every point weight 2. 

As input frames, the (K,,,,,,,, { 3 } )-cycle frame constructed earlier and a 
K. 2, 2, 2,2,2, (5})-cycle frame obtained by deleting the vertex x from the 
RCD of Lemma 14 are needed. A frame of type 221 results. The desired 
RCD is obtained by applying Conctruction 2. 1 

LEMMA 23. There is a (47, { 3, 5})-RCD that is also a solution to 

Proof: The 2-factor ~u~v~v,~u~x, u~u~v~~u,, u3ugu4u3, u4u,v,,u4, 
~13~17”1S~l3> uIl”16”2ulI> u8”14vllu8~ u15"22v7u15~ u10"18v14u10~ 
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u12”21uSu12~ u6”19v1u6~ u9”20v3u9~ v18v19v22v18~ v9v16v21v9~ v6v12v20v6 

under the permutation (uoul ... u~~)(v~v~ ... u22) and its powers yields an 
appropriate 2-factorization. 1 

LEMMA 24. There exisrs a (53, { 3, 5})-RCD. 

Proof: Obtain a cycle frame of type 1048’ as in the beginning of the 
proof of Corollary 10 with m = 5 and t = 2. Now apply the first part of 
Construction 2 with w  = 5. In order to do this, a (13, { 3, 5})-RCD is 
needed and it is provided by Lemma 14. Additionally, a ( 15, { 3, 5 } )-RCD 
containing a sub-(5, { 3, 5})-RCD is needed. Such a RCD is easy to find by 
using Theorem 5 with s = 3 and t = 5. 1 

The groundwork has now been prepared for the proof of Theorem 8. In 
preparation for a recursive attack, the necessary small resolvable cycle 
designs have been constructed above. The results are summarized in the 
following result. 

LEMMA 25. For n odd, 3 6n 6 53 and n # 5,7, 11, 37,41, or 49, there 
exists an (n, (3, 5})-RCD which contains a sub-(3, (3, 5))-RCD. Also, there 
exists a (5, { 5})-RCD and there exists neither a (7, { 3, 5})-RCD nor an 
(11, {3,5))-RCD. 

Proof: It suffices to observe that all the RCDs of Lemmas 12 through 
24 contain at least one C3 except for the (5, { 5})-RCD. It is clear for those 
constructed directly. For those constructed recursively, observe that there 
is an input cycle frame containing a C3. 1 

The proof of Theorem 8 is by induction on n with two cases dis- 
tinguished: n E 1 (mod 4) and n z 3 (mod 4). It should be pointed out that 
a TD(5, m) exists whenever there are three mutually orthogonal Latin 
squares of order m. Their existence for the values of m required in this 
proof are given in [ 13, 143. First, let n = 1 (mod 4). It may be assumed that 
n > 37, n # 53. Corollary 10 may be applied as long as m # 2, 3, 5,6, 10 and 
O<tbm. Any na37, n#53, can be written as n=8m+4t+l where m 
and t satisfy the above conditions. 

Now let n E 3 (mod 4). It may be assumed that n > 55. Corollary 11 can 
be applied for m # 2, 3,4,6, 10 and one of t = 0 or 3 < t Q m. The stated n 
can be written as n = 8m + 4t + 3 with m and t as above. 

The result now follows by induction. 

5. A RECURSIVE CONSTRUCTION FOR EVEN n 

The major result of this section is the analogue of Theorem 8 for n even. 
It is now stated, 
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THEOREM 26. Zf n is even, then there exists an (n, (3, 5})-RCD if and 
only ifn #4, 6, or 12. 

It is easy to see that there can be no (n, (3,5})-RCD when n = 4 or 
n = 6. A (12, { 3, 5})-RCD would have to be a solution to OP(34) which is 
known to not exist [6]. An (n, (3, 5})-RCD will be constructed for all 
other even n. 

A construction analogous to Construction 2 for tilling in the holes of 
cycle frames for even n is necessary. Any (n, J)-RCD has a trivial sub- 
(2, J)-RCD when n is even. No (n, (3, 5})-RCD has a sub-(4, (3, 5})-RCD 
since the subdesign does not exist. As a consequence, it is a useful concept 
to allow RCDs to be missing subdesigns, since it does not matter if a 
missing subdesign exists or not. The final definition is somewhat messy, but 
is more easily understood if one keeps in mind that what one has is what 
remains when a subdesign is removed. 

