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We show that if G is a finite group then no chain of modular
elements in its subgroup lattice L(G) is longer than a chief series.
Also, we show that if G is a nonsolvable finite group then every
maximal chain in L(G) has length at least two more than the
chief length of G , thereby providing a converse of a result of
J. Kohler. Our results enable us to give a new characterization of
finite solvable groups involving only the combinatorics of subgroup
lattices. Namely, a finite group G is solvable if and only if L(G)

contains a maximal chain X and a chain M consisting entirely of
modular elements, such that X and M have the same length.

© 2011 Published by Elsevier Inc.

1. Introduction

1.1. Main results

Given a finite group G , let L(G) be the subgroup lattice of G . We write minmaxl(G) for the mini-
mum length of a maximal chain in L(G), chiefl(G) for the length of a chief series of G , and modl(G)

for the maximum length of a chain of modular elements in L(G). (The definition of a modular ele-
ment in a lattice is given in Section 2.) Our concluding result is the following characterization of finite
solvable groups, using only the combinatorial structure of subgroup lattices. As discussed below, our
theorem is not the first such characterization.

Theorem 1.1. Let G be a finite group. Then G is solvable if and only if minmaxl(G) = modl(G).
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It is not hard to see that a group G is finite if and only if L(G) is finite. Indeed, any infinite group
has either an infinite cyclic subgroup or infinitely many finite cyclic subgroups. Therefore, Theorem 1.1
distinguishes finite solvable groups from all other groups.

Every normal subgroup of G is a modular element of L(G). It follows immediately that modl(G) �
chiefl(G). Our next result, which is proved in Section 4, allows us to prove Theorem 1.1 by comparing
chiefl(G) and minmaxl(G).

Theorem 1.2. For every finite group G, we have modl(G) = chiefl(G). In other words, no chain of modular
elements in L(G) is longer than a chief series.

If M is a chain of modular elements in a lattice L and C is any other chain in L, then the
sublattice of L generated by M and C is a distributive lattice, and therefore graded. (See for ex-
ample [St1, 2.1], and its proof.) It follows that minmaxl(G) � chiefl(G) for all finite groups G . Thus the
fact that minmaxl(G) = chiefl(G) when G is solvable follows from the following result of J. Kohler. (In
fact, Kohler proves a stronger theorem involving indices.)

Theorem 1.3. (See Theorem 1 of [Ko].) If G is a finite solvable group, then L(G) contains a maximal chain
whose length is the same as that of a chief series for G.

Note that Theorem 1.2 for solvable groups follows from Theorem 1.3. Indeed, let M be a maximal
chain in L(G) having length chiefl(G). If C is a chain of modular elements in L(G) then, as C and M
together generate a graded lattice and M is maximal, we see that C is not longer than M.

In Section 3, we prove the following result, which when combined with Theorems 1.2 and 1.3,
proves Theorem 1.1.

Theorem 1.4. If G is a nonsolvable finite group then minmaxl(G) � chiefl(G) + 2.

It follows from Theorems 1.3 and 1.4 that there is no finite group H satisfying minmaxl(H) =
chiefl(H) + 1. We show in Section 5 that for each k � 2, there exists some group H such that
minmaxl(H) = chiefl(H) + k. Indeed, after noting that minmaxl(A5) = 3 we produce, for each n � 1,
a direct product Gn of n pairwise nonisomorphic simple groups satisfying minmaxl(Gn) = 2n + 2.

1.2. Background and motivation

As mentioned above, Theorem 1.1 is not the first characterization of finite solvable groups that
uses only the combinatorial structure of subgroup lattices. Before describing earlier characterizations,
we remark that long before they were discovered, it was shown independently by M. Suzuki in [Su]
and by G. Zacher in [Za] that if exactly one of the finite groups G , H is solvable then G , H do not
have isomorphic subgroup lattices. In [Ja], B.V. Jakovlev proves that the same result holds without the
condition that G is finite.

In [Sch1], R. Schmidt proves the following result. (This result is described in English in [Sch2,
Theorem 5.3.5].)

Theorem 1.5 (R. Schmidt). Let G be a finite group. The following conditions on G are equivalent.

