The rationality of certain moduli spaces associated to half-canonical extremal curves

G. Casnati ${ }^{\mathrm{a}, *}$, A. Del Centina ${ }^{\mathrm{b}, 1}$
${ }^{\text {a }}$ Dipartimento di Matematica Pura ed Applicata, Università Degli Studi di Padova, via Belzoni 7, 35131 Padova, Italy
${ }^{\mathrm{b}}$ Dipartimento di Matematica, Università Degli Studi di Ferrara, via Machiavelli 35, 44100 Ferrara, Italy

Communicated by A.V. Geramita; received 14 July 1997; received in revised form 28 December 1997

Abstract

We prove the existence of a coarse, irreducible moduli space \mathfrak{C}_{g}^{m-1} (resp. $\mathfrak{C}_{g, 1}^{m-1}$) for (resp. pointed) subcanonical extremal curves of level $m-1$ and genus g in $\mathbb{P}_{\mathbb{C}}^{r}$. When $g=3 r, r \geq 4$, $r \neq 5$, odd (resp. even) we show that $\mathfrak{C}_{3 r}^{2}$ (resp. $\mathfrak{C}_{3 r, 1}^{2}$) is rational. © 1999 Elsevier Science B.V. All rights reserved.

MSC: 14H10; 14H45

0. Introduction

A classical result states that the canonical model of a non-hyperelliptic trigonal curve C of genus $g \geq 4$ lies on a unique rational normal scroll $X \subseteq \mathbb{P}_{\mathbb{C}}^{r}$ and $C \cap \operatorname{Sing}(X)=\emptyset$ (see [1, Ch. III]).

If C is general and its genus $g \geq 6$ is even then $X \cong \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$, and $C \in \mid 3 f_{1}+((g+$ 2)/2) $f_{2} \mid$, where f_{1}, f_{2} are two non-skew lines on X. Thus, with the above hypotheses, the trigonal locus $\mathfrak{I}_{g} \subseteq \mathfrak{M}_{g}$ inside the moduli space of smooth curves of genus g, is birationally equivalent to the quotient

$$
\mathbb{P}\left(H^{0}\left(X, \mathcal{O}_{X}\left(3 f_{1}+((g+2) / 2) f_{2}\right)\right)\right) /\left(S L_{2} \times S L_{2}\right)
$$

[^0]N.I. Shepherd-Barron in his paper [10] shows that if $g \equiv 2(\bmod 4)$ and $g \geq 6$ the above quotient is rational.

The aim of this paper is to generalize the methods used in [10] to a class of curves whose geometry is quite similar to that of trigonal curves, namely the class of subcanonical extremal curves.

Let $C \subseteq \mathbb{P}_{\mathbb{C}}^{r}$ be a smooth, irreducible, connected curve of genus g and degree d. Then the following inequality, called Castelnuovo's bound, holds for C :

$$
\begin{equation*}
g \leq \pi(d, r):=\binom{m}{2}(r-1)+m \varepsilon \tag{0.1}
\end{equation*}
$$

where $d=m(r-1)+\varepsilon+1$ and $0 \leq \varepsilon \leq r-2$ (see [1, p. 116]). If equality holds in formula (0.1) then C is called extremal curve.

Notice that if C is extremal and $d=2 r$ then formula (0.1) gives $r=g-1 \quad(m=2$, $\varepsilon=1$) and therefore C is a canonical curve since extremal curves are projectively normal (see [1, p. 117]).

Assume from now on that $r \geq 3$ and $d \geq 2 r+1$. Then extremal curves $C \subseteq \mathbb{P}_{\mathbb{C}}^{r}$ of degree d do exist and, if $r \neq 5$ and $\varepsilon>0$, each such curve is a smooth element of the linear system

$$
\begin{equation*}
|(m+1) H-(r-\varepsilon-2) f| \tag{0.2}
\end{equation*}
$$

on a rational normal scroll $X \subseteq \mathbb{P}_{\mathbb{C}}^{r}$ (H and f denote the hyperplane section and the general fibre of X : see [1, Ch. III, Theorem 2.5(iii)]. Moreover, we remark that the fibres of X cut out on C a g_{m+1}^{1}.

