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The Meiosis I-to-Meiosis II Transition in Mouse
Oocytes Requires Separase Activity

some inhibitor MG132, microinjection of antibodies
against the APC/C activator fizzy, depletion of fizzy by
antisense injection, microinjection of antibodies against
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tion of cyclin B and securin, whereas reduction of APC/Université Pierre et Marie Curie
75252 Paris, cedex 05 C-mediated proteolysis in meiosis II prevents the meta-

phase-to-anaphase transition [15, 16]. On the otherFrance
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may be required for the metaphase I-to-anaphase I tran-Dr. Bohr-Gasse 7
1030 Vienna sition in mouse oocytes. In mitosis, ubiquitination by the

APC/C and subsequent degradation of B-type cyclinsAustria
causes MPF activity to disappear, a prerequisite for the
exit of mitosis. During meiotic maturation, MPF activity
is highest in metaphase I (MI), drops as oocytes exitSummary
meiosis I, increases again, and peaks in metaphase of
meiosis II (Figure 1). In mouse oocytes, overexpressionFaithful segregation of homologous chromosomes

during the first meiotic division is essential for further of cyclin B1 leads to an arrest in metaphase I [17], sug-
gesting that degradation of cyclin B1 is required for theembryo development. The question at issue is whether

the same mechanisms ensuring correct separation of metaphase-to-anaphase transition in mouse oocytes
and/or that the APC/C can be saturated by an excesssister chromatids in mitosis are at work during the

first meiotic division. In mitosis, sister chromatids are of its substrate. Furthermore, overexpression of a com-
ponent of the spindle checkpoint, Mad2, which interactslinked by a cohesin complex holding them together

until their disjunction at anaphase [1–6]. Their disjunc- with and inhibits the APC/C in mitosis and therefore
induces a metaphase arrest, causes a metaphase I ar-tion is mediated by Separase, which cleaves the

cohesin [7, 8]. The activation of Separase requires rest in meiosis (K.W., submitted).
Immature mouse oocytes can be induced to undergoprior degradation of its associated inhibitor, called

securin [9, 10]. Securin is a target of the APC/C (Ana- meiosis I synchronously and then arrest in metaphase
II in culture (Figure 1). To determine whether degradationphase Promoting Complex/Cyclosome), a cell cycle-

regulated ubiquitin ligase that ubiquitinates securin of key substrates by the 26S proteasome was required
for the first meiotic transition, immature oocytes wereat the metaphase-to-anaphase transition and thereby

targets it for degradation by the 26S proteasome [11– allowed to progress into prometaphase I (to avoid the
observation of effects unrelated to the metaphase-to-14]. After securin degradation, Separase cleaves the

cohesins and triggers chromatid separation, a prereq- anaphase transition) and were then treated for 5–6 hr
with the 26S proteasome inhibitor MG132. Whereas con-uisite for anaphase. In yeast and worms, the segrega-

tion of homologous chromosomes in meiosis I de- trol oocytes underwent the metaphase-to-anaphase
transition of meiosis I normally and extruded their firstpends on the APC/C and Separase activity. Yet, it is

unclear if Separase is required for the first meiotic polar body (Figures 2A and 2C), MG132-treated oocytes
arrested in metaphase I (Figure 2C) with high levels ofdivision in vertebrates because APC/C activity is

thought to be dispensable in frog oocytes. We there- MPF activity (Figure 2D), a high cyclin B1 level (Figure
2E), a metaphase I spindle that has migrated to thefore investigated if Separase activity is required for
cortex, and chromosomes aligned on the metaphasecorrect chromosome segregation in meiosis I in
plate (Figure 2B). Therefore, these data suggest thatmouse oocytes.
26S proteasome activity is required for the metaphase-
to-anaphase transition in meiosis I (Figure 1).Results and Discussion

The segregation of homologous chromosomes during
the first meiotic division requires prior resolution of theWe show here for the first time that segregation of ho-
chiasmata. In S. cerevisiae and C. elegans, resolution ofmologous chromosomes in meiosis I requires the 26S
chiasmata depends on the cleavage of a meiosis-specificproteasome and Separase activities in mouse oocytes.
cohesin, Rec8 [18, 19]. At the metaphase I-to-anaphase IIn X. laevis oocytes, reduction of APC/C-mediated pro-
transition, Rec8 is cleaved by Separase along chromo-teolysis by several means (treatment with the protea-
some arms but is resistant to proteolytic cleavage in the
vicinity of centromeres. Rec8 located in the centromeric
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Figure 1. Meiotic Maturation of Mouse Oocyte