Let G be the graph K,, - (K, u I) where n and m are both even, and Z 
is a l-factor of K,, which contains a l-factor of the K,,,. An (n, J)-RCD 
missing a sub-(m, J)-RCD is a set 9 = {F,, . . . . Fn,2- 1 } which satisfies: 

(1) F,, r;,, . . . . F,n,z-1 are 2-factors of G \ V( K,), 

(2) F,,,,?, . . . . F,,,,- , are 2-factors of G, 

(3) the F,‘s are mutually edge-disjoint and ul/=‘; ’ E(F,) = E(G), and 

(4) for every cycle C E Fi, i = 1, 2, . . . . n/2 - 1, 1 Cl E J. 

Construction 3 (tilling in holes). Suppose there exists a (G, .Z)-cycle 
frame of type t’;’ ... ty (where the t:s are all even) and let w  > 2 be even. 
For 1 d i< 1, suppose that there exists a (ti + MI, J)-RCD missing a sub- 
(w, J)-RCD. Also, suppose that for some j, 1 d j d 1, there exists a 
(ti+ w, .Z)-RCD. Then there exists a (cf= I t,a, + W, J)-RCD. 

There are again some special cases that must be done directly as they do 
not follow from general results. 

LEMMA 27 (Huang, Kotzig, and Rosa [6]). There exist (n, { 3, 5})- 
RCDs for n = 8, 10, 14 and 16 that are also sofutionsfor OP(3’5’), OP(52), 
OP(3351), and OP(3252), respectiuely. 

LEMMA 28. There is a (20, { 3, 5})-RCD that is also a solution to 
OP(355’). 

ProojI The 2-factor xuO yv,v,x, v2v3v6v2, u,uJusu,, u2usvqu2, 
u4”805u4> u6u,vIus under the permutation (uOuI . ..u~)(L+.u~ . ..u8) and its 
powers gives the appropriate 2-factorization of K,,- I. The missing 
l-factor is X-V together with uioi, i=O, 1, . . . . 8. 1 
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LEMMA 29. There is a (22, (3, !I})-RCD that is also a solution to 
OP(3452). 

Proof: The two 2-factors uJw4w2v4z4u3, u4v, w3z2z3u4, xuOuOx, 
ywOzOyy ul”2wlul~ zl”Z”3zl and u2u4wlz3”lu2? “0”3z4ulw4”0? XwOzlx~ 

yu,v, y, u2w2w3v2, uo~oz2~0 under the permutation (uoul . . u4)(vou1~~~ u4) 
(wow, . ..W4)(ZOZl . . f z4) and its powers provide the appropriate factoriza- 
tion. The missing l-factor is xy, u~u~+~, w,z,+~, i=O, 1, 2, 3,4, where the 
subscripts are reduced modulo 5. 1 

LEMMA 30. There exists a (28, (3, 5})-RCD that is also a solution to 
OP( 3652). 

Proof The 2-factor ~,xv,v,yu,, v1v8u7u11u9vI, u1u12v6~l, ~~~,,u,~u~, 
~3~10”5~3~ u4”9v2u4~ U5%“4Us, u6”7v10u6 under the permutation 
(uou, ... Ul2M”O”l ... v,~) and its powers yields the appropriate 2-factoriza- 
tion of KZ8 - I. The missing l-factor is xy, uiui, where i = 0, 1, . . . . 12. 1 

LEMMA 31. There exists a (40, { 3, 5})-RCD that is also a solution ro 
oP(3105’). 

Proof: The 2-factor u7xuo yu,u,, u5u17u6u16uIlu~, ~~~~~~~~~ u2v3v4u2, 
u8v12u16u8~ u13v7v10u13~ u14”2v9u14~ u18”8v17u18~ u15vllu13u15~ u3”6v14u3~ 

u12u5u18~12, ulov1v15~lo under the permutation (uoul . ..u18) (oool . . . u18) 
and its powers yields the appropriate 2-factorization. [ 

Various congruences classes of n in Theorem 26 can now be eliminated. 

LEMMA 32. Zfn E 0 (mod 6), there exists an (n, { 3,5})-RCD if and only 
ifn 3 18. 

Proof: The non-existence of a (6, { 3,s } )-RCD and (12, (3, 5})-RCD 
was noted earlier. A solution to OP(3”‘3) for n 3 18 is given in [lo]. 1 

LEMMA 33. Zfn - 2 (mod 6), there is an (n, (3, 5})-RCD that is also a 
solution to OP( 3 In ~ ‘)I35 ’ ). 

Proof: The values n = 8, 14, and 20 were done above so that n 2 26 may 
be assumed. By the results in [ 121, there exists a cycle frame of type 
6(“-2”6 with cycles of length 3. Apply Construction 3 with w  = 2 using 
solutions to OP(3’5’). 1 

LEMMA 34. For n = 10 (mod 24), there exists an (n, { 3, 5 } )-RCD that is 
also a solution to OP(3’“- 10”352). 

