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Abstract

We prove the existence of a coarse, irreducible moduli space C
m−1
g (resp. C

m−1
g; 1 ) for (resp.

pointed) subcanonical extremal curves of level m − 1 and genus g in Pr
C . When g=3r, r≥ 4,

r 6=5, odd (resp. even) we show that C
2
3r (resp. C

2
3r; 1) is rational. c© 1999 Elsevier Science B.V.

All rights reserved.

MSC: 14H10; 14H45

0. Introduction

A classical result states that the canonical model of a non-hyperelliptic trigonal curve
C of genus g≥ 4 lies on a unique rational normal scroll X ⊆Pr

C and C ∩Sing(X )= ∅
(see [1, Ch. III]).
If C is general and its genus g≥ 6 is even then X ∼=P1C×P1C , and C ∈ |3f1 + ((g+

2)=2)f2|, where f1; f2 are two non-skew lines on X . Thus, with the above hypotheses,
the trigonal locus Tg ⊆Mg inside the moduli space of smooth curves of genus g, is
birationally equivalent to the quotient

P(H 0(X;OX (3f1 + ((g+ 2)=2)f2)))=(SL2×SL2):
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N.I. Shepherd-Barron in his paper [10] shows that if g≡ 2 (mod 4) and g≥ 6 the
above quotient is rational.
The aim of this paper is to generalize the methods used in [10] to a class of curves

whose geometry is quite similar to that of trigonal curves, namely the class of sub-
canonical extremal curves.
Let C ⊆Pr

C be a smooth, irreducible, connected curve of genus g and degree d.
Then the following inequality, called Castelnuovo’s bound, holds for C:

g≤ �(d; r) :=
(
m
2

)
(r − 1) + m� (0.1)

where d=m(r − 1) + � + 1 and 0≤ �≤ r − 2 (see [1, p. 116]). If equality holds in
formula (0.1) then C is called extremal curve.
Notice that if C is extremal and d=2r then formula (0.1) gives r= g − 1 (m=2,

�=1) and therefore C is a canonical curve since extremal curves are projectively
normal (see [1, p. 117]).
Assume from now on that r≥ 3 and d≥ 2r + 1. Then extremal curves C ⊆Pr

C of
degree d do exist and, if r 6=5 and �¿0, each such curve is a smooth element of the
linear system

|(m+ 1)H − (r − �− 2)f| (0.2)

on a rational normal scroll X ⊆Pr
C (H and f denote the hyperplane section and the

general �bre of X : see [1, Ch. III, Theorem 2.5(iii)]. Moreover, we remark that the
�bres of X cut out on C a g1m+1.
With the above conditions on r and � it follows from Theorem 1.4(i) of [2] that

the Zariski open subset H0
d; g; r of the Hilbert scheme of curves of degree d and genus

g= �(d; r) in Pr
C , and whose points correspond to extermal curves of type 0.2, is

irreducible and one has

dimH0
d; g; r =(r − 1)

((
m+ 1
2

)
+ r + 2

)
+(�+ 2)(m+ 2)− 4: (0.3)

If �=1 we also have that |KC |= |OC(m − 1)| (see [1, Ch. III, Corollary 2.6(iii)]).
According to Section 2 of [3] such curves will be called subcanonical extremal curves
of level m− 1.
The group PGLr+1 acts on H0

d; g; r , thus we get a PGLr+1-equivariant rational map
h :H0

d; g; r →Mg into the moduli space of smooth curves of genus g= �(r; d). Since
it follows from Proposition 2.1 of [3] that the gr

d inducing the embedding C ⊆Pr
C is

unique and complete, then the �bre over the point [C]∈Mg representing C is exactly
the PGLr+1-orbit of [C]∈H0

d; g; r .
In particular, we can de�ne in a natural way a coarse moduli space for subcanonical

extremal curves of level m− 1 and genus g, namely C
m−1
g := im(h)⊆Mg.

