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1. INTRODUCTION 

The aim of the present paper is to develop a duality theory for Linear Multiobjective Programming 

that generalizes the usual properties of the scalar case. 

The importance of duality techniques in scalar Linear Programming is well known because 

of the many relationships existing between primal and dual solutions, the most important of 

which is, no doubt, the interpretation of the dual solutions in terms of the sensitivity of the 

primal program. Many authors have tried to extend such properties to the multiobjective case, 

starting from different definitions of dual programs. For example, in [1,2] Zowe has defined a dual 

program whose solutions measure the primal sensitivity in a similar way as in the scalar case. 

However, Zowe defines the optima of the multiobjective program as strong optima instead of 

Pareto optima, as most authors do. To be precise, if the problem is a minimization program, f is 

the objective function and x0 is a feasible solution, then Zowe defines x0 as an optimal solution 

if it verifies that f(xo) < f(x) for every x feasible, while it is usual to define it as an optimal 
solution if there is no x feasible verifying that f(x) (_ f(xo) and f(x) ~ .f(xo). From Zowe's 
work, we can conclude that it is possible to measure primal sensitivity from the corresponding 
dual solution when the multiobjective optima are strong optima instead of Pareto optima. This 
fact has motivated the introduction of a new kind of Pareto optima, the so-called T-optima, 
defined as those Pareto optima that can be transformed into strong optima by the composition 
of the objective function with a certain linear transformation T. As we will see in the following 
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pages, it is possible to define a dual program whose optimal solutions are related to the primal 
T-optimal solutions by means of some conditions. In many practical examples such primal-dual 
relations allow the calculation of the primal T-optima knowing their associated dual solutions 
(see, the example below). Under certain conditions it is also possible to calculate the whole 
efficient set of the primal program. Moreover, such dual solutions can be used to measure the 
primal sensitivity with respect to changes in the independent term of the restrictions. Finally, 
our dual program reduces to the usual one in the case of scalar programs. 

Perhaps the most famous duality theory for multiobjective linear programs is due to Isermann 
(see [3,4]). Isermann's dual solutions also verify some primal-dual relations, and measure the pri- 
mal sensitivity if the Pareto solutions of the program are restricted to be basic feasible solutions 
of the primal feasible set. It  is not difficult to prove that  our dual program reduces to Isermann's 
dual program if the linear transformation T is real valued: our duality theory generalizes Iser- 
mann's duality. Moreover, there is a strong relationship between the basic feasible solutions and 
our T-optimal solutions. 

Finally, some authors have extended the duality techniques to arbi trary dimensional programs, 
so that  they can also be applied to dynamic problems. The classical reference is [5]. The scalar 
linear case is specifically treated by Anderson and Nash in [6]. And the multiobjective case 
is t reated by the authors in [7] (where Isermann's duality theory is generalized to arbitrary 
dimensions) and [8] (devoted to convex programming). Our present paper also studies arbitrary 
dimensional programs, although the corresponding finite dimensional results are also discussed. 

The paper is divided into four sections. In Section 2, we define the concept of T-optimal 
solution and its relationship with the usual Pareto solution. In Section 3, we define a dual 
program for linear multiobjective primal programs, and we prove the existence of some primal- 
dual relations between both programs, allowing in some cases the calculation of the efficient set of 
the primal program. In Section 4, we show the strong relationship existing between the obtained 
dual solutions and the primal sensitivity in relation to changes in the independent term of the 
constraints. Finally, the last section is devoted to the complete resolution of an example showing 
how our duality theory works out in practice. 

2.  S T R O N G L Y  P R O P E R  O P T I M A  I N  L I N E A R  

M U L T I O B J E C T I V E  P R O G R A M M I N G  

Let us suppose that  X and Z are Banach spaces ordered by the pointed, closed, and convex 
cones X + and Z +, respectively (as particular cases we can consider R n and Rm). Let us consider 
two linear and continuous functions f : X ~ R p, g : X ~ Z. Finally, let z0 E Z be a 
constant. We consider the linear multiobjective primal program (P) "min f (x ) ,  s.t. x E F" ,  
where F = {x E X + : g(x) _< z0} is the primal feasible set (for simplicity, in this section we 
shall suppose that  f ( F )  is bounded). We define the optimal solutions of program (P)  as its usual 
Pareto minima. 

