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Abstract

Long term storage of CO2 in geologic formations is currently considered the most attractive option to reduce 

greenhouse gas emissions while continuing to utilize fossil fuels for energy production.  Injected CO2 is expected to 

reside as a buoyant water-saturated supercritical fluid in contact with reservoir rock, the caprock system, and related 

formation waters.  As reported by McGrail et al., [1] experiments with basalts demonstrated surprisingly rapid 

carbonate mineral formation occurring with samples suspended in the supercritical CO2 (scCO2) phase.  Those 

experiments were limited to a few temperatures and CO2 pressures representing relatively shallow (�1 km) reservoir 

depths.  Because continental flood basalts can extend to depths of 5 km or more, in this paper we extend the earlier 

results across a pressure-temperature range representative of these greater depths.  Different basalt samples, 

including well cuttings from the borehole used in a pilot-scale basalt sequestration project (Eastern Washington, 

U.S.) and core samples from the Central Atlantic Magmatic Province, were exposed to aqueous solutions in 

equilibrium with scCO2 and water-rich scCO2 at six different pressures and temperatures for select periods of time 

(30 to 180 days). Conditions corresponding to a shallow injection of CO2 (7.4 MPa, 34°C) indicate limited 

reactivity with basalt; surface carbonate precipitates were not easily identified on post-reacted basalt grains.  Basalts 

exposed under identical times appeared increasingly more reacted with simulated depths. Tests conducted at higher 

pressures (�12 MPa) and temperatures (�55°C), reveal a wide variety of surface precipitates forming in both fluid

phases.  Under shallow conditions tiny clusters of aragonite needles began forming in the wet scCO2 fluid, whereas 

in the CO2 saturated water, cation substituted calcite developed thin radiating coatings.  Although these types of 

coatings were sparse, conditions corresponding to deeper depths showed increasing carbonate precipitation.  Basalts 

exposed to aqueous dissolved CO2 (25.5 MPa, 116°C) for 30 days were coated in tiny nodules of precipitate (~100 

µm in diameter) that were identified by micro x-ray diffraction as ankerite, [Ca(Fe,Mg)(CO3)2], a variety of 

dolomite commonly associated with hydrothermal and metamorphic environments.  Surface characterization by 

SEM revealed well-developed round nodules composed of discrete individual platelets. In contrast, reaction 

products forming on the basalt in the corresponding wet scCO2 phase had completely different morphology, 

appearing in an optical microscope as a surface coating instead of discrete nodules.  Examination by SEM revealed 

layers of discrete platelets forming a cover over a few discrete nodules. Longer test durations (180 days) produced 

severe iron staining along with minerals structures similar to rhodochrosite and kutnohorite.  These preliminary 

experiments show strong evidence of the faster rate of increase in mineralization reactions taking place in the scCO2

phase, transformation reactions that are just beginning to be explored in detail.
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1. Introduction

Geologic storage of carbon dioxide is expected to allow continued use of fossil fuels while reducing the 

associated contribution to climate change.  Field demonstrations at various stages ranging from initial planning and 

permitting to injection and post-injection closure activities are exploring the practicability of geologic sequestration 

[2]. In most cases, dry CO2 will be injected into reservoirs at depths corresponding to pressure and temperature 

conditions where CO2 exists in a supercritical state (>31°C and >10 MPa) [3]. Injected CO2 is expected to reside as 

a buoyant water-saturated supercritical fluid in contact with reservoir rock, caprock systems, and related formation 

waters. Trapping of the CO2 will be accomplished in three ways:  cap rock, dissolution, and mineral trapping.  

Although mineral trapping via in situ carbonation is not expected to be significant in primary target zones (e.g., 

siliciclastic sediments with low CO2 reactivity), it is important in reservoirs containing mafic minerals such as 

basalts.  Laboratory research has shown basalt rocks, rich in Ca
2+

, Mg
2+

, and Fe
2+

produce carbonate minerals when 

exposed to aqueous dissolved CO2 [4-6].  The degree of reactivity between aqueous dissolved CO2 and different 

basalts is variable and depends on certain parameters including temperature and pressure.  

