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Abstract

We reconsider the relation of superconformal indices of superconformal field theories of class S with 
five-dimensional N = 2 supersymmetric Yang–Mills theory compactified on the product space of a round 
three-sphere and a Riemann surface. We formulate the five-dimensional theory in supersymmetric back-
grounds preserving N = 2 and N = 1 supersymmetries and discuss a subtle point in the previous paper 
concerned with the partial twisting on the Riemann surface. We further compute the partition function by 
localization of the five-dimensional theory on a squashed three-sphere in N = 2 and N = 1 supersymmetric 
backgrounds and on an ellipsoid three-sphere in an N = 1 supersymmetric background.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the previous papers [1,2], we have attempted to give a physical proof for the conjecture 
of [3]. The conjecture states that the Schur limit of the superconformal index [4] of a four-
dimensional N = 2 superconformal theory of class S [5,6] can be computed by two-dimensional 
q-deformed Yang–Mills theory [7]. The N = 2 superconformal theory of class S is defined in 
[6,5] as the infrared limit of M5-branes wrapped on a Riemann surface1 �, and according to the 
conjecture, one may compute the Schur index of the theory by making use of the q-deformed 
Yang–Mill theory on � in the zero area limit.
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The superconformal index may be captured by the partition function of the four-dimensional 
theory compactified on S1 × S3. (See [8] for the extension to � with nonzero area.) Since the 
infrared limit of M5-branes gives rise to the putative six-dimensional N = (2,0) superconformal 
theory, it is conceivable to obtain the index by computing the partition function of the N = (2, 0)
theory compactified on S1 × S3 ×� with a partial twisting on �. The idea2 has been argued in 
[9] as a “top-down” approach to uncover the relation of a generic superconformal index of the 
theories of class S with a topological field theory. For a review of the superconformal indices of 
theories of class S , see [15].

In the previous papers [1,2], we put the idea into practice by exchanging the order of the 
compactifications; regarding M5-branes wrapped on a circle as D4-branes, we compactified
five-dimensional N = 2 supersymmetric Yang–Mills theory on � with a partial twisting and 
further on the round S3, in a somewhat ad hoc way. Computing the partition function of the 
compactified theory by localization, we have found that the fixed points give the fields of the 
q-deformed Yang–Mills theory, and that the one-loop contributions and the classical action at 
the fixed points yield the measure of the partition integral of it; namely, the partition function of 
the five-dimensional compactified theory is reduced to that of the two-dimensional q-deformed 
Yang Mill theory.

However, there was a confusion about the partial twisting in [1]. The supersymmetric back-
ground used in [1] – especially, the partial twisting – preserved only N = 1 supersymmetry 
in four dimensions. Since the conjecture in [3] is concerned with the four-dimensional N = 2
superconformal theories, the results in [1] seem to have nothing to do with the conjecture.

The construction of the N = 2 superconformal theories by the twisted compactification of 
the N = (2, 0) theory on � has been generalized for N = 1 supersymmetric theories in four 
dimensions [16–19], which we will refer to as N = 1 theories of class S . We can see that the 
twisting used in [1] is identical to what is called3 the N = 1 twist in [16].

Superconformal indices of the N = 1 superconformal theories of class S have been calculated 
in four dimensions in [20]. A simple comparison shows that the result in [1] is in good agreement 
with the Schur limit of the mixed Schur index in [20], as we will see later.

The questions we raise are two-fold; first, when the N = (2, 0) theory compactified on � with 
the N = 2 twisting so that N = 2 supersymmetry remains unbroken in four dimensions, whether 
will we obtain the q-deformed Yang–Mills theory on � via localization? This was the original 
motivation in the previous paper [1,2].

Second, when replacing the round S3 by a deformation of the S3, such as a squashed S3 and 
an ellipsoid S3, as discussed in [21,22], whether will we obtain a deformation of the Schur index 
for the round S3, like the mixed Schur index in [20]?

We will make an attempt to answer both of the questions in this paper, which is organized 
as follows: in Sections 2 and 3, we will begin with the construction of the five-dimensional su-
persymmetric Yang–Mills theory on a curved space, based on the idea of [23] that the fields 
of an off-shell supergravity multiplet are utilized as background fields to preserve supersym-
metries of the field theory on a curved space. In fact, through the dimensional reduction of the 
six-dimensional N = (2, 0) conformal supergravity in [25], on-shell supersymmetry transforma-

2 Similar constructions have been used in [6,10] to explore four-dimensional N = 2 superconformal field theories of 
class S . See also [11] for N = 1 supersymmetric theories. See [12,13] (also [14]) for related works on three-dimensional 
Chern–Simons theory from M5-branes.

3 See Appendix D of [16] about the embedding of the spin connection on � to the R-symmetry group. The N = 1
twist corresponds to the case of l1 = l2 in their Calabi–Yau construction of [19].
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tions and an on-shell action of the five-dimensional theory compactified on a curved space have 
been derived in [24], following the idea [23].

Therefore, Sections 2, 3, and 4 are essentially devoted to a review of [24], up to a few points 
that we perform the dimensional reduction in the time direction of the six-dimensional theory, 
instead of the spatial direction as in [24]. And we obtain off-shell supersymmetry transformations 
and an off-shell action of the five-dimensional theory on a curved space in Section 6, which are 
necessary to carry out localization.

In Section 5, we will discuss the partial twistings mentioned above – the N = 1 twisting 
and the N = 2 twisting – in more details, in the language of the background gauge field of the 
R-symmetry group, and we will describe the supersymmetric background on a round S3 in [1,2]
in terms of supergravity background fields for the N = 1 twisting in Subsection 5.1, and give a 
supersymmetric background on the round S3 for the N = 2 twisting in Subsection 5.2.

We will proceed to consider two supersymmetric backgrounds on a squashed S3 – the analog 
of the background in [21] and of the one in [22] – in Subsections 5.3 and 5.4, respectively. 
Especially, for the former, we will give supersymmetry backgrounds for both of the twistings.

In Subsection 5.5, we will discuss a supersymmetric background for the N = 1 twisting on 
an ellipsoid S3, in an analogous way to [21].

After the discussions about the off-shell formulation of the five-dimensional theory in Sec-
tion 6, as mentioned above, we will explain our localization method in depth in Section 7. We 
will compute the partition functions by localization on the round and squashed S3’s in Section 8
for the background in Section 5.3 and that on the ellipsoid S3 in Section 9 for the background in 
Section 5.5.

However, the computation of the partition function on the squashed S3 for the background 
in Section 5.4 somewhat doesn’t seem straightforward to be done by localization, and we will 
leave it as an open question. Finally, Section 10 is devoted to the summary and discussions of 
this paper.

Appendix A is a simple collection of our conventions about the (anti-)symmetrization of var-
ious indices and about differential forms, used in this paper, and the gamma matrices of the 
Lorentz groups in five and six dimensions are shown in our representation in Appendix B. The 
R-symmetry group of the six- and five-dimensional theories are commonly Spin(5)R � Sp(2)R
and the associating gamma matrices in our representation are given in Appendix C. The spinors 
in the theories are symplectic Majorana–Weyl spinors and in Appendix D, our convections about 
those spinors are explained.

After the dimensional reduction of the conformal supergravity, supersymmetry transforms of 
the fermionic fields in the supergravity multiplet (the Weyl multiplet) yield supersymmetry con-
ditions on the background fields to preserve supersymmetries on the curved background. Besides 
the supersymmetry condition derived from the gravitino field, there is another supersymmetry 
condition from the fermionic auxiliary field in the Weyl multiplet and it is too long to write down 
explicitly in the text. Therefore, the explicit form of the supersymmetry condition is written in 
Appendix E.

In Appendix F, a few formulas which we think are useful to verify the invariance of the actions 
in Sections 3 and 4 under the supersymmetry transformations are given.

In Appendix G, Killing spinors and metrics are discussed on the round, squashed, and ellipsoid 
S3, following [21,22].

Appendix H explains the difference among the notations used in [25], in [24], and in this 
paper, and further the difference between the notations used here and in the previous paper [1].
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2. Euclidean 5D N = 2 SYM in SUGRA backgrounds

In this section, the dimensional reduction along the time direction will be performed for the 
six-dimensional N = (2, 0) conformal supergravity derived in [25]. This section, Sections 3
and 4 are essentially a review of [24], but the spatial dimensional reduction was carried out there.

In Subsection 2.1, we will recapitulate the main results of [25], which we will need in this 
paper about the supergravity multiplet called the Weyl multiplet in the conformal tensor calculus.

In Subsection 2.2, we will discuss the dimensional reduction of the Weyl multiplet, which play 
roles of supersymmetric background fields to retain supersymmetries of the five-dimensional 
Yang–Mills theory on a curved space. Subsection 2.3 is just a small digression about the relation
of Killing spinors with Killing vectors.

2.1. Weyl multiplet in 6D N = (2, 0) conformal supergravity

In this paper, following [24], we will carry out dimensional reduction of the six-dimensional 
N = (2, 0) supergravity in [25] to obtain a five-dimensional Euclidean maximally supersym-
metric Yang–Mills theory in supergravity backgrounds. It has been discussed in [23] that the 
supergravity backgrounds provide a systematic method for supersymmetric compactifications of 
supersymmetric field theories. The construction of the supergravity in [25] is based on the con-
formal tensor calculus. (See the textbook [26] for the conformal tensor calculus and references 
therein.)

In this approach, one starts with a gauge field theory by gauging the six-dimensional N =
(2, 0) superconformal symmetry group OSp(2, 6|4), whose bosonic part consists of the confor-
mal group SO(2, 6) and the R-symmetry group Spin(5). The symmetry group OSp(2, 6|4) is 
generated by

Pa : translation, D : translation, Mab : Lorentz, Ka : special conformal,

RIJ :R-symmetry, Qα : supersymmetry, Sα : conformal supersymmetry,

whose corresponding gauge fields are shown in Table 1.
Let us list the notations of the various indices on the generators and the gauge fields:

• a, b= 0, 1, · · · , 5; the Lorentz indices,
• μ, ν = 0, 1, · · · , 5; the coordinate frame indices,
• I, J = 1, · · · , 5; the vector indices of the Spin(5)R symmetry,
• α, β = 1, · · · , 4; the spinor indices of the Spin(5)R symmetry.

The fermionic fields ψμα and φμα are the gauge fields of the supersymmetry and the con-
formal supersymmetry, respectively. They are symplectic Majorana–Weyl spinors of positive and 
negative chirality, respectively. See Appendix D for our conventions about symplectic Majorana–
Weyl spinors.

A straightforward manner of gauging translations doesn’t lead to general coordinate transfor-
mations which is indispensable to a theory of gravity. To gain general coordinate transformations 
from translations in the conformal tensor calculus approach, auxiliary fields4 in Table 2 are intro-

4 They are referred to as ‘matter fields’ in [25,24]. It is not always necessary to introduce auxiliary fields for the 
deformation, and it depends on the numbers of supersymmetries and the dimensions of spacetime, i.e., superconformal 
algebras. See [26] for more details.
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Table 1
The gauge fields of the 6D N = (2, 0) superconformal symmetry.

Gauge fields Transformations Restrictions Spin(5)R Weight

Boson
Eaμ Pa : translations sechsbein 1 −1
bμ D: dilatation 1 0

V μ
IJ RIJ : R-symmetry V μ

IJ = −V μJI 10 0

Fermion
ψαμ Qα : supersymmetry gravitini 4 −1/2

�7ψαμ =ψαμ
Dependent gauge fields
Boson
	μ

ab Mab: local Lorentz spin connection 1 0

f aμ Ka : special conformal 1 +1

Fermion
φαμ Sα : conformal supersymmetry �7φαμ = −φαμ 4 +1/2

Table 2
The auxiliary fields for the deformation of the superconformal symmetry.

Auxiliary fields Symmetries Spin(5)R Weight

Bosonic fields

T αβabc T αβabc = − 1
3! εabc

def
T αβdef , 5 1

T αβabc = −T βαabc , 	αβT αβabc = 0.

Mαβγ δ Mαβ,γ δ =Mγδ,αβ = −Mβα,γ δ = −Mαβ,δγ , 14 2
	αβM

αβ,γ δ =	γδMαβ,γ δ =	αγ 	βδMαβ,γ δ = 0.

Fermionic field
χαβγ �7χαβγ = χαβγ , χαβγ = −χβαγ , 	αβχαβγ = χγβγ = 0, 16 3/2

(χαβγ )
†�0 = (χα′β′

γ ′ )T C	α′α	β′β(	−1)γ
′γ .

duced and the transformation laws of the gauge fields are deformed by imposing some constraints 
on the gauge field strengths and the auxiliary fields such that the resulting transformation laws 
give a closed algebra, as explained in [26].

Furthermore, one requires the invertibility of the gauge field Eaμ of translations to solve the 
constraints, which allows us to regard it as the sechsbein. Solving the constraints makes the 
gauge fields 	μ

ab , f aμ, and φαμ dependent fields given in terms of the other gauge fields and 
the auxiliary fields. In fact, they are given by

	μ
ab = ωμab +Eμa bb −Eμb ba + · · · , φαμ = · · · , (1)

f aμ = 1

8
Rμ

a(	)− 1

80
Eμ

aRc
c(	)+ 1

32
T αβμcd T αβ

acd + · · · , (2)

where the ellipses · · · denote the contributions from the fermionic fields. One can see that the 
spin connection 	μ

ab is a generalization of the Levi-Civita spin connection ωμ
ab satisfying

dEa +ωab ∧Eb = 0, Ea =Eμa dXμ,
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and Rμa(	) is the Ricci tensor

Rμ
a(	)=�νb Rνμba(	),

of the curvature tensor of the spin connection 	ab ,

Rab(	)= 1

2
Rcd

a
b(	)E

c ∧Ed = d	ab +	ac ∧	cb,
where �νb denotes the inverse of the sechsbein Eaμ, i.e., coframe.

After the deformation, one finds a closed algebra with the (covariant) general coordinate trans-
formations. The remaining independent gauge fields and auxiliary fields form a multiplet called 
the Weyl multiplet including the graviton, the gravitini and the others. We show the resulting 
bosonic transformations of the independent gauge fields, except for the (covariant) general coor-
dinate transformations,

δEμ
a = −�D Eμa +�ab Eμb,

δψαμ = −1

2
�D ψ

α
μ + 1

4
�R

IJ (ρIJ )
α
β ψ

β
μ + 1

4
�ab �

ab ψαμ,

δV μ
IJ = ∂�RIJ +�RIK V μKJ +�RJL V μIL, δbμ = ∂μ�D − 2�Ka Eμ

a,

where �D , �ab , �Ka , and �RIJ , are the parameters of dilatation, the Lorentz, special confor-
mal, and R-symmetry transformations, respectively, and under the first four transformations, the 
auxiliary fields transform as

δT αβμνρ =�D T αβμνρ, δMαβ
γ δ = 2�DM

αβ
γ δ,

δχαβγ = 3

2
�D χ

αβ
γ + 1

4
�ab �

ab χαβγ .

Under the R-symmetry transformations, they transform in the representations shown in Table 2, 
respectively.

The resulting supersymmetry (Q-) transformations and superconformal (S-) transformations 
on the gauge fields and the auxiliary fields are given by

δEμ
a = i

2
	αβ
(
εα
)T
C�a ψβμ,

δψαμ =Dμεα + 1

4! T
αβ
abc �

abc�μ εβ + �μ ηα,

δbμ = 1

2
	αβ
(
εα
)T
Cφβμ − 1

2
	αβ

(
ηα
)T
Cψβμ,

δV μ
IJ = (	ρIJ )

αβ

[(
εα
)T
C φβμ +

(
ηα
)T
C ψβμ

]
− 1

15

(
ρIJ
)α

β	γδ
(
eγ
)T
�μ χ

δβ
α,

δT αβabc = 1

16

(
ε[α
)T
C�de�abc R

β]
de(Q)− 1

15

(
εγ
)T
C�abcχ

αβ
γ − (trace),

δMαβ
γ δ = −

(
ε[α
)T
C�μDμχγ δ

β] + 2
(
η[α)T Cχ

γ δ

β] − (trace),

δχαβγ = 5

32
�abc�μεγ DμT αβabc + 15

32
�μνε[α Rμνγ β] − 1

4
Dαβγ δ ε

δ

+ 5
�abcη T αβabc − (trace), (3)
8 γ
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with (trace) denoting necessary terms to give the same irreducible representations of the 
R-symmetry group as the fields on the left hand sides. The parameter εα of a supersymme-
try transformation and ηα of a superconformal transformation are symplectic Majorana–Weyl 
spinors of positive and negative chirality, respectively;

�7εα = εα, �7ηα = −ηα.

The operation T denotes transpose, and so 
(
εα
)T and 

(
ηα
)T

are the transposes of εα and ηα , 

respectively. The curvature Rαab(Q) is the field strength of the supersymmetry gauge field (grav-
itini) ψαμ, whose exact form can be seen in [25], but it will not be necessary in this paper.

Here the covariant derivatives of εα and T αβabc are given by

Dμεα = ∂μεα + 1

2
bμε

α + 1

4

(
	μ
)ab
�abε

α − 1

4

(
V μ
)IJ (

ρ
IJ

)α
βε
β,

DμT αβabc = ∂μT αβabc + (	μ)[adT αβbc]d − bμT αβabc + 1

4
V μ

IJ
(
ρIJ
)[α

γ T
β]γ

abc.

Here, the field strength of the R-symmetry gauge field Vμ
IJ is given by

Rμν
α
β = 1

2
Rμν

IJ
(
ρIJ
)α
β

= 1

2

[
∂μV ν

IJ − ∂νV μIJ − V μIKV νKJ + V νIKV μKJ
] (
ρIJ
)α
β.

2.2. Temporally dimensional reduction of the Weyl multiplet

In this subsection, the dimensional reduction of the Weyl multiplet along the time direction 
will be considered in the same way as the dimensional reduction along one spatial direction was 
performed in [24], where the strategy in [27] was followed.

For the usual ansatz for the metric

ds2
6 = − 1

α2 (dt +C)2 + ds2
5 = −E0E0 + ds2

5 =
5∑
a=0

EaEa,

where

E0 = 1

α
(dt +C) , ds2

5 =
5∑
a=1

EaEa,

as a gauge-fixing condition, the six-dimensional coframe Eaμ (μ = t, 1, · · · , 5; a = 0,1,
2, · · · , 5) can be taken by a local Lorentz transformation to be(

Eaμ

)
=
(
e0
t e0

μ

eat eaμ

)
=
(
α−1 α−1Cμ

0 eaμ

)
,

where μ = 1, 2, · · · , 5; a = 1, 2, · · · , 5. Here, α is a scalar field (a.k.a. dilaton), which is some-
times denoted by ∼ exp(−ϕ), but we will follow [27,24] to denote it by α. Therefore, one can 
see that

E0 = 1
(dt +C) , Ea = ea = eaμdxμ.
α
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For the gauge field C = Cμdxμ, we define the field strength

G= dC = 1

2
Gμνdx

μ ∧ dxν.
Since the six-dimensional coframe �μa is inverse to the sechsbein Eaμ, it takes the form

(
�μa
)= ( θ t 0 θ t a

θμ0 θμa

)
=
(
α −Ca
0 θμa

)
,

under the gauge-fixing condition, with Ca = θνaCν , where the funfbein eaμ and the five-
dimensional coframe θμb satisfy

eaμ θ
μ
b = δab, θμae

a
ν = δμν.

One then finds the Levi-Civita spin connection ωab = ωcabec satisfying dea +ωab ∧ eb = 0,

(
ω0

)0
a = − 1

α
θμa ∂μα,

(
ω0

)
ab = (ωa) 0b = 1

2α
Gab,

(
ωa
)bc = (ωa)bc ,

with the five-dimensional Levi-Civita spin connection ωab = (ωc)ab ec satisfying dea + ωab ∧
eb = 0, and Gab = θμaθνbGμν .

As in [27,24], we will continue the partial gauge-fixing by using the conformal supersymmetry 
transformation Sα to set ψα0 = 0; the special conformal transformations K0 to set b0 = 0, and 
Ka to

bμ = 1

α
∂μα, (μ= 1,2, · · · ,5).

The latter condition makes the dilaton field α covariant constant [27];

Dμα = ∂μα − bμα = 0,

which will be convenient for the calculations below.
The partial gauge fixing conditions are summarized as

Eat = 0, ψα0 = 0, b0 = 0, bμ = α−1∂μα (μ= 1,2, · · · ,5). (4)

We will use bμ as shorthand for α−1∂μα and ba = θaμbμ.
Therefore, under the gauge fixing condition, one has the dependent gauge field 	μ

ab in (1)

(
	t
) 0
a = 0,

(
	t
)
ab = 1

α2
Gab,

(
	μ
) 0
a = − 1

2α
Gμa,

(
	μ
)
ab = (ωμ) ab + 1

2α2
CμGab + (eaμθνb − ebμθνa

) 1

α
∂να.

Among them, after the dimensional reduction, the component(
	c
)
ab

=�μc
(
	μ
)
ab = (ωc)ab + δac bb − δbc ba ≡ θμc

(
	μ
)
ab

often appears in the covariant derivatives, and we refer to it as (	c) ab .
The auxiliary fields V a

IJ , T αβabc are decomposed into five-dimensional fields SIJ , VaIJ , 
t I ab by
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V a
IJ =
{
V 0

IJ ≡ SIJ ,
V a

IJ ≡AaIJ , T αβabc =
⎧⎨
⎩T

αβ
0ab ≡ t I ab

(
ρI	

−1
)αβ

,

T αβabc = −(1/2)εabcdeT αβ0de,

with ε12345 = ε12345 = 1. Note that the gauge field AμIJ is given by

Aμ
IJ = eaμAaIJ = eaμ�νaV νIJ = V μIJ −Cμ V t IJ = V μIJ − 1

α
Cμ S

IJ .

Let us remove the underline from Mαβ
γ δ to denote its reduced one as Mαβ

γ δ . It is sometimes 
convenient to replace the spinor indices α, β of Mαβ

γ δ by the vector indices I, J as

Mαβ
γ δ = −MIJ

(
ρI	

−1
)
αβ (	ρJ ) γ δ.

The field MIJ is in the representation 14 of the Spin(5)R group and enjoys the symmetry prop-
erties

MIJ =MJI , δIJ M
IJ = 0.

The time component of the gravitini is set to zero by the gauge fixing condition (4); ψαt = 0, 
and we will denote the remaining components ψαμ (μ = 1, · · · , 5) simply as

ψαμ =
(
ψαμ

0

)
,

since it is of positive chirality, and our convention of the chirality is found in Appendix D.
Since the auxiliary spinor χαβγ is also of positive chirality, we will take

χαβγ = 15

16

(
χαβγ

0

)
,

with the convenient coefficient 15/16 in [24].
The parameters εα and ηα of supersymmetry and conformal supersymmetry transformations 

are of positive and negative chirality, respectively, and we will take

εα =
(
εα

0

)
, ηα =

(
0
ηα

)
.

The gauge fixing condition (4) is changed under the supersymmetry (Q-) transformation (3). 
In particular, the zeroth component of the gravitino transforms under the supersymmetry (Q) and 
the conformal supersymmetry (S) as

δψα0 = 1

8α
Gab�

abεα − 1

4
SIJ

(
ρIJ
)
α
βε
β + 1

4
tαβab �

ab εβ + �0 η
α, (5)

under the gauge fixing condition (4). However, combining the supersymmetry (Q-) and the con-
formal supersymmetry (S-) transformations, one can find that one linear combination of them 
leaves the condition ψα0 = 0 unchanged. For any εα , one can see that the conformal supersym-
metry transformation with the parameter

ηα = 1

8α
Gabγ

abεα − 1

4
SIJ

(
ρIJ
)
α
βε
β + 1

4
tαβab γ

ab εβ, (6)

compensates for the deviation (5) from the gauge fixing condition on the gravitini.
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Among the other gauge fixing conditions in (4), the condition Eat = 0 remains unchanged 
under the supersymmetry (Q-) and the conformal supersymmetry (S-) transformations. But, the 
remaining gauge fixing conditions b0 = 0 and bμ = α−1∂μα are changed under those transfor-
mations. However, the deviations can be canceled by the special conformal (K-) transformations 
with appropriate parameters�Ka . Note here that Eat and ψα0 are left invariant under the special 
conformal (K-) transformations. Thus, one may define a supersymmetry transformation in the 
reduced five-dimensional theory as the linear combination of supersymmetry (Q-), conformal 
supersymmetry (S-), and special conformal (K-) transformations.

Following the ideas in [23], we are seeking for supersymmetric backgrounds of the reduced 
theory to obtain supersymmetric compactifications of the N = 2 supersymmetric Yang–Mills 
theory in five dimensions. Since we would like to consider bosonic backgrounds, we will turn 
off background spinor fields, and we will find the supersymmetric bosonic backgrounds leaving 
the spinor fields ψαμ, χαβγ unchanged under some of supersymmetry transformations in the 
reduced theory.

From the supersymmetry transformation of the gravitini

δεψ
α
a = θμa δψαμ =Daεα − 1

4
SIJ (ρIJ )

α
βγaε

β + 1

2α
Gabγ

bεα + 1

8α
Gbcγa

bcεα

− 1

2
t I bc(ρI )

α
βγa

bcεβ,

with the covariant derivative of the supersymmetry parameter

Daεα = θμaDμεα = θμa∂μεα + 1

2
baε

α + 1

4
(	a)

bcγbcε
α − 1

4
Aa

IJ (ρIJ )
α
βε
β,

one can see that the supersymmetric bosonic backgrounds should obey

Daεα = 1

4
SIJ (ρIJ )

α
βγaε

β − 1

2α
Gabγ

bεα − 1

8α
Gbcγa

bcεα + 1

2
t I bc(ρI )

α
βγa

bcεβ .

(7)

Under a supersymmetry transformation, the auxiliary spinor χαβγ transforms as

δεχ
αβ
γ

= −2 · 1

4!ε
abcdeDf tαβf aγbcdeεγ + 1

4!ε
abcdeDaSγ [αγbcdeεβ] − tαβabtγ δcdγ abcdεδ

− 1

2
εabcdeDatαβbcγdeεγ + 2

1

α
Ga

ctαβbcγ
abεγ − 1

2α
GabSγ

[αγabεβ]

− 1

2
S[α

δt
β]δ
abγ

abεγ − 2 tαβabSγ δγ
abεδ + 4tαβactγ δb

c γ abεδ − 1

2
Fabγ

[αγabεβ]

− 4

15
Mαβ

γ δε
δ − 1

α
Gabtαβabεγ + 2tαβabtγ δ

abεδ + · · · , (8)

with tαβab = t I ab(ρI	−1)αβ , and Sαβ = (1/2)SIJ (ρIJ )αβ , where the ellipse · · · denotes the 
necessary terms5 to leave the right hand side in the representation 16 of the Spin(5)R symmetry, 
since χαβγ is in the representation 16. Here, the two covariant derivatives are given by

5 In [24,25], they are denoted as (trace).
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Dμtαβab = ∂μtαβab + (	μ) actαβcb + (	μ) bctαβac − bμtαβab − 1

2
Aμ

α
γ t
γβ
ab

− 1

2
Aμ

β
γ t
αγ
ab,

DμSαβ = ∂μSαβ − bμSαβ − 1

2
Aμ

α
γ S
γβ − 1

2
Aμ

β
γ S
αγ ,

with Aμαβ = (1/2)AμIJ (ρIJ )αβ , whose curvature tensor Fμναβ = (1/2)FμνIJ (ρIJ )α β is de-
fined by

Fμν
I
J = ∂μAνI J − ∂νAμI J −AμIKAνKJ +AνIKAμKJ .

Therefore, the other condition for the supersymmetric backgrounds is that the right hand side of 
(8) should vanish. The explicit form (92) of the supersymmetry condition is given in Appendix E, 
because the equation is very lengthy to write it here.

Thus, (7) gives the Killing spinor equation, and supersymmetric backgrounds have to allow 
the existence of the solutions (the Killing spinors) to the equation. One may interpret that (92)
determines the background field Mαβ

γ δ , which will appear in the mass term of the scalar fields 
in the five-dimensional N = 2 supersymmetric theory, as will be seen below.

2.3. The Killing vectors and the Killing spinors

The Killing spinors εα , ηα obeying the equation (7) form the bilinear

ξa = (ηα)T Cγ aεβ	αβ ≡ η̄ · γ aε,
and its covariant derivative

Dμξa ≡ ∂μξa + bμξa +	μabξb =
[(

Dμηα
)T ·Cγ aεβ + (ηα)T Cγ aDμεβ

]
	αβ

= −1

2
SIJ

(
η̄ · ρIJ γμaε

)
− 1

α
Gμ

a (η̄ · ε)

+ εμabcd
[

1

4α
Gbc (η̄ · γdε)− t I bc (η̄ · ρI γd ε)

]
,

satisfies Daξb + Dbξa = 0. See Appendix D for the notations for the bilinears(
η̄ · ρI1···Inγ a1···amε

)
.

The vector field ξa obeys the conformal Killing vector equation

∇a ξb + ∇b ξa = 2

5
ηab
(∇c ξ c) , (9)

with the covariant derivative ∇μξa ≡ ∂μξa +ωμabξb, which is related to the previous covariant 
derivative as

Daξb = ∇aξb + ηab
(
bcξ

c
)+ b[aξb].

In fact, the equation Daξb +Dbξa = 0 leads to

∇aξb + ∇bξa = −2ηab
(
bcξ

c
)
,

which gives the conformal Killing vector equation (9).
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Table 3
The tensor multiplet in the six-dimensional supergravity.

Tensor multiplet Symmetries Spin(5)R Weight

Bosonic fields
Bμν Bμν = −Bνμ, 1 0

φαβ φαβ = −φβα , 	αβφαβ = 0, 5 2

Fermionic field
χα �7χα = −χα , 4 5/2

3. Tensor multiplet in the supergravity theory

To the conformal supergravity, tensor multiplets can be added as matters, and after the dimen-
sional reduction, they give rise to N = 2 gauge multiplets in five dimensions. It therefore yields 
a five-dimensional N = 2 supersymmetric Abelian theory in the supergravity background. It is 
the topic of this section.

A tensor multiplet (Bμν , φαβ , χα) of the N = (2, 0) supergravity is listed in Table 3, and the 
field strength of the two-form B is given by

H = 1

3! Habc E
a ∧Eb ∧Ec = dB.

The transformation rules and the equations of motion of the tensor multiplet were derived in [25].
Under a fermionic transformation (supersymmetry+ conformal supersymmetry), the tensor 

multiplet transforms as

δBμν = i (εα)†�0�μνχ
α,

δφαβ = −2i
(
εα
)†
�0χβ + 2i

(
εβ

)†
�0χα − i	αβ (εγ )†�0χγ ,

δχα = 1

8
· 1

3! H
+
μνρ �

μνρεα + 1

4
Dμφαβ �μεβ − φαβηβ, (10)

where H± = (1/2) 
(
H ± ∗H ). (See the definition of the Hodge dual ∗ in Appendix A.) The 

covariant derivative of the scalar field φαβ is

Dμ φαβ = ∂μ φαβ − 2bμφ
αβ − 1

4
V μ

IJ (ρIJ )
α
γ φ

γβ − 1

4
V μ

IJ (ρIJ )
β
γ φ

αγ .

The equations of motion of the tensor multiplet are given by

H− − 1

2
φαβ T

αβ = 0, (11)

DaDaφαβ − 1

15
Mαβ

γ δφγ δ + 1

3
H+

abcT αβ
abc = 0, (12)

�aDa χα − 1

12
T αβabc �

abcχβ = 0, (13)

with the covariant derivatives
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DaDaφαβ =�μa
(
∂μ − 3bμ

)
Daφαβ + (	a) abDb φαβ

−1

4
V a

IJ (ρIJ )
α
γDa φγβ − 1

4
V a

IJ (ρIJ )
β
γDa φαγ − 1

5
R
(
	
)
φαβ,

Dμ χα =
(
∂μ − 5

2
bμ + 1

4

(
	μ
)
ab�ab

)
χα − 1

4
V μ

IJ (ρIJ )
α
βχ

β.

3.1. Dimensional reduction of the tensor multiplet

From the six-dimensional Minkowski space to the five-dimensional Euclidean space, the di-
mensional reduction of the tensor multiplet gives rise to the five-dimensional abelian gauge 
multiplet (Aμ, φI , χα),

Bab −→ Ba0 ≡ αAa = α θμaAμ (a = 1,2, · · · ,5)
φαβ −→ α φαβ = α φI

(
ρI	

−1
)
αβ,

χα −→ α

4

(
0
χα

)
.

The remaining components Bab are described by Aμ and φI through the equation (11) of motion 
of H−, which is reduced to

H−
ab0 = 1

2
φαβ T

αβ
ab0 −→ 2α φI t

I
ab.

Since the components Hab0 reduce to the field strength Fμν of Aμ,

Hμνt = ∂μBνt + ∂νBtμ + ∂tBμν −→ ∂μAν − ∂νAμ = Fμν,
Hab0 → αθμaθ

ν
bFμν = αFab,

one can see that the components Habc are reduced as

Habc =H+
abc +H−

abc = 1

2
εabc

de
(
H+

de0 −H−
de0
)= 1

2
εabc

de
(
Hde0 − 2H−

de0
)

−→ α
1

2
εabc

de
(
Fde − 4φi t

i
de

)
.