Let T : R p ~ Rq be a linear surjective mapping such that  q _< p and T is positive, that  is, 
T(u) > 0 if u > 0 (the notation x > y means x _> y and x ~ y). We say that  a point x0 E F is a 
proper T-optimum of program (P) if T f ( x )  >_ T f (xo)  holds for every x E F.  If, in addition, the 
transformation T is bijective (q = p), we say that  x0 is a strongly proper T-optimum. Finally, a 
point is just  a (strongly) proper optimum if it is a (strongly) proper T-opt imum for some T. 

It is almost evident tha t  proper optima must also be Pareto optima of program (P),  but the 
converse is not necessarily true. Therefore, the following question is raised. When is a Pareto 
optimum also a proper optimum? For the most important  case of the strongly proper optima, a 
sufficient condition is given in the following theorem, whose demonstration can be found in [9]. 

THEOREM 1. A point xo E F is a strongly proper optimum of program (P) i f  the set of nonneg- 
ative linear mappings a : R p - .  R such that a f (xo)  <_ a f ( x ) ,  V x E F, distinguishes points o f R  p 
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(that is, if u ~ 0 in R p, then there exists a nonnegative finear mapping a verifying the previous 
condition and such that a(u)  ~ 0 in R). 

In practice, it is often easier to s tudy another equivalent sufficient condition: x0 E F is a 
strongly proper opt imum if there exist p linearly independent and nonnegative real valued linear 
mappings a l , . . .  ,ap such that  a~(f(xo)) <_ a~(f(x)), Vx E F, Vi = 1,. . .  ,p. 

As we show in the following two theorems, the strongly proper optima are also related to the 
basic feasible solutions (extreme points) of the set f (F) .  

THEOREM 2. / [  xo is a strongly proper optimum for program (P),  then f (xo) is an extreme point 
o f f (F) .  

PROOF. Let Xo be a strongly proper T-optimum for program (P).  If f(xo) is not an extreme 
point of f ( f ) ,  then there exist A E (0, 1) and f ( x i ) , f ( x 2 )  E f ( f )  ( f (x:)  ¢ f(x2)) such that  
f(xo) = Af(x: )  + (1 - A)f(x2) and Tf(xo) = ATf(x l )  + (1 - A)Tf(x2). 

From Tf (x : ) ,  Tf(x2)  >_ Tf(xo),  we deduce that  Tf ( x i )  = Tf(x2) = Tf(xo).  Finally, since T 
is bijective we obtain the contradiction f ( x i )  -- f (x2)  = f(xo). | 

THEOREM 3. Let  us suppose that  f (F)  is a compact set, and let xo be a Pareto optimum of 
program ( P) obtained as a solution of a 'scalarized program'  (that is, there exists a positive, real 
valued linear mapping ~ such that  a(f(xo)) <_ a(f(x))  Vx E F). Let us suppose, in addition, 
that  f(xo) is an extreme point o f f (F) ,  and that  the convex hull o[ the  set o[ those extreme points 
which are distinct from f (xo) is closed. Then, xo is a strongly proper optimum of program ( P). 

PROOF. We begin with some notations: let R~_ be the set of vectors a E R p such that  a~ >_ 0, 
0 

Vi = 1 , . . .  ,p; let R~_ be the set of vectors a E R p such that  a~ > 0, Vi = 1 , . . .  ,p; let A be the 
set the vectors a E R~_ such that  af(xo) <_ af(x) ,  Vx E F; and let C be the convex hull of the 
set of those extreme points of f (F)  which are distinct from f(xo). 

Since x0 is an optimal solution of a 'scalarized program', it is clear tha t  there exists some 
0 

a l  E R~_ n A, and therefore, the set A is nonvoid. In order, to get Theorem 3, we have to prove 
(see Theorem 1) tha t  the set A distinguishes points. 

Let a E R p, a ~ 0, and let us suppose that  a : a  = 0. 
Since C is closed and f(xo) ¢ C, from a separation theorem (see [5]) we deduce that  there 

exists a2 E R p, a2 ~ 0, such that  ot2f(xo) < a2f(x), Vf(x )  E C; moreover, we have that  

i n f { a 2 f ( x )  - a 2 f ( x 0 )  [ f ( x )  E C}  : d > O. 

o 
If we multiply a2 by a sufficiently small number, it is possible to obtain that  a l  + a2 E R~_; 

moreover, it is easy to prove that  (a: + a2)f(xo) <_ (hi  + a2)f(x), Vx E F; therefore, we have 
that  (a l  + a2) E A and, if (a l  + a2 )a  ~ 0, then we have finished our proof. But let us suppose 
that  (a l  + a2)a = 0, and let us consider a3 E R p such that  a3 a  ~ 0. 