Proof. The case n = 10 was done earlier. For n B 34, start with a cycle- 
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frame of type 8(n--2)‘8 and cycles of length 3 which exists by [12]. Apply 
Construction 3 with w  = 2 using solutions to OP(52). 1 

A particular RCD missing a sub-(4, { 3, 5})-RCD is necessary for the 
next class of RCDs. It is constructed in the next lemma and used in the 
lemma immediately following. 

LEMMA 35. There exists a (16, (3, 5})-RCD missing a sub-(4, (3, 5})- 
RCD. 

Proof Let the vertex-set I’= {x,, x2, x3, x4) u {Us: 1 <i<4 and 
O<jQ2} with W= {x1, x2, x3, x4}. The rest of the missing l-factor 
outside of W is {u~~u~~ and u 2, 3,i+l:j=0, 1, 2). The 2-factor of V\W is .u 
u10”llu12u10~ u20”21u22u20~ u30”31u32u30~ u40”41u42u40~ The remaining six 
2-factors of V are obtained by taking the two 2-factors x1~10~20~30~40x1, 
x2”21u42ullu32x2~ x3”31u12x3~ x4”41 u22x4 and xl”20ullu40u31xl~ 

x2”10u21u30u41x2~ x3”22u42x3> x4”12u32x4 under the powers of the 
permutation (“10u11u12)(u20u21u22~~u30 u31”32)(u40u41u42)~ 1 

LEMMA 36. For n E 4 (mod 12), there is an (n, {3,5})-RCD if and onZy 
ifn > 16. 

Proof. It was observed earlier that no such RCD exists when n = 4 and 
showed that they do exist when n = 16, 28, and 40. Assume n > 52. The 
results of [ 121 yield a cycle frame of type 12’n-4)‘12 with cycles of 
length 3. Apply Construction 3 with w  =4, filling in (16, { 3, 5})-RCDs 
missing a sub-(4, {3, 5})-RCD and one (16, (3, 5})-RCD. 1 

LEMMA 37. For n E 22 (mod 24), there exists an (n, { 3,5 } )-RCD. 

Proof. Proceed by induction on n. The value n =22 was done in 
Lemma 29. Do the following when n # 94. By the methods of the proof of 
Corollary 10, construct a cycle frame of type 2m4121. Since t = 3, m = 
(n - 14)/8 - 1 (mod 3), there is a TD(5, m). Now apply Construction 3 
with w=2; filling in (2m+2, (3, 5})-RCDs and (14, (3, 5})-RCDs. (Note 
that 2m + 2 may be congruent to 22 modulo 24 so that the induction 
hypothesis is required.) 

The exceptional value n = 94 is handled as above but with m= 9 and 
t = 5. The RCDs filled in are (20, { 3, 5) )-RCDs and (22, { 3, 5})-RCDs. m 

All the possibilities have been covered and the proof of Theorem 26 is 
complete. 
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6. PROOF OF THE MAIN RESULT 

We now combine the results of Sections 3 and 4 and exhibit three 
particular 2-factorizations to establish the following result. 

LEMMA 38. If d is an odd integer and p is an odd prime, there is a 
2-factorization of Kd l Kp which consists entirely of p-cycles. 

Proof: For p = 3, removing any single resolution class of a Kirkman 
triple system of order 3d yields a {3}-RCD of K, 2 R,. Since it is well 
known [9] that such triple systems exist for every odd integer d, the result 
holds for p = 3. 

Now consider prime p such that p z 5. If d# (7, 11 }, there exists a 
(d, (3, 5 ) )-RCD by Theorem 8. Let F,, F2, . . . . F,, where r = (d- 1)/2, be 
the 2-factors of this design. Hence, 

furthermore, each component of Fi 2 KP, i = 1,2, . . . . r, is isomorphic to 
C, 2 KP or C, 2 KP. Since p > 5, Theorem 5 implies that each of these 
graphs can be decomposed into p 2-factors consisting entirely of p-cycles. 
Hence, there is a { p}-RCD of Kd 2 ZP. 

If d E { 7, 11) and p is a prime satisfying p 2 d, then Theorem 6 implies 
dp E D(p). Observe that in the proof of Theorem 6 it is shown that Kd 2 & 
has a { p}-RCD. 

To complete the proof, we exhibit a 2-factorization of Kd \ KP consisting 
entirely of p-cycles for (d, p)= (7, 5), (11, 5) and (11, 7). 