We have previously seen that a six-dimensional supersymmetry transformation with a trans-
formation parameter εα combined with the superconformal transformation with ηα in (6) is 
reduced to a five-dimensional supersymmetry transformation. Substituting the parameter ηα in 
(6) into the fermionic transformation rules in (10) of the tensor multiplet, one can see that their 
reduction gives the supersymmetry transformation of the abelian gauge multiplet,

δεAμ = − i
4
	αβ
(
εα
)T
Cγμχ

α, δεφ
I = i

4

(
	ρI
)
αβ

(
εα
)T
Cχβ,

δεχ
α = −1

2
Fabγ

abεα − γ μDμφI (ρI ) αβεβ + 1

2α
Gabφ

I (ρI )
α
βγ

abεβ

+ SI J φJ (ρI )α βεβ + 1

2
εIJKLMS

IJ φM
(
ρKL
)
α
βε
β

+ t I abφJ (ρIJ ) αβγ abεβ, (14)
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with the covariant derivative of φI ,

DμφI = ∂μφI − bμφI −AμI J φJ .
The reduction of the external derivative of the equation (11)

d
(
∗H + φαβ T αβ

)
= 0,

yields the equation of motion of the gauge field Aμ,

d
[
α∗ (F − 4φI tI

)]+ F ∧G= 0, (15)

where

F = 1

2
Fμνdx

μ ∧ dxν, tI = 1

2
t I μνdx

μ ∧ dxν, G= 1

2
Gμνdx

μ ∧ dxν.
The equations (12), (13) of motion are reduced into

γ μDμχα − 1

8α
Gabγ

abχα − 1

4
SIJ (ρ

IJ )αβχ
β + 1

2
t I ab(ρI )

α
βγ

abχβ = 0, 

DaDaφI − SI J SJ K φK − 1

5
R (	)φI − 4

15
MI

Jφ
J

− 1

20α2
GabG

abφI + 4 t I ab tJ ab φJ − 2 t I ab F ab = 0, (16)

with

DaDaφI = θμa
[(
∂μ − 2bμ

)
DaφI +	μabDbφI − 1

4
Aμ

I
JDaφJ

]
,

where the covariant derivative of χα

Dμχα = ∂μχα − 3

2
bμχ

α + 1

4
	μ

bcγbcχ
α − 1

4
Aμ

IJ (ρIJ )
α
βχ

β,

with the spin connection 	μab = ωμab + (eaμθνb − ebμθνa)bν , and the scalar curvature R(	)
of 	μab is defined by R(	) = θμaθνb(∂[μ	ν]ab +	[μae	ν]eb), which comes from

R
(
	
)=R (	)+ 1

4α2
GabG

ab.

From the equations of motion (15), (16), one obtains the bosonic part of the action of the 
abelian gauge multiplet

LB = −1

2

∫ [
α
(
F − 4φI tI

)
∧ ∗
(
F − 4φJ tJ

)
+C ∧ F ∧ F

]
+ 1

2

∫
dx5√g α

[
DaφIDaφI +MBIJ φ

IφJ
]
, (17)

with

MBIJ = 1

5
δIJ

(
R (	)+ 1

4α2
GabG

ab

)
+ 4

15
MIJ + 4tI

abtJ ab − SIKSJK,
and the fermionic part
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LF = i

8

∫
dx5√g α (χα)T C[γ aDaχβ	αβ − 1

8α
Gabγ

abχβ	αβ

− 1

4
SIJ χ

β
(
	ρIJ
)
αβ

+ 1

2
t I abγ

abχβ (	ρI )αβ

]
. (18)

One can verify that the total action L = LF + LB is left invariant under the supersymmetry 
transformation (14). However, it is a lengthy calculation to verify the supersymmetry invariance 
of the action L. Although we do not intend to pause for a detailed demonstration of it, we will 
discuss a supersymmetry transformation of the mass term of the scalar fields φI in the action in 
Appendix F, which we think is one of the keys to verify the supersymmetry invariance of the 
action.

4. The generalization for a non-abelian gauge group

The reduced theory of the six-dimensional tensor multiplet gives rise to the abelian gauge 
theory in five dimensions. We will extend the abelian gauge multiplet (Aμ, φI , χα) to the adjoint 
representation of a non-abelian gauge group G and replace the partial derivatives by covariant 
ones:

∂μφ
I −→ ∂μφ

I + ig
[
Aμ, φ

I
]
, ∂μχ

α −→ ∂μχ
α + ig [Aμ, χα] .

We will henceforth denote the covariant derivatives as

DμφI = ∂μφI − bμφI −AμI J φJ + ig
[
Aμ, φ

I
]
,

Dμχα = ∂μχα − 3

2
bμχ

α + 1

4
	μ

bcγbcχ
α − 1

4
Aμ

IJ (ρIJ )
α
βχ

β + ig [Aμ, χα] .
For the non-abelian extension of the supersymmetry transformations (14) and the equations 

of motion (15), (16), there are two conditions to be satisfied. In the flat limit where all the back-
grounds go to zero, they should be reduced to the ones in the N = 2 supersymmetric Yang–Mills 
theory on a flat space, and in the abelian limit g→ 0, the extension has to go back to (14), (15), 
(16). Our ansatz for the non-abelian extension of the supersymmetry transformations is

δεAμ = − i
4
	αβ
(
εα
)T
Cγμχ

α, δεφ
I = i

4

(
	ρI
)
αβ

(
εα
)T
Cχβ,

δεχ
α = −1

2
Fabγ

abεα − γ μDμφI (ρI ) αβεβ + 1

2α
Gabφ

I (ρI )
α
βγ

abεβ

+ SI J φJ (ρI )α βεβ + 1

2
εIJKLMS

IJ φM
(
ρKL
)
α
βε
β

+ t I abφJ (ρIJ ) αβγ abεβ + i

2
g
[
φI , φJ

]
(ρIJ )

α
βε
β, (19)

with the field strength of the non-abelian gauge field Aμ

Fab = θμaθνbFμν = θμaθνb
(
∂μAν − ∂νAμ + ig [Aμ, Aν]).

In the abelian gauge theory, the algebra of the supersymmetry transformations (14) is closed 
on-shell, and in the flat limit of the non-abelian gauge theory, it is also closed on-shell. Therefore, 
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in order to see the closure of the algebra of the supersymmetry transformations (19), we make an 
ansatz for the equation of motion of the spinor χα,

γ μDμχα + ig (ρI ) αβ
[
φI , χβ

]

− 1

8α
Gabγ

abχα − 1

4
SIJ (ρ

IJ )αβχ
β + 1

2
t I ab(ρI )

α
βγ

abχβ = 0. (20)

The supersymmetry transforms of DμφI and (Fab − 2φI tI ab) may be useful to see that the 
algebra of the supersymmetry transformations is closed on-shell;

δεDμφI = i

4

[
ε̄ · ρIDμχ + 1

8α
Gbc(ε̄ · ρI γμbcχ)− 1

2α
Gμb(ε̄ · ρI γ bχ)

− 1

4
SKL(ε̄ · ρKLρIγμχ)− 1

2
tJ bc(ε̄ · ρJ ρI γμbcχ)

]
,

δε

(
Fab − 2φI t

I
ab

)
= i

4

[
ε̄ · γ[aDb]χ − 1

4α
Gcd ε̄ ·

(
γ cdab − 3δc[aγ db] − 4δcaδ

d
b

)
χ

+ 1

2
SIJ (ε̄ · ρIJ γabχ)+ t I cd ε̄ · ρI

(
γ cdab − δc[aγ db] − 2δcaδ

d
b

)
χ

]
.

Using the equation of motion (20) and the Killing spinor equation (7), one can verify that the 
algebra of the supersymmetry transformations (19) is closed on-shell.

[
δε, δη
]
Aμ = i

2

[
Fμνξ

ν +Dμ
(
φI (η̄ · ρI ε)

)]
= − i

2

[
ξν∂νAμ + ∂μξν ·Aν

]
−Dμ�G,

[
δε, δη
]
φI = − i

2

(
ξμ∂μφ

I − ξabaφI
)

+ ig
[
�G, φ

I
]
−�IJφJ ,

[
δε, δη
]
χα = − i

2

[
ξμ∂μχ

α − 3

2
ξabaχ

α

]
+ ig [�G, χα]

+ 1

4
�abγabχ

α − 1

4
�IJ

(
ρIJ
)
α
βχ

β, (21)

with the Killing vector ξa = (η̄ · γ aε), where the parameters are given by

�IJ = − i
2

[
AaIJ ξ

a + SIJ (η̄ · ε)− εIJKLMSKL(η̄ · ρMε)

+ 1

2α
Gab(η̄ · ρIJ γ abε)− tKab(η̄ · ρIJKγ abε)

]
,

�ab = − i
2

[
Daξb + ξc	cab

]
, �G = − i

2

[
ξaAa + φI (η̄ · ρI ε)

]
,

(see Appendix D for the abbreviation 
(
η̄ · ρI1···Inγ a1···amε

)
), and the covariant derivative of 

φI (η̄ · ρI ε) is

Dμ
(
φI (η̄ · ρI ε)

)
= ∂μ
(
φI (η̄ · ρI ε)

)
+ ig
[
Aμ, φ

I (η̄ · ρI ε)
]
.
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Since we have seen that the supersymmetry transformation (19) gives an on-shell closed alge-
bra with the equation of motion (20), we will proceed with (19) and (20) to obtain the non-abelian 
extension of the action (17), (18).

A simple calculation shows that the equation of motion (20) may be derived from the 
fermionic part of the non-abelian action

SF = i

8

∫
dx5√g α tr

[
χ̄ · γ aDaχ − 1

8α
Gabχ̄ · γ abχ − 1

4
SIJ χ̄ · ρIJ χ

+ 1

2
t I abχ̄ · ρI γ abχ + (ig)χ̄ · ρI

[
φI , χ
]]
, (22)

where the symbol tr denotes a trace in the adjoint representation of the gauge group G.
In the abelian limit g → 0, the non-abelian action should go to (17) – more precisely, the 

abelian action of the |G| abelian gauge multiplets with |G| denoting the dimension of the adjoint 
representation of G – and in the flat limit, we must regain the familiar non-abelian action in the 
N = 2 supersymmetric Yang–Mills theory. It therefore seems natural to take the ansatz

S
(0)
B = −1

2

∫
tr
[
α
(
F − 4φI tI

)
∧ ∗
(
F − 4φJ tJ

)
+C ∧ F ∧ F

]

+ 1

2

∫
dx5√g α tr

[
DaφIDaφI +MBIJ φ

IφJ − 1

2
(ig)2[φI , φJ ][φI , φJ ]

]
, (23)

where

MBIJ = 1

5
δIJ

(
R (	)+ 1

4α2
GabG

ab

)
+ 4

15
MIJ + 4tI

abtJ ab − SIKSJK. (24)

In order to examine the supersymmetry invariance of the sum SF +S(0)B , one needs to perform 
a similar calculation to what is done for the abelian action L. The calculation may be painful, 
especially in the mass term of the scalar fields φi , of which the details is shown in Appendix F.

However, it turns out that the variation of the sum SF + S(0)B under the supersymmetry trans-
formation (19) doesn’t vanish at the order O(g). Therefore, in order to obtain a supersymmetric 
action, as discussed in [24], one needs the additional term

S
(1)
B = −1

6

∫
dx5√g α tr

[
(ig) εIJKLMSIJ φK [φL, φM ]

]
, (25)

to cancel the supersymmetry variation of S(0)B + SF . Thus, one may see that S = SB + SF =
S
(0)
B + S(1)B + SF yields a supersymmetric non-abelian action.

5. Supersymmetric backgrounds

In this section, we will discuss the supersymmetric solutions to the Killing spinor equation (7)
and the condition (92) from the spinor variation δχαβγ , which gives rise to supersymmetric 
backgrounds for the five-dimensional supersymmetric Yang–Mills theory.

In this paper, we will make an assumption

bμ = 0, t iab = 0, Si5 = −S5i = 0, Aμ
i5 = −Aμ5i = 0, (i = 1, · · · ,4) (26)
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which is satisfied by the background in the previous papers [1,2], as will be seen below. In [1,2], 
we have considered the product space of a round S3 and a Riemann surface �. In this paper, we 
are especially interested in supersymmetric backgrounds for deformed 3-spheres – a squashed 
and an ellipsoid S3. We will find supersymmetric backgrounds on the product spaces of those 
3-spheres and �, which turn out to satisfy the assumption (26).

It is convenient under the assumption (26) to decompose the supersymmetry parameter εα as

ρ5εα = εα −→ εα =
(
εα̃

0

)
, ρ5εα = −εα −→ εα =

(
0
εα̇

)
,

in the representation with ρ5 = diag .(+12, −12). While the Killing spinor equation (7) in a 
generic background gives a differential equation of εα̃ and εα̇ coupled to each other, the assump-
tion (26) splits them into

Dμεα̃ = 1

4
Sij

(
σ ij
)
α̃
β̃ γμε

β̃ − 1

2α
Gμνγ

νεα̃ − 1

8α
Gbcγμ

bcεα̃ + 1

2
tbc γμ

bcεα̃, (27)

Dμεα̇ = 1

4
Sij

(
σ̄ ij
)
α̇
β̇ γμε

β̇ − 1

2α
Gμνγ

νεα̇ − 1

8α
Gbcγμ

bcεα̇ − 1

2
tbc γμ

bcεα̇, (28)

with tab≡ t5ab , where the covariant derivatives are defined by

Dμεα̃ ≡ ∂μεα̃ + 1

2
bμε

α̃ + 1

4
	μ

bcγbcε
α̃ − 1

4
Aμ

ij
(
σij
)
α̃
β̃ ε
β̃ ,

Dμεα̇ ≡ ∂μεα̇ + 1

2
bμε

α̇ + 1

4
	μ

bcγbcε
α̇ − 1

4
Aμ

ij
(
σ̄ij
)
α̇
β̇ ε
β̇ .

We will further make an ansatz for the Killing spinors,

εα̇=1 = ε ⊗ ζ+, εα̇=2 = C3ε
∗ ⊗ ζ−; εα̃=1 = ε̃ ⊗ ζ±, εα̃=2 = C3ε̃

∗ ⊗ ζ∓, (29)

with two-dimensional spinors ε, ε̃ on the S3 and constant two-dimensional spinors

ζ± = 1√
2

(
1
±i
)
,

on �, obeying that τ2ζ± = ±ζ±, with the Pauli matrix τ2. Note that they satisfy

γ45 ε
α̇ = −i(τ3)

α̇
β̇ ε
β̇ , γ45 ε

α̃ = ∓i(τ3)
α̃
β̃ ε
β̃ . (30)

For later convenience, let us consider the commutation relation of the covariant derivatives 
acting on εα̇ , which by definition gives

[Da, Db] εα̇ = 1

4
Rab

cd(	)γcdε
α̇ − 1

4
Fab

ij
(
σ̄ij
)
α̇
β̇ ε
β̇ ,

and acting γ ab on this, one obtains

γ abDaDb εα̇ = 1

2
γ ab [Da,Db] εα̇ = −1

4
R (	)εα̇ − 1

8
Fab

ij
(
σ̄ij
)α̇
β̇γ

abεβ̇ . (31)

On the other hand, using the Killing spinor equation (28) twice for γ abDaDb εα̇ and equating it 
and the right hand side of (31), one finds that
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−1

4
R (	)εα̇ − 1

8
Fab

ij
(
σ̄ij
)α̇
β̇γ

abεβ̇

=
(
σ̄ ij
)α̇

β̇ DaSij γ aεβ̇ −Datbcγ abcεα̇ − 3 ·Dbtbaγ aεα̇ − 5 · 1

4α
DbGbaγ aεα̇

+ 5

4
· Sij Skl

(
σ̄ ij σ̄ kl

)α̇
β̇ ε
β̇

+
[

4 ·
(

1

4α

)2

GabG
ab − 3 ·

(
tab + 1

4α
Gab

)(
tab + 1

4α
Gab
)]
εα̇

− 9

2
·
(
σ̄ ij
)α̇

β̇

1

4α
GabSij γ

abεβ̇ − 3

2
·
(
σ̄ ij
)α̇

β̇ tabSij γ
abεβ̇ − 8 · 1

4α
Ga

ctbcγ
abεα̇

−
[
tabtcd − 5 ·

(
1

4α

)2

GabGcd

]
γ abcdεα̇. (32)

Decomposing the fields χα , φI in the representation with ρ5 = diag .(+12, −12) as

χα →
(
ψα̃

λα̇

)
, φI → (φi=1,··· ,4, φ5 = σ),

one can see that the supersymmetry transformation under the assumption (26) becomes

δεAμ = − i
4
εα̃β̃

(
εα̃
)T
Cγμψ

β̃ − i

4
εα̇β̇

(
εα̇
)T
Cγμλ

β̇,

δεσ = i

4
εα̃β̃

(
εα̃
)T
Cψβ̃ − i

4
εα̇β̇

(
εα̇
)T
Cλβ̇,

δεφ
i = i

4

(
εσ i
)
α̃β̇

(
εα̃
)T
Cλβ̇ + i

4

(
εσ̄ i
)
α̇β̃

(
εα̇
)T
Cψβ̃,

δεψ
α̃ = −

(
1

2
Fabγ

ab + γ aDaσ − 1

2α
Gabσγ

ab

)
εα̃

−
(
Sij σ − i

2
g
[
φi, φj

])(
σij
)
α̃
β̃ ε
β̃ −
(
γ aDaφi − 1

2α
Gabφ

iγ ab

−
(
Sij + εijklSkl

)
φj − tabφiγ ab − ig

[
σ, φi
])
(σi)

α̃
β̇ε
β̇ ,

δελ
α̇ = −

(
1

2
Fabγ

ab − γ aDaσ + 1

2α
Gabσγ

ab

)
εα̇

+
(
Sij σ + i

2
g
[
φi, φj

])(
σ̄ij
)
α̇
β̇ ε
β̇ −
(
γ aDaφi − 1

2α
Gabφ

iγ ab

−
(
Sij − εijklSkl

)
φj + tabφiγ ab + ig

[
σ, φi
])
(σ̄i)

α̇
β̃ ε
β̃ . (33)

The equations of motion of the spinors ψα̃, λα̇ under the assumption (26) give

γ μDμψα̃ + ig
[
σ, ψα̃
]
+ ig (σi) α̃ β̇

[
φi, λβ̇

]
= 1

Gabγ
abψα̃ + 1

Sij

(
σ ij
)
α̃
β̃ψ

β̃ − 1
tabγ

abψα̃,

8α 4 2
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γ μDμλα̇ − ig
[
σ, λα̇
]
+ ig (σ̄i) α̇ β̃

[
φi, ψβ̃

]
= 1

8α
Gabγ

abλα̇ + 1

4
Sij

(
σ̄ ij
)
α̇
β̇λ
β̇ + 1

2
tabγ

abλα̇,

with the covariant derivatives

Dμψα̃ = ∂μψα̃ − 3

2
bμψ

α̃ + 1

4
	μ

abγabψ
α̃ − 1

4
Aμ

ij
(
σij
)α̃
β̃ψ

β̃ + ig
[
Aμ, ψ

α̃
]
,

Dμλα̇ = ∂μλα̇ − 3

2
bμλ

α̇ + 1

4
	μ

abγabλ
α̇ − 1

4
Aμ

ij
(
σ̄ij
)α̇
β̇λ
β̇ + ig

[
Aμ, λ

α̇
]
.

5.1. The N = 1 SUSY background in the previous paper

We start with the background in the previous paper [1,2], where the compactification on the 
product space of a unit round S3 and a Riemann surface, S3 ×� was considered, and we will 
reinterpret it as a supersymmetric background in terms of Aμij , Sij , Gab , tab ≡ t5ab . See Ap-
pendix H.1 for the differences of the old notations used in [1] from the ones in this paper.

The background in [1] can be read in the notations of this paper as

t45 = 1

4r
, S12 = S34 = 1

2r
,

1

4α
G45 = − 1

4r
, (34)

in the Lorentz frame tab, Gab , where we have replaced the unit radius of the S3 by r .
On the Riemann surface � with local coordinates (x4, x5), the twisting is required to preserve 

supersymmetries by turning on the background gauge field Aij as

A12 =A34 = −1

2
ω45, (35)

with the spin connection ω45 on the surface �. This together with S12 = S34 break the Spin(5)R
R-symmetry group to SU(2)l×U(1)r ⊂ SU(2)l×SU(2)r , when regarding the subgroup Spin(4)
of the Spin(5)R as SU(2)l × SU(2)r . We refer to it as the N = 1 twisting, following [16].

The supersymmetry condition (92) determines the background MIJ

4

15
M55 = 1

5

[
1

r2
−R(�)

]
,

4

15
Mij = − 1

20

[
1

r2
−R(�)

]
δij (i, j = 1, · · · ,4)

where the scalar curvature R(�) is derived from the spin connection ω45,

1

2
R(�)e4 ∧ e5 = dω45,

and substituting these into (24) gives6

MB 55 = 2

r2
, MB ij = 1

4

[
R(�)+ 4

r2

]
δij (i, j = 1, · · · ,4).

The Killing spinor equation (28) in the background (34) is identical to the one in [1],

Dμεα̇ = − 1

2r
γμ

45εα̇,

with the ansatz (29).

6 In the previous paper [1] (v3 on the arXiv), the scalar curvature R(�) was dropped from the mass terms MB ij of 
the N = 1 hypermultiplet scalars.



476 T. Kawano, N. Matsumiya / Nuclear Physics B 898 (2015) 456–562
The scalar curvature R(	) on the S3 ×� is given by

R(	)=R(S3)+R(�)= 6

r2
+R(�),

for the round S3 of radius r . Since the gauge field Aij is minus the half of the spin connection 
ω45 on the surface �, the field strength of Aij results in

F45
12 = F45

34 = −1

4
R(�).

The equation (32) identically holds for the curvatures and the background fields, and it is 
consistent with the existence of the Killing spinor εα̇ . In fact, as explained in [1,2] and in Ap-
pendix G, the Killing spinor is given by

εα̇=1 = ε0 ⊗ ζ+, εα̇=2 = C−1
3 ε0

∗ ⊗ ζ−,
with ε0 a constant spinor on the S3, which is consistent with our ansatz (29).

For the other supersymmetry parameter εα̃ , the Killing spinor equation (27) in the same back-
ground gives

Daεα̃ = − 1

2α
Gabγ

bεα̃ + 1

2r
γa

45εα̃.

Note that S12 = S34 obeys Sijσij = 0. With A12 =A34, we have Aijσij = 0, and the twisting of 
the background Aij have no effects inside the covariant derivative Daεα̃ . In a generic Riemann 
surface �, we don’t have a solution to the above Killing spinor equation. In fact, the calculation 
of γ abDaDbεα̃ shows that the scalar curvature R(�) is an obstacle to the existence of a Killing 
spinor for εα̃ .

We can see from (34), (35) that the background breaks the Spin(5)R group of the R-symmetry 
into SU(2)l × U(1)r , which is a subgroup of SU(2)l × SU(2)r � Spin(4)R ⊂ Spin(5)R . The 
symmetry breaking is caused by the twisting A12 = A34 (and also S12 = S34). As we have seen 
just above, the twisting only retains the half of the supersymmetries. Therefore, it is consistent 
with the fact that the SU(2)l symmetry doesn’t give rise to the SU(2)R R-symmetry in four-
dimensional N = 2 supersymmetric theories [6,16].

The background (34) is not a unique solution7 to yield an N = 1 supersymmetric background 
on the round S3. Even under the ansatz

S12 = S34 = 1

2
S,

with only non-zero components G45 and t45, there exists a Killing spinor for εα̇ , if

1

2
S + 2 · 1

4α
G45 = 0,

1

2
S + 1

4α
G45 + t45 = 1

2r
,

which can be read from the Killing spinor equation (28). They may therefore be parametrized 
by S;

1

4α
G45 = −1

4
S, t45 = −1

4
S + 1

2r
.

7 It has been pointed out in [28] in the context of five-dimensional N = 1 supersymmetric theories.
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The other supersymmetric condition (92) gives one more constraint – the backgrounds are con-
stant on �,

D4S =D5S = 0,

and determines the remaining background MIJ ,

4

15
M55 = −1

5
R(�)+ 4

5r2
− 3

5
S2,

4

15
Mij =

[
1

20
R(�)− 1

5r2
+ 3

20
S2
]
δij ,

for i, j = 1, · · · , 4. The scalar mass parameters MB IJ are given by

MB 55 = 2

r

(
2

r
− S
)
, MB 11 = · · · = MB 44 = 1

4
R(�)+ 1

r2
.

When S = 1/r , it certainly retains the mass term of the scalar σ in the previous papers [1,2].

5.2. N = 2 SUSY backgrounds on the round S3 ×�

While the background in [1,2] preserves half of the supersymmetries, we will find a new 
supersymmetric background preserving both of εα̇ and εα̃ on the S3 ×�.

Taking the breaking of the R-symmetry group Spin(5)R into account, we will turn on A12

and S12 = S only, and it would break the Spin(5)R group down to U(1)R × SU(2)R . We could 
instead turn on A34 or S34 only, but it is just a matter of convention. We refer to this partial 
twisting as the N = 2 twisting.

Since we have the covariant derivatives with the ansatz (29),

Dμεα̃ = ∂μεα̃ − i

2

(
Aμ

12 ±ωμ45
)
(τ3)

α̃
β̃ε
β̃ ,

Dμεα̇ = ∂μεα̇ − i

2

(
Aμ

12 +ωμ45
)
(τ3)

α̇
β̇ε
β̇ ,

in order to cancel the spin connection ω45 by A12 in both of the covariant derivatives, the chirality 
of εα̃ on the surface � should be the same as the one of εα̇; iγ45ε

α̃ = (τ3)
α̃
β̃ε
β̃ . Therefore, the 

twisting

A12 = −ω45

works for both of εα̇ and εα̃ . When we turn on the components G45 and t45 only, the Killing 
spinor equations (27), (28) become

Daεα̃ = i

2
S (τ3)

α̃
β̃γaε

β̃ − 1

2α
Gabγ

bεα̃ −
(

1

4α
G45 − t45

)
γa

45εα̃,

Daεα̇ = i

2
S (τ3)

α̇
β̇γaε

β̇ − 1

2α
Gabγ

bεα̇ −
(

1

4α
G45 + t45

)
γa

45εα̇.

For a = 4, 5, the Killing spinor equation is satisfied with εα̃ and εα̇ constant on �, if

S + 4 · 1

4α
G45 = 0.

With the ansatz (29), the Killing spinors on the round S3 (see Appendix G.1) are lifted to

Daεα̇ = − 1
γa

45εα̇, Daεα̃ = ∓ 1
γa

45εα̃,

2r 2r
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and the comparison of this with the above Killing spinor equations for a= 1, 2, 3 leads to

1

2
S + 1

4α
G45 + t45 = 1

2r
,

1

2
S + 1

4α
G45 − t45 = ± 1

2r
.

Depending upon the sign, there are two solutions:

S = −4 · 1

4α
G45 = 2

r
,

1

4α
G45 = − 1

2r
, t45 = 0,

and

S = 1

4α
G45 = 0, t45 = 1

2r
.

We will call the former background type B and the latter type A, respectively.
Let us begin with the type A background:

Sij = 0,
1

4α
Gab = 0, t45 = 1

2r
.

In the background, since the Killing spinor equation (7) is reduced into

Dμεα̃ = 1

2r
γμ

45εα̃, Dμεα̇ = − 1

2r
γμ

45εα̇,

one obtains the solution to them,(
εα̃=1, εα̃=2

)
=
(
U−1ε̃0 ⊗ ζ+, C−1

3 UT ε̃∗0 ⊗ ζ−
)
,(

εα̇=1, εα̇=2
)

=
(
ε0 ⊗ ζ+, C−1

3 ε∗0 ⊗ ζ−
)
,

with ε0 and ε̃0 constant spinors and U the mapping of the 3-sphere to the SU(2) group given 
in Appendix G and with C3 the three-dimensional charge conjugation matrix explained in Ap-
pendix B.

The supersymmetry condition (92) determines the background MIJ :

4

15
M55 = 4

5

1

r2
− 1

5
R(�),

4

15
M11 = 4

15
M22 = −1

5

1

r2
+ 3

10
R(�),

4

15
M33 = 4

15
M44 = −1

5

1

r2
− 1

5
R(�),

which gives rise to the masses MB IJ of the scalar fields φI ,

MB 55 = 4

r2
, MB 11 =MB 22 = 1

r2
+ 1

2
R(�), MB 33 =MB 44 = 1

r2
.

Turning on the field t45 = t I=5
45 breaks the Spin(5)R symmetry group into Spin(4)R and 

with the twisting by A12 = −ω45 into U(1) × U(1). Thus, the background doesn’t respect the 
R-symmetry of the four-dimensional N = 2 conformal algebra, but it retains the N = 2 super-
symmetry.

Let us move on to the type B background:

S = 2
,

1
G45 = − 1

, t45 = 0.

r 4α 2r
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It gives rise to the Killing spinor equation

Dμεα̃ = − 1

2r
γμ

45εα̃, Dμεα̇ = − 1

2r
γμ

45εα̇,

and one gives the same constant solution for the both εα̃ and εα̇ :(
εα̃=1, εα̃=2

)
= (ε̃0 ⊗ ζ+, ε̃∗0 ⊗ ζ−

)
,
(
εα̇=1, εα̇=2

)
=
(
ε0 ⊗ ζ+, C−1

3 ε∗0 ⊗ ζ−
)
,

with ε0 and ε̃0 constant spinors as above.
The supersymmetric condition (92) is obeyed by the background, if the background fields 

MIJ satisfy

4

15
M55 = 4

15
M33 = 4

15
M44 = −8

5

1

r2
− 1

5
R(�),

4

15
M11 = 4

15
M22 = 12

5

1

r2
+ 3

10
R(�),

which surely respects the R-symmetry group U(1)R × SU(2)R . The scalars σ , φ3, φ4 remain 
massless, while the remaining φ1, φ2, are lifted by a half of the scalar curvature R(�):

MB 55 =MB 33 =MB 44 = 0, MB 11 =MB 22 = 1

2
R(�).

Thus, they respect the remaining R-symmetry group U(1)R × SU(2)R .
Turning on either of A12 or A34 without t45 �= 0 breaks the R-symmetry group SO(5)R into 

SO(2) × SO(3)� U(1)R × SU(2)R , which can be identified with the R-symmetry group of the 
N = 2 superconformal group, if the theory flows into an infrared fixed point. On the other hand, 
as in the previous papers [1,2], turning on both A12 and A34 such that A12 = A34, the SO(5)R
group is broken to SU(2)l × U(1)r , which is the subgroup of SU(2)l × SU(2)r � SO(4) ⊂
SO(5)R . The subgroup SU(2)l cannot be identified to the R-symmetry group SU(2)R , because 
the above results shows that such a background preserves only half of the supersymmetries.8

This is consistent with the result in [6,16].

5.3. A squashed 3-sphere with constant Killing spinors

A squashed 3-sphere is a deformation of a round S3, and regarding it as a circle fibration over 
a round 2-sphere, i.e., the Hopf fibration, the radius of the fiber differs from the radius of the 
base. See Appendix G for more details. In [21], three-dimensional supersymmetric field theories 
on the squashed 3-sphere has been discussed, and we will make use of their construction for the 
five-dimensional theory.

The constant solution εα̇ on the round S3:
(
ε1, ε2
)= (ε0 ⊗ ζ+, C−1

3 ε∗0 ⊗ ζ−
)

with

ε0 =
(

1
0

)
, C−1

3 ε∗0 =
(

0
1

)
, γ 3εα̇ = εα̇, (36)

solves the differential equation(
d + 1

4
ωabγab

)
εα̇ − i

r̃

(
1 − r̃2

r2

)
(τ3)

α̇
β̇ e3ε

β̇ = −1

2

r̃

r2
eaγa

45εα̇, (37)

8 We thank Yuji Tachikawa for clarification on this point.
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where ωab is the spin connection of the squashed S3 with the fiber radius r̃ and the base radius r . 
See Appendix G for the squashed S3.

We will begin with the N = 2 twisting by turning on A12 only. A comparison of (37) with the 
Killing spinor equation (28) suggests that

A12 = 2

r̃

(
1 − r̃2

r2

)
e3 −ω45,

1

4α
G45 = −1

2

r̃

r2
, S12 = 2r̃

r2
. (38)

For the other supersymmetry parameter εα̃ , it is easy to find a Killing spinor on the 
squashed S3, if we make the same ansatz as for εα̇ ; it is a constant spinor 

(
ε1, ε2
) =(

ε̃0 ⊗ ζ+, C−1
3 ε̃∗0 ⊗ ζ−

)
obeying ε̃0 = (1, 0)T . One then see that it obeys the same differential 

equation (37), and thus the background (38) preserves the both Killing spinors εα̇ , εα̃ .
The other supersymmetry condition (92) determines the background fields MIJ ,

4

15
M11 = 4

15
M22 = 3

10
R(�)+ 12

5

1

r2
,

4

15
M33 = 4

15
M44 = 4

15
M55 = −1

5
R(�)− 8

5

1

r2
,

and plugging them into (24), one obtains the scalar masses MB IJ ,

MB 11 =MB 22 = 1

2
R(�)+ 4

r2

(
1 − r̃2

r2

)
, MB 33 =MB 44 =MB 55 = 0.

Let us proceed to the N = 1 twisting so that we will turn on the gauge field Aij of only one 
SU(2) subgroup of the Spin(5)R group by requiring that A12 =A34, and then a comparison with 
the Killing spinor equation (7) identifies the background R-symmetry gauge field

A12 =A34 = 1

r̃

(
1 − r̃2

r2

)
e3 − 1

2
ω45,

and for the other background fields, taking account of (92), one finds that

S12 = S34 = 1

2
S,

1

4α
G45 = −1

4
S, t45 = −1

4
S + 1

2

r̃

r2
,

4

15
M55 = 4

5

r̃2

r4
− 1

5
R(�)− 3

5
S2 − 8

5

1

r2

(
1 − r̃2

r2

)
,

4

15
Mij =

[
−1

5

r̃2

r4
+ 1

20
R(�)+ 3

20
S2 + 2

5

1

r2

(
1 − r̃2

r2

)]
δij , (39)

for i, j = 1, · · · , 4. In the limit r̃ → r , one regains the N = 1 supersymmetric background on the 
round S3 in the previous subsection. It follows from (24) that

MB 55 = 2r̃

r2

(
2r̃

r2
− S
)
,

MB 11 =MB 22 =MB 33 =MB 44 = 1

4
R(�)+ r̃2

r4
+ 2

r2

(
1 − r̃2

r2

)
.
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5.4. A squashed 3-sphere with non-constant Killing spinors

Upon the Kaluza–Klein compactification on the time circle to the round S3 ×�, the periodic 
boundary condition t → t + 2π was assumed in the previous papers [1,2]. The partition function 
is supposed to give the index of the six-dimensional theory. Let us generalize this by considering 
a slant boundary condition

t ∼ t + 2π, ψ ∼ ψ + 4uπ

rα
,

where ψ is the fiber coordinate in the Hopf fibration of the 3-sphere. See Appendix G for more 
details.