(1) G is solvable.
(2) There exists a chain 1 = N0 < · · · < Nr = G in L(G) such that each Ni is modular in L(G) and, for each

i ∈ [r], the interval [Ni−1, Ni] in L(G) is a modular lattice.
(3) There exists a chain 1 = H0 < · · · < Hs = G in L(G) such that, for each i ∈ [s], Hi−1 is modular in L(Hi),

and the interval [Hi−1, Hi] is a modular lattice.
(4) There exists a chain 1 = S0 < · · · < St = G in L(G) such that, for each i ∈ [t], Si−1 is a maximal subgroup

of Si and is modular in L(Si).
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Note that if G is solvable, then a chief series for G satisfies condition (2) of Theorem 1.5 and
a composition series for G satisfies condition (4). On the other hand, if G is not solvable, then no
normal series for G satisfies (2), and no subnormal series satisfies (3) or (4). It is not the case that
every modular element of L(G) is normal in G . Indeed, upon considering L(S3), we see that it is
in general impossible to discern solely from the combinatorial structure of L(G) whether a modular
element is normal. One might view the key point of Theorem 1.5 to be that, when attempting to
derive facts about the algebraic structure of G from the combinatorial structure of L(G), one can
sometimes get away with ignoring the difference between modular elements and normal subgroups.
The reduction of Theorem 1.1 to Theorems 1.3 and 1.4 through Theorem 1.2 is another example of this
point at work.

Another motivating factor in our study of chains in subgroup lattices is the hope of develop-
ing a nongraded analogue of the theory of supersolvable lattices. The following characterization of
solvable finite groups, due to the present authors, will be pertinent to our brief discussion of these
lattices.

Theorem 1.6. (See [Sh,Wo].) Let G be a finite group. The following conditions on G are equivalent.

(a) G is solvable.
(b) L(G) admits an EL-labeling.
(c) The order complex of L(G) is (nonpure) shellable.

We will not define the terms “EL-labeling”, “order complex” and “(nonpure) shellable” here, as
we will not need them outside of the present discussion. These terms are defined in [BjWa]. The
equivalence of (a) and (c) is proved in [Sh]. Every poset admitting an EL-labeling has a shellable order
complex, and the fact that (a) implies (b) is proved in [Wo].

Supersolvable lattices were first defined and studied by R. Stanley in [St1]. A finite lattice L is
called supersolvable if it contains a maximal chain M such that the sublattice of L generated by M
and any other chain C is distributive. Such a chain M is called an M-chain. As noted above, a maximal
chain consisting entirely of modular elements is an M-chain. Thus, a finite group G is supersolvable
if and only if a chief series for G is an M-chain in L(G) (hence the name “supersolvable lattice”). In
addition to subgroup lattices of supersolvable finite groups, there are many other interesting classes
of supersolvable lattices. These lattices have received considerable attention (see for example [St2,Bj,
JaTe,Te,McN,Tho]). We mention in particular the work of A. Björner in [Bj], where it is shown that
a supersolvable lattice admits an EL-labeling.

Since distributive lattices are graded, supersolvable lattices are also graded. It follows from Björn-
er’s work that if G is a supersolvable finite group then the order complex of L(G) is shellable. On the
other hand, K. Iwasawa showed in [Iw] that L(G) is graded (and therefore has pure order complex)
if and only if G is supersolvable. Thus, in [Bj], the question of shellability when L(G) is graded is
settled by showing that the subgroup lattices in question belong to a larger class of lattices whose
combinatorial structure guarantees their shellability. The contribution of [Wo] to Theorem 1.6 is an
extension Björner’s work to nongraded subgroup lattices, but this extension requires a close exam-
ination of the algebraic structure of solvable groups. It would be interesting to extend the ideas of
Stanley and Björner, by finding a large class S of lattices such that

• if G is a finite solvable group then L(G) ∈ S ,
• S contains interesting members that are not subgroup lattices, and
• combinatorics alone guarantees that each L ∈ S admits an EL-labeling.