Designate the vertices of K,, by x,x*, . . . . x5, uO, ui, . . . . ui4, uO, ui, . . . . ui4. 
Obtain a graph isomorphic to K7 { R, by removing the edges of the seven 
vertex-disjoint K,‘s induced by the vertex sets 

{ XI, x2, x3, -x4, ,x5), 

{ui:i-k (mod 3)) for k = 0, 1, 2 

and 

{u,:i=k(mod3)} for k = 0, 1, 2. 

The required fifteen 2-factors are obtained by taking the 2-factor 
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under the powers of the permutation 

(UOUI ~~~u14)(vovo.‘.v,4). 

Designate the vertices of K,, by x,, x2, . . . . x5, uO, ur, . . . . I.+, v,,, v,, . . . . vz4. 
As in the above case, remove the edges of the eleven vertex-disjoint K,‘s 
induced by the vertex sets, 

{-~I, x2, x3, -x4, .x5>, 

{ui:i=k (mod 5)) for k = 0, 1, 2, 3, 4, 

and 

{v,:i=k (mod 5)} for k = 0, 1, 2, 3, 4, 

to obtain a graph isomorphic to K,, 2 I&. The required twenty-five 
2-factors are obtained by taking the 2-factors 

under the permutation 

and its powers. 
Designate the vertices of K,, by .x1, x2, . . . . x7; uo, u,, . . . . u,,; uo, u,, . . . . v34. 

Remove the edges of the eleven vertex-disjoint K,‘s induced by the vertex 
sets 

{x,, x2, x3, x4t xS, x6v x,}, 

{u,:i=k (mod 5)) for k = 0, 1, 2, 3, 4, 

and 

{v,:i-k (mod 5)} for k = 0, 1, 2, 3, 4, 

to obtain a graph isomorphic to K,, { R,. The required 2-factorization is 
obtained by letting the permutation 

(uou, . ..U34)(“0”1 ‘..“34) 
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and its powers act on the 2-factors 

This completes the proof. 1 

In a similar vein, we establish the following result for even integers d. 

LEMMA 39. Ifdc2N\{4,6} and p is a prime, p > 5, then (Kd - I) { KP 
has a { p}-RCD. 

ProoJ By Theorem 26, there exists a (d, {3,5})-RCD for 
dE2N\{4, 6, 12}. Let F,, F,, . . . . Fr;-, for r= (d- 2)/2, be the 2-factors of 
such a decomposition. Then 

where each component of Fi 2 &, i = 1,2, . . . . r, is isomorphic to C3 l KP or 
C5 2 EP, As in Lemma 38, Theorem 5 implies (Kd- I) < KP has a { p}-RCD. 

Next we consider (K,, - I) 1 f& for p a prime, p 2 7. Huang, Kotzig, and 
Rosa have shown [6] that there is a (12, { 5, 7})-RCD. Let its 2-factors be 
F,, F,, . . . . F,. Then 

where each component of Fi { KP, i = 1,2, . . . . 5, is isomorphic to Cs 2 KP or 
C7 { &. Since p > 7 then, as above, Theorem 5 implies that (K,, -I) t & 
has a {p}-RCD. 

Finally, we exhibit a { 5}-RCD of (K,, -I) { R,. Designate the vertices of 
Km by xi, x2, . . . . xio, uo, u,, . . . . u24, oo, u,, . . . . v24. To obtain a graph 
isomorphic to (K,,- I) 2 i&, remove the edges of the six vertex-disjoint 
Klo’s induced by the vertex sets 

and 

{xi: i= 1,2, . . . . 10) 

{ui, vi: i-k (mod 5)) for k = 0, 1, 2, 3, 4. 
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The required 2-factorization is obtained by letting the permutation 

(UOUl . . . U24)(“0”1 . . . “24) 

and its powers act on 

uO”lu3u6u14uO~ “0”1”3”6”14”0~ 

xI”13u7v15v22xl~ x2v13v7u15u22x2~ 

x3”8u17v16v12x3~ x4v8v17u16u12x4~ 

X5U20v23U2v4X5r x6v20u23v2u4x6~ 

x7”9v21 u10v19x7> x8v9u21v10u19x8~ 

x9”5u18v11v24x9~ ~IO”24v5ullv18x10~ 

This completes the proof. 1 

Next, the result of Lemma 39 is extended to include d= 6. 

LEMMA 40. If m is an odd integer, m > 5, then (K6 - I) ? 13, has an 
{m }-RCD. 