With the above conditions on r and ε it follows from Theorem 1.4(i) of [2] that the Zariski open subset $\mathscr{H}_{d, g, r}^{0}$ of the Hilbert scheme of curves of degree d and genus $g=\pi(d, r)$ in $\mathbb{P}_{\mathbb{C}}^{r}$, and whose points correspond to extermal curves of type 0.2 , is irreducible and one has

$$
\begin{equation*}
\operatorname{dim} \mathscr{H}_{d, g, r}^{0}=(r-1)\left(\binom{m+1}{2}+r+2\right)+(\varepsilon+2)(m+2)-4 . \tag{0.3}
\end{equation*}
$$

If $\varepsilon=1$ we also have that $\left|K_{C}\right|=\left|\mathcal{O}_{C}(m-1)\right|$ (see [1, Ch. III, Corollary 2.6(iii)]). According to Section 2 of [3] such curves will be called subcanonical extremal curves of level $m-1$.

The group $P G L_{r+1}$ acts on $\mathscr{H}_{d, g, r}^{0}$, thus we get a $P G L_{r+1}$-equivariant rational map $h: \mathscr{H}_{d, g, r}^{0} \rightarrow \mathfrak{M}_{g}$ into the moduli space of smooth curves of genus $g=\pi(r, d)$. Since it follows from Proposition 2.1 of [3] that the g_{d}^{r} inducing the embedding $C \subseteq \mathbb{P}_{\mathbb{C}}^{r}$ is unique and complete, then the fibre over the point $[C] \in \mathfrak{M}_{g}$ representing C is exactly the $P G L_{r+1}$-orbit of $[C] \in \mathscr{H}_{d, g, r}^{0}$.

In particular, we can define in a natural way a coarse moduli space for subcanonical extremal curves of level $m-1$ and genus g, namely $\mathbb{C}_{g}^{m-1}:=\mathrm{im}(h) \subseteq \mathfrak{M}_{g}$.

The above remarks show that $\mathscr{H}_{d, g, r}^{0} / P G L_{r+1} \approx \mathfrak{C}_{g}^{m-1}$ (we will denote by \cong isomorphisms and by \approx birational equivalences). Since the action of $P G L_{r+1}$ on $\mathscr{H}_{d, g, r}^{0}$ has finite stabilizer, formula (0.3) and the above discussion yields the following.

Proposition 0.4. Let $r \geq 3, r \neq 5$. There exists a coarse, irreducible moduli space \mathfrak{C}_{g}^{m-1} of dimension

$$
\operatorname{dim} \mathfrak{C}_{g}^{m-1}=(r-1)\left(\binom{m+1}{2}+r+2\right)+3 m+3-(r+1)^{2}
$$

for subcanonical extremal curves of level $m-1$ and genus g in $\mathbb{P}_{\mathbb{C}}^{r}$.
Let $\mathfrak{M}_{g, 1}$ be the moduli space of smooth pointed curves of genus g, let $\mathfrak{m}: \mathfrak{M}_{g, 1} \rightarrow \mathfrak{M}_{g}$ be the natural projection and set $\mathfrak{C}_{g, 1}^{m-1}:=\mathfrak{m}^{-1}\left(\mathfrak{C}_{g}^{m-1}\right)$. Since the fibres of m are irreducible the same is true for $\mathfrak{C}_{g, 1}^{m-1}$.

Corollary 0.5. Let $r \geq 3, r \neq 5 . \mathfrak{C}_{g, 1}^{m-1}$ is a coarse irreducible moduli space for smooth pointed subcanonical extremal curves of level $m-1$ and genus g in $\mathbb{P}_{\mathbb{C}}^{r}$. Moreover $\operatorname{dim} \mathfrak{C}_{g, 1}^{m-1}=\operatorname{dim} \mathbb{C}_{g}^{m-1}+1$.

The aim of this paper is to prove the following theorem.
Theorem 0.6. If $r \geq 4, r \neq 5$ is odd (resp. even) then $\mathfrak{C}_{3 r}^{2}$ (resp. $\mathfrak{C}_{3 r, 1}^{2}$) is rational of dimension $5 r+3$ (resp. $5 r+4$).

We remark that for $r=2$ half-canonical extremal curves are smooth plane quintic. The rationality of their coarse moduli space has been proved by N.I. Shepherd-Barron in [11].