The above remarks show that H0
d; g; r=PGLr+1≈C

m−1
g (we will denote by ∼= isomor-

phisms and by ≈ birational equivalences). Since the action of PGLr+1 on H0
d; g; r has

�nite stabilizer, formula (0.3) and the above discussion yields the following.
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Proposition 0.4. Let r≥ 3; r 6=5. There exists a coarse; irreducible moduli space
C

m−1
g of dimension

dimC
m−1
g =(r − 1)

((
m+ 1
2

)
+ r + 2

)
+3m+ 3− (r + 1)2

for subcanonical extremal curves of level m− 1 and genus g in Pr
C .

Let Mg;1 be the moduli space of smooth pointed curves of genus g, let m :Mg;1→Mg

be the natural projection and set C
m−1
g;1 :=m−1(Cm−1

g ). Since the �bres of m are irre-
ducible the same is true for C

m−1
g;1 .

Corollary 0.5. Let r≥ 3; r 6=5. C
m−1
g;1 is a coarse irreducible moduli space for smooth

pointed subcanonical extremal curves of level m − 1 and genus g in Pr
C . Moreover

dimC
m−1
g;1 = dimC

m−1
g + 1.

The aim of this paper is to prove the following theorem.

Theorem 0.6. If r≥ 4; r 6=5 is odd (resp. even) then C
2
3r (resp. C

2
3r;1) is rational of

dimension 5r + 3 (resp. 5r + 4).

We remark that for r=2 half-canonical extremal curves are smooth plane quintic.
The rationality of their coarse moduli space has been proved by N.I. Shepherd-Barron
in [11].

1. A birational model of C23r

In this section we describe a birational model of C
2
3r . Let C be as in the introduction.

We already noticed that the curve C carries a gr
3r−1 which is unique and complete.

Moreover, C lies on a unique rational normal scroll X (of minimal degree r − 1 in
Pr
C) and C does not intersect its singular locus Sing(X ).
Blowing up X along Sing(X ) we obtain a desingularization map �h :=P(OP1C ⊕OP1C

(−h))
’−→X for some h≥ 0. Let �h :�h →P1C be the canonical projection and denote

by f anyone of its �bres (notice that f∼=P1C and f2 = 0). If h¿0 (resp. h=0) there
exists a unique irreducible, smooth, rational curve (resp. pencil of curves) D0⊆�h

(resp. |D0| ⊆Div(�h)) such that D2
0 =−h and D0f=1. Moreover, the map �h

’−→X
is induced by the linear system |D0 +‘f| for some ‘≥ h and X is singular if and only
if ‘= h. Since r − 1=deg(X )= (D0 + ‘f)2 then we also have

2‘ + 1= h+ r; h≡ r + 1 (mod 2): (1.1)

The curve C is embedded in �h as a quadrisecant curve, more precisely C ∈ |4D0 +
(r+2h+1)f| (see [4, Theorem 5.4 and its proof]). Conversely each smooth, connected



204 G. Casnati, A. Del Centina / Journal of Pure and Applied Algebra 141 (1999) 201–209

curve C ∈ |4D0 + (r + 2h+ 1)f| is embedded in Pr
C via ’|C as an extremal curve of

degree 3r − 1. In particular, we can de�ne rational maps
’h : |4D0 + (r + 2h+ 1)f|→C

2
3r :

Proposition 1.2. Let h=0; 1 and r≥ 3; r 6=5. Then im(’h) is dense in C
2
3r for r≡ h+1

(mod 2).

Proof. It su�ces to check that dim(im(’h))= 5r + 3, since C
2
3r is irreducible of

dimension 5r + 3. To this purpose let us consider the group Aut(�h). In any case
dim(Aut(�h))= 6 (see [12]).
As in the introduction notice that the embedding C ⊆�h is induced by the unique

gr
3r−1. In particular, each automorphism of �h leaving C �xed, carries such a gr

3r−1
into itself. It follows that the �bre of ’h over a point [C]∈ im(’h) are the G-orbits
of the divisor C with respect to G :=Aut(�1) if h=1, G :=Aut(�0)∼=O4 if h=0
and r=3 or G := SO4⊆Aut(�0)∼=O4 if h=0 and r≥ 7. In any case dim(G)= 6 (see
again [12]), hence

dim(im(’h))≥ dim |4D0 + (r + 2h+ 1)f| − 6=5r + 3
since h0(�h;O�h(C))= h0(P1C; �h∗O�h(C)) (see [7, Lemma V 2.4]).