Until recently, most research was focused on aqueous dominated reactions with little attention given to the wet 

CO2 in contact with overlying cap rocks.  The reactive nature of this water bearing supercritical fluid is significant 

and has been shown to produce carbonate minerals when exposed to basalts [1].  Several other researchers have 

demonstrated the reactivity of water bearing scCO2, but these were limited in scope and did not address effects of 

temperature and pressure [7-9].  In this paper we present experimental results of both aqueous dissolved CO2 and 

water bearing scCO2 fluid reactions when exposed to basalt at conditions corresponding to relevant sequestration 

depths.  Basalt formations can extend to depths of 5km or more, resulting in a large range of temperatures and 

pressures.  Solubility of CO2 in water is weakly dependent on pressure above the critical point and is retrograde with 

temperature, effects that counter balance.  In contrast, water solubility in scCO2 is a prograde function of 

temperature and quadruples between 50°C and 100°C at pressures >10 MPa [10].  The increasing amount of water 

in the scCO2 phase is expected to influence the rate of precipitation above and beyond what would be predicted to 

occur from increases in pressure and temperature effects.  To examine this effect, well cuttings from a well drilled 

into the Columbia River Basalt (CRB) as part of the field demonstration site in Wallula, WA (USA) were selected 

for testing.  For comparison, a basalt core representing the Central Atlantic Magmatic Province (CAMP) was also 

subjected to the same test conditions.  The experiments cover a wide range of pressures (7.6 to 31.0 MPa) and 

temperatures (34° to 136°C) to illustrate impacts of depth on basalt reactivity and carbonation.  

2. Method

Well cuttings were selected from the borehole used in a pilot-

scale basalt sequestration project (Eastern Washington, U.S.). The 

basalt chips were collected from the Grouse Creek member of the 

CRB, which was located 1.1 km below the surface.  The marble 

sized cuttings contained visible secondary minerals (heulandite and 

cristobalite) coating insides of small vesicles.  A second basalt 

sample representing the CAMP was selected from a drill core 

obtained from the U.S. Geological Survey Test Well DOR-211.

This basalt, described in Schaef et al. [4], is without any surface 

alteration products and is a black, fine grained mafic rock.  

Preparation of the experiments included photographing the 

individual basalt chips and describing the obvious alteration 

products.  High pressure vessels (Parr and Fluitron) were used in these long term static experiments that ran up to 

180 days.  The vessels (25 or 125 ml) contained pressure transducers and burst discs.  Heating of the vessels was 

accomplished either by heat jackets (Thermotron), ovens (Viking), or quartz sand baths (Boekel).  The vessels were 

loaded by placing three chips into the bottom, covering with water (5-10 ml) and placing three more chips in Teflon 

baskets suspended in the upper portion of the reactor, well above the water (Figure 1).  Each reactor was heated to a 

pre-determined temperature before using a high pressure syringe pump (ISCO) to add the CO2.  Pressure and 

temperature were tracked during the experiments with CO2 being added if pressure drops were observed. Pressures 

Figure 1.  Schematic of experimental 
setup.
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and temperatures were selected to be consistent with a standard hydrostatic gradient of 9.8 kPa/m (0.435 psi/ft) and 

temperature gradient of 45°C/km, respectively.

Once experiments were terminated, reactors were allowed to cool before depressurization.  Basalt chips were 

removed and allowed to air dry.  Optical microscopy (National DC5-420T) and scanning electron microscopy 

(JEOL) with energy dispersive x-ray (SEM-EDX) were used to image surface features including coatings and 

secondary minerals on unreacted grains, post reacted grains, and polished cross sections of carbonate precipitates.  

Surface area estimates of carbonate coverage were done based on measurements obtained from the optical 

microscope.  When possible, micro x-ray diffraction (�XRD) was used to identify precipitates by mounting tiny 

grains in 0.2-0.6 mm glass capillary tubes (Charles Supper Company). Not all precipitates were of adequate size to 

be removed and mounted for �XRD.

3. Results

Experimental conditions, visual observations, and �XRD results of precipitates removed from reacted basalt are 

summarized in Table 1.  Each reactor contained three basalt chips in the bottom (B) and three more suspended 

(Teflon basket) in the top (T).  Color descriptions are relative and based on the unreacted basalt.  Generally, the 

original basalt colors of grayish brown (CRB) and black (CAMP) transcended into various shades of red. Samples 

corresponding to shallow depths (CRB-1 and CAMP-1) were visibly unaltered, appearing closest to unreacted 

basalt.  Reaction products on the surface of the basalts became more obvious with increases in temperature and 

Table 1. Experimental conditions used for high pressure testing with basalt CO2 and precipitates identified by 
XRD on post reacted samples after 180 days of testing.