1. A birational model of $\mathfrak{C}_{\mathbf{3 r}}^{\mathbf{2}}$

In this section we describe a birational model of $\mathfrak{C}_{3 r}^{2}$. Let C be as in the introduction. We already noticed that the curve C carries a $g_{3 r-1}^{r}$ which is unique and complete. Moreover, C lies on a unique rational normal scroll X (of minimal degree $r-1$ in $\mathbb{P}_{\mathbb{C}}^{r}$) and C does not intersect its singular locus $\operatorname{Sing}(X)$.

Blowing up X along $\operatorname{Sing}(X)$ we obtain a desingularization map $\Sigma_{h}:=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}_{\mathbb{C}}^{\prime}} \oplus \mathcal{O}_{\mathbb{P}_{\mathbb{C}}^{1}}\right.$ $(-h)) \xrightarrow{\varphi} X$ for some $h \geq 0$. Let $\pi_{h}: \Sigma_{h} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ be the canonical projection and denote by f anyone of its fibres (notice that $f \cong \mathbb{P}_{\mathbb{C}}^{1}$ and $f^{2}=0$). If $h>0$ (resp. $h=0$) there exists a unique irreducible, smooth, rational curve (resp. pencil of curves) $D_{0} \subseteq \Sigma_{h}$ (resp. $\left|D_{0}\right| \subseteq \operatorname{Div}\left(\Sigma_{h}\right)$) such that $D_{0}^{2}=-h$ and $D_{0} f=1$. Moreover, the map $\Sigma_{h} \xrightarrow{\varphi} X$ is induced by the linear system $\left|D_{0}+\ell f\right|$ for some $\ell \geq h$ and X is singular if and only if $\ell=h$. Since $r-1=\operatorname{deg}(X)=\left(D_{0}+\ell f\right)^{2}$ then we also have

$$
\begin{equation*}
2 \ell+1=h+r, \quad h \equiv r+1(\bmod 2) . \tag{1.1}
\end{equation*}
$$

The curve C is embedded in Σ_{h} as a quadrisecant curve, more precisely $C \in \mid 4 D_{0}+$ $(r+2 h+1) f \mid$ (see [4, Theorem 5.4 and its proof]). Conversely each smooth, connected
curve $C \in\left|4 D_{0}+(r+2 h+1) f\right|$ is embedded in $\mathbb{P}_{\mathbb{C}}^{r}$ via $\varphi_{\mid C}$ as an extremal curve of degree $3 r-1$. In particular, we can define rational maps

$$
\varphi_{h}:\left|4 D_{0}+(r+2 h+1) f\right| \rightarrow \mathfrak{C}_{3 r}^{2} .
$$

Proposition 1.2. Let $h=0,1$ and $r \geq 3, r \neq 5$. Then $\operatorname{im}\left(\varphi_{h}\right)$ is dense in $\mathfrak{C}_{3 r}^{2}$ for $r \equiv h+1$ $(\bmod 2)$.

Proof. It suffices to check that $\operatorname{dim}\left(\operatorname{im}\left(\varphi_{h}\right)\right)=5 r+3$, since $\mathfrak{C}_{3 r}^{2}$ is irreducible of dimension $5 r+3$. To this purpose let us consider the group $\operatorname{Aut}\left(\Sigma_{h}\right)$. In any case $\operatorname{dim}\left(\operatorname{Aut}\left(\Sigma_{h}\right)\right)=6$ (see [12]).

As in the introduction notice that the embedding $C \subseteq \Sigma_{h}$ is induced by the unique $g_{3 r-1}^{r}$. In particular, each automorphism of Σ_{h} leaving C fixed, carries such a $g_{3 r-1}^{r}$ into itself. It follows that the fibre of φ_{h} over a point $[C] \in \operatorname{im}\left(\varphi_{h}\right)$ are the G-orbits of the divisor C with respect to $G:=\operatorname{Aut}\left(\Sigma_{1}\right)$ if $h=1, G:=\operatorname{Aut}\left(\Sigma_{0}\right) \cong O_{4}$ if $h=0$ and $r=3$ or $G:=S O_{4} \subseteq \operatorname{Aut}\left(\Sigma_{0}\right) \cong O_{4}$ if $h=0$ and $r \geq 7$. In any case $\operatorname{dim}(G)=6$ (see again [12]), hence

$$
\operatorname{dim}\left(\operatorname{im}\left(\varphi_{h}\right)\right) \geq \operatorname{dim}\left|4 D_{0}+(r+2 h+1) f\right|-6=5 r+3
$$