It has been explained in [22] that the Kaluza–Klein reduction along this slant circle gives rise 
to a squashed S3. Changing the local coordinates (t, ψ ) into (t̃ , ψ̃ ) by

t̃ = t ∼ t̃ + 2π, ψ̃ =ψ − 2u

rα
t ∼ ψ̃,

the ordinary reduction in the t̃ direction will be carried out. Then, the mapping U(ψ, θ, φ) in 
(95) from the 3-sphere to the SU(2) group is given in terms of the new coordinates by

U(ψ, θ,φ)= e i2φτ3e i2 θτ3e i2ψτ3 =U(ψ̃, θ,φ)ei ut̃rα τ3 ,
and the vielbein μ̃(0) in the new coordinates of the 3-sphere,

μ̃(0) =
(

1

i

)
U−1(ψ̃, θ,φ)dU(ψ̃, θ,φ)

is related to μ(0) in the original coordinates by

μ̃
(0)
1 = cos

(
2u

rα
t

)
μ
(0)
1 + sin

(
2u

rα
t

)
μ
(0)
2 , μ̃

(0)
2 = cos

(
2u

rα
t

)
μ
(0)
2 − sin

(
2u

rα
t

)
μ
(0)
1 ,

μ̃
(0)
3 = μ(0)3 − u

rα
dt.

Under the change of coordinates, in the six-dimensional metric

ds2
6 = ds2

� + r2
[(
μ
(0)
1

)2 +
(
μ
(0)
2

)2 +
(
μ
(0)
3

)2]− 1

α2
dt2,

in addition to the trivial change of the base part in the Hopf fibration

r2
[(
μ
(0)
1

)2 +
(
μ
(0)
2

)2]= r2
[(
μ̃
(0)
1

)2 +
(
μ̃
(0)
2

)2]
,

the last two terms are changed into

− 1

α2
dt2 + r2

(
μ
(0)
3

)2 → −1 − u2

α2

(
dt̃ − α ru

1 − u2
μ̃
(0)
3

)2

+ r2

1 − u2

(
μ̃
(0)
3

)2
= − 1

α̃2

(
dt̃ +C)2 + e2

3,

where
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α̃ = 1√
1 − u2

α, C = −α ru

1 − u2
μ̃
(0)
3 = −α̃ue3,

e3 = r√
1 − u2

μ̃
(0)
3 = r̃

(
dψ̃ + cos θdφ

2

)
,

with r̃ = r/√1 − u2. Therefore, the slant boundary condition turns on the graviphoton field C
and deforms the radius of the circle fiber, which results in a squashed 3-sphere.

Upon the reduction to five dimensions, one has the metric

ds2
5 = ds2

� +
(
e2

1 + e2
2 + e2

3

)
, e1 = rμ̃(0)1 , e2 = rμ̃(0)2 ,

and the field strength of the graviphoton,

1

α̃
G= 1

α̃
dC = −2

r

u√
1 − u2

e1 ∧ e2.

Note that α̃ is the radius of the circle in the t̃ direction, while r̃ is the radius of the fiber in the 
Hopf fibration of the squashed S3.

If we started with a non-vanishing graviphoton field C in the round S3 × �, we wouldn’t 
gain a simple squashed 3-sphere. Therefore, let us consider the supersymmetric backgrounds in 
Subsection 5.2, where we have C = 0 on a round S3 ×�. One can now see that the above change 
of coordinates leads the backgrounds in Subsection 5.2 to supersymmetric backgrounds on the 
squashed S3 ×�. We will begin with the N = 1 supersymmetric background in 5.2 by turning 
on

A12 =A34 = −1

2
ω45,

breaking the Spin(5)R symmetry down to SU(2)l ×U(1)r . Besides the R-symmetry gauge field 
Aij , the only auxiliary field t45 is turned on in Subsection 5.2.

Returning to six dimensions, the sechsbein(
e1, e2, e3, e0 = 1

α̃

(
dt̃ +C))

is related to the sechsbein (μ1, μ2, μ3, μ0 = (1/α)dt ), where μa = rμ(0)a (a = 1, 2, 3), by a local 
Lorentz transformation,

ea =
3∑
b=0

�ab μ
b (a = 0, · · · ,3), (40)

where

(
�ab
)=
⎛
⎜⎜⎝

cos(2ut/rα) sin(2ut/rα) 0 0
− sin(2ut/rα) cos(2ut/rα) 0 0

0 0 cosh ξ − sinh ξ
0 0 − sinh ξ cosh ξ

⎞
⎟⎟⎠ ,

with cosh ξ = 1/
√

1 − u2 and sinh ξ = u/√1 − u2.
From the six-dimensional view point, the background t45 may be regarded as

T αβ045 = −T αβ123 = t45

(
ρ5	−1

)αβ
.
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Recall that T αβabc is anti-self under the Hodge duality. The field T αβabc is transformed under 
the Lorentz transformation (40), and one obtains

T̃
αβ

045 = t45 cosh ξ, T̃
αβ

012 = −t45 sinh ξ.

Therefore, on the squashed S3 × �, besides the R-symmetry gauge field A12 = A34 and the 
graviphoton field G, the auxiliary fields

t̃45 = t45 cosh ξ, t̃12 = −t45 sinh ξ

are turned on.
Under the Lorentz transformation (40), a six-dimensional supersymmetry parameter εα trans-

forms as

εα → ε̃α = exp

(
ut

rα
�12
)

exp

(
1

2
ξ �03
)
εα, (41)

and recalling that it is of positive chirality,

εα =
(
εα

0

)
,

one can see that the five-dimensional spinor εα transforms as

εα → ε̃α = exp

(
ut

rα
γ 12
)

exp

(
1

2
ξ γ 3
)
εα.

The Lorentz transform (41) of the Killing spinors in Subsection 5.2 also gives the Killing 
spinors in the background on the squashed S3 ×�. In fact in Subsection 5.2, depending on the 
sign of the background t45 = ±1/2r , one has the Killing spinors(

εα̇=1, εα̇=2
)

=
(
ε0 ⊗ ζ+, C−1

3 ε∗0 ⊗ ζ−
)
, for t45 = 1/2r,(

εα̇=1, εα̇=2
)

=
(
U−1ε0 ⊗ ζ+, C−1

3 UT ε∗0 ⊗ ζ−
)
, for t45 = −1/2r,

and they are transformed under the Lorentz transformation into

ε1 → exp

(
i
ut

rα
τ3

)
exp

(
1

2
ξ τ3

)
ε0 ⊗ ζ+, for t45 = 1/2r,

ε1 → exp

(
i
ut

rα
τ3

)
exp

(
1

2
ξ τ3

)
· exp

(
−i ut
rα
τ3

)
U−1(ψ̃, θ,φ)ε0 ⊗ ζ+

= exp

(
1

2
ξ τ3

)
U−1(ψ̃, θ,φ)ε0 ⊗ ζ+, for t45 = −1/2r.

One can thus see that the former never survive the Kaluza–Klein reduction, and the latter yields 
the Killing spinor on the squashed S3 ×�,

ε̃α̇=1 = exp

(
1

2
ξ τ3

)
U−1(ψ̃, θ,φ)ε0 ⊗ ζ+,

ε̃α̇=2 = exp

(
−1

2
ξ τ3

)
C−1

3 UT (ψ̃, θ,φ)ε∗0 ⊗ ζ−,

which is the solution to
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Daεα̇ = − 1

2α̃
G12

(
δa

1δb
2 − δa2δb

1
)
γ bεα̇ −

[
1

4α̃
G12 + t̃12

]
γa

12εα̇ − t̃45 γa
45εα̇

= −1

r
sinh ξ
(
δa

1δb
2 − δa2δb

1
)
γ bεα̇ + 1

2r
cosh ξ γa

45εα̇,

which agrees with the Killing spinor equation (28) with the background obtained in this subsec-
tion.

Let us turn to the remaining supersymmetry condition (92) from δεχαβγ = 0, which deter-
mines the auxiliary field MIJ . Substituting the background fields into (92) and noticing that9

D2t23 =D1t13 = 2t12 · t45,
1

α
D2G23 = 1

α
D1G13 = 4

r̃

r2
t12,

one obtains

4

15
M55 = 4

5

1

r2
− 1

5
R (�) ,

4

15
M11 = 4

15
M22 = −1

5

1

r2
− 1

5
R (�)− F45

12 = −1

5

1

r2
+ 1

20
R (�) ,

4

15
M33 = 4

15
M44 = −1

5

1

r2
− 1

5
R (�)− F45

34 = −1

5

1

r2
+ 1

20
R (�) ,

and the scalar masses MB IJ

MB 55 = 4
r̃2

r4
, MB 11 =MB 22 =MB 33 =MB 44 = 1

r2
+ 1

4
R(�).

In summary, we have found the supersymmetric background on the squashed S3 ×�,

t̃12 = − 1

4α̃
G12 = 1

2r
sinh ξ, t̃45 = − 1

2r
cosh ξ, A12 =A34 = −1

2
ω12,

with the above scalar masses MB IJ .

5.5. An ellipsoid 3-sphere

As explained in [21], an ellipsoid 3-sphere is defined by the set of solutions (x1, x2, x3, x4) ∈
R4 to

x2
1 + x2

2

r2
+ x2

3 + x2
4

r̃2
= 1,

which is solved by polar coordinates (φ, χ , θ )

x1 = r cos θ cosϕ, x2 = r cos θ sinϕ, x3 = r̃ sin θ cosχ, x4 = r̃ sin θ sinχ,

with 0 ≤ φ ≤ 2π , 0 ≤ χ ≤ 2π , 0 ≤ θ ≤ π/2. The metric is induced by embedding it into a flat R4,

ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4 .

For more details, see [21] or Appendix G.5.

9 The latter formula is written for later use.
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The Killing spinors ε and εc = C−1
3 ε∗ on the ellipsoid S3 are given10 in Appendix G.5. Using 

them, we form five-dimensional Killing spinors, ε1 = ε⊗ ζ+, ε2 = εc ⊗ ζ−, with the same ζ± as 
before, and see that they obey

Dμεα̇ = − 1

2f
γμ

45εα̇, (42)

where the R-symmetry gauge field Aij in the covariant derivative Dεα̇ is given by

1

2

(
A12 +A34

)
= −V − 1

2
ω45,

with V the background U(1) gauge field on the ellipsoid S3 given in (103) of Appendix G.5, and 
with ω45 the spin connection on the Riemann surface �.

We will consider an N = 1 supersymmetric background by taking A12 =A34, and break the 
Spin(5)R symmetry group to SU(2)l ×U(1)r .

For the other background fields Sij , Gab , and tab, the Killing spinor equation (28) in the 
background satisfying

S + 2 · 1

4α
G45 = 0, S + 1

4α
G45 + t45 = 1

2f
, (43)

where we have assumed that S = S12 = S34, is reduced into (42). However, substituting them 
into the other supersymmetry condition (92), we find that the background

S = 0,
1

4α
G45 = 0, t45 = 1

2f
, (44)

is the only solution to (92), and that the background fields MIJ are given by

4

15
M55 = 2

f 2
− 1

5
R(	)= 2

5

[
4f 2 − r2 − r̃2

f 4
− 1

2
R(�)

]
,

4

15
Mij = −δij 1

15
M55, (i, j = 1, · · · ,4).

It means that the scalar masses MB IJ are

MB 55 = 4

f 2
, MB ij = 1

2

[
r2 + r̃2

f 2
+ 1

2
R(�)

]
δij , (i, j = 1, · · · ,4).

6. The off-shell formulation of the reduced theory

In order to implement the localization technique in calculating the partition function of the 
five-dimensional theory in a supergravity background, a supersymmetry transformation for the 
localization must be defined off-shell. To this end, the half of the supersymmetry transformations 
(19) will be extended off-shell by introducing auxiliary fields. The supersymmetry parameters 
εα̃ , εα̇ are decoupled in the supersymmetry transformations, if the background fields obey the 
conditions

t i ab = 0, Si5 = 0, Aμ
i5 = 0 (i = 1, · · · ,4).

10 The Killing spinors are the same as in [21].
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The backgrounds we would like to consider in this paper, obey these conditions. Therefore, we 
will content ourselves with the construction of an off-shell formulation of the theory in this re-
stricted type of backgrounds. In addition, the backgrounds in this paper also satisfy the condition 
bμ = 0, and we will add it to the above conditions.

We would like to use one of the supersymmetry transformations for the localization. Since the 
supersymmetry parameters εα̃ , εα̇ are decoupled in the supersymmetry transformations in the 
restricted type of background, we will turn off the parameter εα̃ and focus only on εα̇ . It is then 
convenient to regard the N = 2 gauge multiplet as the sum of an N = 1 gauge multiplet (σ , Aμ, 
λα̇) and N = 1 hypermultiplets (φi , ψα̃).

We will introduce an auxiliary field Dα̇β̇ in the adjoint representation of the SU(2)r subgroup 
of the Spin(5)R R-symmetry group:

Dα̇β̇ = εβ̇γ̇ Dα̇γ̇ =Dβ̇α̇,
and replace

(
σ̄ ij
)α̇

β̇ Sij σ + i

2
g
[
φi, φj

] (
σ̄ij
)α̇
β̇ → Dα̇β̇, (45)

in (33), to which the supersymmetry transformation (19) is reduced in the restricted type of 
backgrounds.

In a consistent way to the above replacement, the supersymmetry transformation of Dα̇β̇ is 
determined by using the equation of motion of λα̇, and one obtains

δεAμ = − i
4
(ε̄ · γμλ), δεσ = − i

4
(ε̄ · λ),

δελ
α̇ = −1

2
Fabγ

abεα̇ + γ aDaσ · εα̇ +Dα̇β̇εβ̇ − 1

2α
Gabσγ

abεα̇,

δεD
α̇β̇ = − i

4
ε̄(α̇
[
γ aDaλβ̇) − ig

[
σ, λβ̇)
]
− 1

8α
Gabγ

abλβ̇) − 1

4
Sij

(
σ̄ ij
)
β̇)
γ̇ λ
γ̇

− 1

2
tabγ

abλβ̇)
]

+ i

4
Sij

(
σ̄ ij
)
α̇
γ̇ ε
γ̇ β̇ (η̄ · λ) . (46)

The off-shell supersymmetry transformations (46) are closed into the other bosonic transfor-
mations. Using the Killing spinor equation (28) in this type of backgrounds, one obtains

[
δε, δη
]
Aμ = i

2
ξνFμν − i

2
(η̄ · ε)Dμσ + i

2α
ξνGμνσ

= − i
2

(
ξν∂νAμ + ∂μξν ·Aν

)− ∂μ�G − ig [Aμ, �G] ,
[
δε, δη
]
σ = − i

2
ξaDaσ = − i

2
ξa∂aσ +�D σ + ig [�G, σ ] ,[

δε, δη
]
λα̇

= − i
2
ξaDaλα̇ + i

2
· (ig)
[
(η̄ · ε)σ, λα̇

]
− i

8
(Daξb) γ abλα̇ − 1

4
�
(0)
ij

(
σ̄ ij
)
α̇
β̇λ
β̇

= − i ξμ∂μλα̇ + 3
�D λ

α̇ + ig
[
�G, λ

α̇
]
+ 1

�abγ
abλα̇ − 1

�ij
(
σ̄ij
)
α̇
β̇λ
β̇ ,
2 2 4 4
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[
δε, δη
]
Dα̇β̇

= − i
2
ξaDaDα̇β̇ + i

2
· (ig)
[
(η̄ · ε)σ, Dα̇β̇

]
− 1

4
�
(0)
ij

[(
σ̄ ij
)
α̇
γ̇ D

γ̇ β̇ +
(
σ̄ ij
)
β̇
γ̇ D

α̇γ̇
]

= − i
2
ξμ∂μD

α̇β̇ + 2�DD
α̇β̇ + ig

[
�G, D

α̇β̇
]

− 1

4
�ij

[(
σ̄ ij
)
α̇
γ̇ D

γ̇ β̇ +
(
σ̄ ij
)
β̇
γ̇ D

α̇γ̇
]
, (47)

with the transformation parameters

ξa = η̄ · γ aε, �D = i

2
ξaba, �ab = − i

2

[
Daξb + ξμ (	μ)ab] ,

�G = − i
2

[
ξaAa − (η̄ · ε)σ ] ,

�
(0)
ij = − i

2

[
3Sij (η̄ · ε)+

(
tab + 1

2α
Gab

)(
η̄ · σ̄ij γ abε

)]
,

�ij =�(0)ij − i

2

(
ξaAa
)
ij
. (48)

Let us proceed to the hypermultiplets (φi, ψα̃). In writing the off-shell transformation for 
them, it will turn out that the spinor index notation of the scalars φα̃β̇ ,

φα̃β̇ = φi (σi)α̃ β̇ , φ̄α̇ β̃ = φi (σ̄i)α̇ β̃ ,
will be convenient. In order to formulate an off-shell supersymmetry transformation11 of the 
hypermultiplets, we will introduce auxiliary fields F α̃

β̌
with the index β̌ labeling a doublet of a 

new SU(2) flavor group, which is not a subgroup of the Spin(5)R R-symmetry group, following 
[29].

Further, we will also introduce different supersymmetry parameters εα̌ from εα̇ and εα̃ , the 
former of which span the whole four-dimensional spinor space with εα̇.

The auxiliary fields F α̃
β̌

and the new parameters εα̌ are expected to play the role to impose 
the equation of motion of the spinors in the off-shell supersymmetry formulation. To this end, 
requiring that δεF α̃β̌ be proportional to the equation of motion of the spinor ψα̃ , one obtains an 
off-shell supersymmetry transformation

δεφ
α̃
β̇ = i

2
(ε̄β̇ ·ψα̃),

δεψ
α̃ = −γ aDaφα̃β̇ · εβ̇ + ig

[
σ, φα̃β̇

]
εβ̇ +
(
tab + 1

2α
Gab

)
φα̃β̇γ

abεβ̇

− 1

4
Sij

[
3φα̃γ̇
(
σ̄ ij
)γ̇

β̇ +
(
σ ij
)
α̃
γ̃ φ

γ̃
β̇

]
εβ̇ + F α̃

β̌
εβ̌ ,

δεF
α̃
β̌

= i

2
ε̄
β̌

[
γ aDaψα̃ + ig

[
σ, ψα̃
]
+ ig
[
φα̃γ̇ , λ

γ̇
]

+1

2

(
tab − 1

4α
Gab

)
γ abψα̃ − 1

4
Sij

(
σ ij
)
α̃
γ̃ ψ

γ̃

]
. (49)

11 We will follow the prescription in [29,1,2], where we won’t expect to have a full-fledged off-shell formulation. 
However, it will be sufficient to carry out the localization.
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In terms of the vector notation of the scalars φi , it gives

δεφ
i = i

4
(σ̄ i)α̇ β̃ (ε̄α̇ ·ψβ̃),

δεψ
α̃ = (σi)α̃ β̇

[
− γ aDaφi · εβ̇ + ig

[
σ, φi
]
εβ̇ +
(
tab + 1

2α
Gab

)
φiγ abεβ̇

+
(
Sij + εijklSkl

)
φjε

β̇

]
+ F α̃

β̌
εβ̌ ,

δεF
α̃
β̌

= i

2
ε̄
β̌

[
γ aDaψα̃ + ig

[
σ, ψα̃
]
+ ig(σi)α̃ γ̇

[
φi, λγ̇

]
+ 1

2

(
tab − 1

4α
Gab

)
γ abψα̃ − 1

4
Sij

(
σ ij
)
α̃
γ̃ ψ

γ̃

]
,

where the conditions are assumed:(
εα̌
)T
Cηβ̇ −

(
ηα̌
)T
Cεβ̇ = 0, (η̄β̇ ε

β̇ )= (η̄
β̌
εβ̌ ),

(η̄β̇γ
aεβ̇)= −(η̄

β̌
γ aεβ̌), (50)

which will be necessary for the off-shell closure of the supersymmetry transformations on φα̃β̇
and ψα̃ . Note that in terms of the spinor index notation, the covariant derivative Dμφα̃β̇ can be 
read as

Dμφα̃β̇ = ∂μφα̃β̇ − bμφα̃β̇ + ig
[
Aμ, φ

α̃
β̇

]
− 1

4
Aμ

ij
[(
σij
)
α̃
γ̃ φ

γ̃
β̇ − φα̃γ̇

(
σ̄ij
)
γ̇
β̇

]
.

Making use of (50), one can verify that

[
δε, δη
]
φα̃β̇ = − i

2
ξaDaφα̃β̇ + i

2
· (ig)
[
(η̄ · ε)σ, φα̃β̇

]
+ 1

4
�
(0)
ij φ

α̃
γ̇

(
σ̄ ij
)
γ̇
β̇

− 1

4
�̃
(0)
ij

(
σ ij
)
α̃
γ̃ φ

γ̃
β̇

= − i
2
ξμ∂μφ

α̃
β̇ +�D φα̃β̇ + ig

[
�G, φ

α̃
β̇

]
+ 1

4
�ijφ

α̃
γ̇

(
σ̄ ij
)
γ̇
β̇ − 1

4
�̃ij

(
σ ij
)
α̃
γ̃ φ

γ̃
β̇ ,[

δε, δη
]
ψα̃

= − i
2
ξaDaψα̃ − i

8
(Daξb) γ abψα̃ + i

2
· (ig)
[
(η̄ · ε)σ, φα̃β̇

]
− 1

4
�̃
(0)
ij

(
σ ij
)
α̃
γ̃ ψ

γ̃

= − i
2
ξμ∂μψ

α̃ + 3

2
�D ψ

α̃ + 1

4
�abγ

abψα̃ + ig
[
�G, φ

α̃
β̇

]
− 1

4
�̃ij

(
σ ij
)
α̃
γ̃ ψ

γ̃ , (51)

with the parameters in (48), where the transformation parameters of the other SU(2) subgroup of 
the Spin(5)R are given by

�̃
(0)
ij = i

2
(η̄ · ε)Sij , �̃ij = �̃(0)ij − i

2
ξμAμij .

So far, we have seen that the supersymmetry transformations (49) on φα̃β̇ , ψα̃ are closed 
off-shell, if we require the condition (50) on the supersymmetry parameters. However, we will 
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see that the supersymmetry transformations (49) on the auxiliary fields F α̃
β̌

are not automatically 
closed. In order to achieve an off-shell supersymmetry transformation, it seems that one has to 
require the supergravity backgrounds to obey additional conditions.

Let us look at the supersymmetry transformations on F α̃
β̌

. Using the condition (50), one 
obtains[

δε, δη
]
F α̃

β̌
= − i

2
ξμ∂μF

α̃
γ̌ +�DF α̃γ̌ + ig

[
�G, F

α̃
γ̌

]
+ 1

4
�̃ij
(
σij
)
α̃
γ̃ F

γ̃
β̌

+ �̌
β̌
γ̌ F α̃ γ̌ + 1

4

(
�ij
)
β̌
γ̇
(
σij
)α̃
δ̃ φ

δ̃
γ̇ +�

β̌
γ̇ φα̃ γ̇ , (52)

where the parameter �̌α̌ β̌ of the new SU(2) transformation is given by

�̌α̌
β̌ = i

2

[(
η̄
β̌
γ aDaεγ̌ − ε̄

β̌
γ aDaηγ̌

)

+ 1

2

(
tab − 1

4α
Gab

)(
η̄
β̌
γ abεγ̌ − ε̄

β̌
γ abηγ̌

)]
,

and the last two terms on the right hand side suggest that the supersymmetry transformations fail 
to be closed off-shell, where the parameters 

(
�ij
)
β̌
γ̇ , and �

β̌
γ̇ are given by

(
�ij
)
β̌
γ̇ = i
(
η̄
β̌
γ abεγ̇ − ε̄

β̌
γ abηγ̇

)(1

4
Fab

ij + 1

4α
GabS

ij

)

− i

2

(
η̄
β̌
γ aεγ̇ − ε̄

β̌
γ aηγ̇
)
DaSij ,

�
β̌
γ̇ = i

2

[(
1

4α

)2

GabGcd

(
η̄
β̌
γ abcdεγ̇ − ε̄βγ abcdηγ̇

)

−
(
Datab + 1

4α
DaGab

)(
η̄
β̌
γ bεγ̇ − ε̄βγ bηγ̇

)]

+ i

2

(
σ̄ ij
)
γ̇
δ̇

[
1

4
DaSij

(
η̄
β̌
γ aεδ̇ − ε̄βγ aηδ̇

)

− 1

2

(
tab + 2

1

4α
Gab

)
Sij

(
η̄
β̌
γ abεδ̇ − ε̄βγ abηδ̇

)]
.

Therefore, in order to gain an off-shell closed algebra of the supersymmetry transformations, 
the conditions(

�ij
)
β̌
γ̇
(
σij
)α̃
δ̃ = 0, �

β̌
γ̇ = 0, (53)

are required. Although the implications of the condition (53) have been unclear for the authors, 
the backgrounds in Section 5 satisfy the condition (53). So henceforth, we will assume that the 
backgrounds satisfy the condition (53).

Let us make sure that the supersymmetric backgrounds in Section 5 obey the conditions (50)
and (53). With the ansatz (29) and as explained in Appendix G, the supersymmetry parameters 
εα̇ , εα̌ are given by

εα̇=1 = ε ⊗ ζ+, εα̇=2 = C−1ε∗ ⊗ ζ−; εα̌=1 = ε ⊗ ζ−, εα̌=2 = C−1ε∗ ⊗ ζ+,
3 3
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obeying that εα̌ = γ5ε
α̌ . It follows from this that(

εα̌
)T
Cηβ̇ −

(
ηα̌
)T
Cεβ̇ = 0, η̄α̌ε

α̌ = η̄α̇εα̇, η̄α̌γ
aεα̌ = −η̄α̇γ aεα̇,

and the condition (50) is satisfied by the supersymmetry parameters εα̇ , εα̌ .
Since the field Sij in all the N = 1 supersymmetric backgrounds in Section 5 satisfies 

Sij σij = 0, and the field strength Fabij satisfies Fabij σij = 0, it is easy to see that they sat-
isfy the former condition in (53). In the N = 2 background in Subsection 5.3, the non-zero 
components of Fabij are F45

ij and F12
ij , and Gab has only nonzero component G45. At the first 

sight, the nonzero F45
ij and G45 seems to give the contributions to the former condition of (53), 

but, since we have the formula

η̄α̌γ
45εβ̇ − ε̄α̌γ 45ηβ̇ = 0, (54)

they yield no contributions to the condition. Furthermore, the nonzero F12
ij appears on the left 

hand side of the condition with the term

η̄α̌γ
12εβ̇ − ε̄α̌γ 12ηβ̇ ∝ η̄α̌γ

3εβ̇ − ε̄α̌γ 3ηβ̇, (55)

but, the conditions γ 3εα̇ = εα̇ and γ 3ηα̇ = ηα̇ reduce η̄α̌γ 3εβ̇ − ε̄α̌γ 3ηβ̇ to the left hand side of 
the first condition in (50). Therefore, the former condition in (53) is obeyed also for the N = 2
supersymmetric background.

The covariant derivatives Datbc , DaGbc , and DaSij are vanishing except for the background 
in Subsection 5.4. However, ever for the background, Datab + DaGab/(4α) = 0. Further, it is 
obvious that GabGcdεabcde = 0. Therefore, taking (54) into account, one can see that all the 
backgrounds in Section 5 also satisfy the latter condition in (53). Now we can see that all the 
supersymmetry backgrounds in (53) allow the off-shell supersymmetry.

Let us proceed to the construction of an off-shell supersymmetric action. In order to perform 
the replacement (45) with Dα̇β̇ within the on-shell invariant action S = SF + S

(0)
B + S

(1)
B in 

(22)–(25), we will add the term

1

2

∫
dx5√g α tr

[
− 1

2
D̂α̇ β̇ D̂

β̇
α̇

]

with D̂α̇ β̇ ≡Dα̇β̇ −
(
σ̄ ij
)α̇

β̇

(
Sijσ + 1

2
(ig)
[
φi, φj

])

to the on-shell action S.
For the hypermultiplets, the off-shell supersymmetry transformation of ψα̃ has an additional 

term F taγ̌ εγ̌ , compared to the on-shell supersymmetry transformations. Therefore, under the off-
shell supersymmetry transformation, the on-shell fermionic action SF in (22) gains an additional 
term

−1

2
εα̃β̃F

α̃
γ̌

(
εγ̌
)T
C
(
γ aDaψβ̃ + · · ·

)
= −1

2
εα̃β̃F

α̃
γ̌ · εγ̃ δ̃δεF β̃ δ̌ = −1

4
δε

(
εα̃β̃ε

γ̌ δ̌F α̃ γ̌ F
β̃
δ̌

)
with the ellipsis denoting the other terms of the equation of motion for ψα̃, from the term

− i εα̃β̃
(
δεψ

α̃
)T
C
(
γ aDaψβ̃ + · · ·

)
+ · · ·
4
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in δεSF . Thus, it is necessary to add the term

−
∫ √

g d5x
α

4
tr
[
εα̃β̃ε

γ̌ δ̌F α̃ γ̌ F
β̃
δ̌

]
to cancel the additional term from δεSF .

Finally, the construction of an off-shell action is achieved as

S = −
∫

tr

[
1

2
C ∧ F ∧ F + α

2
(F − 4tσ )∧ ∗ (F − 4tσ )

]
−
∫ √

g d5x α tr [L ] , (56)

where the ‘matter’ Lagrangian L is given by

L = −1

2
DaσDaσ − 1

2
DaφiDaφi − 1

2
Mσ σ

2 − 1

2
Mij φ

iφj + 1

4
Dα̇β̇D

β̇
α̇

+ 1

4
εα̃β̃ε

γ̌ δ̌F α̃ γ̌ F
β̃
δ̌
− 1

2
Dα̇β̇(σ̄

ij )β̇ α̇

(
Sij σ + 1

2
(ig)
[
φi, φj

])

+ 1

2
(ig)2
[
σ, φi
][
σ, φi
]
− igSij σ

[
φi, φj

]
− i

8
λ̄ · γ aDaλ− i

8
ψ̄ · γ aDaψ

− i

16

(
tab − 1

4α
Gab

)
ψ̄ · γ abψ + i

16

(
tab + 1

4α
Gab

)
λ̄ · γ abλ

+ i

32
Sij ψ̄ · σ ijψ + i

32
Sij λ̄ · σ̄ ij λ− i

8
(ig)ψ̄α̃ ·

[
σ, ψα̃
]
+ i

8
(ig)λ̄α̇ ·

[
σ, λα̇
]

− i

8
(ig)ψ̄α̃ · (σi)α̃ β̇

[
φi, λβ̇

]
− i

8
(ig)λ̄α̇ · (σ̄i)α̇ β̃

[
φi, ψβ̃

]
, (57)

with the ‘mass’ parameters

Mσ =
(

4

15
M55 + 1

5
R(	)+ 1

20α2
GabG

ab + 4tabt
ab − 1

2
tr(σ̄ ij σ̄ kl)Sij Skl

)
,

Mij =
[

4

15
Mij + 1

5

(
R(	)+ 1

4α2
GabG

ab

)
δij − SikSjk

]
.

7. Localization and twistings

In this section, let us proceed to compute the partition function of the theory by using the 
localization. Before going on, there is a subtle point that the kinetic terms of the fields σ , Dα̇β̇ , 

φi , and F α̃
β̌

have the negative sign in the Lagrangian (57). In order to circumvent it, we would 

like to follow the same strategy for σ , Dα̇β̇ , and F α̃
β̌

as in [1,2]. Recall that the scalars φi

had the positive kinetic terms in [1,2], where the five-dimensional theory was obtained by the 
dimensional reduction from the six-dimensional maximally supersymmetric Yang–Mills theory.

To this end, we will perform the ‘analytic continuation’ for the scalars,

σ → iσ , φi → −iφi .
For the auxiliary fields Dα̇β̇ and F α̃

β̌
, let us carefully recall what we have done in the previous 

papers [1,2]. First, we have shifted D1̇
1̇ as12

D1̇
1̇ → D1̇

1̇ − iF45 − i

α
G45σ, (58)

12 In the previous papers [1,2], although we haven’t considered the supergravity backgrounds such as Gab , we can 
interpret what was done as the shift (58) in terms of supergravity backgrounds.
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and we then impose the reality condition(
Dα̇β̇

)∗ =Dβ̇α̇.
In previous papers, we implicitly left the sign of the kinetic term of Fα̃

β̌
negative. Since 

the integration over the auxiliary fields F α̃
β̌

is trivial; there is no dependence on the vacuum 
expectation value of σ , we have just ignored the divergence from it. Therefore, we assumed that(

F α̃
β̌

)∗ = −F γ̃
δ̌
εδ̌β̌ εγ̃ α̃ .

Although we don’t have any rationale for the prescriptions, it seems to work well, and we will 
also follow the same prescriptions in this paper.