Now assume that r≥ 3 is odd. Then it follows from formulas (1.1) that h is even
and ‘≥ 1 thus X ∼=P1C×C P1C is smooth. Moreover Proposition 1.1 and its proof yield
the birational equivalence

C
2
3r ≈ |4D0 + (r + 1)f|=G;

where G∼=O4 if r=3 and G= SO4 if r≥ 7. Notice that |4D0+(r+1)f| ∼=P(V4⊗V ′
r+1)

where Vd (resp. V ′
d) is the set of forms of degree d in the variables x1 and x2 (resp.

y1 and y2). On the other hand, the representation of SO4 on V4⊗V ′
r+1 is equivalent

to the natural representation of SL2×SL2 on V4⊗V ′
r+1. We summarize results in the

following:

Theorem 1.3. If r=2k − 1≥ 7 then there exists a birational equivalence
C
2
3r ≈P(V4⊗V ′

2k)=(PSL2×PSL2):

2. The rationality of P(V4⊗V ′
2k)=(PSL2×PSL2)

In this section, following the proof of Proposition 6 of [10], we will prove

Theorem 2.1. P(V4⊗V ′
2k)=(PSL2×PSL2) is rational if k ≥ 3.

A immediate consequence of Theorem 2.1 above is the rationality of C
2
3r for odd

r≥ 7, stated in Theorem 0.4 of the introduction.
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Let f∈V4⊗V ′
2k . Using the symbolical notation (see [6]) we can write f= a4x ⊗A2ky =

b4x ⊗B2ky where ax := a1 x1 + a2 x2, bx := b1 x1 + b2 x2, Ay :=A1y1 + A2y2, By :=B1y1 +
B2y2. We de�ne a covariant

’ :V4⊗V ′
2k →V4⊗V ′

0 ;

f→ (ab)2(AB)2ka2x b
2
x ;

where, as usual, (ab) := a1b2−a2b1, (AB) :=A1B2−A2B1. ’ induces a rational (PSL2×
PSL2)-equivariant map

 :P(V4⊗V ′
2k)→P(V4⊗V ′

0):

Let  : P̃→P(V4⊗V ′
2k) be the blow up of P(V4⊗V ′

2k) along the base locus of  and
let

 ̃ : P̃→P(V4⊗V ′
0)

be the induced morphism. Notice that  ̃ is again a (PSL2×PSL2)-equivariant map.
The following proposition is an easy consequence of the de�nition of  and its proof

is a trivial and tedious computation.

Proposition 2.2. If f=
∑4

i=0

∑2k
j=0(−1) j

(2k
j

)
�i; j x4−i

1 x12 ⊗y2k−j
1 yj

2 then

 (f)=
4∑

h=0

�h x4−h
1 xh2 ;

where

�0 = 2
2k∑
j=0

(−1) j
(
2k
j

)
(�0; j�2;2k−j − �1; j�1;2k−j);

�1 = 4
2k∑
j=0

(−1) j
(
2k
j

)
(�0; j�3;2k−j − �1; j�2;2k−j);

�2 = 2
2k∑
j=0

(−1) j
(
2k
j

)
(�0; j�4;2k−j + 2�1; j�3;2k−j − 3�2; j�2;2k−j);

�3 = 2
2k∑
j=0

(−1) j
(
2k
j

)
(�4; j�1;2k−j − �2; j�3;2k−j);

�4 = 2
2k∑
j=0

(−1) j
(
2k
j

)
(�4; j�2;2k−j − �3; j�3;2k−j):
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Corollary 2.3. Both  and  ̃ are dominant.