Reactor

ID
Position1 Depth

(m)

Pressure

(MPa)

Temp

(°C)

Color

change
PPT2 Phases

������
Central Atlantic Magmatic Province Basalt

CAMP-1
T

762 7.5 34
black NS

B black NS

CAMP-2
T

1219 12.0 55
grey X NS

B grey X NS

CAMP-3
T

1676 16.5 75
grey X NS

B red X NS

CAMP-4
T

2134 21.0 96
red X Aragonite [CaCO3] (PDF# 41-1475)

B v red X Calcite [(Ca,Mn,)(CO3)] (PDF# 02-0714)

CAMP-5
T

2591 25.5 116
v red X Aragonite [CaCO3] (PDF# 41-1475)

B v red X Kutnohorite [Ca(Mn,Ca)(CO3)2] (PDF# 19-0234)

CAMP-6
T

3048 31.0 137
red X Dolomite [CaMgCO3] (PDF#11-0078)

B grey X Kutnohorite  [Ca(Mn,Ca)(CO3)2] (PDF# 19-0234)

Columbia River Basalt 

CRB-1
T

762 7.5 34
brown X NS

B brown NS

CRB -2
T

1219 12.0 55
grey X NS

B brown X Calcite [(Ca,Mg)(CO3)] (PDF#43-0697)

CRB -3
T

1676 16.5 75
grey X NS

B grey X Calcite [(Ca,Mg)(CO3)] (PDF#43-0697)

CRB -4
T

2134 21.0 96
red X Aragonite [CaCO3] (PDF# 41-1475)

B red X Calcite [(Ca,Mg)(CO3)] (PDF# 43-0697)

CRB -5
T

2591 25.5 116
v red X Kutnohorite [Ca(Mn,Ca)(CO3)2] (PDF# 19-0234)

B grey X Calcite [CaMgCO3] (PDF# 43-0697)

CRB -6
T

3048 31.0 137
v red X Rhodochrosite [MnCO3] (PDF# 07-0268)

B grey X Kutnohorite [Ca(Mn,Ca)(CO3)2] (PDF# 19-0234)
1 Denotes sample position within the reactor:  T= top (wet scCO2) and B = bottom (aqueous dissolved CO2)
2 Precipitates detected on surface of reacted grains

NS-not sampled
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pressure.  Detailed descriptions of reaction products associated with each basalt and test conditions are described 

below.

CAMP Basalt

Overall, basalts tested at lower pressures and temperatures (CAMP-1, 2, & 3) contained limited carbonate 

precipitations.  Moderate iron staining appeared at 75°C (16.5 MPa) 

and became more pronounced with an increase in temperature and 

pressure (Table 1); negligible color variations were associated with 

basalts reacted at 34° and 55°C.  Reaction products identified on 

basalts tested at shallow depths (762-1219 m) in the wet scCO2 (top of 
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�	����
	
� ������ ��������� 
	������
�
����	����	� 	����
�������
�����
(Figure 2).  Chemistries (SEM-EDX) of these precipitates were 

predominantly Ca, with traces of Fe and Mn.  Similar coatings were 

observed with basalts positioned in the top (T) of reactor CAMP-3, but 

~20% larger and containing more cation substitution (Fe, Mn).  

Additionally, tiny clear elongated crystals, chemically similar to 

aragonite (CaCO3), begin to appear on basalts in reactor CAMP-2 (top 

and bottom).  

There is evidence of a high rate of reaction in reactors maintained at 

96°C or higher (Table 1).  The most notable observation was a 

presence of orange flakes of Fe (SEM-EDX) on basalts positioned in 

top and bottom of reactors CAMP-��������� ��!"
�
�#��$
���%&��������
also floating freely in the water, were delicate and appeared amorphous 

when examined by �XRD.  In wet scCO2, carbonates formed as long 

radiating needles on the basalts at both 96° and 116°C.  As shown in 

Figure 3, these elongated crystals (100 �m) appeared in clusters 

measuring ~1 mm and were pure Ca (SEM-EDX).  Carefully extracted 

crystals from basalts positioned at the top of CAMP-4 & 5 reactors 

produced reflections (�XRD) matching aragonite.  In contrast, basalts 

tested at 137°C (T) contained larger precipitates with similar 

morphologies but a dolomite-ankerite structure (�XRD).  Chemistry 

(SEM-EDX) show these carbonates contain equal amounts of Ca and 

Fe, consistent with ankerite [Ca(Ca,Fe)(CO3)2].  Less abundant were 

transparent radiating coatings, similar to ones described on basalts in 

Figure 2 (CAMP-1) were common on basalts removed from the top of reactors CAMP-5 & 6.  Although these 

coatings were dominated by Ca, significant amounts of Fe and Mn were present.