0 
If we multiply aa by a sufficiently small number, it is possible to obtain that  a l  +a2  +h a  E R~. 

Moreover, since f (F )  is a compact set we know that  [aa(f(x) - f(x0))[ _< M, Vx E F,  and again 
it is possible to obtain that  M _< d. 

Let us take x E F.  Under all these conditions, we have 

(OL1 + 0:2 + ~ 3 ) ( f ( x )  - -  f(xo)) = ~ l ( f ( x )  - f ( x 0 ) )  + o l 2 ( f ( x )  - f(xo)) + ~3(f (x)  - f (x0)) ,  (1) 

O~l(f(x ) -- f(Xo) ) ~ O. (2) 

Since f (F)  is a compact and convex set, it coincides with the convex hull of its extreme points. 
Therefore, f (x)  = A0f(x0) + )-]~i~l Aif(x~), where f ( x l ) , . . . ,  f(xn) are extreme points of f (F)  
and distinct from f(xo). Thus, we have that  

-- o, (E :(,o>>) -- E :(=o>> >_ (E 
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Finally, 

: ( E  --IZ 
<- E - <_ ( E  

(4) 

As a consequence of (1)-(4), we have that al  + a 2 + a 3  E A. Moreover, (al + a 2 + a 3 ) a  = a3a ~ 0. 
Therefore, the set A distinguishes points. | 

Intuitively, the hypothesis relative to the convex hull is verified if the extreme points are 
'isolated', as occurs in finite dimensions. Moreover, in this case the whole set of Pareto optima 
can be obtained as solutions of 'scalarized' programs (see [10]). Therefore, in finite dimensions the 
Pareto optima whose images by the objective function are extreme points of f(F) are necessarily 
strongly proper solutions. In this case, Theorems 2 and 3 characterize the strongly proper optima 
as those Pareto optima whose images by f are extreme points of f(F). This property also holds 
in many infinite dimensional programs, like for example discrete-time optimal control problems 
(see the example below). As an easy consequence, the next theorem shows that, under similar 
conditions, the image of every Pareto optimum must be a convex combination of the images of 
strongly proper optima, and this fact allows us to calculate the whole set of Pareto optima if we 
know the strongly proper optima of program (P). 

THEOREM 4. Let us suppose that f (F)  is a compact set, and that every Pareto optimum of 
program (P) whose image by f is an extreme point of I (F)  must be 'isolated' and can be 
obtained as a solution of a 'scalarized' program (remember that these two last conditions hold in 
firdte dimension). Then, the image of every Pareto optimum must be a convex combination of 
the images of strongly proper optima of program ( P). 

PROOF. Let Xo be a Pareto optimum of program (P). Since f (F)  is a compact and convex set, 
f (F)  must be the convex hull of its extreme points, and therefore, f(x0) = ~-~=1 tif(xi),  where 
f ( x l ) , . . . ,  f (xn) are extreme points of f (F)  and ti > 0 for all i. 

If for some j ,  the point zj  is not a Pareto optimum, then there exists y E F such that 
f (x j )  > / ( y ) ,  and 

f ( x ° ) = ~ t J ( x ~ ) > E t J ( x ~ ) + f ( Y ) = f ( E t ~ x i + Y ) i = t  ~#j \i~J Ef(F), 

which is a contradiction because x0 is a Pareto optimum. 

Therefore, Xl,..., xn are Pareto optima and we are under the conditions of Theorem 3, so that 
we can conclude that xl,..., xn are strongly proper optima and the theorem holds. | 

3. T H E  D U A L I T Y  T H E O R Y  

In this section, we define the dual program of program (P) and study the relationship between 
both programs. 

Let q (_~ p) be a fixed natural number, and let H be the set of the linear, surjective, and positive 
mappings from R p onto R q. Let L(Z, R q) be the set of the linear and continuous mappings from Z 
to R q ordered by the cone L+(Z, Rq). Such a cone is formed by all the nonnegative mappings of 
L(z, Rq), and therefore, if z~,z~ E L(Z, Rq), then z~ _> z~ if z~(z) _> z~(z) holds for every z E Z, 
z _> 0. In a similar way we define L(Z, RP), L(X, RP), and L(X, Rq). 