We can rephrase Iwasawa’s result to say that G is supersolvable if and only if every maximal chain
in L(G) has length modl(G). Theorem 1.1 says that G is solvable if and only if some maximal chain
in L(G) has length modl(G), and can be seen as a nongraded analogue of Iwasawa’s result. Perhaps
this is a first step towards finding a good definition of a “solvable lattice”. Interesting previous work
involving nongraded analogues of supersolvability appears in [BlSa,LiSa,McNTh]. However, there exist
finite solvable groups (such as S4) whose subgroup lattices are not of the type studied therein.
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2. Definitions and notation

All groups and lattices discussed here are assumed to be finite. For a group G , L(G) will denote
the set of all subgroups of G , partially ordered by inclusion. Then L(G) is a lattice, with respective
meet and join operations H ∧ K = H ∩ K , H ∨ K = 〈H, K 〉.

A chain in L(G) is a subset that is totally ordered by the inclusion relation. Such a chain is maximal
if it is not properly contained in any other chain. Every maximal chain contains 1 and G .

An element m of a lattice L is modular in L if

• x ∨ (m ∧ y) = (x ∨ m) ∧ y for all x, y ∈ L satisfying x � y, and
• m ∨ (x ∧ n) = (m ∨ x) ∧ n for all x,n ∈ L satisfying m � n.

By Dedekind’s modular law for groups (see for example [KuSt, 1.1.1]), every normal subgroup of
a group G is modular in L(G). Note that if m is modular in L and some interval [a,b] := {x ∈ L: a �
x � b} from L contains m, then m is also modular in [a,b]. We will need the following fact about
modular elements, which is well known and appears, for example, as Theorem 2.1.6(d) in [Sch2].

Lemma 2.1. If m, n are modular elements in the lattice L, then m ∨ n is modular in L.

Most of our group theoretic notation follows that in [Sch2]. The center of a group G will be
denoted by Z(G). For a prime p, O p(G) is the largest normal p-subgroup of G . For H � G , HG will
denote the core of H in G , that is, the intersection of all G-conjugates of H . Also, H G will denote the
normal closure of H in G , that is, the subgroup generated by all G-conjugates of H , and CG(H) will
denote the centralizer of H in G . Both HG and H G are normal in G . A subgroup M � G is permutable
in G if H M = M H for all H � G . A P -group (not to be confused with a p-group) is a group H = C E ,
not of prime order, such that

• E is a nontrivial normal elementary abelian p-subgroup of H for some prime p,
• C is cyclic, either trivial or of prime order q 	= p, and
• for each non-identity c ∈ C , there is some positive integer n = n(c) with 2 � n � p − 1 such that

c−1xc = xn for all x ∈ E .

If G is a finite group and H , K are normal subgroups of G with K � H , we say H/K is hypercentrally
embedded in G if there exists a chain

K = N0 � N1 � · · · � Nr = H

of subgroups of G such that [Ni, G] � Ni−1 for all i ∈ [r]. We say H is hypercentrally embedded in G
if H/1 is hypercentrally embedded. A minimal normal subgroup of G is a nontrivial normal subgroup
not containing properly any nontrivial normal subgroup. Every minimal normal subgroup N of G is
characteristically simple, that is, no nontrivial proper subgroup of N is invariant under the action
of Aut(N).

3. The proof of Theorem 1.4

There are two key facts from group theory used in the proof of Theorem 1.4. We present these facts
below as Lemmas 3.1 and 3.2. Lemma 3.1 is weaker than [BaLu, Lemma 3.24] (see also [KuSt, 6.6.3(c)]),
the proof of which uses what is essentially Lemma 3.2. The rest of the proof of Theorem 1.4 is ele-
mentary.

Lemma 3.1. Let N be a nonabelian, characteristically simple finite group and let A be a solvable group of
automorphisms of N. Then A fixes (setwise) some nontrivial proper subgroup of N.
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Proof. See [BaLu, Lemma 3.24] or [KuSt, 6.6.3(c)]. �
Lemma 3.2. Let M be a maximal subgroup of the finite group G, and let K be a nonabelian minimal normal
subgroup of G that is not contained in M. Then M ∩ K is not a nontrivial abelian p-group.

Proof. Assume for contradiction that M ∩ K is a nontrivial abelian p-group. We observe that K is
characteristically simple, and is not a p-group. It follows that O p(K ) = 1, as otherwise it would be
a nontrivial proper characteristic subgroup of K . In particular we have NK (M ∩ K ) < K .