since $h^{0}\left(\Sigma_{h}, \mathcal{O}_{\Sigma_{h}}(C)\right)=h^{0}\left(\mathbb{P}_{\mathbb{C}}^{1}, \pi_{h *} \mathcal{O}_{\Sigma_{h}}(C)\right)($ see [7, Lemma V 2.4]).
Now assume that $r \geq 3$ is odd. Then it follows from formulas (1.1) that h is even and $\ell \geq 1$ thus $X \cong \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{C} \mathbb{P}_{\mathbb{C}}^{1}$ is smooth. Moreover Proposition 1.1 and its proof yield the birational equivalence

$$
\mathfrak{C}_{3 r}^{2} \approx\left|4 D_{0}+(r+1) f\right| / G
$$

where $G \cong O_{4}$ if $r=3$ and $G=S O_{4}$ if $r \geq 7$. Notice that $\left|4 D_{0}+(r+1) f\right| \cong \mathbb{P}\left(V_{4} \otimes V_{r+1}^{\prime}\right)$ where V_{d} (resp. V_{d}^{\prime}) is the set of forms of degree d in the variables x_{1} and x_{2} (resp. y_{1} and y_{2}). On the other hand, the representation of $S O_{4}$ on $V_{4} \otimes V_{r+1}^{\prime}$ is equivalent to the natural representation of $S L_{2} \times S L_{2}$ on $V_{4} \otimes V_{r+1}^{\prime}$. We summarize results in the following:

Theorem 1.3. If $r=2 k-1 \geq 7$ then there exists a birational equivalence

$$
\mathfrak{c}_{3 r}^{2} \approx \mathbb{P}\left(V_{4} \otimes V_{2 k}^{\prime}\right) /\left(P S L_{2} \times P S L_{2}\right)
$$

2. The rationality of $\mathbb{P}\left(V_{4} \otimes V_{2 k}^{\prime}\right) /\left(P S L_{2} \times P S L_{2}\right)$

In this section, following the proof of Proposition 6 of [10], we will prove
Theorem 2.1. $\mathbb{P}\left(V_{4} \otimes V_{2 k}^{\prime}\right) /\left(P S L_{2} \times P S L_{2}\right)$ is rational if $k \geq 3$.
A immediate consequence of Theorem 2.1 above is the rationality of $\mathfrak{C}_{3 r}^{2}$ for odd $r \geq 7$, stated in Theorem 0.4 of the introduction.

Let $f \in V_{4} \otimes V_{2 k}^{\prime}$. Using the symbolical notation (see [6]) we can write $f=a_{x}^{4} \otimes A_{y}^{2 k}=$ $b_{x}^{4} \otimes B_{y}^{2 k}$ where $a_{x}:=a_{1} x_{1}+a_{2} x_{2}, b_{x}:=b_{1} x_{1}+b_{2} x_{2}, A_{y}:=A_{1} y_{1}+A_{2} y_{2}, B_{y}:=B_{1} y_{1}+$ $B_{2} y_{2}$. We define a covariant

$$
\begin{aligned}
& \varphi: V_{4} \otimes V_{2 k}^{\prime} \rightarrow V_{4} \otimes V_{0}^{\prime} \\
& f \rightarrow(a b)^{2}(A B)^{2 k} a_{x}^{2} b_{x}^{2}
\end{aligned}
$$

where, as usual, $(a b):=a_{1} b_{2}-a_{2} b_{1},(A B):=A_{1} B_{2}-A_{2} B_{1} . \varphi$ induces a rational $\left(P S L_{2} \times\right.$ $P S L_{2}$)-equivariant map

$$
\psi: \mathbb{P}\left(V_{4} \otimes V_{2 k}^{\prime}\right) \rightarrow \mathbb{P}\left(V_{4} \otimes V_{0}^{\prime}\right)
$$

Let $\gamma: \widetilde{\mathbb{P}} \rightarrow \mathbb{P}\left(V_{4} \otimes V_{2 k}^{\prime}\right)$ be the blow up of $\mathbb{P}\left(V_{4} \otimes V_{2 k}^{\prime}\right)$ along the base locus of ψ and let

$$
\widetilde{\psi}: \widetilde{\mathbb{P}} \rightarrow \mathbb{P}\left(V_{4} \otimes V_{0}^{\prime}\right)
$$

be the induced morphism. Notice that $\tilde{\psi}$ is again a $\left(P S L_{2} \times P S L_{2}\right)$-equivariant map.
The following proposition is an easy consequence of the definition of ψ and its proof is a trivial and tedious computation.