We define the dual program (D) of program (P) in the following way: "max-G(zo),  s.t. 
TGg >_ - T  f ,  TG >_ O, T E l'I, G E L(Z, RP) " . 
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If the spaces X and Z are finite dimensional then, the dual variables (T, G) can be represented 

as matrices. 

It is not difficult to prove that if q = 1, then program (D) reduces to the infinite dimensional 

Isermann's dual program presented in [7]. On the other hand, if p -- 1, that is, if we are in the 

scalar case, then program (D) reduces to the infinite dimensional scalar dual program introduced 

in [6]. 

It is not difficult to prove that programs (P) and (D) verify certain primal-dual relations. 
According to the first property, the dual objective can never be larger than the primal. 

THEOREM 5. I f  X i s  primal feasible and (T, G) is dual feasible, we never have -G(zo) > f(x) .  

PROOF. -G(zo) > f (x)  implies -TG(zo) > Tf(x) ,  and therefore, we have the contradiction 
TG(zo) < - T f ( x )  < TGg(x) <_ TC(zo). | 

As a consequence of the previous result, if x is primal feasible, (T, G) is dual feasible and 
-G(zo) = f(x) ,  then x and (T, G) must be primal and dual optimums, respectively (x being 
a proper T-optimum). In this case, we say that  they are associated solutions. The existence 
of associated solutions can be proved under very general conditions, like the Slater condition 
(see [8]) or others similar to the obtained in [6]. Moreover, it is possible to characterize such 
associated solutions by means of some complementary slackness conditions. 

THEOREM 6. Let x and (T, G) be primal and dual feasible points, respectively, and let us take 
q = p. Then, x and (T, G) are associated solutions ff and only if 

(i) TG(g(x) - zo) = O, 
(ii) (TGg + T f)(x)  = O. 

PROOF. If (i) and (ii) hold, then Tf (x )  = -TGg(x)  = -TG(zo); therefore, we have that  f (x)  = 
-G(z0),  since T is bijective. On the other hand, if x and (T, G) are associated solutions, they 
must verify g(x) < zo, (TGg + T f )  > O, TG > O, and f (x)  = -G(zo). Consequently, we have 
(TG)(g(x)) <_ (TG)(zo) = - T f ( x )  <_ (TG)(g(x)), and both (i) and (ii) hold. | 

Notice, that  matrix T can disappear of the expressions (i) and (ii), since p = q and T is 
bijective. 

Let us consider a measure # defined over the Borel a-field of the natural numbers and such 
that  #(n) > 0 for each n E N. Let lr(#) be the space of sequences (u,)  such that  ~-~n°°__l u~p(n) 
converges, is ordered by the usual cone. In the rest of this section we study, as an application 
of the previous theory, the particular form of the complementary slackness conditions when the 
spaces X or Z are equal to lr(#) for some r E N. 

If Z = lr(#), then G E L(l r (#) ,R p) and hence, 

G = 
G l l  G12 ...) 

, 

where the rows are vectors of l,(#), with I/r + I/s = I. The condition TG(g(un) - z0) = 0 can 
be written as 

tpl . . .  t ~ /  \ G p l  (i) . . .  - z0)2 (2) = 

Gp2 • • • 

The first equation we obtain is 

( t11611 + ' "  -{- t l p G p l ) ( g ( u n )  - zo)l~./(1) -{'- ( t11612 + " "  + t l p e p 2 ) ( , q ( U n )  - z0)2~(2)  -}- . . . .  0. 
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Since we know that  T G  >_ 0 and g(un)  <_ zo, we conclude that  