If M ∩ K is a self-normalizing Sylow p-subgroup of K , then, by Burnside’s Normal p-complement
Theorem (see for example [KuSt, Lemma 7.2.1]), K has a normal Hall p′-subgroup X . Now, as 1 < M ∩
K < K , we see that X is a nontrivial proper characteristic subgroup of K , contradicting the fact that
K is minimal normal in G . Therefore, if M ∩ K is a Sylow p-subgroup of K then M ∩ K < NK (M ∩ K ).

Assume M ∩ K is not a Sylow p-subgroup of K . Let P be a Sylow p-subgroup of K such that
M ∩ K < P . Then, as is well known, we have M ∩ K < N P (M ∩ K ).

Combining the results we have obtained so far, we see that

M ∩ K < NK (M ∩ K ) < K .

Since M ∩ K and K are M-invariant, so is NK (M ∩ K ). Now an easy order argument gives

M < MNK (M ∩ K ) < M K = G,

contradicting the maximality of M . �
For a group G and a normal subgroup N of G , nlG(N) will denote the largest number t such that

there exists a chain

1 = N0 � · · · � Nt = N

of length t consisting of normal subgroups of G . Note that

chiefl(G) = chiefl(G/N) + nlG(N). (3.1)

Lemma 3.3. Let M be a maximal subgroup of the finite group G. Choose N � G such that N/MG is a minimal
normal subgroup of G/MG . Then

chiefl(M) − chiefl(G) = nlM(MG) − nlG(MG) + nlM/MG

(
(M ∩ N)/MG

) − 1.

Proof. Since G = MN , we have G/N ∼= M/(M ∩ N). Now

chiefl(M) − chiefl(G) = nlM(MG) − nlG(MG) + chiefl(M/MG) − chiefl(G/MG)

= nlM(MG) − nlG(MG) + chiefl(M/MG) − (
1 + chiefl(G/N)

)

= nlM(MG) − nlG(MG) + chiefl(M/MG) − chiefl
(
M/(M ∩ N)

) − 1

= nlM(MG) − nlG(MG) + nlM/MG

(
(M ∩ N)/MG

) − 1. �
Note that whenever H � G , we have

nlG(HG) � nlH (HG).

The next result, which has significant overlap with [HaSo, Proposition 2.3] follows immediately.
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Corollary 3.4. Let G, M, N be as in Lemma 3.3.

(1) We have chiefl(M) � chiefl(G) − 1.
(2) If M ∩ N 	= MG , then chiefl(M) � chiefl(G).
(3) If (M ∩N)/MG is neither trivial nor a minimal normal subgroup of M/MG , then chiefl(M) � chiefl(G)+1.

The next corollary of Lemma 3.3 also follows from the fact, mentioned in the introduction, that
every maximal chain in a lattice L is at least as long as every chain of modular elements in L.

Corollary 3.5. Let G be any finite group. Then

minmaxl(G) � chiefl(G).

Proof. We proceed by induction on |G|, the case G = 1 being trivial. Assume now that |G| > 1 and
let

1 = M0 < · · · < Mr = G

be a maximal chain in L(G). Then

r � 1 + minmaxl(Mr−1) � 1 + chiefl(Mr−1) � chiefl(G),

the second inequality following from the inductive hypothesis and the third from Corollary 3.4(1). �
Proposition 3.6. Let G be a nonsolvable finite group and let M be a solvable maximal subgroup of G. Then
chiefl(M) > chiefl(G).

Proof. Let N be as in Lemma 3.3. We will apply Corollary 3.4(3). We assume without loss of gen-
erality that MG = 1. Since M is solvable and G is not, we see that N is not solvable. Thus N is
a nonabelian characteristically simple group. By Lemma 3.1 and the maximality of M , M ∩ N 	= 1.
Since M is solvable, we know that every minimal normal subgroup of M is an elementary abelian
p-group. By Lemma 3.2, M ∩ N is not a minimal normal subgroup of M . Thus Corollary 3.4(3) ap-
plies. �
Proof of Theorem 1.4. Assume for contradiction that G is a counterexample to the claim of Theo-
rem 1.4 with |G| minimal. Let