Basalts reacting with aqueous dissolved scCO2 (B) at 96°C (CAMP-4) contained well developed yellowish to 

opaque crystals that displayed morphologies completely different than those occurring in the wet scCO2 fluid.  

These coatings were identified as a calcite containing Mn (Table 1).  Increases in pressure and temperature (CAMP-

5 & 6) produced carbonate coatings on the basalts in the aqueous dominated fluid that were large (>1mm), 

discolored (yellow-red) and more enriched in Mn, Mg, and Fe.  Reaction products associated with basalts in CAMP-

5 & 6 (B) were identified by �XRD as kutnohorite, a Mn containing analogue of the dolomite-ankerite series [11].

CRB Basalt

Generally, color changes started occurring at conditions simulating 1676m, and became more pronounced with 

increasing depth (Table 1).  Basalt from CRB-1 and CRB-2 reactors appeared unaltered and contained no obvious 

precipitations after 180 days of testing.  In contrast, basalt from CRB-6 (T) appeared completely coated in a red 

crust and large white-yellow precipitates.  

The first evidence of carbonate precipitation was identified on basalts removed from CRB-2.  Examination by 

'()�	
*
��
��
��+��%&������"
,��������	+�
������
"����"
���
	+�������

��-+�.�������
��
	������
s of Fe and Mn 

Figure 2.  SEM microphotograph of 
carbonate coating associated with CAMP-
1 basalt exposed to wet scCO2 for 180
days (7.5 MPa and 34°C).

Figure 3.  SEM microphotograph of 
aragonite crystals associated with CAMP-
4 basalt exposed to wet scCO2 for 180
days (21 MPa and 96°C).
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forming on the surface of basalt reacting with wet scCO2 (Figure 4).  

Similar types of coatings were also observed on basalts removed from 

the bottom of CRB-2.  Other types of precipitates, including isolated 

clusters of radiating crystals were identified basalt removed from CRB-

2 (B).  Large enough to be extracted for �XRD, these crystals were 

identified as Mg substituted calcite.  Slightly higher pressures and 

temperatures produced aragonite, which was observed on the surface of 

basalt removed from the bottom of CRB-4.  This mineral, identified by 

�XRD, appeared as small colorless radiating crystals.  The same basalt 

exposed to CO2 dissolved in water (CRB-4) contained yellowish 

crystals with a fan like crystal habit, often appearing on the chlorites 

(secondary minerals original present in the unreacted CRB).  These 

crystals were identified as a Mg containing calcite and were identical in 

structure to crystals forming on the CRB removed from the bottom of 

reactors CRB-2 & 3.

Similar to the CAMP experiments, the most extensive reaction 

products were observed on basalts tested at the deepest simulated depths (2591 and 3048m).  Basalt from CRB-5 (T) 

had patches of deep red and contained orange and white crystals identified by �XRD as Kutnohorite.  The same 

basalt removed from the bottom of CRB-5 was coated in discrete carbonate particles (~1mm) identified as Mg rich 

calcite [CaMgCO3].  This carbonate was also observed at lower 

temperatures and pressures on basalts removed from CRB 2 & 3. 

Completely different coatings were observed on basalts removed 

from CRB-6.  Initially, after 30 days of testing, basalts in the bottom of 

the reactor were coated in tiny nodules of precipitate, measuring ~100 

µm in diameter.  Characterization (�XRD) identified these precipitates 

as ankerite, [Ca(Fe,Mg)(CO3)2], a variety of dolomite commonly 

associated with hydrothermal and metamorphic environments.  Surface 

characterization by SEM revealed well-developed round nodules 

composed of discrete individual platelets.  Chemical composition of 

these precipitates identified by SEM-EDX is dominated by Ca with 

minor amounts of Fe, Mg, and Mn.  After 180 days of testing, coatings 

with similar shapes, sizes, and chemistry were observed, but the 

structure, based on �XRD, changed to kutnohorite.  