In order to carry out the localization, we will define a BRST transformation out of the super-

symmetry transformation by setting both of ε2̇ and ε2̌ to be zero, following the strategy in [1,2]. 
Note that this is possible, because ε2̇ decouples from ε1̇ in the Killing spinor equation. This is 
also the case for εα̌ . Furthermore, introducing bosonic Killing spinors ε and ε̌, we take

ε1̇ =ϒ ε, ε1̌ =ϒ ε̌,
where ϒ is a Grassmann odd number. For a generic field �, then we define the BRST transfor-
mation of � by

δε�=ϒ δQ�.
Before the shift (58), it follows from (46) that the BRST transformation on the gauge multiplet 

is given by

δQAμ = i

4
λ̄2̇γμε, δQσ = 1

4
λ̄2̇ε

δQλ
1̇ = −1

2
Fabγ

abε+ iDaσ γ aε+D1̇
1̇ε− i

2α
Gab σγ

abε, δQλ
2̇ =D2̇

1̇ ε,

δQD
1̇

2̇ = − i
2

[
ε̄γ aDaλ1̇ + g

[
σ, ε̄λ1̇

]
−
(

1

8α
Gab + 1

2
tab

)
ε̄γ abλ1̇

− 1

4
Sij

(
σ̄ ij
)

1
1ε̄λ

1̇
]
,

δQD
1̇

1̇ = − i
4

[
Daλ̄2̇γ aε+ g

[
σ, λ̄2̇ε

]
+ 1

8α
Gabλ̄

2̇γ abε+ 1

2
tabλ̄

2̇γ abε

− 3

4
Sij

(
σ̄ ij
)1

1λ̄
2̇ε

]
, (59)

and from (49) that for the hypermultiplets,

δQφ
i = 1

4

(
σ̄ i
)2
α̃ ψ̄

α̃ε, δQF
α̃

1 = 0,

δQF
α̃

2 = i

2
ε̌T C
[
γ aDaψα̃ − g

[
σ, ψα̃
]
+ g (σi)α̃ γ̇

[
φi, λγ̇

]
+ 1

2

(
tab − 1

4α
Gab

)
γ abψα̃

]
,

δQψ
α̃ = i (σi)α̃ 1

[
Daφiγ a + g

[
σ, φi
]
− 1

2α
Gabφ

iγ ab − tabφiγ ab

−
(
Sij + εijklSkl

)
φj
]
ε+ F α̃1ε̌, (60)
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where λ̄α̇ is an abbreviation for (λα̇)T C, ε̄ is for εT C.
The algebra of the supersymmetry transformations in (47), (51) and (52) may be used to check 

the nilpotency of the BRST transformation, assuming that (50) and (53) are satisfied. Substituting

δε�=ϒ δQ�, δη�=ϒ ′ δQ�,

into (47)–(52), through the relation[
δε, δη
]
�= 2ϒϒ ′ (δQ)2�,

one can compute (δQ)2�. Since ε2̇ = η2̇ = 0,

η̄ · ε = (η1̇)T Cε2̇ − (η2̇)T Cε1̇ = 0, ξa = η̄ · γ aε = (η1̇)T Cγ aε2̇ − (η2̇)T Cγ aε1̇ = 0,

so that η̄ · ε and ξa on the right hand sides of (47)–(52) are zero. Recalling that ε is chiral – 
iγ 45ε = ε – on �, one can see that

η̄ · σ̄ij γ abε = −ϒϒ ′ (σ̄ij ) 21 ε
T Cγ abε (a, b= 1,2,3),

η̄ · σ̄ij γ 45ε = −ϒϒ ′ (σ̄ij ) 21 ε
T Cγ 45ε = 0.

However, since η̄ · σ̄ij γ a4ε and η̄ · σ̄ij γ a5ε are not necessarily zero for a generic background, 
the BRST transformation isn’t always nilpotent. But, for the backgrounds of our interest in this 
paper, since there are no fields carrying the mixed components tangent to the 3-sphere and to the 
Riemann surface at the same time, one can find that it is nilpontent.

Let us now take the shift (58) into account. Although it never affects the nilpotency of the 
BRST transformation δQ, it does affect δQλ1̇ and δQD1̇

1̇,

δQλ
1̇ = −1

2

∑
(a,b)�=(4,5),(5,4)

(
Fab + i

α
Gabσ

)
γ abε+ iDaσ γ aε+D1̇

1̇ε,

δQD
1̇

1̇ = − i
4

[
3∑

m=1

Dmλ̄2̇γmε+ g
[
σ, λ̄2̇ε

]
− i

α
G45λ̄

2̇ε

+ 1

2

(
tab + 1

4α
Gab

)
λ̄2̇γ abε− 3

4
Sij

(
σ̄ ij
)1

1λ̄
2̇ε

]
,

where we have assumed that the Killing spinor ε obeys iγ45ε = ε and D4ε = D5ε = 0. These 
conditions are satisfied by the Killing spinors in Section 5.

The partition function of the theory with the action S in (56)

Z =
∫

[d�] exp (S)

is invariant under a deformation of the action

Z =
∫

[d�] exp
(
S + tSQ

)
by the ‘regulator’ action

SQ = δQ ,
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which is the BRST transform of a functional  of the fields, with a parameter t . More explicitly, 
we will choose the regulator action to be

SQ = −
∫
d5x

√
g δQ tr

[(
δQλ

α̇
)† · λα̇ +

(
δQψ

α̃
)† ·ψα̃

]
.

Since the partition function Z never depends on the parameter t , one can take a large t limit, 
while leaving the value of Z intact. In the large t limit, the main contributions to Z comes from 
the fixed points of the fields given by δQλα̇ = 0 and δQψα̃ = 0. Then, writing the fields � in 
terms of quantum fluctuations �̃ about one of the fixed points �0 as

�=�0 + 1√
t
�̃,

and interacting over the fluctuations to carry out the one-loop computation, one may compute the 
partition function Z exactly.

In order to carry out the localization, it is convenient to convert spinor and vector fields to 
scalar fields13 on the 3-spheres, and then there is no need to introduce spinor or vector spherical 
harmonics on the three-spheres.

For the N = 1 hypermultiplet,

ψ 1̃ = (χ ⊗ ε + ξ ⊗ εc)⊗ ζ+ + (η⊗ ε + κ ⊗ εc)⊗ ζ−,
ψ 2̃ =
(
χ̃ ⊗ ε + ξ̃ ⊗ εc

)
⊗ ζ+ + (η̃⊗ ε + κ̃ ⊗ εc)⊗ ζ−,

H̃ = 1√
2
(σi)

1
1φ
i = − i√

2

(
φ3 + iφ4

)
, H = 1√

2
(σ̄i)

2
1φ
i = i√

2

(
φ1 + iφ2

)
,

H̃ ∗ = 1√
2
(σ̄i)

1
1φ
i = i√

2

(
φ3 − iφ4

)
, H ∗ = 1√

2
(σi)

1
2φ
i = − i√

2

(
φ1 − iφ2

)
.

Note that ε and εc are the Killing spinors on each of the S3s and that they are linearly independent 
as two-component vectors, as discussed in Appendix G. The fields (χ , ξ , η, κ) and (χ̃ , ξ̃ , η̃, κ̃) 
are scalar fields on the three-spheres.

For the N = 1 vector multiplet,

λ1 = (ξ ε + η εc)⊗ ζ+ + (ϕ ε + χ εc)⊗ ζ−,(
λ2
)T = −

[(
ϕ̃ ε† + χ̃ εc†

)
⊗ ζ+ +

(
ξ̃ ε† + η̃ εc†

)
⊗ ζ−
]
C−1,

Am =
(
ε†τmε
)
V0 +
(
εc

†
τmε
)
V− +
(
ε†τmε

c
)
V+,

for m = 1, 2, 3. The three-component vectors 
(
ε†τmε
)
, 
(
εc†τmε

)
, and 
(
ε†τmε

c
)

are orthogonal 

among them, and are normalized by ε†ε = εc†εc = 1. See Appendix G in more detail. Let us 
recall that the background on the squashed S3 in Subsection 5.4 is not up to our mind here, 
because we will leave the calculation of the partition function for the background undone in this 
paper, as explained in Introduction.

13 They are scalar fields on the 3-spheres, but not necessarily scalar fields on �. We will see the spin content of them 
on �, below.
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In order to denote the scalar fields in the gauge multiplet, we use the same Greek letters χ , ξ , 
η, as for the ones in the hypermultiplet. But, we never mean that they are the same fields. What 
it really means is the shortage of the Greek letters we can assign to each of the fields. We will 
compute the one-loop contributions from the gauge multiplet and the hypermultiplet, separately. 
Therefore, we believe and hope that it wouldn’t cause any confusion.

7.1. The N = 2 twisting and the N = 1 twisting

As we have seen in Section 5, the N = 2 twisting by turning on A12 only gives rise to the 
N = 2 supersymmetric backgrounds on a round and a squashed S3, and on the other hand, the 
N = 1 twisting by turning on A12 and A34 with A12 =A34 gives rise to the N = 1 supersymmet-
ric backgrounds on a round, a squashed and an ellipsoid S3. The difference between the N = 2
twisting and the N = 1 twisting has no effects on the BRST transformation of the N = 1 gauge 
multiplet, but affects the transformation of the N = 1 hypermultiplet. Therefore, the one-loop 
contributions from the N = 1 gauge multiplet don’t depend on which twisting is done and yield 
the same results on an identical sphere.

Therefore, before proceeding to the one-loop calculations, let us see how the spin content of 
the two-dimensional fields in the hypermultiplet is changed upon each of the twistings. Then, we 
will see the spin content of the N = 1 gauge multiplet after the twistings, too.

The spin content of the two-dimensional fields on � from the hypermultiplet can be read from 
the covariant derivatives of the component fields of the hypermultiplet along the surface � with 
the local coordinates (x4, x5).

For the N = 2 twisting,

Dzψα̃ = 1

2

(
D4ψ

α̃ − iD5ψ
α̃
)

= ∂zψα̃ + 1

2
ωz

45γ45ψ
α̃ + 1

2
ωz

45 (σ12)
α̃
β̃ψ

β̃ + ig
[
Az, ψ

α̃
]
,

Dzφ1 = ∂zφ1 +ωz45φ2 + ig
[
Az, φ

1
]
, Dzφ2 = ∂zφ2 −ωz45φ1 + ig

[
Az, φ

2
]
,

Dzφ3 = ∂zφ3 + ig
[
Az, φ

3
]
, Dzφ4 = ∂zφ4 + ig

[
Az, φ

4
]
,

where the complex coordinate z is defined by z= x4 + ix5 and ∂z = (∂4 − i∂5)/2.
Therefore, we can see that the bosonic field H̃ ∼ (φ3 + iφ4) remains a scalar under the N = 2

twisting, but H ∼ (φ1 + iφ2) becomes a (0, 1)-form; H →Hz̄. The fermionic fields (χ, ξ) are 
changed to be a scalar, and (η, κ) to be (1, 0)-forms; (η, κ) → (ηz, κz). On the other hand, the 
fermionic fields (χ̃, ξ̃ ) give (0, 1)-forms; (χ̃, ξ̃ ) → (χ̃z̄, ξ̃z̄), and (η, κ) become scalars.

For the N = 1 twisting,

Dzψα̃ = 1

2

(
D4ψ

α̃ − iD5ψ
α̃
)

= ∂zψα̃ + 1

2
ωz

45γ45ψ
α̃ + ig

[
Az, ψ

α̃
]
,

Dzφi = ∂zφi + 1

2
ωz

45εijφi + ig
[
Az, φ

i
]
,

for i, j = 1, · · · , 4, where εij is an antisymmetric tensor with non-zero components ε12 =
−ε21 = ε34 = −ε43 = 1 only.
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Table 4
The scalar fields on the S3’s of the hypermultiplet upon the twistings.

5D 
fields

Scalars The N = 2 twisting The N = 1 twisting

Spin (k, l) Charge q Spin (k, l) Charge q

φi H̃ (0,0) 0 ( 1
2 ,0) −1

H (0,1) −2 ( 1
2 ,0) −1

H̃∗ (0,0) 0 (0, 1
2 ) 1

H∗ (1,0) 2 (0, 1
2 ) 1

ψ 1̃ χ (0,0) 0 ( 1
2 ,0) −1

ξ (0,0) 2 ( 1
2 ,0) 1

η (1,0) 0 (0, 1
2 ) −1

κ (1,0) 2 (0, 1
2 ) 1

ψ 2̃ χ̃ (0,1) −2 ( 1
2 ,0) −1

ξ̃ (0,1) 0 ( 1
2 ,0) 1

η̃ (0,0) −2 (0, 1
2 ) −1

κ̃ (0,0) 0 (0, 1
2 ) 1

The bosonic fields (H̃ , H ) and the fermionic fields (χ , ξ ), (χ̃ , ξ̃ ) become two-dimensional 
Weyl spinors of positive chirality, and (η, κ) and (η̃, κ̃) are Weyl spinors of negative chirality.14

The results are summarized in Table 4. The notation (k, l) in the table denotes a (k, l)-form 
for integers k, l. For half integers k, l, ( 1

2 , 0) denotes a Weyl spinor of positive chirality, and 
(0, 12 ) of negative chirality. Whichever k and l are integer or half-integer, the covariant derivative 
of a field � of (k, l) carries the spin connection ω45 of � as

Dz�= ∂z�+ i(k − l)ωz45�+ ig [Az, �] .
On a squashed and an ellipsoid S3, as we have seen in Subsections 5.3 and 5.5, we have also 

turned on the background field Aij along the S3. When the Killing spinors are reduced to the 
three-dimensional ones ε and εc on the spheres, we refer to the background R-symmetry field as 
V so that the covariant derivatives of ε and εc are given by

Dε =
(
d + 1

4
ωmnτ

mn + iV
)
ε, Dεc =

(
d + 1

4
ωmnτ

mn − iV
)
εc.

Then, on the squashed S3 in Subsection 5.3, we have for the N = 2 twisting,

A12|S3 = 2

r̃

(
1 − r̃2

r2

)
e3 = −2V,

and for the N − 1 twisting,

A12|S3 =A34|S3 = 1

r̃

(
1 − r̃2

r2

)
e3 = −V,

where |S3 denotes the components along the S3.

14 In a two-dimensional Euclidean space, the complex conjugate of a Weyl spinor of negative chirality is of positive 
chirality. Therefore, essentially, after the N = 1 twisting, all the fields in the hypermultiplet carry the same spin on �.
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Table 5
The charges q of the two-dimensional fields from the gauge multiplet under the background V .

2D fields ϕ χ ϕ̃ χ̃ ξ η ξ̃ η̃ V0 V+ V−
spin (k, l) (1,0) (0,1) (0,0) (0,0) (0,0)
charge q 0 2 0 −2 0 2 0 −2 0 2 −2

On an ellipsoid S3 in Subsection 5.5, the N = 1 twisting causes along the S3 the background 
field

A12|S3 =A34|S3 = −V,
which is identical to V given in (103).

When a two-dimensional field � has the covariant derivative

D�|S3 = d�|S3 + iqV�,
we will say that the field � carries charge q under the background field V . The charges of the 
two-dimensional fields from the hypermultiplet are listed in Table 4.

Let us turn to the two-dimensional fields on the three-spheres in the N = 1 gauge multiplet 
and see how the spin content of them is changed under the twisting. As mentioned before, both 
of the N = 2 and N = 1 twistings affect the spin content of them in the same way.

The two-dimensional fields from the N = 1 gauge multiplet are also charged under the gauge 
field V . But, the charges of them don’t depend upon which twisting we perform. The charges 
under V which two-dimensional fields from the N = 1 gauge multiplet carry are also listed in 
Table 5.

8. Localization on the round and squashed S3

In this section, we will compute the partition function by localization for the backgrounds 
on the squashed S3 discussed in Subsection 5.3. In the round limit r̃ → r , we will see that the 
previous results in [1,2] are regained for the N = 1 twisting, and we will obtain new results for 
the N = 2 twisting on the round S3 in Subsection 5.2 and on the squashed S3 in Subsection 5.3.

As mentioned before, in order to carry out localization, we need to find fixed points of the 
regulator action SQ, which are given by δQλα̇ = 0 and δQψα̃ = 0. In the squashed S3 background 
in Subsection 5.3, the former conditions gives

δQλ
1̇ = −1

2

∑
(a,b)�=(4,5),(5,4)

Fabγ
abε+ iDaσ γ aε+D1̇

1̇ε = 0, δQλ
2̇ =D2̇

1̇ ε = 0,

which are reduced to
1

2
εmklFkl =Dmσ,

[
Fmzτ

m − iDzσ
]
ε = 0, Dα̇β̇ = 0,

with the complex coordinate z= x4 + ix5 combining the local coordinates (x4, x5) of �.
The first equation means that

Am = 0, em∂mσ = 0 → σ = σ(z, z̄),
and the second equation in turn implies that

Dzσ = ∂zσ + ig [Az, σ ]= 0, em∂mAz = 0 → Az =Az(z, z̄).
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We will ‘diagonalize’ the scalar field σ at the fixed point by partial gauge fixing,

σ(z, z̄)=
r∑
i=1

σ i(z, z̄)Hi,

where Hi (i = 1, · · · , r) are the generators of the Cartan subalgebra of the gauge group G with 
r the rank of G. It then follows from Dzσ = 0 that the gauge field Az takes values in the Cartan 
subalgebra, too,

Az(z, z̄)=
r∑
i=1

Aiz(z, z̄)Hi,

and that ∂zσ i = 0, i.e., the solution σ i is a constant.
As for the latter conditions δQψα̃ = 0, a simple examination shows that the solution to 

δQψ
α̃ = 0 is given by

H̃ =H = 0, F 1
1 = 2

√
2DzH̃ = 0, F 2

1 = −2
√

2DzH = 0,

for both of the N = 2 and N = 1 twistings.
We will proceed to calculate the one-loop contributions about the fixed points of the regulator 

action SQ in the next two subsections.

8.1. One-loop contributions from the N = 1 gauge multiplet

The BRST transformations of the N = 1 gauge multiplet are the same for both of the N = 2
and N = 1 twistings. As discussed in Section 7, we would like to reduce all the component fields 
in the gauge multiplet into scalar fields on the S3.

In particular, when we will convert the gauge field Am to V0 and V±, the field strength Fmn =
DmAn −DnAm + ig [Am, An] may be rewritten in terms of them as

1

2
εmkl

(
ε†τmε
)
Fkl = εmkl

(
ε†τmε
)
DkAl + · · ·

= 2r̃

r2
V0 + i

(
εc

†
τmε
)
D(−2)
m V− − i

(
ε†τmε

c
)
D(2)m V+ + · · · ,

1

2
εmkl

(
εc

†
τmε
)
Fkl = εmkl

(
εc

†
τmε
)
DkAl + · · ·

= 4r̃

r2
V+ + 2i

(
ε†τmε
)
D(2)m V+ − i

(
εc

†
τmε
)
D(0)m V0 + · · · ,

where the ellipsis stands for the gauge interaction terms, which gives no contributions to the 
partition function in the large t limit, and we will omit them. Note that the formulas (101) were 
used to derive these. Also omitting the gauge interaction terms, the field strength Fmz is given in 
terms of this language by

Fmz =
(
εc

†
τmε
)[1

2

(
ε†τnεc

)
D(0)n Az −DzV−

]

+
(
ε†τmε

c
)[1

2

(
εc

†
τnε
)
D(0)n Az −DzV+

]

+
(
ε†τmε
)[(

ε†τnε
)
D(0)n Az −DzV0

]
.
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After the conversion, we can see that the BRST transformation of the bosonic fields is given 
by

δQσ̃ = −1

4
ξ̃ , δQV0 = − i

4
ξ̃ , δQV− = − i

4
η̃, δQV+ = 0, δQAz̄ = 1

4
ϕ̃,

δQAz = 0,

δQD
1

1 = i

4

[(
ε†τmε

)
D(0)m ξ̃ − 2i

r̃

r2
ξ̃ + g
[
σ, ξ̃
]
+
(
εc

†
τmε
)
D(−2)
m η̃

]
,

δQD
1

2 = i

4

[
−
(
ε†τmε

)
D(2)m χ + 2i

r̃

r2
χ − g [σ, χ]+ (εc†

τmε
)
D(0)m ϕ − 2iDzη

]
,

where we denote a fixed point of the scalar field σ as the same letter σ , and the fluctuation about 
this fixed point σ as σ̃ . Henceforth, we will keep this notation until the end of this section.

The BRST transformation of the fermionic fields is given by

δQξ̃ = 0, δQη̃= 0, δQϕ̃ = 0, δQχ̃ = −D2
1,

δQξ = −2i
r̃

r2
V0 + g [σ, V0] + i

(
ε†τmε

)
∂mσ̃ +

(
εc

†
τmε
)
D(−2)
m V−

−
(
ε†τmεc

)
D(2)m V+ +D1

1,

δQη= −4i
r̃

r2
V+ + 2g

[
σ, V+
]+ 2
(
ε†τmε

)
D(2)m V+ + i

(
εc

†
τmε
)
∂mσ̃

−
(
εc

†
τmε
)
∂mV0,

δQϕ = 2i
[(
ε†τmε

)
∂mAz + g [σ, Az]−DzV0 + iDzσ̃

]
,

δQχ = 2i
[(
εc

†
τmε
)
∂mAz − 2DzV+

]
.

Taking account of (V±)† = V∓, we deduce that

δQ
(
δQξ
)† = 1

2

[
2
r̃

r2
ξ̃ + ig

[
σ, ξ̃
]
+ i
(
ε†τmε

)
∂mξ̃ + i

(
εc

†
τmε
)
D(−2)
m η̃

]
,

δQ
(
δQη
)† = − i

2

[
2i
r̃

r2
η̃− g [σ, η̃]+ (ε†τmε

)
D(−2)
m η̃−

(
ε†τmεc

)
Dmξ̃
]
,

δQ
(
δQϕ
)† = − i

2

[(
ε†τmε

)
∂mϕ̃ − g [σ, ϕ̃]+ 2iDz̄ξ̃

]
,

δQ
(
δQχ
)† = − i

2

[(
ε†τmεc

)
∂mϕ̃ + 2iDz̄η̃

]
,

δQ
(
δQχ̃
)† = − i

2

[
−
(
ε†τmε

)
Dmχ + 2i

r̃

r2
χ − g [σ, χ]+ (εc†

τmε
)
Dmϕ − 2iDzη

]
.

(61)

Each of these fluctuations is in the adjoint representation of the gauge group G, whose Cartan 
generators we denote as Hi (i = 1, · · · , r) with r the rank of G, and the remaining generators as 
Eα with α a root of G. We assume that they obey

[Hi, Eα] = αiEα,
[
Eα, E−α

]= r∑
αiHi ≡ α ·H,
i=1
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and are normalized as

tr
[
HiHj
]= δi,j , tr

[
E−αEα

]= 1.

Since the fluctuations have no interactions in the large t limit, the fluctuations taking values 
in the Cartan subalgebra are decoupled from the remaining sector, and they yield an overall 
constant to the partition function. We are interested in the dependence of the partition function 
on the value σ at one of the fixed points, and therefore we will focus on the remaining sector, 
where the fluctuations are expanded in terms of the basis {Eα}α∈� with � the set of all the roots 
of G.

We then assume that (σ · α) =∑ri=1 σiα
i is non-zero for a generic (σ 1, · · · , σ r). It implies

that the operator [σ, ·] acting on the sector we are interested in is invertible, and the following 
shifts are allowed to be done:

V0 → V0 − i 1

g [σ, ·]
(
ε†τmε

)
∂mσ̃ , V+ → V+ − i

2

1

g [σ, ·]
(
εc

†
τmε
)
∂mσ̃ ,

V− → V− − i

2

1

g [σ, ·]
(
ε†τmεc

)
∂mσ̃ , Az → Az − i 1

g [σ, ·]∂zσ̃ ,

which enables us to ‘gauge away’ the fluctuation σ̃ in the above BRST transformation. In order 
to ensure this, we need to use (102) in Appendix G.3.

We would now like to contemplate the relation of the scalar σ with a parameter θ of the gauge 
transformation. In order to elucidate the discussion, we will refer to the value σ at one of the 
fixed points as σ0. Before ‘diagonalizing’ σ0, the scalar field σ is given by the sum

σ = σ0(z, z̄)+ σ̃ ,
where the fluctuation σ̃ is defined as the non-zero modes on the S3 so that

σ̃ =
∞∑

l=1/2

l∑
m,m̃=−l

σ̃l,m,m̃(z, z̄)ϕl,m,m̃,

with the scalar spherical harmonics ϕl,m,m̃ (l = 0, 1/2, 1, 3/2, · · · ; −l ≤m, m̃≤ l) on the S3. The 
fixed point σ0(z, ̄z) therefore corresponds to the zero mode ϕ0,0,0 on the S3. With the parameter 
θ of the gauge transformation, the scalar field σ is transformed infinitesimally as

σ → σ + ig [θ, σ ] .

The parameter θ may be expanded in terms of the harmonics ϕl,m,m̃,

θ =
∞∑
l=0

l∑
m,m̃=−l

θl,m,m̃(z, z̄)ϕl,m,m̃ = θ0(z, z̄)+
∞∑

l=1/2

l∑
m,m̃=−l

θl,m,m̃(z, z̄)ϕl,m,m̃.

Since there is the correspondence between σ̃l,m,m̃ and θl,m,m̃ for l �= 0, the measure of the 
non-zero modes 

∏
l=1/2
∏

−l≤m,m̃≤l[dσ̃l,m,m̃] in the path integral can be canceled by the gauge 
degrees of freedom, 

∏
l=1/2
∏

−l≤m,m̃≤l[dθl,m,m̃], if the fluctuation σ̃ never appear in the inte-
grand of the path integral. This is indeed the case, as we have seen above in the large t limit.

The remaining gauge degrees of freedom θ0(z, ̄z) are used to ‘diagonalize’ σ0(z, ̄z), as ex-
plained before. As we have elucidated in the previous paper [1], the ratio of the measures 
[dσ0]/[dθ0] gives rise to the Faddeev–Popov determinant
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ZFP =
∏
α∈�

Det(0,0)
[
ig (σ · α)]

=
∫

[dc̄(z, z̄)dc(z, z̄)] exp

⎡
⎣−ig∑

α∈�

∫
�

d2z
√
g� (σ0 · α) c̄−αcα

⎤
⎦ , (62)

with the Faddeev–Popov ghost cα(z, ̄z), c̄α(z, ̄z) (α ∈�), which scalar fields on �.
Thus, we will set σ̃ to zero in the BRST transformations, and let us proceed to the evaluation 

of the one-loop determinants in the partition function.
From the bosonic part of the gauge multiplet in the regulator action SQ,

−
∫
d5x

√
g tr
[(
δQξ
)† · δQξ + (δQη)† · δQη+ (δQϕ)† · δQϕ + (δQχ)† · δQχ

+ (δQχ̃)† · δQχ̃
]
, (63)

we can see that the auxiliary fields D1
2 and D2

1 show up in the last term 
(
δQχ̃
)† · δQχ̃ ∼∣∣D2

1
∣∣2, and we will immediately integrated them out in the path integral. Furthermore, we will 

also integrate out the auxiliary field D1
1, since it appears only in the first term 

(
δQξ
)† · δQξ ∼∣∣D1

1
∣∣2 + · · · , with no D1

1 in the ellipsis. Then, the sum of the first term and the second term is 
reduced to

−
∫
d5x

√
g tr

[∣∣∣− 2i
r̃

r2
V0 + g [σ, V0] +

(
εc

†
τmε
)
D(−2)
m V− −

(
ε†τmεc

)
D(2)m V+

∣∣∣2
+
∣∣∣− 4i

r̃

r2
V+ + 2g

[
σ, V+
]+ 2
(
ε†τmε

)
D(2)m V+ −

(
εc

†
τmε
)
∂mV0

∣∣∣2], (64)

and the third and fourth terms are summed to yield

−4
∫
d5x

√
g tr

[∣∣∣(ε†τmε
)
∂mAz + g [σ, Az]−DzV0

∣∣∣2 +
∣∣∣(εc†

τmε
)
∂mAz − 2DzV+

∣∣∣2] ,
which we will integrate by parts to obtain

−4
∫
d5x

√
g tr
[
Az�0Az̄ +AzDz̄

((
ε†τmε

)
∂mV0 + g [σ, V0] + 2

(
εc

†
τmε
)
D(−2)
m V−

)
+Dz
((
ε†τmε

)
∂mV0 − g [σ, V0] + 2

(
ε†τmεc

)
D(2)m V+

)
·Az̄

+DzV0Dz̄V0 + 4DzV+Dz̄V−
]
,

where �0 denotes the differential operator

−
[(
ε†τmε

)
∂m + g [σ, ·]

][(
ε†τnε
)
∂n − g [σ, ·]

]
−
(
εc

†
τmε
)
D(−2)
m

(
ε†τnεc

)
∂n.

Since the three differential operators(
ε†τmε

)
∂m = 2i

r̃
L3,

(
εc

†
τmε
)
∂m = 2i

r
L+,

(
ε†τmεc

)
∂m = 2i

r
L−, (65)

with d = em∂m obey the Lie algebra of SU(2),[
L3, L±

]= ±L±,
[
L+, L−

]= 2L3,
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we can regard �0 as

4

r̃2
L2

3 + 4

r2
L+L− + g2 [σ, [σ, ·]] ,

which is positive in the root sector expanded in the basis {Eα}, and the operator �0 is invertible 
in the sector. Using the inverse of it, we will shift Az and Az̄ in the above integrand to give

−4
∫
d5x

√
g tr
[
Az�0Az̄ +DzJ+ · 1

�−2
(DzJ+)†

]
, (66)

after integrations by parts, with

J+ = 2

((
ε†τmε

)
∂mV+ + g [σ, V+

]− 2i
r̃

r2
V+
)

−
(
εc

†
τmε
)
∂mV0,

where we have defined the operator �−2 by

−
[(
ε†τmε

)
D(−2)
m + 2i

r̃

r2
+ g [σ, ·]

]

×
[(
ε†τnε
)
D(−2)
n + 2i

r̃

r2
− g [σ, ·]

]
−
(
ε†τnεc

)
D(0)n
(
εc

†
τmε
)
D(−2)
m .

From the definition, it is obvious that(
εc

†
τmε
)
D(−2)
m =

(
εc

†
τmε
)
∂m = 2i

r
L+,(

ε†τmε
)
D(−2)
m + 2i

r̃

r2
=
(
ε†τmε

)(
∂m + 2i

1

r̃

(
1 − r̃2

r2

)
e3
m

)
+ 2i

r̃

r2
= 2i

r̃
(L3 + 1) ,

(67)

and so the operator �−2 may be rewritten as

4

r̃2 (L3 + 1)2 + g2 [σ, [σ, ·]] + 4

r2
L−L+.

Therefore, with the same reason as for �0, we can see that the operator �−2 is invertible.
To achieve the above expression (66) of the integrand, we have used the formulas (102), 

repeatedly. In particular, from (102), we can deduce more customized formulas for this purpose,

D
(q+2)
0 D

(q)
+ =D(q)+

[
D
(q)

0 + 2i
r̃

r2

]
, D

(q)
− D

(q)

0 =
[
D
(q−2)
0 + 2i

r̃

r2

]
D
(q)
− ,

D
(0)
0 �0 =�0D

(0)
0 , D

(0)
− �0 =�−2D

(0)
− , �0D

(−2)
+ =D(−2)

+ �−2, (68)

with the abbreviations,

D
(q)

0 =
(
ε†τmε

)
D(q)m , D

(q)
+ =
(
εc

†
τmε
)
D(q)m , D

(q)
− =
(
ε†τmεc

)
D(q)m .

In the sum of (64) and (66), we will shift V± as

V± → V± + 1

2

1

D
(±2)
0 ∓ 2i r̃

r2 ± g [σ, ·]
D
(0)
± V0.

This shift is possible, because the operators acting on the root Eα

D
(±2)
0 ∓ 2i

r̃ ± g [σ, ·] = 2i
(L3 ∓ 1)± g (σ · α)
r2 r̃



T. Kawano, N. Matsumiya / Nuclear Physics B 898 (2015) 456–562 503
have no zero-modes for a generic (σ · α). Since the term in δQξ ,

D
(2)
− V+ −D(−2)

+ V− +
(

2i
r̃

r2
− g [σ, ·]

)
V0

is shifted to become D(2)− V+ −D(−2)
+ V− −K0V0, with K0V0 denoting

g [σ, ·](
D
(0)
0 + g [σ, ·]

)(
D
(0)
0 − g [σ, ·]

)
×
[(
D
(0)
0 − 2i

r̃

r2
+ g [σ, ·]

)(
D
(0)
0 − g [σ, ·]

)
+D(−2)

+ D
(0)
−
]
V0.

We obtain the integrand of the resulting sum of (64) and (66), after integrations by parts,

Az�0Az̄ − V+
1

�−2

[
�−2 − 4DzDz̄

](
D
(−2)
0 + 2i

r̃

r2
+ g [σ, ·]

)

×
(
D
(−2)
0 + 2i

r̃

r2
− g [σ, ·]

)
V− + 1

4

∣∣∣D(2)− V+ −D(−2)
+ V− −K0V0

∣∣∣2 ,
where we will shift V0 appropriately to eliminate the term D(2)− V+ −D(−2)

+ V−. This is possible, 
since the operator K0 is invertible in the same sense as explained above. The last term in the 
above integrand then gives

−1

4
(K0V0)

2 .

Note that K0V0 is pure imaginary, which may be ensured by using(
D
(0)
0 − 2i

r̃

r2
∓ g [σ, ·]

)(
D
(0)
0 ± g [σ, ·]

)
+D(−2)

+ D
(0)
−

=
(
D
(0)
0 + 2i

r̃

r2
± g [σ, ·]

)(
D
(0)
0 ∓ g [σ, ·]

)
+D(2)− D

(0)
+ . (69)

We now see that the resulting integrand is ‘diagonalized’, and it is a simple of matter to 
compute the one-loop determinants from the bosonic fields of the gauge multiplet,

Z
1-loop
V,B =Z1-loop

V,0

× Det(0,0)
[
�−2
]

Det(0,1)
[
�0
]
Det(0,0)

[[
�−2 − 4DzDz̄

](
D
(−2)
0 +2i r̃

r2 +g [σ, ·]
)(
D
(−2)
0 +2i r̃

r2 −g [σ, ·]
)] ,

where the determinant Det(k,l)[D] for an operator D is defined by

1

Det(k,l) [D]
=
∫

[dϕ†][dϕ] exp

[
−
∫
d5x

√
g tr[ϕ†Dϕ]

]
,

for a bosonic (k, l)-form field ϕ on � and its partner ϕ†, both of which are also scalar fields on 
the S3. We denote the one-loop contribution from V0 as ZV,0. Since V0 is a real field; V †

0 = V0, 
some care is required to integrate over it. Upon expanding it in terms of the basis {Eα}α∈�, we 
have

V0 =
r∑
V i0 Hi +

∑
V α0 Eα,
i=1 α∈�
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and the reality condition implies that 
(
V α0

)† = V −α
0 . Therefore, ZV,0 is given by the path integral∫ ∏

α∈�

[
dV α0
]

exp

[
1

4

∫
d5x

√
g tr
[
(K0V0)

2
]]

with the exponent tr
[
(K0V0)

2] expanded as

−2
∑
α∈�+

∣∣∣∣ g (σ · α)(
D
(0)
0 + g (σ · α)

)(
D
(0)
0 − g (σ · α)

)

×
[(
D
(0)
0 − 2i

r̃

r2
+ g (σ · α)

)(
D
(0)
0 − g (σ · α)

)
+D(−2)

+ D
(0)
−
]
V α0

∣∣∣∣
2

,

up to the Cartan part, with �+ the set of all the positive roots of �. Taking account of (69), we 
will integrate it to obtain

Z
1-loop
V,0 =

∏
α∈�+

Det(0,0)

⎡
⎣ g (σ · α)(
D
(0)
0 + g (σ · α)

)(
D
(0)
0 − g (σ · α)

)
⎤
⎦

−2

×Det(0,0)

[(
D
(0)
0 − 2i

r̃

r2
+ g (σ · α)

)(
D
(0)
0 − g (σ · α)

)
+D(−2)

+ D
(0)
−
]−2

,

where we defined the determinant Det(k,l)[D] for an operator D as

1

Det(k,l) [D]
=
∫

[d (ϕα)†][dϕα] exp

[
−
∫
d5x

√
g [(ϕα)†Dϕα]

]
,

for a bosonic (k, l)-form field ϕα on � and its partner (ϕα)†, both of which are also scalar fields 
on the S3. They are just one components of an adjoint ϕ in the expansion

ϕ =
r∑
i=1

ϕiHi +
∑
α∈�

ϕαEα.