(t11G11 + ' . .  + t lpGpl(g(un)  - ZO)l = O, 

( t l lG12 + . . .  + t lnGn2(g(un) - z0)2 -- 0, 

The last equation would be 

( t p l C l l  + ' ' "  + $ p p C p l ) ( g ( u n )  - Z 0 ) l ~ ( 1 )  "Jr ( t p l C l 2  -{- " " " -}- t p p C p 2 ) ( g ( U n )  - zo)2/~(2)  -}- . . . .  0, 

and again we conclude that  

( tplGll  + . . . - t - tppGpl(g(un)  - Z0)l  ~- 0, 

(tplG12 -}-"" + tppGp2(g(un) - z0)2 = 0, 

Consequently, if (g(un) - zo)l  ~ O, then 

t l l G l l  + • "" + t l p G p l  = 0 , . . .  , t p l G l l  + " ' "  + t ~ G p l  : O, 

that  is, 

Since T is a regular matrix, this implies that  G l i  . . . . .  Gni ~ O. The same reasoning shows 
that  (g(un) - zo)2 ~ 0 implies Gi2 . . . . .  Gp2 = 0 and, in general, (g(un) - zo)~ ~ 0 implies 
Glk  . . . . .  Gpk = 0 for all k E N, tha t  is, the product of every component of the vector 
(g(un) - zo) and the elements of the corresponding column of the matr ix G must be zero. 

We conclude that ,  if Z = lr(#), the condition T G ( g ( u n )  - Z o )  = 0 is equivalent to the following 
equations: 

(g(un) - zo)kGlk  . . . . .  (g(un) -- Zo)kGpk = 0, for all k = 1, 2 , . . . .  

On the other hand, if X = /r(#), then H = Gg + f E L(lr(~),  R p) and therefore, H can be 
represented as a matrix with infinite columns 

hl l  h i 2  . . .  ) 
H =  . . . . . . . . .  , 

\ h p l  hp2 . . .  

where the rows are vectors of ls(#). By means of similar arguments it is easy to demonstrate 
that  the condition ( T G g  + T f ) ( u n )  = 0 is equivalent to the equations 

(un)kh tk  . . . . .  (un)khpk = 0, for all k = 1, 2 , . . . ,  

that  is, the product of every component of the vector (un) and the elements of the corresponding 
column of the matrix H must be null. 

It is also easy to demonstrate that,  if X or Z are finite dimensional, the complementary 
slackness conditions have the same form but the number of equations is finite. 

If p -- 1, the complementary slackness conditions that  we have obtained in Theorem 6 coincide 
with the well-known scalar conditions (see [6]). Moreover, the previous example shows another 
important  relation between multiobjective and scalar slackness conditions: when we work in 
finite or infinite but  countable dimensions, the multiobjective equations can be obtained by 
aggregating the scalar complementary slackness conditions of the p scalar programs associated 
with our multiobjective program by selecting only one component of the objective function. This 
fact makes easier the resolution of the equations in these two important  particular cases. From all 
these properties, we conclude that  our duality theory and our complementary slackness conditions 
become a useful generalization to the multiobjective case of the well-known theory in the scalar 
case .  
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4. S E N S I T I V I T Y  ANALYSIS  

The dual program defined in the previous section is related to the primal sensitivity. In this 
section, we show that  such primal sensitivity is measured by the sum of a dual solution plus a new 
term that  can be interpreted as the sensitivity of such a dual solution. This last term vanishes in 
the scalar case, and this is the reason why dual solutions measure exactly the primal sensitivity 
in scalar linear programs. 

In this section we consider the 'perturbed'  programs (P)z defined as "min f (x ) ,  s.t. g(x) - 
z _< z0", where z belongs to a certain neighbourhood V of 0 E Z (notice tha t  program (P) 
coincides with (P)o).  Since (P)z is a linear program, we consider its dual program for a certain 
q (1 _< q _< p). Let us suppose that  for each z we find the associated solutions xz and (T, Gz) 
(where T does not depend on z). Then, we can define two new functions 

F :  V --* R p, F(z)  = f(xz);  G:  V --* L(Z, RP), G(z) = Gz. 

If we assume that  F and G are Frechet differentiable, then OF(O, z) denotes the Frechet differential 
of F at 0 (which is a linear and continuous mapping from V to R p) particularized on z • V, and 
therefore, OF(O, z) • R p. In a similar way, OG(O, z) • L(Z, RP), and therefore, OG(O, z)(zo) • R p. 
The following important  result relates primal sensitivity and dual solutions. 

THEOREM 7. Under the previous hypothesis and notations, we have 

OF(O, z) = -T*TGo(z )  - I r  (OG(O, z)(zo) ) , 

where T* is the generalized inverse of T (that is, the inverse of the restriction of T to the 
orthogonal complement of ker(T)),  and 7r is the projection from R p onto ker(T). 