Mouse oocytes are arrested in prophase I in the ovaries and harbor a large nucleus (in pink) called the germinal vesicle. Meiosis resumption
starts with the Germinal Vesicle BreakDown (GVBD), followed by a long prometaphase I in which chromosomes become condensed (red
hatchings) and in which spindle formation occurs (green). After separation of homologous chromosomes and first polar body extrusion (PB1),
meiosis II starts without DNA replication and oocytes arrest in metaphase II. This block is called the CSF (Cytostatic Factor) arrest and will
be bypassed by fertilization, which allows separation of sister chromatids. MPF activity appears in red. The stages at which MG132, the
Separase inhibitor, and securin will act are indicated on the scheme.

triggers securin degradation, Separase activation, and meiosis I in mouse oocytes is regulated by a mechanism
similar to that in S. cerevisiae and C. elegans, we injectedhence homologous chromosome segregation after Rec8

cleavage [21–23]. mouse immature oocytes with a Separase inhibitor [24].
This inhibitor is a derivative of the human cohesin Scc1To determine whether chromosome segregation in

Figure 2. Mouse Oocytes Arrest in Meta-
phase I upon Treatment with MG132

Mouse oocytes were treated with 5 �M
MG132 for 5–6 hr in prometaphase I where
indicated.
(A and B) Oocytes were analyzed by confocal
microscopy. Microtubules appear in green;
chromosomes appear in red. The scale bar
represents 10 �m.
(C) Percentage of polar body (PB) extrusion
with or without MG132 treatment.
(D) In vitro kinase assay showing MPF activity
in oocytes before and after polar body extru-
sion (�PB, 8 hr after GVBD) and MG132 treat-
ment with Histone H1 as a substrate.
(E) Western blot visualizing the levels of cyclin
B1 in oocytes as in (D).
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Figure 3. Aberrant Homologous Chromosome Segregation due to Microinjection of a Separase Inhibitor in Mouse Oocytes

(A–F) Mouse oocytes were microinjected with 20 mM Separase inhibitor or DMSO (at the same dilution) as indicated. Oocytes injected with
(A and B) DMSO or with the (C–F) Separase inhibitor were analyzed by confocal microscopy. (C) and (D) show examples of cut phenotype.
(E) and (F) show a mix of homologous chromosomes and sister chromatids (arrow and spot). Microtubules appear in green; chromosomes
appear in red. The scale bar represents 10 �m.
(G) Percentage of oocytes that went to metaphase II (MII) after injection of DMSO alone (�) or after injection of the Separase inhibitor (�).
(H) Percentage of spindle abnormalities in metaphase II oocytes after injection of DMSO alone (�) or after injection of the Separase inhibitor
(�). For (G) and (H) the number in parentheses corresponds to the number of injected oocytes.
(I) In vitro kinase assay showing MPF activity in oocytes injected with DMSO before or after polar body extrusion (�PB; 8 hr after GVBD) and
in oocytes injected with the Separase inhibitor collected 14 hr after GVBD (MII).
(J) Western blot visualizing the levels of cyclin B1 in oocytes as in (I). The white arrows point to bivalent chromosomes from metaphase I that
have not been segregated during the MI-to-MII transition.

cleavage site peptide and covalently binds to the active in mouse oocytes. Consistent with a missegregation
event, oocytes injected with the Separase inhibitorsite of Separase. Control oocytes injected with a control

FLAG peptide at 20 mM (data not shown) or diluted showed a perturbed metaphase II spindle organization
with misaligned chromosomes and spindles that wereDMSO, the solvent of the drug, progressed through mei-

otic maturation normally. They extruded their first polar not barrel shaped (Figure 3, compare [B] and [E] or [F]
and Figure 3H). These oocytes were indeed in meta-body and arrested in metaphase II with chromosomes

aligned on the metaphase plate and a barrel-shaped phase II since they had extruded their first polar body
and showed high MPF activity and high levels of cyclinspindle (Figures 3A, 3B, and 3G). Oocytes injected with

the Separase inhibitor also extruded their first polar B1 (Figures 3I and 3J). Our results demonstrate that
inhibition of Separase perturbed the metaphase I-to-IIbody with a percentage close to that of control oocytes