In contrast, reaction products forming on the basalt in the 

corresponding wet scCO2 phase after 

30 days had completely different 

morphologies, appearing in an 

optical microscope as a surface 

coating instead of individual nodules.  

Examination by SEM revealed layers 

of discrete platelets forming a cover 

over a few nodules.  Chemistry of 

these precipitates appeared 

essentially identical as determined 

for the samples exposed to the 

aqueous phase.  Following 180 days 

of testing, a red crust coated the 

entire basalt surface (CRB-6 T), 

which was identified by �XRD as 

having a structure similar to 

	"����"	���

�� �� )�� 	��"� ��	-���

 � � (,�����
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"��� �
��
� 	
�� ���
���� �%&���� 
"��$��

Figure 4.  SEM microphotograph of 
calcite crystals associated with CRB-2
basalt exposed to wet scCO2 for 180 days 
(12 MPa and 55°C).

Figure 5.  SEM microphotograph of Si
crystals associated with CRB-6 basalt 
exposed to wet scCO2 for 180 days (31
MPa and 137°C).

Figure 6. Optical microphotograph (left) and SEM microphotograph (right) of 
post reacted basalt removed from the top of CRB-6 (31 MPa and 137°C) 
showing the carbonate precipitate forming inside pre-existing small vesicules
containing secondary minerals (chlorite, cristobalite, and heulandite).
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contained twice the amount of Fe compared to Ca and Mg; only traces of Mn were detected.  Also observed by SEM 

were small cylindrical rods forming a mat-like cover on top of the Fe rich carbonate coatings (Figure 5).  Chemistry 

by SEM-EDX indicated this phase was pure silica.  

Close examination of vesicles on the basalt removed from the top of CRB-6 showed carbonates formed in and 

around secondary minerals, most notably chlorite.  For example, Figure 6 is a polished cross section of a CRB 

vesicle filled with chlorite and cristobalite.  Present as a red (optical) or bright (SEM) intergrowth within these 

secondary minerals is the same type of carbonate phase previously identified as kutnohorite.  Chemically and 

structurally these precipitations are identical to coatings formed on the surface of the basalt removed from CRB-6

(T) and represent some of the most extensive carbonate mineral coatings ever observed in such short duration 

experiments.  Overall, the coatings associated with the CRB exposed to wet scCO2 at the highest temperature and 

pressure, were the thickest and most extensive.

4. Discussion

Two different basalts (CAMP and CRB) were shown to react with aqueous dissolved CO2 and water saturated 

scCO2 to produce carbonates with chemistries, morphologies, and quantities correlated with fluid type and injection 

conditions (temperature and pressure).  A number of researchers have examined the potential of reacting basaltic 

rocks with aqueous dissolved CO2 to produce carbonate minerals [2, 5, 12-14].  Carbonates forming as a result of 

exposing basalts to water equilibrated with scCO2 were not a surprise; these basalts have been shown to react and 

produce carbonates in relatively short periods of time [4-5].  However, there is evidence these basalts are less stable 

with increasing depth, dissolving quicker to release cation-forming carbonates.  In the aqueous dominated fluids, 

more coatings were observed forming on both types of basalt at conditions corresponding to the greatest depths.  In 

these experiments, calcite formed at shallow conditions, indicating the most abundant cation in solution is Ca
2+

.

Increases in depth appear to enhance the concentration of other cations (Fe
2+

, Mg
2+

, and Mn
2+

) favoring the 

formation of cation substituted calcite and dolomite.  This could be an indication certain basalt components such as

the pyroxenes are becoming less stable with an increase in depth.  On average, Mn is found associated with these 

pyroxenes, which typically contain between 0.5 to 1.0% oxide wt%.   Although the glassy mesostasis is expected to 

be the fastest dissolving basalt component, it appears the pyroxenes are equally unstable and provide carbonate 

constitutes such as Mn at greater depths.

On the other hand, reaction products associated with basalts exposed to water rich scCO2 fluids were unique and 

distinct from ones forming in aqueous based fluids.  In some cases complete coatings were observed on these basalts 

that consisted of Fe rich carbonates with structures similar to dolomite or rhodochrosite.  Under SEM, basalt 

removed from the top of CRB-6 contained a thick (25�m) carbonate coating that was dominated by Fe-rich species.   

Also present were cylindrical rods of amorphous Si that formed as a layer on top of the carbonate coating (Figure 5).    