PROOF. See [8]. II 

Notice, tha t  if we work in the scalar case, or in the multiobjective case with strongly proper 
optima (q = p), then T*T is the identity and r vanishes, and therefore, the dual solution measures 
exactly the primal sensitivity when the independent term of the restrictions changes: OF(O, z) = 
-Go(z) .  Theorems 6 and 7 give us a special kind of Pareto optima, the strongly proper optima, 
for which duality properties similar to those obtained in the scalar case hold. 

5 .  A N  E X A M P L E  

The purpose of this last section is to present a simple example showing how the developed 
theory works in practice. The example studies a linear program in infinite dimensional spaces, 
with two objective functions. We define its dual program and solve both, primal and dual 
programs, by means of the conditions stated in Theorem 6. To be more precise, we find the 
strongly proper optima and all their associated dual solutions, which are presented as primal 
sensitivity measures. 

Let us consider a measure # defined over the Borel a-field of the natural  numbers and such 
that  #(n) = e -~  for each n E N. Let 12(#) be the space of sequences (un) such that  ~i-~= x un ez --n 
is convergent, and let us consider the following primal program: 

min Une-n' E e--n, 
n----1 n=l  

s.t. (un), (vn) e 12(#), un + Vn < n, un, vn > O, n = 1, 2 , . . .  I '  

where it is clear tha t  the objective functions are given by convergent series, because they are the 
scalar product  in 12(#) of the sequences (un), (1) and (vn), ( l / n ) ,  respectively. We also consider 
tha t  the constraint is valued in/2(#) .  
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From the results of the Section 2, we know that  the dual variable is a pair (T, G), where T is a 
regular matrix with nonnegative terms and G is a linear function from 12(#) to R2; therefore, G 
may be represented as a matrix with an infinite number of columns and such that  the rows are 

in 12(#) 

The dual program becomes 

m a x -  

a,13,x,6 > O, 

XGln + 6G2n >_ O, 

G21, G22,  G23,  • • 

(t ) nGlne -n, r ~ G 2 n e  - n  , 

\~=1 n=l 

~6 -/3X ¢ 0, ~G1. +/3G2n > 0, 

c~Gtn + 3G2n >_ a, ~GI,~ + 3G2,~ >_ 3 
n 

6 
XGln + 6G2n >_ X, XGln + 6G2n >_ - ,  

n 

where the constraints must be verified for any n = 1, 2, 3 , . . . .  The first and second constraints 
come from the conditions on matrix T, the third and fourth come from the inequality TG > O, 
and the rest of them may be easily obtained from TGg >_ - T f .  

From Condition (i) of Theorem 6, it may be proved that  

u .  + v .  = n, n = 1 ,2 , . . . .  (5) 

Condition (ii) leads in this case to 

(OtGln +/3G2, - a)un = O, n = 1, 2 , . . . ,  

( o t G l , + f l G 2 n - ~ ) v n = O ,  n =  1 ,2 , . . . ,  (6) 

and the last equalities must hold as well if we change a and/3 by X and 6, respectively. If for 
some n we had that  u ,  ¢ 0 and vn ¢ 0, then from (6) we would have 

a = -  and X = -  (7) 

and this is not possible because the determinant of T cannot be zero. Now, (5) gives us the 
following condition which must hold for any n = 1, 2 , . . . ,  and any strongly proper optimum 

( U n = 0 a n d v n = n )  or ( u n = n a n d v , = 0 ) .  (8) 

If u ,  ~ 0, we obtain from the first equality in (6) that  

and therefore, 

Similarly, if v .  ~ 0, then 

aG1.  +/3G2n = ~, xG1n + ~G2n = X ,  

G 1 n = l  and G 2 n = 0 .  (9) 

1 
G x n = 0  and G 2 , = - .  (I0) 

n 

Finally, if we introduce (9) and (10) into the dual constraints, we obtain that  the primal 
strongly proper optima and their associated dual solutions are, for every m E N, 

i f n > m ,  t h e n u n = n ,  v n = 0 ,  G i n = l ,  G 2 n = 0 ,  
1 

if n _< m, t h e n  u n  -~- 0, i} n = n ,  G i n  --~ 0, G 2 n  = - .  
n 

Moreover, for any strongly proper optimum the associate dual solution gives the primal sensi- 
tivity in the sense that  if we change the sequence (n) by (z,) E 12(#), then the change in the two 
objective functions is given by Y~.=I Gin(zn - n)e -n, i -- I, 2. 
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