Proposition 2.2. If $f=\sum_{i=0}^{4} \sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j} \alpha_{i, j} x_{1}^{4-i} x_{2}^{1} \otimes y_{1}^{2 k-j} y_{2}^{j}$ then

$$
\psi(f)=\sum_{h=0}^{4} \beta_{h} x_{1}^{4-h} x_{2}^{h}
$$

where

$$
\begin{aligned}
& \beta_{0}=2 \sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j}\left(\alpha_{0, j} \alpha_{2,2 k-j}-\alpha_{1, j} \alpha_{1,2 k-j}\right), \\
& \beta_{1}=4 \sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j}\left(\alpha_{0, j} \alpha_{3,2 k-j}-\alpha_{1, j} \alpha_{2,2 k-j}\right), \\
& \beta_{2}=2 \sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j}\left(\alpha_{0, j} \alpha_{4,2 k-j}+2 \alpha_{1, j} \alpha_{3,2 k-j}-3 \alpha_{2, j} \alpha_{2,2 k-j}\right), \\
& \beta_{3}=2 \sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j}\left(\alpha_{4, j} \alpha_{1,2 k-j}-\alpha_{2, j} \alpha_{3,2 k-j}\right), \\
& \beta_{4}=2 \sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j}\left(\alpha_{4, j} \alpha_{2,2 k-j}-\alpha_{3, j} \alpha_{3,2 k-j}\right) .
\end{aligned}
$$

Corollary 2.3. Both ψ and $\widetilde{\psi}$ are dominant.
Proof. It suffices to prove that ψ is dominant. Let

$$
\begin{aligned}
& F:=\left\{f \in \mathbb{P}\left(V_{4} \otimes V_{2 k}^{\prime}\right) \mid \alpha_{4, k}=\alpha_{0, k}=\lambda, \alpha_{2, k}=\mu, \alpha_{i, j}=0\right. \\
&\text { for }(i, j) \neq(4, k),(0, k),(2, k)\} .
\end{aligned}
$$

It follows from Proposition 2.2 that $\psi(f)=\sum_{h=0}^{4} \beta_{h} x_{1}^{4-h} x_{2}^{h}$ where $\beta_{1}=\beta_{3}=0$ and

$$
\beta_{0}=\beta_{4}=2(-1)^{k}\binom{2 k}{k} \lambda \mu, \quad \beta_{2}=2(-1)^{k}\binom{2 k}{k}\left(\lambda^{2}-3 \mu^{2}\right) .
$$

In particular, $\psi(F)$ is $\left(P S L_{2} \times P S L_{2}\right)$-dense in $\mathbb{P}\left(V_{4} \otimes V_{0}^{\prime}\right)$ (see [9, Section 1]), whence for each general $\bar{f} \in \mathbb{P}\left(V_{4} \otimes V_{0}^{\prime}\right)$, there exists $g \in P S L_{2} \times P S L_{2}$ such that $g(\bar{f}) \in \psi(F)$, thus there exists $f \in F$ such that $\psi(f)=g(\bar{f})$ hence $\bar{f}=\psi\left(g^{-1}(f)\right)$.

Let

$$
\begin{aligned}
& U:=\mathbb{P}\left(\left\langle x_{1}^{4}-x_{2}^{4}, x_{1}^{3} x_{2}, x_{1} x_{2}^{3}\right\rangle \otimes V_{0}^{\prime}\right), \\
& V \\
& :=\mathbb{P}\left(\left\langle x_{1}^{4}+x_{2}^{4}, x_{1}^{2} x_{2}^{2}\right\rangle \otimes V_{0}^{\prime}\right),
\end{aligned}
$$

define

$$
e:=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad a:=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad b:=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

and let $H \subseteq P S L_{2}$ be the subgroup generated by the classes of e, a, b. The normalizer N of H inside $P S L_{2}$ is the stabilizer of V (see [9, Section 1]), thus V is a $\left(P S L_{2} \times P S L_{2}, N \times P S L_{2}\right)$-section of $\mathbb{P}\left(V_{4} \otimes V_{0}^{\prime}\right)$ in the sense of [8].