(Figure 3G). They formed normal first meiotic spindles transition and strongly suggest that Separase activity is
required for correct chromosome segregation in meiosis(data not shown). However, chromosome segregation

was completely aberrant, with a mix of homologous I (Figure 1).
To further show that Separase activity is required forchromosomes and sister chromatids in metaphase II

(Figures 3E and 3F). Furthermore, some of them (15%) proper segregation of homologous chromosomes dur-
ing the metaphase I-to-anaphase-I transition, we over-harbored chromosomes lagging between the oocyte

and the first polar body (Figures 3C and 3D); this finding expressed its protein inhibitor, securin. 70% of oocytes
microinjected with mRNA encoding securin arrested insuggests that segregation did not occur normally. This

phenotype, evoking the cut phenotype of fission yeast metaphase I (Figures 4B and 4G) with high MPF activity
(Figure 4I) and high cyclin B1 levels (Figure 4J). Chromo-(for a review, see [25]), is reported here for the first time
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Figure 4. Mouse Oocytes Arrest in Metaphase I upon Microinjection of the RNA Encoding the Securin

(A–F) Mouse oocytes were microinjected or not with the RNA encoding the securin. Oocytes injected (B, D, and F) or not (A, C and E) with
securin were analyzed by confocal microscopy; Microtubules appear in green; chromosomes appear in red. The scale bar represents 10 �m.
(G) Percentage of oocytes that went to metaphase II (MII) without (�) or with (�) injection of securin.
(H) Percentage of spindle abnormalities in oocytes that went to MII after injection (�) or not (�) of the securin. For (G) and (H) the number in
parentheses corresponds to the number of injected oocytes.
(I) In vitro kinase assay showing MPF activity in noninjected oocytes before or after polar body extrusion (�PB, 8 hr after GVBD) and in
oocytes injected with securin collected at the same time.
(J) Western blot visualizing the levels of cyclin B1 in oocytes as in (I) and in oocytes in MII (14 hr after GVBD) that were injected (�) or not
(�) with the securin.

somes were aligned on the metaphase plate, and the also observed in mouse oocytes after overexpression
of cyclin B1 and of the APC/C inhibitor Mad2 ([17]; K.W.,spindle had migrated to the cortex (Figure 4B). Most

(73%) of the remaining 30% that extruded the first polar submitted). Very recently it has been shown that Rec8
localization is regulated similarly to yeast Rec8 duringbody and progressed into metaphase II harbored abnor-

mal metaphase II spindles with misaligned chromo- male meiosis in the mouse [26]. Altogether, previous
observations and the work presented here suggest thatsomes (Figures 4D, 4F, and 4H). Therefore, overexpres-

sion of securin was more efficient than injection of a segregation of homologous chromosomes during the
first meiotic division in mouse oocytes depends on asynthetic Separase inhibitor and blocked the metaphase

I-to-anaphase I transition. Indeed, securin is a very po- mechanism similar to the one acting during meiosis in
S. cerevisiae and C. elegans: an APC/C-dependent deg-tent molecule since it can bind and inhibit Separase

molecules that have already been activated [24]. The radation of securin that triggers Separase activation and
subsequent cohesin cleavage.Separase inhibitor may not be efficient at 100% on all

homologous chromosomes, and it is possible that the How can we reconcile the requirement for APC/C dur-
ing the first meiotic division in yeast, C. elegans, and nowforce of the meiosis I spindle is strong enough to tear

apart chromosomes that are still held together by cohes- mouse and its apparent nonrequirement in X. laevis? The
X. laevis oocyte is giant compared to a mouse oocyteins; this tearing may result in the missegregation events

observed. Moreover, the arrest of mouse oocytes in (1000 times bigger), but the spindle is approximately
the same size in both. One possibility seems that, formetaphase I by overexpression of securin is the result

of both efficient Separase inhibition and saturation of technical reasons, experiments that have been per-
formed in X. laevis oocytes do not affect the localizedthe APC/C, which normally triggers securin and cyclin

B degradation at the metaphase-to-anaphase transition active pool of APC/C in meiosis I. This would be similar
to the situation previously encountered in which the(Figure 1). Differently, in X. laevis oocytes, the injection

of a nondegradable securin efficiently blocks cyclin B early syncytial divisions of D. melanogaster embryos
occurred without detectable oscillations in the totaldegradation but does not prevent first polar body extru-

sion [15]. As mentioned above, a metaphase I arrest is cyclin levels or Cdk1 activity [27]. However, it is now
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