Therefore, up to an overall constant including the Cartan part,

Z
1-loop
V,0 = 1

ZFP
·

(
Det(0,0)

[
D
(0)
0 − g [σ, ·]

])2
Det(0,0)

[(
D
(0)
0 − 2i r̃

r2 + g [σ, ·]
)(
D
(0)
0 − g [σ, ·]

)
+D(−2)

+ D
(0)
−
] .

Let us proceed to the one-loop contributions from the fermionic part of the gauge multiplet, 
of which the part in the regulator action SQ is

−
∫
d5x

√
g
(
δQ
(
δQξ
)† · ξ + δQ

(
δQη
)† · η+ δQ

(
δQϕ
)† · ϕ + δQ

(
δQχ
)† · χ

+ δQ
(
δQχ̃
)† · χ̃
)
.

Substituting (61) into this and integrating by parts, the first two terms become

−
(
i

2

)[(
ξ̃ , η̃
)(
D
(0)
0 + 2i r̃

r2 + g [σ, ·] D
(2)
−

D
(0) −D(2) + 2i r̃ + g [σ, ·]

)(
ξ

η

)]
,

+ 0 r2
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and the remaining terms yield(
i

2

)[(
ϕ̃, χ̃
)(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i r̃

r2 − g [σ, ·]

)(
ϕ

χ

)]

+
(
Dz̄ξ̃ ,Dz̄η̃

)(
ϕ

χ

)
+
(
ϕ̃, χ̃

)(
0

Dzχ

)
.

Integrating over ϕ, χ, ϕ̃, and χ̃ to give the one-loop determinant

Det(1,0)

[(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i r̃

r2 − g [σ, ·]

)]
,

the latter terms in the integrand are reduced to

−2i

[(
ξ̃ , η̃
)(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i r̃

r2 − g [σ, ·]

)−1(
0

Dz̄Dzη

)]
,

after integration by parts. Summing this and the first two terms in the integrand results in

− i
2

[(
ξ̃ , η̃
)(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i r̃

r2 − g [σ, ·]

)−1(
D1 0
D3 D4

)(
ξ

η

)]
,

where the operators D1, D3, and D4 denote

D1 =
(
D
(0)
0 − g [σ, ·]

)(
D
(0)
0 + 2i

r̃

r2
+ g [σ, ·]

)
+D(2)− D

(0)
+ ,

D3 =D(0)+
(
D
(0)
0 + 2i

r̃

r2
+ g [σ, ·]

)
−
(
D
(2)
0 − 2i

r̃

r2
+ g [σ, ·]

)
D
(0)
+ ,

D4 = 4Dz̄Dz +
(
D
(2)
0 − 2i

r̃

r2
+ g [σ, ·]

)(
D
(2)
0 − 2i

r̃

r2
− g [σ, ·]

)
+D(0)+ D

(2)
− ,

and the zero in the top right component of the matrix is seen from the calculation(
D
(0)
0 − g [σ, ·]

)
D
(2)
− −D(2)−

(
D
(2)
0 − 2i

r̃

r2
− g [σ, ·]

)
= 0,

with help of (68). Integrating over ξ , η, ξ̃ , and η̃, we obtain the one-loop determinants

Det(0,0)

[(
D1 0
D2 D4

)]

Det(0,0)

[(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i r̃

r2 − g [σ, ·]

)] .

Thus, we compute the one-loop contributions from the fermionic fields of the gauge multiplet,

Z
1-loop
V,F =

Det(1,0)

[(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i r̃

r2 − g [σ, ·]

)]

Det(0,0)

[(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0) −D(2) + 2i r̃ − g [σ, ·]

)]Det(0,0)

[(
D1 0
D2 D4

)]
,

+ 0 r2
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where the last factor is easily evaluated as

Det(0,0)

[(
D1 0
D2 D4

)]
=Det(0,0) [D1]Det(0,0) [D4]

=Det(0,0)

[(
D
(0)
0 − g [σ, ·]

)(
D
(0)
0 + 2i

r̃

r2
+ g [σ, ·]

)
+D(2)− D

(0)
+
]

×Det(0,0)

[
4Dz̄Dz +

(
D
(2)
0 − 2i

r̃

r2
+ g [σ, ·]

)(
D
(2)
0 − 2i

r̃

r2
− g [σ, ·]

)

+D(0)+ D
(2)
−
]
.

Let us evaluate the determinant

Det(k,l)

[(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i r̃

r2 − g [σ, ·]

)]
.

For four operators A, B , C, and D, we have the formula (see, for example, [30])

Det(k,l)

[(
A B

C D

)]
=Det(k,l)

[
A−B 1

D
C

]
Det(k,l) [D] ,

for an invertible D. If there is another differential operator D′ satisfying the relation

B
1

D
= 1

D′B,

we then obtain the formula

Det(k,l)

[(
A B

C D

)]
= Det(k,l) [D]

Det(k,l)
[
D′]Det(k,l)

[
D′A−BC] .

When we regard

B =D(2)− , D = −D(2)0 + 2i
r̃

r2
− g [σ, ·] ,

using (68), we find the operator

D′ = −D(0)0 − g [σ, ·] ,
and the determinant gives

Det(k,l)
[
D
(2)
0 − 2i r̃

r2 + g [σ, ·]
]

Det(k,l)
[
D
(0)
0 + g [σ, ·]

] Det(k,l)

×
[
−
(
D
(0)
0 + g [σ, ·]

)(
D
(0)
0 − g [σ, ·]

)
−D(2)− D

(0)
+
]
.

On the other hand, we also have the formula (see, for example, [30])

Det(k,l)

[(
A B

C D

)]
=Det(k,l) [A]Det(k,l)

[
D −C 1

A
B

]
,

for an invertible A. If there is another differential operator A′ satisfying the relation

C
1 = 1

C,

A A′
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we then obtain the formula

Det(k,l)

[(
A B

C D

)]
= Det(k,l) [A]

Det(k,l)
[
A′]Det(k,l)

[
A′D−CB] .

If we then identify

A=D(0)0 − g [σ, ·] , C =D(0)+ ,

using (68), we can find the operator

A′ =D(2)0 − 2i
r̃

r2
− g [σ, ·] ,

and therefore, the same determinant have another expression

Det(k,l)
[
D
(0)
0 − g [σ, ·]

]
Det(k,l)

[
D
(2)
0 − 2i r̃

r2 − g [σ, ·]
]Det(k,l)

×
[
−
(
D
(2)
0 − 2i

r̃

r2
− g [σ, ·]

)(
D
(2)
0 − 2i

r̃

r2
+ g [σ, ·]

)
−D(0)+ D

(2)
−
]
.

For a (k, l)-form fermionic field v on � of charge 2, which is also a scalar on the S3, and its 
hermitian conjugate v∗, integration by part is used to deduce∫

d5x
√
g tr

[
v∗
((
D
(2)
0 − 2i

r̃

r2
− g [σ, ·]

)(
D
(2)
0 − 2i

r̃

r2
+ g [σ, ·]

)
+D(0)+ D

(2)
−
)
v

]

=
∫
d5x

√
g tr

[
v

((
D
(−2)
0 + 2i

r̃

r2
− g [σ, ·]

)(
D
(−2)
0 + 2i

r̃

r2
+ g [σ, ·]

)

+D(0)− D
(−2)
+
)
v∗] ,

which implies that

Det(k,l)

[
−
(
D
(2)
0 − 2i

r̃

r2
− g [σ, ·]

)(
D
(2)
0 − 2i

r̃

r2
+ g [σ, ·]

)
−D(0)+ D

(2)
−
]

=Det(l,k)

[
−
(
D
(−2)
0 + 2i

r̃

r2
+ g [σ, ·]

)(
D
(−2)
0 + 2i

r̃

r2
− g [σ, ·]

)
−D(0)− D

(−2)
+
]

=Det(l,k)
[
�−2
]
.

Similarly, we can see that

Det(k,l)
[
−
(
D
(0)
0 + g [σ, ·]

)(
D
(0)
0 − g [σ, ·]

)
−D(2)− D

(0)
+
]

=Det(l,k)
[
−
(
D
(0)
0 + g [σ, ·]

)(
D
(0)
0 − g [σ, ·]

)
−D(−2)

+ D
(0)
−
]

=Det(l,k) [�0] ,

and that

Det(k,l)

[
D
(2)
0 − 2i

r̃

r2
± g [σ, ·]

]
=Det(l,k)

[
D
(−2)
0 + 2i

r̃

r2
± g [σ, ·]

]
.

Using these, we may rewrite the determinant
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Det(k,l)

[(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i r̃

r2 − g [σ, ·]

)]

=
Det(l,k)

[
D
(−2)
0 + 2i r̃

r2 + g [σ, ·]
]

Det(l,k)
[
D
(0)
0 + g [σ, ·]

] Det(l,k) [�0]

=
Det(l,k)

[
D
(0)
0 − g [σ, ·]

]
Det(l,k)

[
D
(−2)
0 + 2i r̃

r2 − g [σ, ·]
]Det(l,k)

[
�−2
]
, (70)

which also implies the formula

Det(l,k) [�0]

Det(l,k)
[
�−2
] = Det(l,k)

[
D
(0)
0 − g [σ, ·]

]
Det(l,k)

[
D
(0)
0 + g [σ, ·]

]
Det(l,k)

[
D
(−2)
0 + 2i r̃

r2 − g [σ, ·]
]
Det(l,k)

[
D
(−2)
0 + 2i r̃

r2 + g [σ, ·]
] .

Using (70) twice in a bit tricky way, we obtain Z1-loop
V,F

Det(0,1)
[
D
(−2)
0 + 2i r̃

r2 + g [σ, ·]
]
Det(0,0)

[
D
(−2)
0 + 2i r̃

r2 − g [σ, ·]
]

Det(0,1)
[
D
(0)
0 + g [σ, ·]

]
Det(0,0)

[
D
(0)
0 − g [σ, ·]

] Det(0,1) [�0]

Det(0,0)
[
�−2
]

×Det(0,0) [D1]Det(0,0) [D4] .

With the same reasoning as the argument about integration by parts in the integrand, it is easy 
to see that

Det(0,0) [D1] =Det(0,0)

[(
D
(0)
0 − 2i

r̃

r2
+ g [σ, ·]

)(
D
(0)
0 − g [σ, ·]

)
+D(−2)

+ D
(0)
−
]
,

Det(0,0) [D4] =Det(0,0)
[
4DzDz̄ −�−2

]
.

Using this, we will combine the one-loop contributions Z1-loop
V,B , Z1-loop

V,F , and ZFP from the gauge 
multiplet to yield

Z
1-loop
V =ZFPZ

1-loop
V,B Z

1-loop
V,F

=
Det(0,1)

[
D
(−2)
0 + 2i r̃

r2 + g [σ, ·]
]

Det(0,0)
[
D
(−2)
0 + 2i r̃

r2 + g [σ, ·]
] Det(0,0)

[
D
(0)
0 − g [σ, ·]

]
Det(0,1)

[
D
(0)
0 − g [σ, ·]

] , (71)

where we have made use of the invariance

Det(0,0)
[
D
(0)
0 − g [σ, ·]

]
=Det(0,0)

[
D
(0)
0 + g [σ, ·]

]
,

under α→ −α for all the roots α ∈�.
The determinant Det(k,l) can be evaluated by using the basis {ϕl,m,m̃ ⊗ v ⊗ Eα, ϕl,m,m̃ ⊗

v ⊗Hi}, for v running over all the basis vectors of 	(k,l)(�), the set of all (k, l)-forms on �, 
upon regarding 	(k,l)(�) as a linear space. Here, ϕl,m,m̃ (l = 0, 1/2, 1, 3/2, · · · ; −l ≤m, m̃≤ l) 
denote the scalar spherical harmonics on the S3, and through the relations (65) of the differential 
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operators with the generators of the Lie algebra of SU(2), they provide the representations of the 
SU(2) algebra;

L3ϕl,m,m̃ =mϕl,m,m̃, L±ϕl,m,m̃ =√(l ∓m)(l ±m+ 1)ϕl,m±1,m̃.

On the basis15 {ϕl,m,m̃ ⊗ v⊗Eα}, using (67), we deduce

Det(k,l)
[
D
(0)
0 − g [σ, ·]

]
=
∏
α∈�

∏
l∈ 1

2 Z≥0

l∏
m,m̃=−l

det(k,l)

[
2i

r̃
m− g (σ · α)

]
,

Det(k,l)

[
D
(−2)
0 + 2i

r̃

r2
+ g [σ, ·]

]
=
∏
α∈�

∏
l∈ 1

2 Z≥0

l∏
m,m̃=−l

det(k,l)

[
2i

r̃
(m+ 1)+ g (σ · α)

]
,

with 1
2 Z≥0 the set of non-negative half integers, where the determinant det(k,l) is defined over 

the space 	(k,l)(�).
As explained in [31], the Hodge decomposition implies that for the space 	k,l(�) of all the 

(k, l)-forms on the Riemann surface �,

	1,0(�)⊕	0,1(�)=
(
	0,0(�)�H 0(�)

)
⊕
(
	0,0(�)�H 0(�)

)
⊕H 1(�),

where Hp(�) is the space of all the harmonic p-forms on �. It follows from this that for a 
constant D,

det(0,0) [D]

det(0,1) [D]
=Db0(�)− 1

2 b1(�) =D 1
2χ(�) (72)

with bi(�) = dimHi(�) the i-th Betti number, and with the Euler number χ(�) of the surface 
�:

χ(�)= b0(�)− b1(�)+ b2(�)= 2b0(�)− b1(�),

where we have used the Hodge duality; b0(�) = b2(�).
Taking account of this, we can reduce Z1-loop

V to

Z
1-loop
V =

∏
α∈�

∏
l∈ 1

2 Z≥0

l∏
m,m̃=−l

(
2i
r̃
m− g (σ · α)

2i
r̃
(m+ 1)+ g (σ · α)

) 1
2χ(�)

=
∏
α∈�+

[
r̃g (σ · α)

∏
n=1

(
n2 + r̃2g2 (σ · α)2

)]χ(�)
,

where we have replaced l by n = 2l (n = 0, 1, 2, · · · ).
From the formula

1

π
sinhπx = x

∞∏
m=1

(
1 + x2

m2

)
,

15 Since the contributions from the basis vectors ϕl,m,m̃⊗v⊗Hi to the determinants are constant factors to the partition 
function, we will omit them.
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together with the zeta regularization,

∞∏
m=1

m= e
∑∞
m=1 logm → e−ζ ′(0) = √

2π,

it follows that

Z
1-loop
V =

∏
α∈�+

[
2 sinh
(
πr̃g (σ · α) )]χ(�). (73)

In the round limit r̃ → r , ZV is in agreement with the previous result in [1].

8.2. One-loop contributions from the N = 1 hypermultiplet

Let us proceed to compute the one-loop contributions from the hypermultiplet by localization. 
Since the BRST transformation in the N = 1 twisting differs from the one in the N = 2 twisting, 
we will discuss them separately in the next two sub-subsections.

However, the BRST transformations of the scalar fields H , H † of the hypermultiplet are 
common in both the N = 1 and the N = 2 twistings. From (60), the BRST transformation of the 
scalar fields is reduced to

δQH̃ = 0, δQH = 0, δQH̃
† = − 1

2
√

2
κ̃, δQH

† = − 1

2
√

2
κ.

8.2.1. The N = 1 twisting
Let us begin with the N = 1 twisting to calculate the one-loop contributions from the hyper-

multiplet to the partition function by localization.
The BRST transformation of the fermions in the hypermultiplet is given by

δQχ = √
2i

[(
ε†τmε

)
D(−1)

mH̃ + g
[
σ, H̃
]
+ i r̃
r2
H̃

]
,

δQξ = √
2i
(
εc

†
τmε
)
D(−1)

mH̃ ,

δQη= F 1
1 − 2

√
2DzH̃ , δQκ = 0,

δQχ̃ = −√
2i

[(
ε†τmε

)
D(−1)

mH + g [σ, H ] + i r̃
r2
H

]
,

δQξ̃ = −√
2i
(
εc

†
τmε
)
D(−1)

mH,

δQη̃= F 2
1 + 2

√
2DzH, δQκ̃ = 0,

and its hermitian conjugate by

(
δQχ
)† = −√

2i

[(
ε†τmε

)
D(1)mH̃ † − g

[
σ, H̃ †
]
− i r̃
r2
H̃ †
]
,

(
δQξ
)† = −√

2i
(
ε†τmεc

)
D(1)mH̃ †,(

δQη
)† = −F 2

2 − 2
√

2Dz̄H̃ †,
(
δQκ
)† = 0,
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(
δQχ̃
)† = √

2i

[(
ε†τmε

)
D(1)mH † − g

[
σ, H †
]
− i r̃
r2
H †
]
,

(
δQξ̃
)† = √

2i
(
ε†τmεc

)
D(1)mH †,(

δQη̃
)† = F 1

2 + 2
√

2Dz̄H †,
(
δQκ̃
)† = 0.

Using the BRST transformation of the auxiliary fields F 1
2, F 2

2,

δQF
1

2 = i

2

[(
εc

†
τmε
)
D(−1)

mχ −
(
ε†τmε

)
D(1)mη− g [σ, η]+ i r̃

r2
η− 2iDz̄κ

]
,

δQF
2

2 = i

2

[(
εc

†
τmε
)
D(−1)

mχ̃ −
(
ε†τmε

)
D(1)mη̃− g [σ, η̃]+ i r̃

r2
η̃− 2iDz̄κ̃

]
,

where we have omitted the terms g
(
σ i
)α̃
γ̇

[
φi, λγ̇

]
on the right hand sides of both the equations, 

because they vanish in the large t limit, we find that

δQ
(
δQχ
)† = i

2

[(
ε†τmε

)
D(1)mκ̃ − g [σ, κ̃]− i r̃

r2
κ̃

]
,

δQ
(
δQξ
)† = i

2

(
ε†τmεc

)
D(1)mκ̃,

δQ
(
δQη
)† = − i

2

{(
εc

†
τmε
)
D(−1)

mχ̃ −
[(
ε†τmε

)
D(1)mξ̃ + g

[
σ, ξ̃
]
− i r̃
r2
ξ̃

]}
,

δQ
(
δQκ
)† = 0,

δQ
(
δQχ̃
)† = − i

2

[(
ε†τmε

)
D(1)mκ − g [σ, κ] − i r̃

r2
κ

]
,

δQ

(
δQξ̃
)† = − i

2

(
ε†τmεc

)
D(1)mκ,

δQ
(
δQη̃
)† = i

2

{(
εc

†
τmε
)
D(−1)

mχ −
[(
ε†τmε

)
D(1)mξ + g [σ, ξ ] − i r̃

r2
ξ

]}
,

δQ
(
δQκ̃
)† = 0.

The system of (H̃ , H̃ †, χ, ξ, η̃, κ̃, F 1
2) is identical to the one of (H, H †, χ̃ , ξ̃ , η, κ, F 2

2). 
If the former contributes the one-loop determinant Z1-loop

H to the partition function, both of the 

systems contribute (Z1-loop
H )2. Therefore, we will focus on the former system only.

From the fermionic part of the system (H̃ , H̃ †, χ, ξ, η̃, κ̃, F 1
2) of the regulator action SQ,

−
∫ √

gd5x
[
δQ
(
δQχ
)† · χ + δQ

(
δQξ
)† · ξ + δQ

(
δQη̃
)† · η̃+ δQ

(
δQκ̃
)† · κ̃
]

= i

2

∫ √
gd5x

×
⎡
⎣(χ, ξ

)⎛⎝
(
ε†τmε

)
D(1)m − g [σ, ·] − i r̃

r2

(
εc†τmε

)
D(−1)

m(
ε†τmεc

)
D(1)m −

(
ε†τmε

)
D(−1)

m − g [σ, ·] − i r̃
r2

⎞
⎠( κ̃

η̃

)⎤⎦ ,
where we have performed integration by parts, the one-loop determinant from the fermions of 
the system (H̃ , H̃ †, χ, ξ, η̃, κ̃, F 1

2) can be read as
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Z
1-loop
H,F

=Det
(0, 1

2 )

[((
ε†τmε

)
D(1)m − g [σ, ·] − i r̃

r2

(
εc†τmε

)
D(−1)

m(
ε†τmεc

)
D(1)m − (ε†τmε

)
D(−1)

m − g [σ, ·] − i r̃
r2

)]
,

where the determinant Det
(0, 1

2 )
is defined such that the path integral over a fermionic (k, l)-form 

ψ on � and its partner λ with a differential operator D yields∫
[dλ]
[
dψ
]

exp

[∫ √
gd5x λDψ

]
=Det(k,l) [D] .

For four differential operators D1, · · · , D4, we have the formula

Det(k,l)

[(
D1 D2
D3 D4

)]
=Det(k,l) [D1]Det(k,l)

[
D4 −D3

1

D1
D2

]
,

for an invertible D1. If there is another differential operator D′
1 satisfying the relation

D3
1

D1
= 1

D′
1
D3,

we obtain the formula

Det(k,l)

[(
D1 D2
D3 D4

)]
= Det(k,l) [D1]

Det(k,l)
[
D′

1

]Det(k,l)
[
D′

1D4 −D3D2
]
.

In our case, we have

D1 =
(
ε†τmε

)
D(1)m − g [σ, ·] − i r̃

r2
, D3 =

(
ε†τmεc

)
D(1)m,

which both act on the spinor κ̃ of negative chirality on � and of charge q = 1. Using (99) in 
Appendix G.3, we can find the operator D′

1,

D3D1 =
(
ε†τnεc

)
D(1)n
[(
ε†τmε

)
D(1)m − g [σ, ·] − i r̃

r2

]

=
[(
ε†τmε

)
D(−1)

m − g [σ, ·] + i r̃
r2

](
ε†τnεc

)
D(1)n =D′

1D3.

Therefore, we find that

Z
1-loop
H,F =Det

(0, 1
2 )

[
�N=1

H,B

] Det
(0, 1

2 )

[(
ε†τmε

)
D(1)m − g [σ, ·] − i r̃

r2

]
Det

(0, 1
2 )

[(
ε†τmε

)
D(−1)

m − g [σ, ·] + i r̃
r2

] ,
where the differential operator �N=1

H,B denotes

�N=1
H,B = −

((
ε†τmε

)
D(−1)

m − g [σ, ·] + i r̃
r2

)((
ε†τmε

)
D(−1)

m + g [σ, ·] + i r̃
r2

)

−
(
ε†τmεc

)
D(1)m

(
εc

†
τmε
)
D(−1)

m.
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Note that

Det
(0, 1

2 )

[(
ε†τmε

)
D(1)m − g [σ, ·] − i r̃

r2

]
=
∫ [
dχ
] [
dκ̃
]

exp

[
i

2

∫ √
gd5x χD1κ̃

]

=
∫ [
dχ
] [
dκ̃
]

exp

[
i

2

∫ √
gd5x κ̃D′

1χ

]

=Det
( 1

2 ,0)

[(
ε†τmε

)
D(−1)

m − g [σ, ·] + i r̃
r2

]
.

The differential operator D′
1 in the determinant Det

( 1
2 ,0)

[
D′

1
]

on the most right hand side 

doesn’t depend on the chirality of χ , and therefore, Det
( 1

2 ,0)

[
D′

1
] = Det

(0, 1
2 )

[
D′

1
]
. It means 

that the ratio of the determinants is unity;

Det
(0, 1

2 )

[(
ε†τmε

)
D(1)m − g [σ, ·] − i r̃

r2

]
Det

(0, 1
2 )

[(
ε†τmε

)
D(−1)

m − g [σ, ·] + i r̃
r2

] = 1,

and we obtain

Z
1-loop
H,F =Det

(0, 1
2 )

[
�N=1

H,B

]
.

In the bosonic part of the system (H̃ , H̃ †, χ, ξ, η̃, κ̃, F 1
2) of the regulator action SQ,

−
∫
d5x

√
g
[(
δQχ
)† · δQχ + (δQξ)† · δQξ + (δQη̃)† · δQη̃+ (δQκ̃)† · δQκ̃

]
,

we will shift the auxiliary fields F α̃
β̌

so that we can trivially integrate them out. We will integrate 
the remaining part of the action by parts to obtain

−2
∫
d5x

√
gH̃ †�N=1

H,B H̃ ,

and see that the one-loop determinant from the bosonic fields of the system (H̃ , H̃ †, χ, ξ, η̃, κ̃)
is given by

Z
1-loop
H,B = 1

Det
(0, 1

2 )

[
�N=1

H,B

] .
Therefore, the contributions from the hypermultiplet to the partition function are trivial;(

Z
1-loop
H

)2 =
(
Z

1-loop
H,F Z

1-loop
H,B

)2 = 1.

In the round limit r̃ → r , the contributions from the hypermultiplet reproduce the previous results 
about the hypermultiplet in [1].

8.2.2. The N = 2 twisting
Let us proceed to the N = 2 twisting. In contrast to the N = 1 twisting, the system of the 

fluctuations (H̃ , H̃ †, χ, ξ, η̃, κ̃, F 1
2) yields the different contribution to the partition function 

from the one from (H, H †, χ̃ , ξ̃ , η, κ, F 2
2), and we will treat them separately below.
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The BRST transformation of the fermions in the hypermultiplet is given by

δQχ = √
2i

[(
ε†τmε

)
D(0)mH̃ + g

[
σ, H̃
]
+ 2i

r̃

r2
H̃

]
,

δQξ = √
2i
(
εc

†
τmε
)
D(0)mH̃ ,

δQη= F 1
1 − 2

√
2DzH̃ , δQκ = 0,

δQχ̃ = −√
2i
[(
ε†τmε

)
D(−2)

mH + g [σ, H ]
]
, δQξ̃ = −√

2i
(
εc

†
τmε
)
D(−2)

mH,

δQη̃= F 2
1 + 2

√
2DzH, δQκ̃ = 0,

and its hermitian conjugate by(
δQχ
)† = −√

2i

[(
ε†τmε

)
D(0)mH̃ † − g

[
σ, H̃ †
]
− 2i

r̃

r2
H̃ †
]
,

(
δQξ
)† = −√

2i
(
ε†τmεc

)
D(0)mH̃ †,(

δQη
)† = −F 2

2 − 2
√

2Dz̄H̃ †,
(
δQκ
)† = 0,(

δQχ̃
)† = √

2i
[(
ε†τmε

)
D(2)mH † − g

[
σ, H †
]]
,(

δQξ̃
)† = √

2i
(
ε†τmεc

)
D(2)mH †,(

δQη̃
)† = F 1

2 + 2
√

2Dz̄H †,
(
δQκ̃
)† = 0.

Using the BRST transformation of the auxiliary fields F 1
2, F 2

2,

δQF
1

2 = i

2

[(
εc

†
τmε
)
D(−1)

mχ −
(
ε†τmε

)
D(1)mη− g [σ, η]− 2iDz̄κ

]
,

δQF
2

2 = i

2

[(
εc

†
τmε
)
D(−1)

mχ̃ −
(
ε†τmε

)
D(1)mη̃− g [σ, η̃]+ 2i

r̃

r2
η̃− 2iDz̄κ̃

]
,

where we have omitted the terms g
(
σ i
)α̃
γ̇

[
φi, λγ̇

]
on the right hand sides of both the equations, 

because they vanish in the large t limit, we find that

δQ
(
δQχ
)† = i

2

[(
ε†τmε

)
D(0)mκ̃ − g [σ, κ̃]− 2i

r̃

r2
κ̃

]
,

δQ
(
δQξ
)† = i

2

(
ε†τmεc

)
D(0)mκ̃,

δQ
(
δQη
)† = − i

2

{(
εc

†
τmε
)
D(−2)

mχ̃ −
[(
ε†τmε

)
D(0)mξ̃ + g

[
σ, ξ̃
]
− 2i

r̃

r2
ξ̃

]}
,

δQ
(
δQκ
)† = 0,

δQ
(
δQχ̃
)† = − i

2

[(
ε†τmε

)
D(2)mκ − g [σ, κ]

]
,

δQ

(
δQξ̃
)† = − i

2

(
ε†τmεc

)
D(2)mκ,

δQ
(
δQη̃
)† = i

2

{(
εc

†
τmε
)
D(0)mχ −

[(
ε†τmε

)
D(2)mξ + g [σ, ξ ]

]}
,

δQ
(
δQκ̃
)† = 0.
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From the fermionic part of the system (H̃ , H̃ †, χ, ξ, η̃, κ̃, F 1
2) of the regulator action SQ,

−
∫ √

gd5x
[
δQ
(
δQχ
)† · χ + δQ

(
δQξ
)† · ξ + δQ

(
δQη̃
)† · η̃+ δQ

(
δQκ̃
)† · κ̃
]

= i

2

∫ √
gd5x

×
⎡
⎣(χ, ξ

)⎛⎝
(
ε†τmε

)
D(0)m − g [σ, ·] − 2i r̃

r2

(
εc†τmε

)
D(−2)

m(
ε†τmεc

)
D(0)m −

(
ε†τmε

)
D(−2)

m − g [σ, ·]

⎞
⎠( κ̃

η̃

)⎤⎦ ,
where we have performed integration by parts, the one-loop determinant from the fermions of 
the system (H̃ , H̃ †, χ, ξ, η̃, κ̃, F 1

2) can be read as

Z
1-loop
H,F =Det(0,0)

[((
ε†τmε

)
D(0)m − g [σ, ·] − 2i r̃

r2

(
εc†τmε

)
D(−2)

m(
ε†τmεc

)
D(0)m − (ε†τmε

)
D(−2)

m − g [σ, ·]

)]
,

(74)

with the determinant Det(0,0) defined in the previous Subsection 8.2.1.
As in the N = 1 twisting in Subsection 8.2.1, upon computing the one-loop determinant (74), 

we may identify the differential operators D1 and D3 with

D1 =
(
ε†τmε

)
D(0)m − g [σ, ·] − 2i

r̃

r2
, D3 =

(
ε†τmεc

)
D(0)m,

respectively, and using (99) in Appendix G.3, we obtain the operator D′
1,

D3D1 =
(
ε†τnεc

)
D(0)n
[(
ε†τmε

)
D(0)m − g [σ, ·] − 2i

r̃

r2

]

=
[(
ε†τmε

)
D(−2)

m − g [σ, ·]
](
ε†τnεc

)
D(0)n =D′

1D3.

Using this relation, we can compute the one-loop determinant

Z
1-loop
H,F =Det(0,0)

[
�N=2

H,B

] Det(0,0)
[ (
ε†τmε

)
D(0)m − g [σ, ·] − 2i r̃

r2

]
Det(0,0)

[ (
ε†τmε

)
D(−2)

m − g [σ, ·]
] ,

where the differential operator �N=2
H,B denotes

�N=2
H,B = −

((
ε†τmε

)
D(−2)

m − g [σ, ·]
)((

ε†τmε
)
D(−2)

m + g [σ, ·]
)

−
(
ε†τmεc

)
D(0)m

(
εc

†
τmε
)
D(−2)

m.

In the bosonic part of the system (H̃ , H̃ †, χ, ξ, η̃, κ̃) of the regulator action SQ,

−
∫
d5x

√
g
[(
δQχ
)† · δQχ + (δQξ)† · δQξ + (δQη̃)† · δQη̃+ (δQκ̃)† · δQκ̃

]
,

we will shift the auxiliary fields F α̃
β̌

so that we can trivially integrate them out. We will integrate 
the remaining part of the action by parts to obtain

−2
∫
d5x

√
gH̃ †�̃N=2

H,B H̃ ,
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with the differential operator �̃N=2
H,B given by

−
((
ε†τmε

)
D(0)m − g [σ, ·] + 2i

r̃

r2

)((
ε†τmε

)
D(0)m + g [σ, ·] + 2i

r̃

r2

)
−
(
ε†τmεc

)
D(2)m

(
εc

†
τmε
)
D(0)m.

Therefore, we can read the one-loop determinant from the bosonic fields of the system 
(H̃ , H̃ †, χ, ξ, η̃, κ̃, F 1

2) as

Z
1-loop
H,B = 1

Det(0,0)
[
�̃N=2

H,B

] .
Let us move onto the fermionic part of the system (H, H †, χ̃ , ξ̃ , η, κ, F 2

2) of the regulator 
action SQ,

−
∫ √

gd5x

[
δQ
(
δQχ̃
)† · χ̃ + δQ

(
δQξ̃
)† · ξ̃ + δQ

(
δQη
)† · η+ δQ

(
δQκ
)† · κ
]

= i

2

∫ √
gd5x

×
⎡
⎣( χ̃ , ξ̃

)⎛⎝
(
ε†τmε

)
D(2)m − g [σ, ·]

(
εc†τmε

)
D(0)m(

ε†τmεc
)
D(2)m −

(
ε†τmε

)
D(0)m − g [σ, ·] − 2i r̃

r2

⎞
⎠(κ

η

)⎤⎦ ,
up to an integration by parts. It gives rise to the one-loop determinant

Z̃
1-loop
H,F =Det(1,0)

[((
ε†τmε

)
D(2)m − g [σ, ·]

(
εc†τmε

)
D(0)m(

ε†τmεc
)
D(2)m − (ε†τmε

)
D(0)m − g [σ, ·] − 2i r̃

r2

)]
,

(75)

with the determinant Det(1,0) defined in the previous Subsection 8.2.1.
As we have done just above, identifying the differential operators D1 and D3 with

D1 =
(
ε†τmε

)
D(2)m − g [σ, ·] , D3 =

(
ε†τmεc

)
D(2)m,

and using (99) in Appendix G.3, the operator D′
1 is found to be

D3D1 =
(
ε†τnεc

)
D(2)n
[(
ε†τmε

)
D(2)m − g [σ, ·]

]
=
[(
ε†τmε

)
D(0)m − g [σ, ·] + 2i

r̃

r2

](
ε†τnεc

)
D(2)n =D′

1D3.