Proof. It su�ces to prove that  is dominant. Let

F := {f∈P(V4⊗V ′
2k) |�4; k = �0; k = �; �2; k = �; �i; j =0

for (i; j) 6=(4; k); (0; k); (2; k)}:
It follows from Proposition 2.2 that  (f)=

∑4
h=0 �h x4−h

1 xh2 where �1 = �3 = 0 and

�0 = �4 = 2(−1)k
(
2k
k

)
��; �2 = 2(−1)k

(
2k
k

)
(�2 − 3�2):

In particular,  (F) is (PSL2×PSL2)-dense in P(V4⊗V ′
0) (see [9, Section 1]), whence

for each general f∈P(V4⊗V ′
0), there exists g∈PSL2×PSL2 such that g(f)∈  (F),

thus there exists f∈F such that  (f)= g(f) hence f=  (g−1(f)).

Let

U :=P(〈x41 − x42 ; x
3
1 x2; x1 x

3
2 〉⊗V ′

0);

V :=P(〈x41 + x42 ; x
2
1 x

2
2 〉⊗V ′

0);

de�ne

e :=

(
1 0

0 1

)
; a :=

(
i 0

0 −i

)
; b :=

(
0 1

−1 0

)
;

and let H ⊆PSL2 be the subgroup generated by the classes of e, a, b. The nor-
malizer N of H inside PSL2 is the stabilizer of V (see [9, Section 1]), thus V is
a (PSL2×PSL2; N×PSL2)-section of P(V4⊗V ′

0) in the sense of [8].
Now let Y := ( ̃ −1(V )).

Proposition 2.4. If k ≥ 2 then Y is irreducible.

Proof. Let L :=P(V4⊗V ′
2k) the subspace de�ned by the equations

�1; i= �3; j = �0; l − �4; l=0; i; j; l=0; : : : ; 2k:

The equations of Y ⊆P(V4⊗V ′
2k) are

#1 :=
2k∑
j=0

(−1) j
(
2k
j

)
(�4; j�1;2k−j − �2; j�3;2k−j);

#2 :=
2k∑
j=0

(−1) j
(
2k
j

)
(�0; j�3;2k−j − �1; j�2;2k−j);

#3 =
2k∑
j=0

(−1) j
(
2k
j

)
((�0; j − �4; j)�2;2k−j − �1; j�1;2k−j + �3; j�3;2k−j)

(see Proposition 2.2). In particular L⊆Y .
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Let Y0⊆Y be an irreducible component containing L and let Y1 be another one not
contained in Y0. Obviously Y0 ∩Y1⊆Sing(Y ), hence L∩Y1⊆Sing(Y ).
Since Y is the intersection of three hypersurfaces one also has codim(Y1)≤ 3, thus
codim(L∩Y1)≤ 3 + codim(L)≤ 6k + 6: (2.1)

On the other hand, the Jacobian matrix of the #i’s is

J :=


0 �3; i �2; i

�4; j −�2; j −2�1; j
−�3; h −�1; h �0; h − �4; h
−�2; l �0; l 2�3; l
�1; m 0 −�2; m


i; j; h; l;m= 0 ;:::;2k

:

In particular, rk(J )≤ 2 at each point of L∩Y1, thus L∩Y1⊆X where X ⊆P(V4⊗V ′
2k)

is de�ned by the equations
�1; i=0;

�3; j =0;

�0; l − �4; l=0;

(�0; h�4; h − �22; h)�2; h=0;

where i; j; l; h=0; : : : ; 2k. With some easy computations one can check that the above
system is equivalent to the system

�1; i=0;

�3; j =0;

�0; l − �4; l=0;

((�0; h + �4; h)2 − 4�22; h)�2; h=0:

(2.2)

Each polynomial in (2.2) involves a di�erent set of variables hence they form a regular
sequence. It follows that codim(X )= 4(2k + 1) so that

codim(L∩Y1)≥ 8k + 4: (2.3)

Confronting (2.1) and (2.3) one should have 6k + 6≥ 8k + 4 which is possible only
if k =0; 1.
We conclude that Y =Y0.