1 = M0 < · · · < Mr = G

be a maximal chain in L(G) with r < chiefl(G) + 2. If Mr−1 is not solvable then we obtain the contra-
diction

r − 1 � chiefl(Mr−1) + 2 � chiefl(G) + 1,

the first inequality following from the minimality of |G| and the second from Corollary 3.4(1). If Mr−1
is solvable then we obtain the contradiction

r − 1 � chiefl(Mr−1) � chiefl(G) + 1,

the first inequality following from Corollary 3.5 and the second from Corollary 3.6. �
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4. Proof of Theorem 1.2

Our proof of Theorem 1.2 relies on four results from [Sch2]. We list these results below, making
only minor notational changes from the statements given in [Sch2].

Lemma 4.1. (See Lemma 5.1.9 from [Sch2].) If M is a subgroup of prime power order of the finite group G, then
the following properties are equivalent.

(a) M is modular in L(G).
(b) M is modular in L(〈M, x〉) for all x ∈ G of prime power order.
(c) M is permutable in G or G/MG = MG/MG × K/MG , where MG/MG is a nonabelian P -group of order

prime to |K/MG |.

Lemma 4.2. (See Lemma 5.1.12 from [Sch2].) Let G be a finite group and M � G such that M is modular in
L(〈M, x〉) for every x ∈ G of prime power order. If Q /MG is a Sylow subgroup of M/MG , then Q is modular
in L(G).

Lemma 4.3. (See Lemma 5.2.2 from [Sch2].) If p is a prime and N a normal p-subgroup of the finite group G,
then N is hypercentrally embedded in G if and only if G/CG (N) is a p-group.

Theorem 4.4. (See Theorem 5.2.3 from [Sch2].) If M is permutable in the finite group G, then MG/MG is
hypercentrally embedded in G.

The next lemma is the key result in our proof of Theorem 1.2.

Lemma 4.5. Say M � G is nontrivial and modular in L(G), and no nontrivial modular element of L(G) is
properly contained in M. If M is not a minimal normal subgroup of G then MG contains a subgroup of prime
order that is normal in G.

Proof. If M � G then M is a minimal normal subgroup of G . Assume that M is not normal in G . Since
MG < M , we have MG = 1. Certainly M is a modular element of every interval of L(G) containing M .
In particular, M is modular in L(〈M, x〉) for every x ∈ G having prime power order. By Lemma 4.2,
every Sylow subgroup of M is modular in L(G). Therefore, M is a q-group for some prime q. By
Lemma 4.1, either

(a) M is permutable in G , or
(b) G = MG × K , where MG is a nonabelian P -group of order coprime with |K |.

Assume first that (a) holds. Then every G-conjugate of M is permutable in G . It follows that MG

is the setwise product of the G-conjugates of M and therefore is a normal q-subgroup of G . Let Q be
a Sylow q-subgroup of G . Then MG � Q and, as is well known, MG ∩ Z(Q ) 	= 1. Let X � MG ∩ Z(Q )

have order q. By Theorem 4.4, MG is hypercentrally embedded in G . Now, by Lemma 4.3, G/CG (MG)

is a q-group. Since CG(MG) � CG(X), we see that [G : CG(X)] is a power of q. On the other hand, the
Sylow q-subgroup Q is contained in CG(X). Thus we must have CG(X) = G , so X � G .

Now assume that (b) holds. Write MG = C E , where E is elementary abelian and C is generated by
an element conjugating every x ∈ E to some nontrivial power of x. Let X � E have prime order p. Cer-
tainly X � E . Also, C normalizes X . Finally, since K commutes with MG , we see that K normalizes X ,
so X � G . �
Proof of Theorem 1.2. We prove Theorem 1.2 by induction on r = chiefl(G). When r = 0 we have
G = 1 and there is nothing to prove. When r = 1, G is simple and the claim of the theorem follows
from the fact that in this case the only modular elements of L(G) are 1 and G (this is Theorem 5.3.1
in [Sch2] and also follows immediately from Lemma 4.5). Assume now that r > 1. Let



J. Shareshian, R. Woodroofe / Journal of Algebra 351 (2012) 448–458 455
1 = M0 < M1 < · · · < Mt = G

be a chain of modular elements in L(G) that is properly contained in no other chain of modular ele-
ments. We wish to show that t � r. Assume first that M1 � G . Then M1 is a minimal normal subgroup
of G and chiefl(G/M1) = r − 1. Also, the interval [M1, G] in L(G) is isomorphic with L(G/M1). Since
each Mi (i � 1) is a modular element of [M1, G], we have t − 1 � r − 1 by inductive hypothesis.