It follows from this relation that the one-loop determinant is computed to give

Z̃
1-loop
H,F =Det(1,0)

[
�̃N=2

H,B

] Det(1,0)
[ (
ε†τmε

)
D(2)m − g [σ, ·]

]
Det(1,0)

[ (
ε†τmε

)
D(0)m − g [σ, ·] + 2i r̃

r2

] ,
with �̃N=2

H,B given just above.

In the bosonic part of the system (H, H †, χ̃ , ξ̃ , η, κ, F 2
2) of the regulator action SQ,

−
∫
d5x

√
g

[(
δQχ̃
)† · δQχ̃ +

(
δQξ̃
)† · δQξ̃ + (δQη)† · δQη+ (δQκ)† · δQκ

]
,
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we can trivially integrate F α̃
β̌

out in the same way as above. We will integrate the remaining part 
of the action by parts to obtain

−2
∫
d5x

√
gH †�N=2

H,B H,

with the same �̃N=2
H,B as above. It immediately gives the one-loop determinant from the bosonic 

fields of the system (H, H †, χ̃ , ξ̃ , η, κ, F 2
2),

Z̃
1-loop
H,B = 1

Det(0,1)
[
�N=2

H,B

] .
Combining the one-loop determinants from both the systems, we obtain

Z
1-loop
H =Z1-loop

H,F Z̃
1-loop
H,F Z

1-loop
H,B Z̃

1-loop
H,B

=
Det(0,0)

[
�N=2

H,B

]
Det(0,1)

[
�N=2

H,B

] Det(1,0)
[
�̃N=2

H,B

]
Det(0,0)

[
�̃N=2

H,B

] Det(0,0)
[ (
ε†τmε

)
D(0)m − g [σ, ·] − 2i r̃

r2

]
Det(1,0)

[ (
ε†τmε

)
D(0)m − g [σ, ·] + 2i r̃

r2

]

×
Det(1,0)

[ (
ε†τmε

)
D(2)m − g [σ, ·]

]
Det(0,0)

[ (
ε†τmε

)
D(−2)

m − g [σ, ·]
] .

We may regard the differential operators(
ε†τmε

)
D(0)m = 2i

r̃
L3,

(
εc

†
τmε
)
D(0)m = 2i

r
L+,

(
ε†τmεc

)
D(0)m = 2i

r
L−,

as the generators of the Lie algebra of SU(2) satisfying that[
L3, L±

]= ±L±,
[
L+, L−

]= 2L3.

Then, the scalar spherical harmonics ϕl,m,m̃ (l = 0, 1/2, 1, 3/2, · · · ; −l ≤ m, m̃ ≤ l) on the S3

obey

L3ϕl,m,m̃ =mϕl,m,m̃, L±ϕl,m,m̃ =√(l ∓m)(l ±m+ 1)ϕl,m±1,m̃.

Each of the fluctuations is in the adjoint representation of the gauge group G, whose Cartan 
generators we denote as Hi (i = 1, · · · , r) with r the rank of G, and the remaining generators as 
Eα with α a root of G. We assume that they obey

[Hi, Eα] = αiEα,
[
Eα, E−α

]= r∑
i=1

αiHi ≡ α ·H,

and are normalized as

tr
[
HiHj
]= δi,j , tr

[
E−αEα

]= 1.

As explained in [31], the Hodge decomposition implies that for the space 	k,l(�) of all the 
(k, l)-forms on the Riemann surface �,

	1,0(�)⊕	0,1(�)=
(
	0,0(�)�H 0(�)

)
⊕
(
	0,0(�)�H 0(�)

)
⊕H 1(�),
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where Hp(�) is the space of all the harmonic p-forms on �. It follows from this that for a 
constant D,

Det(0,0) [D]

Det(1,0) [D]
=Db0(�)− 1

2 b1(�) =D 1
2χ(�)

with bi(�) = dimHi(�) the i-th Betti number, and with the Euler number χ(�) of the sur-
face �:

χ(�)= b0(�)− b1(�)+ b2(�)= 2b0(�)− b1(�),

where we have used the Hodge duality; b0(�) = b2(�).
The one-loop determinant Det(k,l) in Z1-loop

H is defined over the space with the basis16

{ϕl,m,m̃ ⊗Eα ⊗ v}, where v ∈	k,l(�).
In terms of the basis {ϕl,m,m̃ ⊗Eα ⊗ v}, we obtain

Det(0,0)
[ (
ε†τmε

)
D(0)m − g [σ, ·] − 2i r̃

r2

]
Det(1,0)

[ (
ε†τmε

)
D(0)m − g [σ, ·] + 2i r̃

r2

]

=
⎡
⎢⎣∏
α∈�

∏
l∈ 1

2 Z≥0

l∏
m=−l

l∏
m̃=−l

(
2i

r̃
m− g (σ · α)+ 2i

r̃

r2

)⎤⎥⎦
1
2χ(�)

,

up to an overall constant, where α is a root of the Lie algebra of the gauge group, and � is the 
set of all the roots of it.

By the hermitian conjugation, we can see that

Det(0,0)
[(
ε†τmε

)
D(−2)

m − g [σ, ·]
]

=Det(0,0)
[(
ε†τmε

)
D(2)m − g [σ, ·]

]
,

and in a similar way to above, we can compute

Det(1,0)
[ (
ε†τmε

)
D(2)m − g [σ, ·]

]
Det(0,0)

[ (
ε†τmε

)
D(−2)

m − g [σ, ·]
]

= 1[∏
α∈�
∏
l∈ 1

2 Z≥0

∏l
m=−l
∏l
m̃=−l
(

2i
r̃
m+ 2i

r̃

(
1 − r̃2

r2

)
− g (σ · α)

)] 1
2χ(�)

,

up to a constant factor.

16 More precisely, the basis consists of {ϕl,m,m̃ ⊗ Eα ⊗ v} and {ϕl,m,m̃ ⊗Hi ⊗ v}, with v ∈ 	k,l(�). However, the 
Cartan part of the Lie algebra of G contributes a constant to the determinant, and we will omit them in computing the 
partition function.
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After replacing spin l by n = 2l = 0, 1, 2, · · · , and shifting n → n− 1, we find that

Det(0,0)
[ (
ε†τmε

)
D(0)m − g [σ, ·] − 2i r̃

r2

]
Det(1,0)

[ (
ε†τmε

)
D(0)m − g [σ, ·] + 2i r̃

r2

] Det(1,0)
[ (
ε†τmε

)
D(2)m − g [σ, ·]

]
Det(0,0)

[ (
ε†τmε

)
D(−2)

m − g [σ, ·]
]

=
∏
α∈�

⎡
⎣ ∞∏
n=1

⎛
⎝n− 1 + 2 r̃

2

r2 − ir̃g (σ · α)
n+ 1 − 2 r̃

2

r2 + ir̃g (σ · α)

⎞
⎠
n⎤
⎦

1
2χ(�)

=
∏
α∈�

⎡
⎣ 1

sb=1

(
i − 2i r̃

2

r2 − r̃g (σ · α)
)
⎤
⎦

1
2χ(�)

,

where sb(x) is a double sine function:

sb(x)=
∞∏

m,n=0

mb+ nb−1 + 1
2Q− ix

mb+ nb−1 + 1
2Q+ ix ,

with Q = b+ b−1. In particular, when b= 1, it is reduced to

sb=1(x)=
∞∏
n=1

(
n− ix
n+ ix

)n
. (76)

For more details on double sine functions, see [32,21,33,34].
The remaining factor in the one-loop contribution Z1-loop

H is computed in a similar way to 
yield

Det(0,0)
[
�N=2

H,B

]
Det(0,1)

[
�N=2

H,B

] Det(1,0)
[
�̃N=2

H,B

]
Det(0,0)

[
�̃N=2

H,B

]

=
∏
α∈�

∏
l∈ 1

2 Z≥0

l∏
m,m̃=−l

⎛
⎝ 4
r̃2 (m+ 1 − r̃2

r2 )
2 + 4

r2 (l −m)(l +m+ 1)+ g2 (σ · α)2
4
r̃2 (m+ r̃2

r2 )
2 + 4

r2 (l −m)(l +m+ 1)+ g2 (σ · α)2

⎞
⎠

1
2χ(�)

=
∏
α∈�

∏
l∈ 1

2 Z≥0

l∏
m̃=−l

⎛
⎝ 4
r̃2 (l + 1 − r̃2

r2 )
2 + g2 (σ · α)2

4
r̃2 (−l − r̃2

r2 )
2 + g2 (σ · α)2

⎞
⎠

1
2χ(�)

=
∏
α∈�

∞∏
n=1

⎛
⎝ (n+ 1 − 2r̃2

r2 )
2 + r̃2g2 (σ · α)2

(n− 1 + 2r̃2

r2 )
2 + r̃2g2 (σ · α)2

⎞
⎠
n
2χ(�)

=
∏ [

sb=1

(
i − 2i

r̃2

r2
− r̃g (σ · α)

)
sb=1

(
i − 2i

r̃2

r2
+ r̃g (σ · α)

)] 1
2χ(�)

.

α∈�
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Therefore, wrapping up all the factors, we obtain

Z
1-loop
H =

∏
α∈�+

[
sb=1

(
i − 2i

r̃2

r2
− r̃g (σ · α)

)
sb=1

(
i − 2i

r̃2

r2
+ r̃g (σ · α)

)] 1
2χ(�)

,

with �+ the set of all the positive roots in �.
Let us consider the round limit r̃ → r of Z1-loop

H . To this end, we will derive the formula

sb=1(−i + x)sb=1(−i − x)=
(
2 sinh(πx)

)2
, (77)

by using the zeta regularization,

∞∏
m=1

m= e
∑∞
m=1 logm → e−ζ ′(0) = √

2π.

In this regularization, we can prove the above formula as follows:

sb=1(−i + x)sb=1(−i − x)=
∞∏
n=1

(
n− 1 − ix
n+ 1 + ix

)n(
n− 1 + ix
n+ 1 − ix

)n
= x2

∞∏
m=1

(
m2 + x2

)2

=
( ∞∏
m=1

m4

)[
x

∞∏
m=1

(
1 + x2

m2

)]2

= (2 sinh(πx)
)2
,

where we have used the formula

1

π
sinhπx = x

∞∏
m=1

(
1 + x2

m2

)
.

We can make use of (77) to see the round limit r̃ → r of Z1-loop
H ,

Z
1-loop
H →

∏
α∈�+

[
sb=1 (−i − r̃g (σ · α)) sb=1 (−i + r̃g (σ · α))

] 1
2χ(�)

=
∏
α∈�+

[
2 sinh (πrg (σ · α))

]χ(�)
.

In summary, we have seen that the one-loop contribution in the N = 2 twisting on the 
squashed S3 is given by

Z1-loop =Z1-loop
V Z

1-loop
H

=
∏
α∈�+

[
2 sinh (πrg (σ · α))

]χ(�) [
sb=1

(
i − 2i

r̃2

r2
− r̃g (σ · α)

)
sb=1

×
(
i − 2i

r̃2

r2
+ r̃g (σ · α)

)] 1
2χ(�)

.



T. Kawano, N. Matsumiya / Nuclear Physics B 898 (2015) 456–562 521
9. Localization on the ellipsoid S3

We will calculate the partition function by localization on the ellipsoid S3 in the background 
discussed in Subsection 5.5. The calculations we will carry out are quite parallel to what we have 
done for the round and squashed S3’s in the previous section. All we have to do is to replace the 
background gauge field V by the one in (103), and r̃/r2 by 1/f . The fixed points discussed in 
the beginning of Section 8 are the same as for the background on the ellipsoid S3.

Therefore, we will briefly explain the calculations of the one-loop contributions from the 
N = 1 gauge multiplet and the N = 1 hypermultiplet, separately in the next two subsections.

9.1. One-loop contributions from the N = 1 gauge multiplet

For the BRST transformations of the N = 1 gauge multiplet, as discussed in Section 7 and 
done in previous Section 8, we will reduce all the component fields in the gauge multiplet into 
scalar fields on the S3.

As seen in Section 8, upon converting the gauge field Am to V0 and V±, the field strength Fmn
and Fmz are given, up to the gauge interactions, by

1

2
εmkl

(
ε†τmε
)
Fkl = 2r̃

r2
V0 + i

(
εc

†
τmε
)
D(−2)
m V− − i

(
ε†τmε

c
)
D(2)m V+,

1

2
εmkl

(
εc

†
τmε
)
Fkl = 4r̃

r2
V+ + 2i

(
ε†τmε
)
D(2)m V+ − i

(
εc

†
τmε
)
D(0)m V0,

Fmz =
(
εc

†
τmε
)[1

2

(
ε†τnεc

)
D(0)n Az −DzV−

]

+
(
ε†τmε

c
)[1

2

(
εc

†
τnε
)
D(0)n Az −DzV+

]

+
(
ε†τmε
)[(

ε†τnε
)
D(0)n Az −DzV0

]
,

where we have used (105), and we will omit the gauge interactions, as before, since they have no 
effects on the partition function in the large t limit.

The BRST transformation of the bosonic fields is given by

δQσ̃ = −1

4
ξ̃ , δQV0 = − i

4
ξ̃ , δQV− = − i

4
η̃, δQV+ = 0,

δQAz̄ = 1

4
ϕ̃, δQAz = 0,

δQD
1

1 = i

4

[(
ε†τmε

)
D(0)m ξ̃ − 2i

f
ξ̃ + g
[
σ, ξ̃
]
+
(
εc

†
τmε
)
D(−2)
m η̃

]
,

δQD
1

2 = i

4

[
−
(
ε†τmε

)
D(2)m χ + 2i

f
χ − g [σ, χ]+ (εc†

τmε
)
D(0)m ϕ − 2iDzη

]
,

where we denote a fixed point of the scalar field σ as the same letter σ , and the fluctuation about 
this fixed point σ as σ̃ , as we have done in the previous section. Henceforth, we will keep this 
notation until the end of this section.
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The BRST transformation of the fermionic fields is given by

δQξ̃ = 0, δQη̃= 0, δQϕ̃ = 0, δQχ̃ = −D2
1,

δQξ = −2i

f
V0 + g [σ, V0] + i

(
ε†τmε

)
∂mσ̃ +

(
εc

†
τmε
)
D(−2)
m V−

−
(
ε†τmεc

)
D(2)m V+ +D1

1,

δQη= −4i

f
V+ + 2g

[
σ, V+
]+ 2
(
ε†τmε

)
D(2)m V+ + i

(
εc

†
τmε
)
∂mσ̃ −

(
εc

†
τmε
)
∂mV0,

δQϕ = 2i
[(
ε†τmε

)
∂mAz + g [σ,Az]−DzV0 + iDzσ̃

]
,

δQχ = 2i
[(
εc

†
τmε
)
∂mAz − 2DzV+

]
,

and furthermore, we find that

δQ
(
δQξ
)† = 1

2

[
2

f
ξ̃ + ig

[
σ, ξ̃
]
+ i
(
ε†τmε

)
∂mξ̃ + i

(
εc

†
τmε
)
D(−2)
m η̃

]
,

δQ
(
δQη
)† = − i

2

[
2i

f
η̃− g [σ, η̃]+ (ε†τmε

)
D(−2)
m η̃−

(
ε†τmεc

)
Dmξ̃
]
,

δQ
(
δQϕ
)† = − i

2

[(
ε†τmε

)
∂mϕ̃ − g [σ, ϕ̃]+ 2iDz̄ξ̃

]
,

δQ
(
δQχ
)† = − i

2

[(
ε†τmεc

)
∂mϕ̃ + 2iDz̄η̃

]
,

δQ
(
δQχ̃
)† = − i

2

[
−
(
ε†τmε

)
Dmχ + 2i

f
χ − g [σ, χ]+ (εc†

τmε
)
Dmϕ − 2iDzη

]
.

As we have discussed in the previous Section 8, assuming that (σ · α) =∑ri=1 σiα
i is non-

zero for a generic (σ 1, · · · , σ r), we can see that the operator [σ, ·] acting on the sector with the 
basis {Eα} we are interested in is invertible, and we will ‘gauge away’ the fluctuation σ̃ by the 
shifts

V0 → V0 − i 1

g [σ, ·]
(
ε†τmε

)
∂mσ̃ , V+ → V+ − i

2

1

g [σ, ·]
(
εc

†
τmε
)
∂mσ̃ ,

V− → V− − i

2

1

g [σ, ·]
(
ε†τmεc

)
∂mσ̃ , Az → Az − i 1

g [σ, ·]∂zσ̃ ,
in the BRST transformation in the large t limit, where we used (107) in Appendix G.5.

Using the remaining gauge transformations, we will ‘diagonalize’ the value of the scalar σ at 
one of the fixed points. The latter results in the Faddeev–Popov determinant

ZFP =
∏
α∈�

Det(0,0)
[
ig (σ · α)]

=
∫

[dc̄(z, z̄)dc(z, z̄)] exp

⎡
⎣−ig∑

α∈�

∫
�

d2z
√
g� (σ · α) c̄−αcα

⎤
⎦ , (78)

with the Faddeev–Popov ghost cα(z, ̄z), c̄α(z, ̄z) (α ∈�), which are scalar fields on �.
This gauge-fixing procedure is quite the same as for the squash S3 in Section 8, and we will 

set σ̃ to zero in the BRST transformations.
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The bosonic part (63) of the gauge multiplet in the regulator action SQ, after integrating out 
the auxiliary fields Dα̇β̇ and integrating by parts, is reduced to the sum of

−
∫
d5x

√
g tr

[∣∣∣− 2i

f
V0 + g [σ, V0] +

(
εc

†
τmε
)
D(−2)
m V− −

(
ε†τmεc

)
D(2)m V+

∣∣∣2
+
∣∣∣− 4i

f
V+ + 2g

[
σ, V+
]+ 2
(
ε†τmε

)
D(2)m V+ −

(
εc

†
τmε
)
∂mV0

∣∣∣2], (79)

and

−4
∫
d5x

√
g tr
[
Az�0Az̄ +AzDz̄

((
ε†τmε

)
∂mV0 + g [σ, V0] + 2

(
εc

†
τmε
)
D(−2)
m V−

)
+Dz
((
ε†τmε

)
∂mV0 − g [σ, V0] + 2

(
ε†τmεc

)
D(2)m V+

)
·Az̄

+DzV0Dz̄V0 + 4DzV+Dz̄V−
]
,

where �0 denotes the differential operator

−
[(
ε†τmε

)
∂m + g [σ, ·]

][(
ε†τnε
)
∂n − g [σ, ·]

]
−
(
εc

†
τmε
)
D(−2)
m

(
ε†τnεc

)
∂n,

which is positive and so invertible in the root sector expanded in the basis {Eα}.
As we have done for the squashed S3 in the previous Section 8.1, using

D
(q+2)
0 D

(q)
+ =D(q)+

(
D
(q)

0 + 2i

f

)
− i
(
q + 2

2

)(
εc

†
τmnε
)
Vmn,

D
(q)
− D

(q)

0 =
(
D
(q−2)
0 + 2i

f

)
D
(q)
− + i

(q
2

)(
ε†τmnεc

)
Vmn, (80)

with the abbreviations,

D
(q)

0 =
(
ε†τmε

)
D(q)m , D

(q)
+ =
(
εc

†
τmε
)
D(q)m , D

(q)
− =
(
ε†τmεc

)
D(q)m ,

derived from (107) in Appendix G.5, we will shift Az and Az̄ in the latter integrand to give

−4
∫
d5x

√
g tr
[
Az�0Az̄ +DzJ+ · 1

�−2
(DzJ+)†

]
, (81)

after integrations by parts, with

J+ = 2

((
ε†τmε

)
∂mV+ + g [σ, V+

]− 2i

f
V+
)

−
(
εc

†
τmε
)
∂mV0,

where we have defined the operator �−2 by

−
[(
ε†τmε

)
D(−2)
m + 2i

f
+ g [σ, ·]

][(
ε†τnε
)
D(−2)
n + 2i

f
− g [σ, ·]

]

−
(
ε†τnεc

)
D(0)n
(
εc

†
τmε
)
D(−2)
m ,

which is also invertible in the sector we are interested in. Here, we have made use of

1

�0
D
(0)
+ =D(−2)

+
1

�−2
,

which is also deduced from (107).
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When we shift V± as

V± → V± + 1

2

1

D
(±2)
0 ∓ 2i

f
± g [σ, ·]

D
(0)
± V0,

for a generic (σ · α), the term in δQξ ,

D
(2)
− V+ −D(−2)

+ V− +
(

2i

f
− g [σ, ·]

)
V0

is shifted to become D(2)− V+ −D(−2)
+ V− −K0V0, with K0V0 denoting

g [σ, ·](
D
(0)
0 + g [σ, ·]

)(
D
(0)
0 − g [σ, ·]

)
×
[(
D
(0)
0 − 2i

f
+ g [σ, ·]

)(
D
(0)
0 − g [σ, ·]

)
+D(−2)

+ D
(0)
−
]
V0,

where we have used the formula

D(2)±
1

D(2)0 ± 2i
f

∓ g [σ, ·]
= 1

D(0)0 ∓ g [σ, ·]
D(2)± ,

which follow from (80) and

D(q−2)
0 D(q)− =D(q)−

(
D(q)0 − 2i

f

)
+ i
(
q − 2

2

)(
ε†τmnεc

)
Vmn,

and the formula

D(−2)
+ D(0)− −D(2)− D(0)+ = 4i

f
D(0)0 ,

of (107), together with (106) in Appendix G.5.
Therefore, the integrand of the sum of (79) and (81), after integrations by parts, becomes

Az�0Az̄ − V+
1

�−2

[
�−2 − 4DzDz̄

]
×
(
D
(−2)
0 + 2i

f
+ g [σ, ·]

)(
D
(−2)
0 + 2i

f
− g [σ, ·]

)
V− + 1

4
|K0V0|2 ,

where we have shifted V0 appropriately to eliminate the term D(2)− V+ −D(−2)
+ V−, as before.

Integrating over the remaining fluctuations, we obtain the one-loop determinants from the 
bosonic fields of the gauge multiplet,

Z
1-loop
V,B =ZV,0

× Det(0,0)
[
�−2
]

Det(0,1)
[
�0
]
Det(0,0)

[[
�−2 − 4DzDz̄

](
D
(−2)
0 + 2i

f
+ g [σ, ·]

)(
D
(−2)
0 + 2i

f
− g [σ, ·]

)] ,
where ZV,0 denotes the one-loop contribution from V0.
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Taking account of the fact that V0 is a real field; V †
0 = V0, we find that

ZV,0 =
∏
α∈�+

Det(0,0)

⎡
⎣ g (σ · α)(
D
(0)
0 + g (σ · α)

)(
D
(0)
0 − g (σ · α)

)
⎤
⎦

−2

×Det(0,0)

[(
D
(0)
0 − 2i

f
+ g (σ · α)

)(
D
(0)
0 − g (σ · α)

)
+D(−2)

+ D
(0)
−
]−2

.

Therefore, up to an overall constant including the Cartan part,

ZV,0 = 1

ZFP
·

(
Det(0,0)

[
D
(0)
0 − g [σ, ·]

])2
Det(0,0)

[(
D
(0)
0 − 2i

f
+ g [σ, ·]

)(
D
(0)
0 − g [σ, ·]

)
+D(−2)

+ D
(0)
−
] .

The computation of the one-loop contributions from the fermionic part of the gauge multiplet 
in the regulator action SQ is also parallel to that for the squashed S3.

Integrating by parts, the fermionic part is reduced to the sum of

−
(
i

2

)[(
ξ̃ , η̃
)(
D
(0)
0 + 2i

f
+ g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i

f
+ g [σ, ·]

)(
ξ

η

)]
,

and (
i

2

)[(
ϕ̃, χ̃
)(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i

f
− g [σ, ·]

)(
ϕ

χ

)]

+
(
Dz̄ξ̃ ,Dz̄η̃

)(
ϕ

χ

)
+
(
ϕ̃, χ̃

)(
0

Dzχ

)
.

Integrating over ϕ, χ, ϕ̃, and χ̃ gives the one-loop determinant

Det(1,0)

[(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i

f
− g [σ, ·]

)]
, (82)

and leaves the integrand

− i
2

[(
ξ̃ , η̃
)(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i

f
− g [σ, ·]

)−1(
D1 0
D3 D4

)(
ξ

η

)]
,

after integration by parts, where the operators D1, D3, and D4 denote

D1 =
(
D
(0)
0 − g [σ, ·]

)(
D
(0)
0 + 2i

f
+ g [σ, ·]

)
+D(2)− D

(0)
+ ,

D3 =D(0)+
(
D
(0)
0 + 2i

f
+ g [σ, ·]

)
−
(
D
(2)
0 − 2i

f
+ g [σ, ·]

)
D
(0)
+ ,

D4 = 4Dz̄Dz +
(
D
(2)
0 − 2i

f
+ g [σ, ·]

)(
D
(2)
0 − 2i

f
− g [σ, ·]

)
+D(0)+ D

(2)
− .

Integrating over the remaining ξ , η, ξ̃ , and η̃, and combining the resulting determinant with 
(82), we obtain the one-loop contributions from the fermionic fields of the gauge multiplet,
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Z
1-loop
V,F =

Det(1,0)

[(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i

f
− g [σ, ·]

)]

Det(0,0)

[(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i

f
− g [σ, ·]

)]Det(0,0)

[(
D1 0
D2 D4

)]
,

with Det(0,0)

[(
D1 0
D2 D4

)]
evaluated to give

Det(0,0)

[(
D
(0)
0 − g [σ, ·]

)(
D
(0)
0 + 2i

f
+ g [σ, ·]

)
+D(2)− D

(0)
+
]

×Det(0,0)

[
4Dz̄Dz +

(
D
(2)
0 − 2i

f
+ g [σ, ·]

)(
D
(2)
0 − 2i

f
− g [σ, ·]

)
+D(0)+ D

(2)
−
]
.

The determinant

Det(1,0)

[(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0)
+ −D(2)0 + 2i

f
− g [σ, ·]

)]
,

noting the relation

D
(2)
−

1

−D(2)0 + 2i
f

− g [σ, ·]
= 1

−D(0)0 − g [σ, ·]
D
(2)
− ,

is evaluated to yield

Det(1,0)
[
D
(2)
0 − 2i

f
+ g [σ, ·]

]
Det(1,0)

[
D
(0)
0 + g [σ, ·]

]
×Det(1,0)

[
−
(
D
(0)
0 + g [σ, ·]

)(
D
(0)
0 − g [σ, ·]

)
−D(2)− D

(0)
+
]
. (83)

Since the determinant of an operator is the same as the one of its adjoint operator, it follows that

Det(1,0)
[
−
(
D
(0)
0 + g [σ, ·]

)(
D
(0)
0 − g [σ, ·]

)
−D(2)− D

(0)
+
]

=Det(0,1) [�0] ,

Det(1,0)

[
D
(2)
0 − 2i

f
± g [σ, ·]

]
=Det(0,1)

[
D
(−2)
0 + 2i

f
± g [σ, ·]

]
,

Det(1,0)
[
D
(0)
0 ± g [σ, ·]

]
=Det(0,1)

[
D
(0)
0 ± g [σ, ·]

]
.

Using them, (83) may be rewritten as

Det(0,1)
[
D
(2)
0 + 2i

f
+ g [σ, ·]

]
Det(0,1)

[
D
(0)
0 + g [σ, ·]

] Det(0,1) [�0] . (84)

For the determinant

Det(0,0)

[(
D
(0)
0 − g [σ, ·] D

(2)
−

D
(0) −D(2) + 2i − g [σ, ·]

)]
,

+ 0 f
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using the formula

D
(0)
+

1

D
(0)
0 − g [σ, ·]

= 1

D
(2)
0 − 2i

f
− g [σ, ·]

D
(0)
+ ,

and the relation of the determinant of an operator with that of the adjoint operator,

Det(0,0)

[
−
(
D
(2)
0 − 2i

r̃

r2
− g [σ, ·]

)(
D
(2)
0 − 2i

r̃

r2
+ g [σ, ·]

)
−D(0)+ D

(2)
−
]

=Det(0,0)
[
�−2
]
.

Det(0,0)

[
D
(2)
0 − 2i

f
± g [σ, ·]

]
=Det(0,0)

[
D
(−2)
0 + 2i

f
± g [σ, ·]

]
,

Det(0,0)
[
D
(0)
0 ± g [σ, ·]

]
=Det(0,0)

[
D
(0)
0 ± g [σ, ·]

]
,

we can see that it is reduced to

Det(0,0)
[
D
(0)
0 − g [σ, ·]

]
Det(0,0)

[
D
(−2)
0 + 2i

f
− g [σ, ·]

]Det(0,0)
[
�−2
]
. (85)

Substituting (84) and (85) into Z1-loop
V,F , we obtain

Det(0,1)
[
D
(−2)
0 + 2i

f
+ g [σ, ·]

]
Det(0,0)

[
D
(−2)
0 + 2i

f
− g [σ, ·]

]
Det(0,1)

[
D
(0)
0 + g [σ, ·]

]
Det(0,0)

[
D
(0)
0 − g [σ, ·]

] Det(0,1) [�0]

Det(0,0)
[
�−2
]

×Det(0,0) [D1]Det(0,0) [D4] .

With the same argument about the adjoint operators, we can show that

Det(0,0) [D1] =Det(0,0)

[(
D
(0)
0 − 2i

f
+ g [σ, ·]

)(
D
(0)
0 − g [σ, ·]

)
+D(−2)

+ D
(0)
−
]
,

Det(0,0) [D4] =Det(0,0)
[
4DzDz̄ −�−2

]
,

and using this, the one-loop contributions Z1-loop
V,B , Z1-loop

V,F , and ZFP from the gauge multiplet are 
summarized to give

Z
1-loop
V =ZFPZ

1-loop
V,B Z

1-loop
V,F

=
Det(0,1)

[
D
(−2)
0 + 2i

f
+ g [σ, ·]

]
Det(0,0)

[
D
(−2)
0 + 2i

f
+ g [σ, ·]

] Det(0,0)
[
D
(0)
0 − g [σ, ·]

]
Det(0,1)

[
D
(0)
0 − g [σ, ·]

] . (86)

The determinant Det(k,l) can be evaluated by using the basis {hn,m,k ⊗ v⊗Eα, hn,m,k ⊗ v⊗
Hi}, for v running over all the basis vectors of 	(k,l)(�), the set of all (k, l)-forms on �, upon 
regarding 	(k,l)(�) as a linear space. Here, hn,m,k (n, m = 0, 1, 2, · · · ; k = 0, 1, · · · , n + m) 
denote scalar spherical harmonics on the S3 (See Appendix G.5 for more details) and obey
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D(0)0 hn,m,k =
[
i

r

(
i
∂

∂ϕ

)
+ i

r̃

(
−i ∂
∂χ

)]
hn,m,k =

[
i(n− k)
r

+ i(m− k)
r̃

]
hn,m,k,(

D(−2)
0 + 2i

f

)
hn,m,k =

[
i

r

(
i
∂

∂ϕ
+ 1

)
+ i

r̃

(
−i ∂
∂χ

+ 1

)]
hn,m,k

=
[
i(n− k+ 1)

r
+ i(m− k+ 1)

r̃

]
hn,m,k.

On the basis17 {ϕl,m,m̃ ⊗ v⊗Eα}, the determinants in Z1-loop
V are computed to give

Det(k,l)
[
D
(0)
0 − g [σ, ·]

]
=
∏
α∈�

∞∏
n,m=0

m+n∏
k=0

det(k,l)

[
i(n− k)
r

+ i(m− k)
r̃

− g (σ · α)
]
,

Det(k,l)

[
D
(−2)
0 + 2i

r̃

r2
+ g [σ, ·]

]

=
∏
α∈�

∞∏
n,m=0

m+n∏
k=0

det(k,l)

[
i(n− k + 1)

r
+ i(m− k + 1)

r̃
+ g (σ · α)

]
,

where the determinant det(k,l) is defined over the space 	(k,l)(�).
Taking account of (72), we can simplify ZV,

ZV =
∏
α∈�

∞∏
n,m=0

m+n∏
k=0

(
i(n−k)
r

+ i(m−k)
r̃

+ g (σ · α)
i(n−k+1)

r
+ i(m−k+1)

r̃
+ g (σ · α)

) 1
2χ(�)

=
∏
α∈�

∞∏
n,m=0

( − im
r

− in
r̃

+ g (σ · α)
i(n+1)
r

+ i(m+1)
r̃

+ g (σ · α)

) 1
2χ(�)

=
∏
α∈�+

[
(ig (σ · α))2

∞∏
n=1

(
n2

r2
+ g2 (σ · α)2

)(
n2

r̃2
+ g2 (σ · α)2

)] 1
2χ(�)

.

Furthermore, from the formula

1

π
sinhπx = x

∞∏
m=1

(
1 + x2

m2

)
,

it follows that

Z
1-loop
V =

∏
α∈�+

[
2 sinh
(
πrg (σ · α) ) · 2 sinh

(
πr̃g (σ · α) )] 1

2χ(�). (87)

In the round limit r̃ → r , Z1-loop
V recovers the result for the round S3 in Section 8.

17 We will again omit the contributions from the basis vectors ϕl,m,m̃ ⊗ v ⊗ Hi to the determinants, as done for the 
squashed S3.
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9.2. One-loop contributions from the N = 1 hypermultiplet

Let us turn to compute the one-loop contributions from the hypermultiplet by localization.
Since the BRST transformations of the scalar fields H , H † of the hypermultiplet are indepen-

dent of the background fields, they are the same as for the round and squashed S3’s;

δQH̃ = 0, δQH = 0, δQH̃
† = − 1

2
√

2
κ̃, δQH

† = − 1

2
√

2
κ.