Proof Observe that (K6 - I) 2 K,,, is isomorphic to K3 { R,,,,. Designate 
the vertices of K,, by x0, x1, . . . . x2m- I, uo, ul, . . . . u2,+ 1, vo, vl, . . . . v2,,- 1. 
To obtain a graph isomorphic to K, { R2,, remove the edges of the vertex 
disjoint K2,,,‘s induced by the three vertex sets 

X= {xi: i=O, 1, . . . . 2m- l}, 

U={ui:i=O,l ,..., 2m-1}, 

V={vi:i=O,l ,..., 2m-1). 

The required 2-factorization is obtained by letting the permutation 

(UOUl .‘.~Zmpl)(“O”I . ..“2??-1) 

and its powers act on an initial 2-factor. All that remains is to describe an 
appropriate initial 2-factor. 

Case 1. m = 2r + 1 = 1 (mod 4), m > 5. Let two m-cycles of the desired 
initial 2-factor be 
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The remaining four m-cycles include, as four consecutive vertices, 

respectively. These four m-cycles are then completed by alternating vertices 
of X with vertices of Uu V, with the requirement that each xi E X must be 
adjacent to one vertex of U and one of V. 

For example, for m = 13, an appropriate initial 2-factor is 

Case 2. m = 2r + 1 E 3 (mod 4), m > 3. Let two m-cycles of the desired 
initial 2-factor be 

~l~2m~l~2~2m~2~~~~,~2mrXOU1~ 

v1U2m~~v~U~m~~‘..U,U~m-~~]v]. 

The remaining four m-cycles include, as adjacent vertices, 

UOVln~ V,+1 U r+ 17 ur+2vr+3, and vr+2”r+3~ 

respectively. These four m-cycles are completed just as in Case 1. 
As an example, an appropriate initial 2-factor for m = 7 is 

uIv13u2v12u3vllxOul~ 

~l~13v2u12v3ullxlvI~ 

~O~7x2u7x3u8x4uO~ 

~4~4x5vOx6u&7x7v4~ 

u5v6x8u9x9v10x10u5~ 

v5”6xllv9x12u10x13v5~ 

This completes the proof of Lemma 40. 8 
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Before proceeding with the proof of Theorem 1, we recall the following 
result of Huang, Kotzig, and Rosa. 

THEOREM 41 [6]. For any integer m > 3, 2m E D(m). 

Now let us proceed with the proof of Theorem 1. For any odd integer d 
and any odd prime p, 

Since K, has a decomposition into Hamilton cycles, there is a { p}-RCD of 
dK,. By Lemma 38, there is a { p}-RCD of Kd\ &. Hence, dpe D(p). By 
Theorem 7, it follows that for any odd integers d and m, dm E D(m). 

Now consider any even integer d and any odd prime p. Let r = d/2 and 
consider the decomposition 

Observe that for p = 3, this decomposition is not effective for decomposing 
K3d - I into 2-factors of 3-cycles since it is known that K, - I cannot be 
decomposed into 2-factors of 3-cycles. However, as mentioned in the 
Introduction, it is known that O(3) = 3N\{6, 12}. Hence, we consider 
primes p >, 5. 

By Theorem 41, there is a { p}-RCD of K, - I and, hence, a { p}-RCD 
of r(K, - I). Lemmas 39 and 40 imply there is a ( p}-RCD of (Kd- I) ) & 
for all d E 2N \{4} and all primes p 3 5 except possibly for (d, p) = (6, 5). 
Hence, dp ED(P) for all such d and p. A direct construction establishes that 
30 E D(5). Let the permutation 

(uou, . . . U13)(“0”* . ..“13) 

and its powers act on the initial 2-factor, 

to give the necessary 2-factorization. 
Since 2mED(m) for all m>3, 0(3)=3N\{6, 12) and D(p)lpN\(4p} 

for all primes p > 5, Theorem 7 implies that, for any odd integer m > 3, 

D(m)ZmN\{4m}; 

furthermore, D( 3) = 3N \ { 6, 12 }. This establishes Theorem 1. 
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We close this paper by observing that the result of Baranyai and Szkz 
referred to in Theorem 7 permits us to strengthen the results of 
Lemmas 38, 39, and 40 as follows. 

THEOREM 42. (a) Zf d and m are both odd integers, there is a 2-factoriza- 
tion of Kd 2 i?,,, which consists entirely of m-cycles. 

(b) ZfdE2N\{4} d an m is any odd number which is not a power of 
3 and (d, m) # (6, 5), then there is a 2-factorization of (Kd - I) 2 E,,, which 
consists entirely of m-cycles. 
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