Assume now that M1 is not normal in G . By Lemma 4.5, there is some X � MG
1 that is a normal

subgroup of G having prime order p. We claim that the chain

1 < X = M0 X < M1 X � M2 X � · · · � Mt X = G

contains t + 1 distinct elements, all of which are modular in L(G). Indeed, modularity follows from
Lemma 2.1. Consider the smallest s such X � Ms . Note s > 1 by our assumption that our original
chain of modular elements is properly contained in no larger such chain. If 1 � j < s then

|M j−1 X | = p|M j−1| < p|M j| = |M j X |,
so M j−1 X < M j X . If j � s then M j X = M j , so if j > s then M j−1 X < M j X . Thus our claim holds. Now
we can apply our inductive hypothesis as we did in the case M1 � G , using X in place of M1. �
5. Values of minmaxl(G) − chiefl(G)

Our main result in this section is Theorem 5.4, which shows that minmaxl(G) − chiefl(G) can take
any value in N \ {1}.

Lemma 5.1. Let G be a group, let N �G, let B � G and let A be a maximal subgroup of B. Then either AN = BN
or AN is a maximal subgroup of BN.

Proof. Suppose AN � X � BN . Then X ∩ A is either B or A. If X ∩ B = B then BN � X so X = BN . If
X ∩ B = A then

AN = (X ∩ B)N = X ∩ BN = X,

by the Dedekind modular law. �
Lemma 5.2. Let G be a finite group and let 1 	= N � G. Then minmaxl(G) > minmaxl(G/N).

Proof. Let

1 = M0 < · · · < Mr = G

be a maximal chain in L(G). For 0 � i � r, set Mi = Mi N/N . By Lemma 5.1, we get a maximal chain
in L(G/N) upon appropriately erasing repeated terms from

M0 � · · · � Mr .

Find the smallest j such that N � M j . Then M j−1 = M j , so there is at least one repeated term to
erase. Thus minmaxl(G/N) < r. �

Before continuing, we remark that the statement analogous to Lemma 5.2, concerning maxi-
mal chains in an arbitrary finite lattice L and saturated chains starting at a (left) modular ele-
ment 0̂ 	= m ∈ L, admits an analogous proof. We note also that Corollary 3.5 follows directly from
Lemma 5.2.
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Lemma 5.3. Let G be a finite group and let S be a nonabelian finite simple group such that no section of G is
isomorphic with S. Then

minmaxl(G × S) � minmaxl(G) + 2.

Proof. We proceed by induction on |G|, the claim in the case G = 1 being that a nonabelian simple
group has a nontrivial proper subgroup. Now assume |G| > 1 and let

1 = M0 < · · · < Mr = G × S

be a maximal chain in L(G × S) with minmaxl(G × S) = r. Let π : G × S → G map (g, s) to g . Let
J = π(Mr−1). If J 	= G then, since Mr−1 � J × S is maximal in G × S , we have Mr−1 = J × S . Our
inductive hypothesis applies, and we get

minmaxl(G × S) = 1 + minmaxl( J × S) � 3 + minmaxl( J ) � 2 + minmaxl(G).

If J = G then, since G has no quotient isomorphic with S , we must have Mr−1 = G × H for some
maximal H < S (see, for example, [The, Lemma 1.3]). Since S is nonabelian simple, we have H 	= 1.
Now

minmaxl(G × S) = 1 + minmaxl(G × H) � 2 + minmaxl(G),

the last inequality following from Lemma 5.2. �
Theorem 5.4. For every n ∈ N \ {1}, there exists some finite group G such that minmaxl(G) − chiefl(G) = n.

Proof. We will use the following facts about the projective special linear group L2(p) over a field of
prime order p. These facts can be found in [Di].