The BRST transformation of the fermions in the hypermultiplet is given by

δQχ = √
2i

[(
ε†τmε

)
D(−1)

mH̃ + g
[
σ, H̃
]
+ i

f
H̃

]
,

δQξ = √
2i
(
εc

†
τmε
)
D(−1)

mH̃ ,

δQη= F 1
1 − 2

√
2DzH̃ , δQκ = 0,

δQχ̃ = −√
2i

[(
ε†τmε

)
D(−1)

mH + g [σ, H ] + i

f
H

]
,

δQξ̃ = −√
2i
(
εc

†
τmε
)
D(−1)

mH,

δQη̃= F 2
1 + 2

√
2DzH, δQκ̃ = 0,

and its hermitian conjugate by

(
δQχ
)† = −√

2i

[(
ε†τmε

)
D(1)mH̃ † − g

[
σ, H̃ †
]
− i

f
H̃ †
]
,

(
δQξ
)† = −√

2i
(
ε†τmεc

)
D(1)mH̃ †,

(
δQη
)† = −F 2

2 − 2
√

2Dz̄H̃ †,
(
δQκ
)† = 0,

(
δQχ̃
)† = √

2i

[(
ε†τmε

)
D(1)mH † − g

[
σ, H †
]
− i

f
H †
]
,

(
δQξ̃
)† = √

2i
(
ε†τmεc

)
D(1)mH †,

(
δQη̃
)† = F 1

2 + 2
√

2Dz̄H †,
(
δQκ̃
)† = 0.

Using the BRST transformation of the auxiliary fields F 1
2, F 2

2,

δQF
1

2 = i

2

[(
εc

†
τmε
)
D(−1)

mχ −
(
ε†τmε

)
D(1)mη− g [σ, η]+ i

f
η− 2iDz̄κ

]
,

δQF
2

2 = i

2

[(
εc

†
τmε
)
D(−1)

mχ̃ −
(
ε†τmε

)
D(1)mη̃− g [σ, η̃]+ i

f
η̃− 2iDz̄κ̃

]
,

where we have omitted the terms g
(
σ i
)α̃
γ̇

[
φi, λγ̇

]
on the right hand sides of both the equations, 

because their contributions vanish in the large t limit, we find that
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δQ
(
δQχ
)† = i

2

[(
ε†τmε

)
D(1)mκ̃ − g [σ, κ̃]− i

f
κ̃

]
,

δQ
(
δQξ
)† = i

2

(
ε†τmεc

)
D(1)mκ̃,

δQ
(
δQη
)† = − i

2

{(
εc

†
τmε
)
D(−1)

mχ̃ −
[(
ε†τmε

)
D(1)mξ̃ + g

[
σ, ξ̃
]
− i

f
ξ̃

]}
,

δQ
(
δQκ
)† = 0,

δQ
(
δQχ̃
)† = − i

2

[(
ε†τmε

)
D(1)mκ − g [σ, κ] − i

f
κ

]
,

δQ

(
δQξ̃
)† = − i

2

(
ε†τmεc

)
D(1)mκ,

δQ
(
δQη̃
)† = i

2

{(
εc

†
τmε
)
D(−1)

mχ −
[(
ε†τmε

)
D(1)mξ + g [σ, ξ ] − i

f
ξ

]}
,

δQ
(
δQκ̃
)† = 0.

The system of (H̃ , H̃ †, χ, ξ, η̃, κ̃, F 1
2) is identical to the one of (H, H †, χ̃ , ξ̃ , η, κ, F 2

2), as 
we have seen for the squashed S3 case in Subsection 8.2.1. If the former contributes the one-loop 
determinant Z1-loop

H to the partition function, both of the systems contribute (Z1-loop
H )2. Therefore, 

we will focus on the former system only.
From the fermionic part of the system (H̃ , H̃ †, χ, ξ, η̃, κ̃, F 1

2) of the regulator action SQ,

−
∫ √

gd5x
[
δQ
(
δQχ
)† · χ + δQ

(
δQξ
)† · ξ + δQ

(
δQη̃
)† · η̃+ δQ

(
δQκ̃
)† · κ̃
]

= i

2

∫ √
gd5x

×
⎡
⎣(χ, ξ

)⎛⎝
(
ε†τmε

)
D(1)m − g [σ, ·] − i

f

(
εc†τmε

)
D(−1)

m(
ε†τmεc

)
D(1)m −

(
ε†τmε

)
D(−1)

m − g [σ, ·] − i
f

⎞
⎠( κ̃

η̃

)⎤⎦ .
As we have done in Subsection 8.2.1, for four differential operators D1, · · · , D4, we have the 

formula

Det(k,l)

[(
D1 D2
D3 D4

)]
=Det(k,l) [D1]Det(k,l)

[
D4 −D3

1

D1
D2

]
,

for an invertible D1. In the above case, we have

D1 =
(
ε†τmε

)
D(1)m − g [σ, ·] − i

f
, D3 =

(
ε†τmεc

)
D(1)m,

which both act on the spinor κ̃ of negative chirality on � and of charge q = 1. Using (107) in 
Appendix G.5, we can identify the operator D′

1,

D3D1 =
(
ε†τnεc

)
D(1)n
[(
ε†τmε

)
D(1)m − g [σ, ·] − i

f

]

=
[(
ε†τmε

)
D(−1)

m − g [σ, ·] + i
](
ε†τnεc

)
D(1)n =D′

1D3,

f
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and obtain

Det(k,l)

[(
D1 D2
D3 D4

)]
= Det(k,l) [D1]

Det(k,l)
[
D′

1

]Det(k,l)
[
D′

1D4 −D3D2
]
.

We thus find that

Z
1-loop
H,F =Det

(0, 1
2 )

[
�N=1

H,B

] Det
(0, 1

2 )

[(
ε†τmε

)
D(1)m − g [σ, ·] − i

f

]
Det

(0, 1
2 )

[(
ε†τmε

)
D(−1)

m − g [σ, ·] + i
f

] ,
where the differential operator �N=1

H,B denotes

�N=1
H,B = −

((
ε†τmε

)
D(−1)

m − g [σ, ·] + i

f

)((
ε†τmε

)
D(−1)

m + g [σ, ·] + i

f

)

−
(
ε†τmεc

)
D(1)m

(
εc

†
τmε
)
D(−1)

m.

With the same reason as in Subsection 8.2.1, we can show that

Det
(0, 1

2 )

[(
ε†τmε

)
D(1)m − g [σ, ·] − i

f

]
Det

(0, 1
2 )

[(
ε†τmε

)
D(−1)

m − g [σ, ·] + i
f

] = 1,

and it follows from this that

Z
1-loop
H,F =Det

(0, 1
2 )

[
�N=1

H,B

]
.

In the bosonic part of the system (H̃ , H̃ †, χ, ξ, η̃, κ̃, F 1
2) of the regulator action SQ,

−
∫
d5x

√
g
[(
δQχ
)† · δQχ + (δQξ)† · δQξ + (δQη̃)† · δQη̃+ (δQκ̃)† · δQκ̃

]
,

we will immediately integrate the auxiliary fields F α̃
β̌

out, and integrate the remaining part of 
the action by parts to obtain

−2
∫
d5x

√
gH̃ †�N=1

H,B H̃ ,

and see that the one-loop determinant from the bosonic fields of the system (H̃ , H̃ †, χ, ξ, η̃, κ̃)
is given by

Z
1-loop
H,B = 1

Det
(0, 1

2 )

[
�N=1

H,B

] .
Therefore, the contributions from the hypermultiplet to the partition function are trivial;(

Z
1-loop
H

)2 =
(
Z

1-loop
H,F Z

1-loop
H,B

)2 = 1.

In the round limit r̃ → r , the contributions from the hypermultiplet reproduce the previous results 
on the round S3 about the hypermultiplet in Section 8.
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10. Summary and discussions

In this paper, we have seen the effects caused by changing the twisting and by deforming a 
round 3-sphere to a squashed and an ellipsoid 3-spheres on the partition function on the round 
S3, which was computed in the previous paper [1,2].

We have discussed the two kinds of twistings – the N = 1 twisting and the N = 2 twisting, the 
former of which breaks the Spin(5)R symmetry group to U(1)r × SU(2)l , which is the subgroup 
of SU(2)r × SU(2)l � Spin(4) ⊂ Spin(5)R , while the latter breaks the Spin(5)R to U(1)R ×
SU(2)R , which is the subgroup Spin(2)R × Spin(3)R of the Spin(5)R . In the N = 1 twisting, 
the only supersymmetry transformation with the parameter εα̇ is preserved, and in the N = 2
twisting, the ones with both εα̇ and εα̃ are available.

The change of the twisting affects on the spin content of the N = 1 hypermultiplet, when 
the N = 2 gauge multiplet is viewed as the sum of the N = 1 gauge multiplet and the N = 1
hypermultiplet.

In all the cases we discussed in this paper, the classical action, Scl which is the value of the 
off-shell action (56) at one σ i of the fixed-points, can be compactly written down18 as

Scl =
⎛
⎜⎝∫
S3

2

f
e1 ∧ e2 ∧ e3

⎞
⎟⎠ i r∑

i=1

∫
�

F i45 σ
i dx4 ∧ dx5,

in the zero-area limit of the Riemann surface �, where 1/f is replaced by r̃/2r for the squashed 
S3 and by 1/r for the round S3. Recall that σ i is a constant at the fixed point, and notice that 
the scalar curvature R(�) of � disappears in the mass parameter Mσ . The integration in the 
prefactor can be easily done to give

∫
S3

2

f
e1 ∧ e2 ∧ e3 =

⎧⎪⎨
⎪⎩
(2πr)2 for the round S3,

(2πr̃)2 for the squashed S3,

(2πr)(2πr̃) for the ellipsoid S3.

Therefore, combining the classical action Scl with the one-loop contributions Z1-loop =
Z

1-loop
V Z

1-loop
H , we obtain the partition function

ZN
S3 =
∑
m

r∏
i=1

∫
dσ i exp [Scl] Z

1-loop,

where the integers mi are the ‘monopole’ charges, which will be explained below for, just for 
brevity, the gauge group G = SU(2).

In the N = 1 twisting, we have seen that the one-loop contributions from the hypermultiplet 
are trivial to the partition functions.

Z
1-loop
H = 1.

Furthermore, on the squashed S3, the one-loop determinants from the N = 1 gauge multiplet 
remains the same as on the round S3, when we replace r by r̃ . In fact, the partition function 
ZN=1

squashed for the squashed S3,

18 Recall that upon the localization, we rotated σ i → iσ i and shifted D1̇
1̇ − iF45 − i

α G45σ , as discussed at the 
beginning of Section 7.
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∑
m

r∏
i=1

∫
dσ i exp [Scl]Z

1-loop
V Z

1-loop
H

=
∑
m

r∏
i=1

∫
dσ i exp [Scl]

∏
α∈�+

[
2 sinh
(
πr̃g (σ · α) )]χ(�)

is reduced to the one for the round S3, in the round limit r̃ → r .
More specifically, let us take the gauge group G to be SU(2), and then the generators {H, E±}

obey [
H, E±

]= ±√
2E±,

[
E+, E−

]= √
2H,

with our normalization, implying that the positive root α= √
2. In our convention, we have∫

�

F45 dx
4 ∧ dx5 = 2π

g

√
2m,

where m, which was referred to above as the ‘monopole charge’, runs over all the integers. 
Substituting it to the classical action Scl, we see that the path integral gains the contributions 
only from the configurations

σ = 1√
2

g

(2πr̃)2
n, for n ∈ Z.

Therefore, the partition function on the squashed S3 is turned to

ZN=1
squashed = 2

∞∑
n=1

(
e−

g2

4πr̃ n − e g
2

4πr̃ n

)χ(�)
= 2
(
q

1
2 − q− 1

2

)χ(�) ∞∑
n=1

[
χn(q)
]χ(�)

,

with q = e−g2/(2πr̃), where the character χn(q) is defined by

χn(q)= q
n
2 − q− n

2

q
1
2 − q− 1

2

.

Especially when we consider the round S3 and replace r̃ by r in the above ZN=1
squashed, the result 

in the previous paper [1] is recovered;

ZN=1
round = 2

(
q

1
2 − q− 1

2

)χ(�) ∞∑
n=1

[
χn(q)
]χ(�)

, (88)

with q = e−g2/(2πr), and we can see that it is consistent with the superconformal index computed 
in [3]. Using the 2(g − 1) structure constants and 3(g − 1) propagators in [3] to compute the 
index for the surface � of genus19 g (therefore, χ(�) = 2 − 2g) with no punctures, one obtains 
the above ZN=1

round up to an factor.20 In the review article [35], it has been elucidated21 that the 
discrepancy is attributed to the difference of the renormalization prescriptions used here and 
there, and that it can be improved by the requirement of the S-duality (a.k.a. the bootstrap).

19 This g is not the gauge coupling constant g.
20 In the terminology of [3], the factor is given by (N222)

−χ(�).
21 We thank Yuji Tachikawa for elucidating this point.
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From the point of view of the number of supersymmetries, this result seems puzzling. The 
partition function ZN=1

round computed under the N = 1 twisting is supposed to be the index of 
a four-dimensional N = 1 supersymmetric theory, while the index in [3] was computed for a 
four-dimensional N = 2 superconformal theory. In [20], the superconformal index of N = 1
class S fixed points has been calculated in four dimensions. Among their results, the mixed 
Schur index carries two fugacities p and q in their notations. When we take p = q , the index 
takes the same form as the Schur index of the N = 2 fixed points given in [3].

The partition function ZN=1
squashed on the squashed S3 is essentially the same as ZN=1

round on the 

round S3. However, the partition function ZN=1
ellipsoid on the ellipsoid S3 is deformed from the one 

on the round S3.

ZN=1
ellipsoid =

∑
m

r∏
i=1

∫
dσ i exp [Scl]Z

1-loop
V Z

1-loop
H

=
∑
m

r∏
i=1

∫
dσ i exp [Scl]

∏
α∈�+

[
2 sinh
(
πrg (σ · α) ) · 2 sinh

(
πr̃g (σ · α) )] 1

2χ(�) .

This is a similar situation to the three-dimensional case in [21]. As we have done just before, 
taking the gauge group G = SU(2) and summing over the monopole charge m, we can see that 
the only configurations

σ = 1√
2

g

(2πr̃)(2πr)
n, for n ∈ Z

contribute to the partition function, and therefore the summation of n over integers yields

ZN=1
ellipsoid = 2

[(
q

1
2 − q− 1

2

)(
p

1
2 − p− 1

2

)] 1
2χ(�)

∞∑
n=1

[
χn(q)χn(p)

] 1
2χ(�) ,

where q = e−g2/(2πr) and p = e−g2/(2πr̃). It is also consistent with the mixed Schur index22 of 
N = 1 rank one class S fixed points in [20], up to an factor from the renormalization mentioned 
above.

Let us turn to the N = 2 twisting. On the round S3, we have seen that the hypermultiplet 
contributes the same one-loop determinants to the partition function as the N = 1 gauge mul-
tiplet does. Deforming the round S3 to the squashed S3, we have observed that the one-loop 
contributions from the hypermultiplet are deformed by the deformation parameter of the S3.

In fact, in the partition function ZN=2
squashed on the squashed S3

ZN=2
squashed =

∑
m

r∏
i=1

∫
dσ i exp [Scl]Z

1-loop
V Z

1-loop
H ,

we have seen that the one-loop contributions Z1-loop
V Z

1-loop
H are given by

22 More specifically, our result corresponds to the case with l1 = l2 in their notations of [20], and to the N = 1 twist in 
[16], as may be seen from the background R-symmetry gauge field.
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∏
α∈�+

[(
2 sinh
(
πr̃g (σ · α) ))2sb=1

(
i − 2i

r̃2

r2
− r̃g (σ · α)

)
sb=1

×
(
i − 2i

r̃2

r2
+ r̃g (σ · α)

)] 1
2χ(�)

.

Therefore, for the gauge group G = SU(2), upon summing the magnetic charge m over integers, 
we obtain

ZN=2
squashed = 2

(
q

1
2 − q− 1

2

)χ(�)

×
∞∑
n=1

[(
χn(q)
)2
sb=1

(
i − 2i

r̃2

r2
− g2

4π2r̃
n

)
sb=1

(
i − 2i

r̃2

r2
+ g2

4π2r̃
n

)] 1
2χ(�)

,

with q = e−g2/(2πr̃), where the double sine functions may be rewritten as

sb=1

(
i − 2i

r̃2

r2
− g2

4π2r̃
n

)
sb=1

(
i − 2i

r̃2

r2
+ g2

4π2r̃
n

)

=
∞∏
m=1

⎡
⎢⎣
(
m+ 1 − 2 r̃

2

r2

)2 +
(
g2

4π2 r̃
n
)2

(
m− 1 + 2 r̃

2

r2

)2 +
(
g2

4π2 r̃
n
)2
⎤
⎥⎦
m

,

and in the round limit r̃ → r , they reduce to

[(
q

1
2 − q− 1

2

)
· χn(q)

]2
,

with q = e−g2/(2πr). When recognizing χn(q) as the q-deformed number23 [n]q , we may regard 
the square root of the double sine functions as a deformation of [n]q .

We thus find that the partition function ZN=2
round on the round S3 is given for G = SU(2) by

ZN=2
round =

∑
m

∫
dσ exp [Scl]

[
2 sinh
(
πrg (σ · α) )]2χ(�)

= 2
(
q

1
2 − q− 1

2

)2χ(�) ∞∑
n=1

[
χn(q)
]2χ(�)

.

This result suggests that the partition function ZN=2
round does not corresponds to the Schur limit 

of the superconformal index discussed in [3]. We expect that it gives another simple limit 
of the superconformal index of N = 2 rank one class S fixed points, where the index can 
be calculated by the two-dimensional q-deformed Yang–Mills theory but with the measure [
2 sinh
(
πrg (σ · α) )]χ(�) squared.

23 This definition of the q-deformed number [n]q slightly differs from the one in [1] by the factor 1/(q
1
2 − q− 1

2 ).
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Appendix A. Our conventions of (anti-)symmetrization of indices and differential forms

The convention of the antisymmetrization and symmetrization24 may be seen from

A[μBν] =AμBν −AνBμ, X(μYν) =XμYν +XνYμ.
However, for the six-dimensional gamma matrices (for the definition of them, see the next ap-
pendix), we define

�ab = 1

2
�[a�b], �a1···an = 1

n
�[a1�a2···an] = 1

n!�
[a1�a2 · · ·�an].

For the five-dimensional gamma matrices, γ a1···an is defined in the same way.
For an n-form An in six dimensions, we define

An = 1

n! Aμ1···μn dX
μ

1 ∧ · · · ∧ dXμn = 1

n! Aa1···an Ea1 ∧ · · · ∧Ean,
where Xμ (μ = 0, 1, · · · , 5) denote the local coordinates and Ea (a = 0, 1, · · · , 5) are the sechs-
bein one-form. We also define the Hodge dual of the form An by

∗An = 1

(6 − n)!
[

1

n!εa1···a6−nb1···bnAb1···bn
]
Ea1 ∧ · · · ∧Ea6−n ,

with ε01···5 = 1. Because of the property ∗∗An = (−)n+1An, one may define the self-dual and 
the anti-self dual parts, respectively, of a three-form A3 by

A±
3 = 1

2

(
A3 ± ∗A3

)= ±∗A±
3 .

We define the external derivative dAn of the n-form

dAn = 1

n! ∂μ1Aμ2···μn+1 dX
μ1 ∧ · · · ∧ dXμn+1

= 1

(n+ 1)! ∂ [μ1Aμ2···μn+1] dX
μ1 ∧ · · · ∧ dXμn+1 .

For an n-form a in five dimensions,

a = 1

n! aμ1···μn dxμ1 ∧ · · · ∧ dxμn = 1

n! aa1···an ea1 ∧ · · · ∧ ean,
similarly, the external derivative da and the Hodge dual ∗a are

24 Ref. [25] gives weights to each of the terms on the right hand side; for example, A[μBν] = (1/2)(AμBν −AνBμ), 
X(μYν) = (1/2)(XμYν +XνYμ).



T. Kawano, N. Matsumiya / Nuclear Physics B 898 (2015) 456–562 537
da = 1

(n+ 1)! ∂[μ1aμ2···μn+1] dxμ1 ∧ · · · ∧ dxμn+1,

∗a = 1

(5 − n)!
[

1

n!εa1···a5−nb1···bnab1···bn
]
dea1 ∧ · · · ∧ dea5−n .

Appendix B. Gamma matrices of the 6-dimensional Lorentz group

We define the six-dimensional gamma matrices �a (a = 0, 1, · · · , 5) such that they satisfy{
�a, �b

}
= 2ηab 18,

with 18 the 8 ×8 unit matrix and the Lorentz metric (ηab) = diag .(−1, +1, · · · , +1). While only 
�0 is anti-hermitian, the others are hermitian.

The chirality is defined by the matrix

�7 = �0�1 · · ·�5,
(
�7)2 = 18,

and it enjoys the properties

�a1···a6 = −εa1···a6 �7, �abc = − 1

3!ε
abcdef �def �

7, (89)

with the convections ε01···5 = −1 (ε01···5 = +1).
The charge conjugation matrix C is a unitary matrix satisfying

CT = C,
(
�a

)T = −C�aC−1, (90)

with T denoting the transpose of the matrices, and thus 
(
�7
)T = −C�7C−1.

On the reduction along the time direction from the six-dimensional Minkowski space to the 
five-dimensional Euclidean space, where the gamma matrices are five 4 × 4 hermitian matrices 
γ a (a = 1, · · · , 5) satisfying{

γ a, γ b
}= 2δab 14, γ 1 · · ·γ 5 = 14,

with 14 the 4 × 4 unit matrix, we define

�0 = 14 ⊗ iτ2 =
(

0 14
−14 0

)
, �a = γ a ⊗ τ1 =

(
0 γ a

γ a 0

)
,

�7 = 14 ⊗ τ3 =
(

14 0
0 −14

)
,

for a = 1, · · · , 5, with the Pauli matrices τ1, τ2, τ3.
The property (89) is reduced to

γ abcde ≡ 1

5!γ
[aγ bγ cγ dγ e] = εabcde,

with ε12345 = ε12345 = 1.
The six-dimensional charge conjugate matrix C is related to the five-dimensional charge con-

jugation matrix C by

C = C ⊗ iτ2 =
(

0 C

−C 0

)
,
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and one can see that the charge conjugation matrix C enjoys the properties

CT = −C, (γa)
T = CγaC−1.

It follows from them that(
Cγ a1···an)T = −(−) n(n−1)

2
(
Cγ a1···an) , (

γ a1···anC−1
)T = −(−) n(n−1)

2

(
γ a1···anC−1

)
.

A more explicit form of the five-dimensional gamma matrices γ μ takes

γ a = τa ⊗ τ2 (a = 1,2,3), γ 4 = 12 ⊗ τ1, γ 5 = 12 ⊗ τ3,

with the charge conjugation matrix C = C3 ⊗ 12, where C3 = iτ2.

Appendix C. Gamma matrices of the R-symmetry group Spin(5)R

We give the explicit form of the gamma matrices of the R-symmetry group Spin(5)R

ρ1 = τ 1 ⊗ τ 2, ρ2 = τ 2 ⊗ τ 2, ρ3 = τ 3 ⊗ τ 2, ρ4 = 1 ⊗ τ 1,

ρ5 = 1 ⊗ τ 3 = ρ1 · · ·ρ4,

with the Pauli matrices τ1, τ2, τ3, satisfying that{
ρI , ρJ

}
= 2 δIJ ,

where I, J run from 1 to 5. We use them to define

ρI1···In = 1

n! ρ
[I1 · · ·ρIn], ρI1···I5 = εI1···I5,

with ε12345 = 1.
We also explicitly give the charge conjugation matrix 	 of the Spin(5)R

	= iτ2 ⊗ 1 = −	† = −	T ,
where 	T is the transpose of the matrix 	, which satisfies

	
(
ρI
)T
	−1 = ρI (I = 1,2, · · · ,5).

It follows from these properties that(
	ρI1···In

)T = −(−) n(n−1)
2

(
	ρI1···In

)
,
(
ρI1···In	−1

)T = −(−) n(n−1)
2

(
ρI1···In	−1

)
.

Given the components

	=
(
	αβ

)
, 	−1 = −

(
	αβ
)

(α,β = 1, · · · ,4),
one has

	αγ	βγ = δαβ.
The index α of a spinor εα of the Spin(5)R is lowered by 	 as

εα = εβ	βα, εα =	αβεβ,
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and this convention is consistent with

	αγ 	βδ 	γδ =	αβ.
Since the components 	αβ are real,(

	αβ

)∗ =	αβ,
where 

(
	αβ
)∗

denotes the complex conjugate of 	αβ .
The Fierz transformation of two matrices (Mαβ ), (Nαβ )

Mαβ Nγδ = 1

4

[(
M	−1N

)
αδ	γβ +

(
MρI	−1N

)
αδ (	ρI ) γβ

− 1

2

(
MρIJ	−1N

)
αδ (	ρIJ ) γβ

]
may be useful to verify some of the calculations in the text.

C.1. Spin(5)R −→ Spin(4)R � SU(2)l × SU(2)r

A vector vI (I = 1, · · · , 4, 5) of the Spin(5)R group is decomposed into irreducible represen-
tations of the subgroup Spin(4)R as one vector vi (i = 1, · · · , 4) and one singlet v5. A spinor ψα

(α = 1, · · · , 4) of the Spin(5)R group is decomposed into

ψα =
(
ψα̃

ψα̇

)
(α̃ = 1,2; α̇ = 1,2),

with ψα̃ in (2, 1) and ψα̇ in (1, 2) of the SU(2)l × SU(2)r � Spin(4)R group.
The gamma matrices of the Spin(5)R group are reduced into

ρi =
(

σ i

σ̄ i

)
(i = 1, · · · ,4), ρ5 =

(
12

−12

)
= ρ1 · · ·ρ4,

where

(σ i)= (−i−→τ ,1)= (σ i α̃ β̇ ), (σ̄ i)= (i−→τ ,1)= (σ̄ i α̇ β̃ ),
with τa (a = 1, 2, 3) the Pauli matrices. The matrices σ i , σ̄ i (i = 1, · · · , 4) obey the relations

σ̄ i β̇ α̃ = εα̃γ̃ εβ̇δ̇σ i γ̃ δ̇, σ i γ̃ δ̇ = εγ̃ α̃εδ̇β̇ σ̄ i β̇ α̃,
σ i α̃ β̇ σ̄

i γ̇
δ̃ = 2δα̃ δ̃ δ

γ̇
β̇ , σ i α̃ β̇ σ

i γ̃
δ̇ = 2εα̃γ̃ εβ̇δ̇, σ̄ i α̇ β̃ σ̄

i γ̇
δ̃ = 2εα̇γ̇ εβ̃δ̃,

tr
[
σ iσ̄ j
]

= σ i α̃ β̇ σ̄ j β̇ α̃ = 2δij .

The generators of the Spin(4)R group in the spinor representation become the direct sum

ρij = 1

2

(
σ iσ̄ j − σ j σ̄ i

σ̄ iσ j − σ̄ j σ i
)

≡
(
σ ij

σ̄ ij

)
(i, j = 1, · · · ,4)

obeying

σ ij = −1
εijklσkl, σ̄ ij = 1

εijkl σ̄kl .

2 2
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For example, one has

σ̄ 12 = σ̄ 34 = iτ 3, σ 12 = −σ 34 = iτ 3.

The charge conjugation matrix gives

	=
(
εα̃β̃

εα̇β̇

)
=
(
iτ2

iτ2

)
, 	−1 =

(
−εα̃β̃

−εα̇β̇
)

=
(−iτ2

−iτ2

)
,

with ε12 = ε12 = 1.
The spinor indices α̃, α̇ are raised or lowered as

ψα̃ =ψβ̃εβ̃α̃, ψα̃ = εα̃β̃ψβ̃; ψα̇ =ψβ̇εβ̇α̇, ψα̇ = εα̇β̇ψβ̇ .

Appendix D. Symplectic Majorana–Weyl spinors

For a six-dimensional Dirac spinor ψ , we define ψ =
(
ψ
)†
�0. In six-dimensional Minkowski 

space, the symplectic Majorana condition on an even number of spinors can be imposed. In our 
case, all the spinors in the Weyl multiplet and the tensor multiplet of the supergravity carry the 
spinor indices of the Spin(5)R symmetry group, and the dimension of the spinor representation 
is four - an even number. Let us take one of such spinors, say ψα , and it obeys the symplectic 
Majorana condition(

ψα
)†
�0 =
(
ψβ
)T
C	βα,

and the other spinors in the multiplets obey the same condition.
In the Minkowski space, the Weyl condition �7ψ = ±ψ and the symplectic Majorana con-

dition can be imposed on spinors at the same time. In fact, all the spinors of the multiplets are 
symplectic Majorana–Weyl spinors, and also so are the parameters of the supersymmetry and the 
conformal supersymmetry transformations, as explained in the text.

After the dimensional reduction, the spinors in the supergravity multiplets give rise to 
symplectic Majorana spinors in the five-dimensional Euclidean space. If ψα is a symplectic 
Majorana–Weyl spinor of positive chirality, it takes the form

ψα =
(
ψα

0

)
,

and is reduced to the symplectic Majorana spinor ψα obeying(
ψα
)† = (ψβ)T C	βα, (91)

in the five-dimensional Euclidean space. If it is of negative chirality, one can see from

ψα =
(

0
ψα

)
,

that ψα also obeys the same condition (91).
It is convenient to introduce the notations for the conjugate of a five-dimensional spinor εα

ε̄α ≡ (εα)T C,
and the abbreviation of the spinor bilinear
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(
ε̄ · ρI1···Inγ a1···amη

)≡ (	ρI1···In)αβ · (εα)T Cγ a1···amηβ,

of two five-dimensional spinors εα , ηα .
The Fierz transformation of five-dimensional spinors εα , ηα gives

ηαε̄β = ηα (εβ)T C = −1

4

[(
εβCηα

)
14 + (εβCγ aηα) γa − 1

2

(
εβCγ abηα

)
γab

]
,

and the following formula is repeatedly used in the calculations in the text:

ηαε̄β − εαη̄β = −1

8

[
(ε̄ · η)

(
	−1
)αβ + (ε̄ · ρIη)

(
ρI	−1

)αβ + (ε̄ · γ aη)(	−1
)αβ

γa

+ (ε̄ · ρI γ aη
)(
ρI	−1

)αβ
γa + 1

4

(
ε̄ · ρIJ γ abη

)(
ρIJ	−1

)αβ
γab

]
.

The following abbreviation for the bilinears of spinors ψα̃ , χα̃ in (2, 1) and λα̇ , εα̇ in (1, 2) of 
the SU(2)l × SU(2)r R-symmetry group is used:

ψ̄ · σi1···i2nγ a1···amχ ≡ εα̃γ̃ (σi1···i2n)γ̃ β̃ ·
(
ψα̃
)T
Cγ a1···amχβ̃ ,

ψ̄ · σi1···i2n+1γ
a1···amλ≡ εα̃γ̃ (σi1···i2n+1)

γ̃
β̇ ·
(
ψα̃
)T
Cγ a1···amλβ̇ ,

ε̄ · σ̄i1···i2n+1γ
a1···amχ ≡ εα̇γ̇ (σ̄i1···i2n+1)

γ̇
β̃ ·
(
εα̇
)T
Cγ a1···amχβ̃ ,

ε̄ · σ̄i1···i2nγ a1···amλ≡ εα̇γ̇ (σ̄i1···i2n)γ̇ β̇ ·
(
εα̇
)T
Cγ a1···amλβ̇ .

For the spinors εα̇ , ηα̇ , the Fierz transformation

εα̇η̄β̇ = εα̇ηγ̇ Cεγ̇ β̇ = −1

4

[(
η̄β̇ ε

α̇
)

14 +
(
η̄β̇γ

aεα̇
)
γa − 1

2

(
η̄β̇γ

abεα̇
)
γab

]
,

is also useful to verify computations in the text such as the algebras of the supersymmetry trans-
formations. In particular, we have often made use of the formula

ηα̇ε̄β̇ − εα̇η̄β̇ = −1

4

[
(ε̄ · η) δα̇β̇ + (ε̄ · γ aη) δα̇ β̇ γa + 1

8

(
ε̄ · σ̄ij γ abη

)(
σ̄ ij
)α̇

β̇ γab

]
.

Appendix E. The supersymmetry Condition from the spinor χαβ
γ

One of the supersymmetry conditions which the supersymmetric backgrounds in the five-
dimensional supergravity should obey is the requirement that δχαβγ

(
	ρI
)
βα

should vanish. It 
yields the condition

4

5α

[
GabtI ab	γδ − 1

4
GabtJ ab

(
	ρI J

)
γ δ

]
εδ

− 2

[
t I abt

J ab (	ρJ ) γ δ − 1

5
tJ abtJ

ab
(
	ρI
)
γ δ

]
εδ

+ 4
MI

J

(
	ρJ
)
γ δε

δ + εabcde
[
t I abt

J
cd (	ρJ )γ δ − 1

tJ abt
J
cd

(
	ρI
) ]

γeε
δ

15 5 γ δ
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+ 8

5

[
DatI ab	γ δ − 1

4
DatKab

(
	ρIK

)
γ δ

]
γ bεδ

− 3

5

[
DaSI J

(
	ρJ
)
γ δ − 1

3
DaSKL

(
	ρIKL

)
γ δ

]
γ aεδ

+ 2

5
εabcde

[
DatI bc	γ δ − 1

4
DatJ bc

(
	ρI J

)
γ δ

]
γdeε

δ

+ 3

10

[
Fab

IJ (	ρJ ) γ δ − 1

3
Fab

KL
(
	ρIKL

)
γ δ

]
γ abεδ

− 8

5α

[
Ga

ctI bc	γ δ − 1

4
Ga

ctJ bc

(
	ρIJ
)
γ δ

]
γ abεδ

− 12

5

[
t I act

J
b
c (	ρJ )γ δ − 1

3
tKact

L
b
c
(
	ρIKL

)
γ δ

]
γ abεδ

+ 3

10α

[
GabS

I
J

(
	ρJ
)
γ δ − 1

3
GabSKL

(
	ρIKL

)
γ δ

]
γ abεδ

+ 4

5

[
t I abSKL

(
	ρKL

)
γ δ − 1

2
tKabSIJ

(
	ρJK

)
γ δ

− 1

4
tJ abSKL

(
	ρIJKL

)
γ δ − 1

2
tJ abS

I
J	γδ + 3

4
tKabSJK

(
	ρIJ
)
γ δ

]
γ abεδ = 0.

(92)

Here, for convenience, we will write once again the covariant derivatives and the field strength

DμtI ab = ∂μtI ab − bμtI ab + (	μ) ac tI cb + (	μ) bc tI ac −AμI J tJ ab,
DμSIJ = ∂μSIJ − bμSIJ −AμIK SKJ −AμJK SIK,
Fμν

I
J = ∂μAνI J − ∂νAμI J −AμIK AνKJ +AνIK AμKJ .