Similar carbonate coatings, with an average thickness of 

/�������
	
��-�
	*
�����
"
�.0)1�-����
�	
��*
��#	���
the top of reactor CAMP-6.   Although these types of 

coatings were unique to conditions representing 3048m, 

there was evidence of similar coatings forming on basalts 

at 2591m.   Mineral reactions in the water rich scCO2 are 

not as well understood as the corresponding reactions in 

water equilibrated with scCO2.  Recent research by Kwak 

et al. [15] on the reactive nature of wet supercritical fluids 

has shown forsterite reacts to form magnesite (MgCO3)

under certain conditions (50°C, 100 bar).  These authors 

also report the formation of a highly porous amorphous 

silica layer.  

Temperature conditions for these experiments, 34° to 

137°C, correspond to water solubility in the scCO2

ranging between 1,500 and 20,000 ppmw, respectively 

[10, 16].  This increase in water content, illustrated in 

Figure 7 as a function of depth, is significant, with 15 

Figure 7.  Relative changes of water content in scCO2

as a function of depth (based on standard hydrostatic 
gradient of 9.8 kPa/m (0.435 psi/ft) and temperature 
gradient of 45°C/km).
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times more water in the scCO2 at 137°C, than lower temperatures (34°C). In contrast, the amount of CO2 dissolved 

into the water changes very little over these depths and temperature intervals.  Some minerals, such as portlandite, 

have been shown to partially react with dry scCO2 to form carbonates, but completely react in the presence of wet 

scCO2 [7-8].   Most recently, work by Loring et al., [17] has shown the reaction between wet scCO2 and forsterite is 

related to the amount of water in the system.  This work focused on examining reaction rates as a function of 

available water and the formation of a nanometer thick water layer on the mineral surface at constant pressure (18 

MPa) and temperature (50°C).  These authors report a correlation between the rate of carbonate formation with the 

amount of available water and the presence of a thin liquid water film on forsterite particles.  These results from 

these basalt experiments are similar in nature, showing the most severely reacted basalts were exposed to scCO2

containing the highest amount of water.  

One other contributing factor to the overall increase in the rate of carbonation is related to the secondary minerals 

associated with the CRB.  Secondary minerals originally present in the CRB, including chlorite, cristobalite, and 

heulandite were commonly observed to be associated with higher degrees of carbonation.  Samples of CRB tested 

under moderate conditions contained tiny carbonate precipitates on these secondary minerals, often forming inside 

the vesicles.  Exposing the CRB to the deepest depths appears to have enhanced the formation of carbonates within 

vesicles lined with chlorite and cristobalite.  Large, thin particles of carbonate (> 0.5mm) were easily removed from 

within these vesicles.  Overall, secondary minerals, such as chlorite appear to have enhanced the formation of 

carbonates, especially when exposed to the water rich scCO2.

5. Conclusion

Two different continental flood basalt samples (CRB and CAMP) were tested under conditions simulating the 

injection of CO2 at six different depths.  Basalt samples were exposed to either water rich scCO2 or water 

equilibrated with scCO2 for up to 180 days at varying temperature and pressure conditions simulating an injection 

depth of up to 3048m.  Surface coatings on reacted basalt samples became more abundant with an increase in depth, 

confining the majority of precipitates to conditions �96°C and �21.0 MPa.  Reactions in the aqueous dissolved CO2

generally formed discrete carbonates, featuring either well formed crystals or thin discrete coatings.  In contrast, 

precipitates forming on the basalt as a result of being exposed to wet scCO2 were comprised of smaller but more 

abundant crystals, sometimes completely coating the basalt surface.  In the most extreme cases Fe-rich carbonate 
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particles.  Mineral structures identified by �XRD as occurring in both types of fluid were aragonite, calcite, 

dolomite, rhodochrosite, and kutnohorite.  Cation substitutions within these carbonates were greatest at the higher 

temperatures and pressures.

Increases in pressure and temperature with depth are well understood to accelerate precipitation reactions in the 

aqueous phase.  However, based on these experiments, the rate of increase appears different depending on whether 

the reactions take place in the aqueous phase or scCO2 phase.  Basalt samples reacted with the wet scCO2 contained 

the most reaction products including non-carbonate phases relative to samples exposed to the aqueous fluid.  At the 

highest temperatures and pressures basalt samples appeared completely coated in reaction products.  These types of 

transformation reactions are just beginning to be explored in detail, but the dynamics involved will be key elements 

to understanding basalt-based CO2 storage  
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