Since Y is irreducible then it is a (PSL2×PSL2; N×PSL2)-section of P(V4⊗V ′
2k)

(see [8]). Thus we get the following result.

Corollary 2.5. P(V4⊗V ′
2k)=(PSL2×PSL2)≈Y=(N×PSL2).

Let M ⊆P(V4⊗V ′
2k) be the subspace de�ned by the equations

�0; i + �4; i= �2; j =0;
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where i; j=0; : : : ; 2k. We denote by �L :Y →M the projection from L. If we choose
�1; j, �3; h, �0; l − �4; l (i.e. if we �x m∈M) the equations #i specialized at these values
becomes linear in the remaining variables.
Such equations are generically of maximal rank thus Y is generically a vector-bundle

over M . Moreover �L is (N×PSL2)-equivariant.

Lemma 2.6. M ∼=P(U ) and the action of N×PSL2 on M is almost free for k ≥ 3.

Proof. Let p∈P(V ′
2k) such that the condition g(p)=p implies g= id∈PSL2 (such

a p exists since 2k ≥ 6).
Let f∈P(〈x41 − x42 ; x

3
1 x2; x1 x

3
2 〉) such that the condition g(f)=f implies g= id∈N

(such an f exists since N ∼=S4 and the three-dimensional irreducible representations
of S4 are exact: see Section 1 of [9]).
It follows that the stabilizer of f⊗p is trivial.

Let �L :Y=(N×PSL2)→M=(N×PSL2) be induced by �L. The method of irreducible
representation (see [5]) implies that �L is again a vector bundle.
Let

W := (〈x41 − x42 ; x
3
1x2; x1 x

3
2 〉⊕C)⊗V ′

0 ⊕V0⊗V ′
6 :

W is an almost free linear representation of N×PSL2. Moreover

P(W )=(N×PSL2)≈P(〈x41 − x42 ; x
3
1x2; x1x

3
2 〉⊕C)=N×P(V ′

6)=PSL2×P1C
which is rational (see [9]: for the �rst factor see the corollary in section 1, for the
second one see Theorem 0.1 or 0.2).
Since M×P(W )=(N×PSL2) is a vector bundle over P(W )=(N×PSL2) it is also

rational. On the other hand, M×P(W )=(N×PSL2) is also a vector bundle over M=(N×
PSL2) with typical �bre P(W )≈C10 hence M=(N×PSL2)×C10 is rational too.
Since �−1

L (m)∼=C4k−1 it follows that Y=(N×PSL2) is rational as soon as 4k−1≥ 10
i.e. if k ≥ 3.

3. Pointed curves

In this section we complete the proof of Theorem 0.6.

Proposition 3.1. If r≥ 4 is even then C
2
3r;1 is rational.

Proof. Let r be even and let C be a subcanonical extremal curve of level 2 and genus
3r contained in the ruled surface �1 as an element of the linear system |D0 +(r+3)f|
(for the notations see Section 1). Contracting D0 to a point, we map C to a plane
curve C′ ⊆P2C of degree r + 3 with a point of multiplicity r − 1.
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Fix P;Q∈P2C and let W be the linear system of curves in P2C through Q and having
P as a (r − 1)-fold point. We have a rational map

’ :W →C
2
3r;1

sending each curve to its isomorphism class.
Let SL3; P and SL3; Q be the stabilizers inside SL3 of P and Q respectively. The group

G := SL3; P ∩ SL3; Q ⊆ SL3 acts on W (with �nite stabilizer). Since ’ is by construction
G-equivariant then

dim’(W )= dimW − dimG=5r + 4;

thus ’ is dominant (see Corollary 0.5).
On the other hand, the orbits of G coincide with the �bres of ’ thus C

2
3r;1≈W=G

which is rational since G is triangular (see [13]).
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