Now let $Y:=\gamma\left(\widetilde{\psi}^{-1}(V)\right)$.
Proposition 2.4. If $k \geq 2$ then Y is irreducible.
Proof. Let $L:=\mathbb{P}\left(V_{4} \otimes V_{2 k}^{\prime}\right)$ the subspace defined by the equations

$$
\alpha_{1, i}=\alpha_{3, j}=\alpha_{0, l}-\alpha_{4, l}=0, \quad i, j, l=0, \ldots, 2 k .
$$

The equations of $Y \subseteq \mathbb{P}\left(V_{4} \otimes V_{2 k}^{\prime}\right)$ are

$$
\begin{aligned}
& \vartheta_{1}:=\sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j}\left(\alpha_{4, j} \alpha_{1,2 k-j}-\alpha_{2, j} \alpha_{3,2 k-j}\right), \\
& \vartheta_{2}:=\sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j}\left(\alpha_{0, j} \alpha_{3,2 k-j}-\alpha_{1, j} \alpha_{2,2 k-j}\right), \\
& \vartheta_{3}=\sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j}\left(\left(\alpha_{0, j}-\alpha_{4, j}\right) \alpha_{2,2 k-j}-\alpha_{1, j} \alpha_{1,2 k-j}+\alpha_{3, j} \alpha_{3,2 k-j}\right)
\end{aligned}
$$

(see Proposition 2.2). In particular $L \subseteq Y$.

Let $Y_{0} \subseteq Y$ be an irreducible component containing L and let Y_{1} be another one not contained in Y_{0}. Obviously $Y_{0} \cap Y_{1} \subseteq \operatorname{Sing}(Y)$, hence $L \cap Y_{1} \subseteq \operatorname{Sing}(Y)$.

Since Y is the intersection of three hypersurfaces one also has $\operatorname{codim}\left(Y_{1}\right) \leq 3$, thus

$$
\begin{equation*}
\operatorname{codim}\left(L \cap Y_{1}\right) \leq 3+\operatorname{codim}(L) \leq 6 k+6 \tag{2.1}
\end{equation*}
$$

On the other hand, the Jacobian matrix of the ϑ_{i} 's is

$$
J:=\left(\begin{array}{ccc}
0 & \alpha_{3, i} & \alpha_{2, i} \\
\alpha_{4, j} & -\alpha_{2, j} & -2 \alpha_{1, j} \\
-\alpha_{3, h} & -\alpha_{1, h} & \alpha_{0, h}-\alpha_{4, h} \\
-\alpha_{2, l} & \alpha_{0, l} & 2 \alpha_{3, l} \\
\alpha_{1, m} & 0 & -\alpha_{2, m}
\end{array}\right)_{i, j, h, l, m=0, \ldots, 2 k}
$$

In particular, $\operatorname{rk}(J) \leq 2$ at each point of $L \cap Y_{1}$, thus $L \cap Y_{1} \subseteq X$ where $X \subseteq \mathbb{P}\left(V_{4} \otimes V_{2 k}^{\prime}\right)$ is defined by the equations

$$
\left\{\begin{array}{l}
\alpha_{1, i}=0 \\
\alpha_{3, j}=0 \\
\alpha_{0, l}-\alpha_{4, l}=0 \\
\left(\alpha_{0, h} \alpha_{4, h}-\alpha_{2, h}^{2}\right) \alpha_{2, h}=0
\end{array}\right.
$$

where $i, j, l, h=0, \ldots, 2 k$. With some easy computations one can check that the above system is equivalent to the system

$$
\left\{\begin{array}{l}
\alpha_{1, i}=0 \tag{2.2}\\
\alpha_{3, j}=0 \\
\alpha_{0, l}-\alpha_{4, l}=0 \\
\left(\left(\alpha_{0, h}+\alpha_{4, h}\right)^{2}-4 \alpha_{2, h}^{2}\right) \alpha_{2, h}=0
\end{array}\right.
$$

Each polynomial in (2.2) involves a different set of variables hence they form a regular sequence. It follows that $\operatorname{codim}(X)=4(2 k+1)$ so that

$$
\begin{equation*}
\operatorname{codim}\left(L \cap Y_{1}\right) \geq 8 k+4 \tag{2.3}
\end{equation*}
$$

Confronting (2.1) and (2.3) one should have $6 k+6 \geq 8 k+4$ which is possible only if $k=0,1$.