(1) If p > 3 then L2(p) is simple.
(2) If p is odd then |L2(p)| = p(p2 − 1)/2.
(3) Every maximal subgroup of A5 ∼= L2(5) is isomorphic with one of S3, D10 or A4.
(4) Every maximal subgroup of L2(31) is isomorphic with one of A5, S4, D30, D32 or Z31.Z15.
(5) If p ≡ 1 mod 5 then L2(p) has a maximal subgroup isomorphic with A5, and every subgroup

of L2(p) that is isomorphic with A5 is maximal.

It is straightforward to check that each of S3, D10 and A4 is solvable with chief length two. It
follows from fact (3) above and Theorem 1.3 that minmaxl(A5) = 3, so

minmaxl(A5) − chiefl(A5) = 2. (5.1)

Similarly, each of S4, D30, D32 and Z31.Z15 is solvable, and these groups have respective chief
lengths 3, 3, 5 and 3. Combining these facts with Theorem 1.3, fact (4) and minmaxl(A5) = 3, we
get minmaxl(L2(31)) = 4 and

minmaxl
(
L2(31)

) − chiefl
(
L2(31)

) = 3. (5.2)

Now let p1 = 31, p2, . . . be an infinite sequence of primes such that pi < pi+1 and pi ≡ 1 mod 5 for
all i � 1. (The existence of such a sequence is guaranteed by the famous theorem of Dirichlet, see for
example [IrRo].) For n ∈ N, set

Gn :=
n∏

L2(pi).
i=1
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We claim that

minmaxl(Gn) = 2n + 2 (5.3)

for all n ∈ N. Since chiefl(Gn) = n, (5.3), together with (5.1), proves Theorem 5.4. We prove (5.3) by
induction on n, the case n = 1 being (5.2). Now assume n > 1. By fact (2), |Gn−1| is not divisible by pn .
Applying (2) again, we see that Gn−1 has no section isomorphic with L2(pn). Combining fact (1) and
Lemma 5.3 with our inductive hypothesis, we get

minmaxl(Gn) � 2n + 2.

It remains to exhibit a maximal chain of length 2n + 2 in L(Gn).
For each i ∈ [n], fix injective homomorphisms ρi : Z3 → L2(pi), σi : A4 → L2(pi) and τi : A5 →

L2(pi), such that

Image(ρi) < Image(σi) < Ti := Image(τi).

(The existence of such homomorphisms is guaranteed by fact (5).) Set

D1 := {(
ρ1(x), . . . , ρn(x)

)
: x ∈ Z3

}
,

D2 := {(
σ1(x), . . . , σn(x)

)
: x ∈ A4

}
,

D3 := {(
τ1(x), . . . , τn(x)

)
: x ∈ A5

}
.

It is straightforward to confirm that D1 ∼= Z3 is a maximal subgroup of D2 ∼= A4, which is in turn
a maximal subgroup of D3 ∼= A5. Now set

T :=
n∏

i=1

Ti,

and for 0 � k � n, set

T (k) := {
(t1, . . . , tn) ∈ T : τ−1

i (ti) = τ−1
j (t j) for 1 � i < j � k

}
.

Then

D3 = T (n) < T (n − 1) < · · · < T (1) = T .

Note that T (k) is a maximal subgroup of T (k − 1) for all 2 � k � n. Indeed, if T (k) � X � T (k − 1), the
natural projection of X to L2(pk) has image Tk . Since A5 is simple, the subgroup Y of X consisting
of all (t1, . . . , tn) ∈ X such that t j = 1 for j 	= k must be either 1 or Tk . In the first case, we have
X = T (k) and in the second case we have X = T (k − 1). Finally, for 0 � k � n, set

L(k) := {
(x1, . . . , xn) ∈ Gn: xi ∈ Ti for 1 � i � k

}
.

We have

T = L(n) < L(n − 1) < · · · < L(0) = Gn.
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Since Ti is maximal in L2(pi) for all i ∈ [n] (fact (5)), we see that L(k) is maximal in L(k − 1) for all
k ∈ [n]. We have now that

1 < D1 < D2 < D3 = T (n) < · · · < T (1) = L(n) < · · · < L(0) = Gn

is a maximal chain of length 2n + 2. �
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