We conclude that $Y=Y_{0}$.

Since Y is irreducible then it is a $\left(P S L_{2} \times P S L_{2}, N \times P S L_{2}\right)$-section of $\mathbb{P}\left(V_{4} \otimes V_{2 k}^{\prime}\right)$ (see [8]). Thus we get the following result.

Corollary 2.5. $\mathbb{P}\left(V_{4} \otimes V_{2 k}^{\prime}\right) /\left(P S L_{2} \times P S L_{2}\right) \approx Y /\left(N \times P S L_{2}\right)$.
Let $M \subseteq \mathbb{P}\left(V_{4} \otimes V_{2 k}^{\prime}\right)$ be the subspace defined by the equations

$$
\alpha_{0, i}+\alpha_{4, i}=\alpha_{2, j}=0,
$$

where $i, j=0, \ldots, 2 k$. We denote by $\pi_{L}: Y \rightarrow M$ the projection from L. If we choose $\alpha_{1, j}, \alpha_{3, h}, \alpha_{0, l}-\alpha_{4, l}$ (i.e. if we fix $m \in M$) the equations ϑ_{i} specialized at these values becomes linear in the remaining variables.

Such equations are generically of maximal rank thus Y is generically a vector-bundle over M. Moreover π_{L} is $\left(N \times P S L_{2}\right)$-equivariant.

Lemma 2.6. $M \cong \mathbb{P}(U)$ and the action of $N \times P S L_{2}$ on M is almost free for $k \geq 3$.
Proof. Let $p \in \mathbb{P}\left(V_{2 k}^{\prime}\right)$ such that the condition $g(p)=p$ implies $g=i d \in P S L_{2}$ (such a p exists since $2 k \geq 6$).

Let $f \in \mathbb{P}\left(\left\langle x_{1}^{4}-x_{2}^{4}, x_{1}^{3} x_{2}, x_{1} x_{2}^{3}\right\rangle\right)$ such that the condition $g(f)=f$ implies $g=i d \in N$ (such an f exists since $N \cong \mathbb{S}_{4}$ and the three-dimensional irreducible representations of \mathfrak{S}_{4} are exact: see Section 1 of [9]).

It follows that the stabilizer of $f \otimes p$ is trivial.
Let $\bar{\pi}_{L}: Y /\left(N \times P S L_{2}\right) \rightarrow M /\left(N \times P S L_{2}\right)$ be induced by π_{L}. The method of irreducible representation (see [5]) implies that $\bar{\pi}_{L}$ is again a vector bundle.

Let

$$
W:=\left(\left\langle x_{1}^{4}-x_{2}^{4}, x_{1}^{3} x_{2}, x_{1} x_{2}^{3}\right\rangle \oplus \mathbb{C}\right) \otimes V_{0}^{\prime} \oplus V_{0} \otimes V_{6}^{\prime} .
$$

W is an almost free linear representation of $N \times \mathrm{PSL}_{2}$. Moreover

$$
\mathbb{P}(W) /\left(N \times P S L_{2}\right) \approx \mathbb{P}\left(\left\langle x_{1}^{4}-x_{2}^{4}, x_{1}^{3} x_{2}, x_{1} x_{2}^{3}\right\rangle \oplus \mathbb{C}\right) / N \times \mathbb{P}\left(V_{6}^{\prime}\right) / P S L_{2} \times \mathbb{P}_{\mathbb{C}}^{1}
$$

which is rational (see [9]: for the first factor see the corollary in section 1, for the second one see Theorem 0.1 or 0.2).

Since $M \times \mathbb{P}(W) /\left(N \times P S L_{2}\right)$ is a vector bundle over $\mathbb{P}(W) /\left(N \times P S L_{2}\right)$ it is also rational. On the other hand, $M \times \mathbb{P}(W) /\left(N \times P S L_{2}\right)$ is also a vector bundle over $M /(N \times$ $P S L_{2}$) with typical fibre $\mathbb{P}(W) \approx \mathbb{C}^{10}$ hence $M /\left(N \times P S L_{2}\right) \times \mathbb{C}^{10}$ is rational too.

Since $\bar{\pi}_{L}^{-1}(m) \cong \mathbb{C}^{4 k-1}$ it follows that $Y /\left(N \times P S L_{2}\right)$ is rational as soon as $4 k-1 \geq 10$ i.e. if $k \geq 3$.

3. Pointed curves

In this section we complete the proof of Theorem 0.6.
Proposition 3.1. If $r \geq 4$ is even then $\mathfrak{C}_{3 r, 1}^{2}$ is rational.
Proof. Let r be even and let C be a subcanonical extremal curve of level 2 and genus $3 r$ contained in the ruled surface Σ_{1} as an element of the linear system $\left|D_{0}+(r+3) f\right|$ (for the notations see Section 1). Contracting D_{0} to a point, we map C to a plane curve $C^{\prime} \subseteq \mathbb{P}_{\mathbb{C}}^{2}$ of degree $r+3$ with a point of multiplicity $r-1$.

Fix $P, Q \in \mathbb{P}_{\mathbb{C}}^{2}$ and let W be the linear system of curves in $\mathbb{P}_{\mathbb{C}}^{2}$ through Q and having P as a $(r-1)$-fold point. We have a rational map

$$
\varphi: W \rightarrow \mathfrak{C}_{3 r, 1}^{2}
$$

sending each curve to its isomorphism class.
Let $S L_{3, P}$ and $S L_{3, Q}$ be the stabilizers inside $S L_{3}$ of P and Q respectively. The group $G:=S L_{3, P} \cap S L_{3, Q} \subseteq S L_{3}$ acts on W (with finite stabilizer). Since φ is by construction G-equivariant then

$$
\operatorname{dim} \varphi(W)=\operatorname{dim} W-\operatorname{dim} G=5 r+4,
$$

thus φ is dominant (see Corollary 0.5).
On the other hand, the orbits of G coincide with the fibres of φ thus $\mathfrak{C}_{3 r, 1}^{2} \approx W / G$ which is rational since G is triangular (see [13]).

References

[1] E. Arbarello, M. Cornalba, P.A. Griffiths, J. Harris, Geometry of Algebraic Curves, vol. I, Springer, Berlin, 1985.
[2] C. Ciliberto, On the Hilbert scheme of curves of maximal genus in a projective space, Math. Z. 194 (1987) 351-363.
[3] C. Ciliberto, R. Lazarsfeld, On the uniqueness of certain linear series on some classes of curves, in: S. Greco, R. Strano (Eds.), Complete Intersections, Acireale, Lecture Notes in Math., vol. 1092, Springer, Berlin, 1983.
[4] A. Del Centina, Remarks on curves admitting an involution of genus ≥ 1 and some applications, Boll. Un. Mat Ital. 4-B (1985) 671-683.
[5] I.V. Dolgachev, Rationality of fields of invariants, in: S.J. Bloch (Ed.), Algebraic Geometry, Bowdoin, 1985, Proc. Symp. Pure Math., vol. 46, 1987.
[6] J.H. Grace, W.H. Young, The Algebra of Invariants, Chelsea, London, 1903.
[7] R. Hartshorne, Algebraic Geometry, Springer, Berlin, 1977.
[8] P.I. Katsylo, The rationality of the orbit spaces of irreducible representations of the group $S L_{2}$, Math. USSR Izvestiya 22 (1984) 23-32.
[9] P.I. Katsylo, The rationality of the moduli space of hyperelliptic curves, Math. USSR Izvestiya 25 (1985) 45-50.
[10] N.I. Shepherd-Barron, The rationality of certain spaces associated to trigonal curves, in: S.J. Bloch (Ed.), Algebraic Geometry, Bowdoin, 1985, Proc. Symp. Pure Math., vol. 46, 1987.
[11] N.I. Shepherd-Barron, The rationality of some moduli spaces of plane curves, Compositio Math. 67 (1988) 51-88.
[12] C. Turrini, Gli automorfismi delle rigate geometriche razionali, Ist. Lombardo (Rend. Sc.) 113 (1979) 210-223.
[13] E.B. Vinberg, Rationality of the field of invariants of a triangular group, Mosc. Univ. Math. Bul. 37 (1992) 27-29.

[^0]: ${ }^{*}$ Corresponding author. Supported by the framework of the SCIENCE contract no. SCI-0398-C(A).
 E-mail address: casnati@galileo.math.unipd.it (G. Casnati)
 ${ }^{1}$ Partially supported by MURST 40% funds.