Appendix F. The SUSY transform of the mass term of the scalars

When the interested readers attempt to ensure the supersymmetry invariance of the actions 
L and S in Sections 3 and 4, respectively, it may be convenient to show how the mass term 
MBIJ φ

IφJ in the actions transforms under a supersymmetry transformation.25

δ

(
tr

[
1

2
MBIJ φ

IφJ
])

= − i
4

tr

[(
SIKS

K
J φ

J + 1

20α2
GabGabφ

I − 4t I abtJ
abφJ

+ 4

15
MI

Jφ
J + 1

5
R(	)φI

)
(χ̄ · ρI ε)

]
. (93)

The two last terms on the right hand side of (93) depend on MI
J and R(	). If they are given 

in terms of the backgrounds SIJ , Gab , t I ab , they may cancel the supersymmetry variation of the 
other terms in the actions. In fact, this is the case, if one uses the supersymmetry condition (92)
and the Killing spinor equation (7), as will seen below.

25 For the abelian case, we need to regard the matrices φI and χα as 1 × 1 matrices and to forget the trace tr in the 
formulas here.
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Using the supersymmetry condition (92), the term

− i
4

tr

[
φI χ̄

α · 4

15
MI

J (	ρ
J )αβε

β

]
on the right hand side of (93) can be straightforwardly replaced by terms depending on the 
backgrounds SIJ , Gab , t I ab .

The commutation relation of the covariant derivatives gives

1

2
γ ab [Da, Db] εα = −1

4
R(	)εα − 1

8
Fab

IJ (ρIJ )
α
βγ

abεβ,

and on the other hand, using the Killing spinor equation (7), one obtains

1

2
γ ab [Da, Db] εα = γ abDaDbεα

=DaSIJ (ρIJ ) αβγ aεβ − 1

2α
DaGbcγ abγ cεα − 1

8α
DaGbcγ adγdbcεα

+ 1

2
DatI bc (ρI ) αβγ adγdbcεβ + SIJ (ρIJ ) αβγ aDaεβ − 1

2α
Gbcγ

abγ cDaεα

− 1

8α
Gbcγ

adγd
bcDaεα + 1

2
t I bc (ρI )

α
βγ

adγd
bcDaεβ .

Comparing them, one obtains the formula

−2

5
i · (	ρI ) αβ tr

[
φI · χ̄α

(
−1

4
R(	)εβ

)]

= − i

20
tr

[(
Fab

KL(χ̄ · ρIρKLγ abε)+ 8DaSKL(χ̄ · ρIρKLγ aε)

− 4DaGbc(χ̄ · ρI γ abγ cε)− DaGbc(χ̄ · ρI γ adγdbcε)
+ 4DatJ bc(χ̄ · ρIρJ γ adγdbcε)+ 8SKL(χ̄ · ρIρKLγ aDaε)
− 4Gbc(χ̄ · ρI γ abγ cDaε)−Gbc(χ̄ · ρI γ adγdbcDaε)

+ 4 tJ bc(χ̄ · ρIρJ γ adγdbcDaε)
)
φI
]
.

With the help of (7) once more, the last four terms on the right hand of the above equation yield

−2

5
iSKL(χ̄ · ρIρKLγ aDaε)φI + i

5α
Gbc(χ̄ · ρI γ abγ cDaε)φI

+ i

20α
Gbc(χ̄ · ρI γ adγdbcDaε)φI − i

5
t I bcφ

J (χ̄ · ρJ ρI γ adγdbcDaε)

= − i
2
SIJ SMNφ

K(χ̄ · ρKρIJ ρMNε)+ 9

20α
iSIJGabφ

K(χ̄ · ρKρIJ γ abε)

− 3

5
iSIJ t

L
abφ

K(χ̄ · ρKρIJ ρLγ abε)− i

40α2
GabGcdφ

I
(
χ̄ · ρI (5γ abcd + δabδcd)ε)

− i

10α
Gabt

I
cdφ

J
(
χ̄ · ρJ ρI (8δacγ bd + 6δabδbd)ε

)
+ 2

itI abt
J
cdφ

K
(
χ̄ · ρKρIρJ (γ abcd + δacγ bd + 3δacδbd)ε

)
.

5
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Using these formulas, it may be more accessible to verify the supersymmetry invariance of 
both the actions L and S.

Appendix G. Round, squashed, and ellipsoid 3-spheres

A 3-sphere S3 is given by the set of solutions of (x1, x2, x3, x4) ∈ R4 to

x2
1 + x2

2 + x2
3 + x2

4 = 1. (94)

If we describe it in terms of complex variables (z, w) ∈ C2 as z= x4 + ix3, w = x2 + ix1, since 
the defining equation becomes |z|2 + |w|2 = 1, the two by two matrix(

z w

−w∗ z∗
)

yields an element of a Lie group of SU(2). Conversely, any element of the SU(2) group may 
take the form of the two by two matrix in the fundamental representation. More explicitly, if we 
introduce polar coordinates (ψ, θ, φ) and identify

z= e i2 (ψ+φ) cos

(
θ

2

)
, w = e i2 (φ−ψ) sin

(
θ

2

)
,

where 0 ≤ψ ≤ 4π , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , the equivalence of the 3-sphere S3 to the Lie group 
SU(2) is understood by the mapping

U(ψ, θ,φ)= e i2φτ3e i2 θτ2e i2ψτ3 =
(

z w

−w∗ z∗
)
, (95)

with the Pauli matrices τa (a = 1, 2, 3)

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
.

This is a convenient parametrization for a round and a squashed S3, as will be seen soon. On the 
other hand, for an ellipsoid S3, we use another set of polar coordinates (φ, χ , θ ) as

z= eiϕ cos θ, w = eiχ sin θ,

where 0 ≤ ϕ ≤ 2π , 0 ≤ χ ≤ 2π , 0 ≤ θ ≤ π/2, and therefore, the former coordinates are related 
to the latter as

θ |former = 2θ |latter , φ |former = (ϕ + χ) |latter , ψ |former = (ϕ − χ) |latter .

The mapping U gives the vielbeins μ(0)m (m = 1, 2, 3) on a unit round sphere,

μ(0) =
3∑
a=1

μ(0)a τ
a =
(

1

i

)
U−1dU = τ1

(
sin θ cosψdφ − sinψdθ

2

)

+ τ2

(
sin θ sinψdφ + cosψdθ

2

)
+ τ3

(
cos θdφ + dψ

2

)
.

In terms of the vielbeins, the metric of a round sphere of radius r is given by

ds2 = −r2 tr

[(
μ(0)
)2]= r2

[(
μ
(0)
1

)2 +
(
μ
(0)
2

)2 +
(
μ
(0)
3

)2]= (μ1)
2 + (μ2)

2 + (μ3)
2
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with μm = rμ(0)m (m = 1, 2, 3) and the spin connection,

ω(0)mn = εmnkμ(0)k = 1

r
εmnkμk,

for m, n, k = 1, 2, 3. The coframe νm (m = 1, 2, 3) is the inverse of the vielbein μm.
The isometry group of the round sphere is SO(4) � [SU(2)L × SU(2)R

]
/Z2, and it acts on 

the matrix U(ψ, θ, φ) as

U(ψ, θ,φ) → gL ·U(ψ, θ,φ) · g−1
R

for gL ∈ SU(2)L and gR ∈ SU(2)R , and one can see that the vielbeins are transformed as

μ(0) → gR ·μ(0) · g−1
R .

G.1. Killing spinors on a round 3-sphere

The Killing spinor equation on a round 3-sphere is given by(
d + 1

4
ω(0)mnτ

mn

)
ε = i

2r
μmτ

mε. (96)

When ε satisfies the Killing equation, the spinor C−1
3 ε∗ gives another solution to the equation. 

One solution to the equation is a constant spinor ε0; dε0 = 0.
Another Killing equation(

d + 1

4
ω(0)mnτ

mn

)
ε = − i

2r
μmτ

mε,

is rewritten into

dε = −iμ(0)ε = −U−1dU · ε,
which is solved by ε =U−1ε0, since one has

d(U−1ε0)= −U−1dU ·
(
U−1ε0

)
.

In the text, we make frequent use of the constant Killing spinor ε = ε0 and its charge conjugate 
εc = C−1

3 ε0
∗. We normalize them such that ε†ε = εc†εc = 1, and then the Fierz transformation 

gives

ε ε† + εc εc† = 12. (97)

We can make three Killing vectors ε†τmε, εc†τmε, and ε†τmεc out of ε and εc; 
(
εc†τmε

)∗ =(
ε†τmε

c
)
, and they obeys

Dm
(
ε†τnε
)

= 1

r
εmnk

(
ε†τkε
)
, Dm

(
εc

†
τnε
)

= 1

r
εmnk

(
εc

†
τkε
)
,

Dm
(
ε†τnε

c
)

= 1

r
εmnk

(
ε†τkε

c
)
,

where εmnk is the constant antisymmetric tensor with ε123 = 1. From the norm of ε and its Fierz 
transformation, we can deduce that
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(
ε†τmε

)(
ε†τmε

)
= 1,

(
ε†τmε

)(
εc

†
τmε
)

= 0,
(
ε†τmε

)(
ε†τmεc

)
= 0,(

εc
†
τmε
)(
ε†τmεc

)
= 2,

(
εc

†
τmε
)(
εc

†
τmε
)

= 0,
(
ε†τmεc

)(
ε†τmεc

)
= 0,

(98)

and thus they span the three-dimensional space:(
ε†τmε

)(
ε†τnε
)

+ 1

2

(
εc

†
τmε
)(
ε†τnεc

)
+ 1

2

(
ε†τmεc

)(
εc

†
τnε
)

= δmn,
so that we can expand a vector Am in terms of the Killing vectors,

Am =
(
ε†τmε
)(
ε†τnε
)
An + 1

2

(
εc

†
τmε
)(
ε†τnεc

)
An + 1

2

(
ε†τmε

c
)(
εc

†
τnε
)
An

=
(
ε†τmε
)
V0 +
(
εc

†
τmε
)
V− +
(
ε†τmε

c
)
V+.

Similarly, the differential operator ∂m =∑3
μ=1 νm

μ∂μ is expanded as

∂m =
(
ε†τmε
)(
ε†τnε
)
∂n + 1

2

(
εc

†
τmε
)(
ε†τnεc

)
∂n + 1

2

(
ε†τmε

c
)(
εc

†
τnε
)
∂n.

Since it satisfies the commutation relation

[∂m, ∂n] = −2

r
εmnk∂k,

the covariant derivatives on a scalar field � commute with each other,

[Dm, Dn]�= [∂m, ∂n]�+
[
(ωm)n

k − (ωn)m k
]
∂k�= 0.

Using the properties

εmnk
(
ε†τnε
)(
εc

†
τkε
)

= −i
(
εc

†
τmε
)
, εmnk

(
ε†τnε
)(
ε†τkε

c
)

= i
(
ε†τmεc

)
,

εmnk
(
εc

†
τnε
)(
ε†τkε

c
)

= −2i
(
ε†τmε

)
,

we can deduce the commutation relations among the differential operators 
(
ε†τnε
)
Dn, (

ε†τnεc
)
Dn, and 

(
εc†τnε

)
Dn on a scalar field,

[(
ε†τmε

)
Dm,
(
εc

†
τnε
)
Dn
]

=
[(
ε†τnε
)
Dn
(
εc

†
τmε
)

−
(
εc

†
τnε
)
Dn
(
ε†τmε

)]
∂m

+
(
ε†τmε

)(
εc

†
τnε
)

[Dm, Dn]

= −2

r
εmnk

(
ε†τnε
)(
εc

†
τ kε
)
Dm = 2i

r

(
εc

†
τmε
)
Dm,[(

ε†τmε
)
Dm,
(
ε†τnεc

)
Dn
]

= −2

r
εmnk

(
ε†τnε
)(
ε†τ kεc

)
Dm = −2i

r

(
ε†τmεc

)
Dm,[(

εc
†
τmε
)
Dm,
(
ε†τnεc

)
Dn
]

= −2

r
εmnk

(
εc

†
τnε
)(
ε†τ kεc

)
Dm = 4i

r

(
ε†τmε

)
Dm.

(99)
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Therefore, when we regard them as

L3 = −i r
2

(
ε†τmε

)
Dm, L+ = −i r

2

(
εc

†
τmε
)
Dm, L− = −i r

2

(
ε†τmεc

)
Dm,

they form the SU(2) algebra,[
L3, L±

]= ±L±,
[
L+, L−

]= 2L3.

G.2. Killing spinors on a squashed 3-sphere

Let us turn to a squashed 3-sphere. In terms of the Hopf fibration of a 3-sphere, the circle fiber 
in a squashed S3 has the different radius r̃ from the radius r of the 2-sphere base, while r̃ = r for 
a round 3-sphere. The metric of the squashed S3 is thus given by

ds2 = r2
[(
μ
(0)
1

)2 +
(
μ
(0)
2

)2]+ r̃2
(
μ
(0)
3

)2 = (e1)
2 + (e2)

2 + (e3)
2 ,

where e1 = rμ(0)1 , e2 = rμ(0)2 , and e3 = r̃μ(0)3 .
Since the vielbeins μ(0) are still invariant under the SU(2)L transformations, it shows that the 

isometry group SO(4) is broken to [SU(2)L ×U(1)R]/Z2.
Here, we assume that r̃ ≥ r . Solving the equation dem + ωmn ∧ en = 0, one obtains the 

Levi-Civita spin connection ωab,

(ω1)23 = (ω2)31 = r̃

r2
, (ω3)12 = r̃

r2
+ 2

r̃

(
1 − r̃2

r2

)
.

The curvature tensor of the spin connection ωmn on the squashed 3-sphere S3

Rmn = dωmn +ωmk ∧ωkn,
is computed to give

R1
2 = r̃2

r4
e1 ∧ e2 + 4

r2

(
1 − r̃2

r2

)
e1 ∧ e2, R2

3 = r̃2

r4
e2 ∧ e3, R3

1 = r̃2

r4
e3 ∧ e1,

and the scalar curvature

R =Rmnmn = 6r̃2

r4
+ 8

r2

(
1 − r̃2

r2

)
.

G.3. Constant Killing spinors on a squashed 3-sphere

The constant spinors ε = ε0 and εc = C−1
3 ε∗ obey(

d + 1

4
ωmnτ

mn

)
ε = + i

2

r̃

r2
emτ

mε + i

r̃

(
1 − r̃2

r2

)
e3τ3 ε,(

d + 1

4
ωmnτ

mn

)
εc = + i

2

r̃

r2
emτ

mεc + i

r̃

(
1 − r̃2

r2

)
e3τ3ε

c,

respectively, with the spin connection ωmn on the squashed 3-sphere. Therefore, if we impose 
the condition

τ3ε = ε, τ3ε
c = −εc, (100)
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we may regard the second terms on the right hand sides of the above two Killing spinor equations 
as the background gauge field:[

d + 1

4
ωmnτ

mn − i

r̃

(
1 − r̃2

r2

)
e3

]
ε = + i

2

r̃

r2
emτ

mε,

[
d + 1

4
ωmnτ

mn + i

r̃

(
1 − r̃2

r2

)
e3

]
εc = + i

2

r̃

r2
emτ

mεc,

and we may further regard the gauge field as the R-symmetry gauge field, when the spinors are 
embedded into a single five-dimensional spinor.

On the other hand, regarding the gauge field as a U(1) gauge field,

V = −1

r̃

(
1 − r̃2

r2

)
e3

we can see that the Killing spinors ε and εc carry charge 1 and −1, respectively, and so obey

Dε =
[
d + 1

4
ωmnτ

mn + iV
]
ε = + i

2

r̃

r2
emτ

mε,

Dεc =
[
d + 1

4
ωmnτ

mn − iV
]
εc = + i

2

r̃

r2
emτ

mεc.

It follows from the Killing spinor equations that

[Dm, Dn] ε =
[

1

4
Rmn

klτkl + iVmn
]
ε = i

2

(
r̃

r2

)2

εmnkτkε = r̃

r2
εmnkDkε,

[Dm, Dn] εc =
[

1

4
Rmn

klτkl − iVmn
]
εc = i

2

(
r̃

r2

)2

εmnkτkε
c = r̃

r2
εmnkDkεc,

where Vmn are the components of the field strength of the gauge field V ,

dV = 1

2
Vmne

m ∧ en = − 2

r2

(
1 − r̃2

r2

)
e1 ∧ e2.

Multiplying τmn from the left on both the left and right sides, we obtain[
1

2
R(S3)− iVmnτmn

]
ε = 3

(
r̃

r2

)2

ε,

[
1

2
R(S3)+ iVmnτmn

]
εc = 3

(
r̃

r2

)2

εc.

From the conditions (100), we take

ε =
(

1
0

)
, εc =

(
0
1

)
,

and the Fierz transformation of ε and εc remains the same as in (97).
Three vectors ε†τmε, εc†τmε, and ε†τmεc are of charge 0, 2, and −2, respectively under the 

gauge field V , and obey

Dm
(
ε†τnε
)

= r̃

r2
εmnk

(
ε†τkε
)
, Dm

(
εc

†
τnε
)

= r̃

r2
εmnk

(
εc

†
τkε
)
,

Dm
(
ε†τnε

c
)

= r̃
εmnk

(
ε†τkε

c
)
,

r2
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where the covariant derivatives contain the gauge field V as a connection according to their 
charges. They satisfy (98) and form an orthonormal basis(

ε†τmε
)(
ε†τnε
)

+ 1

2

(
εc

†
τmε
)(
ε†τnεc

)
+ 1

2

(
ε†τmεc

)(
εc

†
τnε
)

= δmn,
and obey the relations of the cross product,

εmnk
(
ε†τnε
)(
εc

†
τkε
)

= −i
(
εc

†
τmε
)
, εmnk

(
ε†τnε
)(
ε†τkε

c
)

= i
(
ε†τmεc

)
,

εmnk
(
εc

†
τnε
)(
ε†τkε

c
)

= −2i
(
ε†τmε

)
. (101)

We will denote the covariant derivative D on a scalar field � of charge q under the gauge field 
V as

D(q)m�= ∂m�+ iqVm�.
The commutation relations of the differential operators 

(
ε†τmε

)
D(q)m, 

(
εc†τmε

)
D(q)m, and (

ε†τmεc
)
D(q)m essentially remains the same as in (99), if 1/r is replaced by r̃/r2:(

ε†τnεc
)
D(q)n

(
ε†τmε

)
D(q)m

=
(
ε†τmε

)
D(q−2)

m

(
ε†τnεc

)
D(q)n + 2i

r̃

r2

(
ε†τnεc

)
D(q)n,(

εc
†
τnε
)
D(q)n

(
ε†τmε

)
D(q)m

=
(
ε†τmε

)
D(q+2)

m

(
εc

†
τnε
)
D(q)n − 2i

r̃

r2

(
εc

†
τnε
)
D(q)n,(

εc
†
τnε
)
D(q−2)

n

(
ε†τmεc

)
D(q)m

=
(
ε†τmεc

)
D(q+2)

m

(
εc

†
τnε
)
D(q)n + 4i

r̃

r2

(
ε†τnε
)
D(q)n + qεmnk

(
ε†τmε

)
Vnk,

(102)

except for the last term on the right hand side in the last equation.

G.4. Non-constant Killing spinors on a squashed 3-sphere

Similarly to the constant spinors ε = ε0 and C−1
3 ε∗0 , the spinor ε = U−1ε0 on the squashed 

3-sphere gives the solution to the differential equation(
d + 1

4
ωmnτ

mn

)
ε = − i

2r

(
2 − r̃

r

)
emτ

mε + i

r

(
1 − r̃

r

)
e3τ3 ε.

However, the computation of the partition function with this Killing spinor would give the same 
result as with the constant spinor ε0, and this Killing spinor isn’t used in this paper.

As discussed in [22], there is another Killing spinor which is given by a Lorentz transform
of U−1ε0. As explained in Subsection 5.4, the slant periodic boundary condition is rotated to 
the time direction upon the dimensional reduction from the six-dimensional theory. The rota-
tion induces the Lorentz transformation on the coframe em. This is quite parallel to the three-
dimensional stray in [22]. Therefore, one obtains the Lorentz transformed Killing spinors on 
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the squashed 3-sphere with the supersymmetry background in Subsection 5.4, which is five-
dimensional analogues of a three-dimensional Killing spinor given in the paper [22].

It has been discussed in [22] that the spinor ε = e(1/2)ξτ3U−1ε0 with cosh ξ = r̃/r and 
sinh ξ =√(r̃/r)2 − 1 is the solution to

(
d + 1

4
ωmnτ

mn

)
ε = − i

2

r̃

r2
emτ

mε + 1

r

√
r̃2

r2
− 1 ε3mne

mτnε,

and its charge conjugate C−1
3 ε∗ satisfies

(
d + 1

4
ωmnτ

mn

)
(C−1

3 ε∗)= − i
2

r̃

r2
emτ

m(C−1
3 ε∗)− 1

r

√
r̃2

r2
− 1 ε3mne

mτn(C−1
3 ε∗).

We have explained in Subsection 5.4 that the slant boundary condition with the parameter 
u on the round 3-sphere is transformed via the change of coordinates to the periodic boundary 
condition on the squashed 3-sphere with the fiber radius r̃ and the base radius r , as have been 
discussed in [22]. We have introduced the intermediate parameter ξ in Subsection 5.4, which 
explicitly appears in the Killing spinors. It could be convenient to summarize the relations of the 
parameters u, ξ and the ratio r̃/r as

cosh ξ = r̃

r
= 1√

1 − u2
, sinh ξ = u√

1 − u2
,

e±ξ/2 =
√
r̃ + r

2r
±
√
r̃ − r

2r
=
(

1 ± u
1 ∓ u
) 1

4

.

G.5. Killing spinors on an ellipsoid 3-sphere

In order to obtain an ellipsoid S3, following [21], we will deform the defining equation (94)
to give

x2
1 + x2

2

r̃2
+ x2

3 + x2
4

r2
= 1,

with the flat metric

ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4 .

Substituting the polar coordinates

z= x4 + ix3 = reiϕ cos θ, w = x2 + ix1 = r̃eiχ sin θ,

where 0 ≤ ϕ ≤ 2π , 0 ≤ χ ≤ 2π , 0 ≤ θ ≤ π/2, into the metric, one obtains

ds2 =
(
e1
)2 +
(
e2
)2 +
(
e3
)2
,

where the dreibeins e1,2,3 are

e1 = r cos θ dϕ, e2 = r̃ sin θ dχ, e3 = f (θ)dθ,



T. Kawano, N. Matsumiya / Nuclear Physics B 898 (2015) 456–562 551
with f (θ) =
√
r̃2 cos2 θ + r2 sin2 θ . The coframes, which are the dual basis to the dreibeins, are 

given by

θ1 = 1

r cos θ

∂

∂ϕ
, θ2 = 1

r̃ sin θ

∂

∂χ
, θ3 = 1

f (θ)

∂

∂θ
.

The compatible spin connection is given by

ω12 = 0, ω23 = 1

f (θ) tan θ
e2, ω31 = tan θ

f (θ)
e1,

and the curvature tensor Rmn = dωmn +ωmk ∧ωkn by

R12 = 1

f (θ)2
e1 ∧ e2, R23 = r2

f (θ)4
e2 ∧ e3, R31 = r̃2

f (θ)4
e3 ∧ e1,

and therefore one obtains the scalar curvature

R(S3
ell)=

2

f (θ)4

(
f (θ)2 + r2 + r̃2

)
.

When r = r̃ = f , the ellipsoid S3 becomes a round one, and then spinors

ε = 1√
2

(
e
i
2 (χ−ϕ+θ)

−e i2 (χ−ϕ−θ)

)
, εc = C−1

3 ε∗ = 1√
2

(
e− i

2 (χ−ϕ−θ)

e− i
2 (χ−ϕ+θ)

)
,

obey the Killing spinor equations on the round S3(
d + 1

4
ωmnτmn

)
ε = i

2r
μmτmε,

(
d + 1

4
ωmnτmn

)
εc = i

2r
μmτmε

c.

In order to keep these Killing spinors on the ellipsoid S3 with r̃ �= r , turning on a background 
U(1) gauge field

V = 1

2

[
− 1

r cos θ

(
r

f
− 1

)
e1 + 1

r̃ sin θ

(
r̃

f
− 1

)
e2
]
, (103)

as in [21], one can see that they satisfy

Dε ≡
(
d + 1

4
ωmnτmn + iV

)
ε = i

2f
emτmε,

Dεc ≡
(
d + 1

4
ωmnτmn − iV

)
εc = i

2f
emτmε

c.

The use of the Killing spinor equations twice for DDε and DDεc leads to(
1

2
R− iτmnVmn

)
ε =
(

3

f 2
+ 2i

f 2
τm∂mf

)
ε,(

1

2
R+ iτmnVmn

)
εc =
(

3

f 2
+ 2i

f 2
τm∂mf

)
εc, (104)

where Vmn is the field strength of V ,

dV = 1

2
Vmn e

m ∧ en,
and the partial differential ∂mf is defined by df = em∂mf .
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As on the squashed S3 in Subsection G.3, three vectors ε†τmε, εc†τmε, and ε†τmεc are of 
charge 0, 2, and −2, respectively under the gauge field V . They obey

Dm
(
ε†τnε
)

= 1

f
εmnk

(
ε†τkε
)
, Dm

(
εc

†
τnε
)

= 1

f
εmnk

(
εc

†
τkε
)
,

Dm
(
ε†τnε

c
)

= 1

f
εmnk

(
ε†τkε

c
)
,

where the covariant derivatives contain the gauge field V as a connection according to their 
charges. They satisfy (98) and give an orthonormal basis(

ε†τmε
)(
ε†τnε
)

+ 1

2

(
εc

†
τmε
)(
ε†τnεc

)
+ 1

2

(
ε†τmεc

)(
εc

†
τnε
)

= δmn,
and obey the same relations of the cross product,

εmnk
(
ε†τnε
)(
εc

†
τkε
)

= −i
(
εc

†
τmε
)
, εmnk

(
ε†τnε
)(
ε†τkε

c
)

= i
(
ε†τmεc

)
,

εmnk
(
εc

†
τnε
)(
ε†τkε

c
)

= −2i
(
ε†τmε

)
, (105)

as in (101) for the squashed S3.
More concretely, we have((

ε†τ 1ε
)
,
(
ε†τ 2ε
)
,
(
ε†τ 3ε
))

= (− cos θ, sin θ, 0) ,((
εc

†
τ 1ε
)
,
(
εc

†
τ 2ε
)
,
(
εc

†
τ 3ε
))

= iei(χ−ϕ) (sin θ, cos θ, −i) ,((
ε†τ 1εc

)
,
(
ε†τ 2εc

)
,
(
ε†τ 3εc

))
= −ie−i(χ−ϕ) (sin θ, cos θ, i) ,

and it implies that(
ε†τmε

)
∂mf = 0, (106)

where ∂m is defined such that d = em∂m.
We will denote the covariant derivative D on a scalar field � of charge q under the gauge field 

V as

D(q)m�= ∂m�+ iqVm�.
The commutation relations of the differential operators 

(
ε†τmε

)
D(q)m, 

(
εc†τmε

)
D(q)m, and (

ε†τmεc
)
D(q)m slightly differ from (102) by the terms with the field strength Vmn, even if r̃/r2

is replaced by 1/f , and using (104), we will replace them by the terms including f to give(
ε†τnεc

)
D(q)n

(
ε†τmε

)
D(q)m

=
(
ε†τmε

)
D(q−2)

m

(
ε†τnεc

)
D(q)n + 2i

f

(
ε†τnεc

)
D(q)n + iq

(
ε†τnεc

)
∂n

1

f
,(

εc
†
τnε
)
D(q)n

(
ε†τmε

)
D(q)m

=
(
ε†τmε

)
D(q+2)

m

(
εc

†
τnε
)
D(q)n − 2i (

εc
†
τnε
)
D(q)n,+iq

(
εc

†
τnε
)
∂n

1
,

f f



T. Kawano, N. Matsumiya / Nuclear Physics B 898 (2015) 456–562 553
(
εc

†
τnε
)
D(q−2)

n

(
ε†τmεc

)
D(q)m

=
(
ε†τmεc

)
D(q+2)

m

(
εc

†
τnε
)
D(q)n + 4i

f

(
ε†τnε
)
D(q)n + qεmnk

(
ε†τmε

)
Vnk,

(107)

except for the last term on the right hand side in the last equation.
Let us consider the scalar spherical harmonics in the coordinates (χ, θ, ϕ) in the round limit 

r̃ → r and set the radius to be unity; r = 1. The mapping from (χ, θ, ϕ) to the 3-sphere is

U = e i2 (χ+ϕ)τ3 eiθτ2 e
i
2 (ϕ−χ)τ3 ,

and the SU(2)L × SU(2)R isometry of the round 3-sphere is given by gL ∈ SU(2)L and gR ∈
SU(2)R as

U → gL·U ·g−1
R .

The left- and the right-invariant one-forms are given by

1

i
U−1dU = (τ1 + iτ2) e

−
(L) + (τ1 − iτ2) e

+
(L) + τ3e

3
(L),

1

i
dU ·U−1 = (τ1 + iτ2) e

−
(R) + (τ1 − iτ2) e

+
(R) + τ3e

3
(R),

where ea(L), e
a
(R) (a = +, −, 3) play the role of the dreibeins, respectively. Their coframes which 

are dual to ea(L,R), respectively, are

θ
(L)
± = e∓i(ϕ−χ) (θ1 sin θ + θ2 cos θ ∓ iθ3) , θ

(L)
3 = (θ1 cos θ − θ2 sin θ) ,

θ
(R)
± = e±i(ϕ+χ) (−θ1 sin θ + θ2 cos θ ∓ iθ3) , θ

(R)
3 = (θ1 cos θ + θ2 sin θ) .

Then, identifying these coframes as

L± = − 1

2i
θL±, L3 = − 1

2i
θL

3 = 1

2i

(
∂

∂χ
− ∂

∂ϕ

)
;

L̃± = 1

2i
θR±, L̃3 = 1

2i
θR

3 = 1

2i

(
∂

∂χ
+ ∂

∂ϕ

)
,

we can see that they form the Lie algebras of SU(2):[
L3, L±

]= ±L±,
[
L+, L−

]= 2L3;[
L̃3, L̃±

]
= ±L̃±,

[
L̃+, L̃−

]
= 2L̃3.

Furthermore, a simple calculation shows that

L2 = 1

2
(L+L− +L−L+)+L3L3 = 1

2

(
L̃+L̃− + L̃−L̃+

)
+ L̃3L̃3 = L̃2.

A spherical harmonics fn corresponding to one of the highest weight states defined by

L+fn = L̃+fn = 0,

is obtained by

fn = cneinχ sinn θ, with cn = n+ 1
,

2π2
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where n is an integer required by the periodicity under χ → χ +2π and is non-negative required 
by the normalizability of fn; n ∈ Z≥0. It has the eigenvalues (l = n/2, m = n/2, m̃ = n/2) for 
L2 = L̃2, L3 and L̃3,

L2fn = L̃2fn =
(n

2

)(n
2

+ 1
)
fn, L3fn = n

2
fn, L̃3fn = n

2
fn,

which corresponds to the spherical harmonics ϕl,m,m̃ = ϕn/2,n/2,n/2.
Therefore, a state corresponding to ϕl,l,m̃ is given by

L̃n−fn+m = (m+ n)!
m! cm+neimχ−inϕ cosn θ · sinm θ,

with26 m = l + m̃ and n = l − m̃. The integers m and n run from 0 to ∞. A further calculation 
yields

Lk−
(
L̃n−fn+m

)
= (−)k (m+ n)!

m! cm+nei(m−k)χ−i(n−k)ϕ 1

cosn−k θ · sinm−k θ

×
(

1

sin 2θ

d

dθ

)k
cos2n θ · sin2m θ,

where the integer k runs from 0 to n +m. Multiplying it by an appropriate normalization constant, 
we refer to it as hn,m,k (n, m = 0, 1, 2, 3, · · · ; k = 0, 1, 2, · · · , n +m).

G.6. From Killing spinors on 3-spheres to 5-dimensional Killing spinors

Introducing the basis of two-dimensional spinors

ζ± = 1√
2

(
1
±i
)

= (ζ∓)∗ , τ2 ζ± = ±ζ±,

and combining them with the Killing spinors ε, C−1ε∗ on the 3-sphere to give the five-
dimensional spinors

ε ⊗ ζ±, C−1
3 ε∗ ⊗ ζ±.

The action of iγ 45 = 12 ⊗ τ2 on these spinors can be seen as

γ 45 (ε ⊗ ζ±)= ∓i (ε ⊗ ζ±) , γ 45(C−1
3 ε∗ ⊗ ζ±)= ∓i(C−1

3 ε∗ ⊗ ζ±),
and for the gamma matrices γa (a = 1, 2, 3),

γa (ε ⊗ ζ±)= ±τaε ⊗ ζ±,
γa

(
C−1

3 ε∗ ⊗ ζ±
)

= ±τaC−1
3 ε∗ ⊗ ζ± = ∓C−1

3 (τa)
∗ ε∗ ⊗ ζ± (a = 1,2,3)

In the text, we assume that the Killing spinors εα̇ obey

iγ45 ε
α̇ = (τ3)

α̇
β̇ε
β̇ ,

or more explicitly, we make the ansatz

ε1̇ = ε ⊗ ζ+, ε2̇ = C−1
3 ε∗ ⊗ ζ−.

26 Note that the integer m here is not the eigenvalue of L3.
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G.7. Auxiliary SU(2) flavor spinors

In order to construct the off-shell supersymmetry of the five-dimensional theory, besides the 
supersymmetry parameter εα̇ , we need to introduce an additional supersymmetry parameter εα̌

(α̌ = 1, 2), with the index α̌ of an additional SU(2) flavor group which are not an subgroup of 
the Spin(5)R R-symmetry group.

In this paper, we take the supersymmetry parameter εα̇ in the form

ε1̇ = ε ⊗ ζ+, ε2̇ = C−1
3 ε∗ ⊗ ζ−,

where ε is an two-dimensional spinor. By a simple examination, one can see that ε and C−1
3 ε∗

are linearly independent. For this parameter εα̇, we take εα̌ to be

ε1̌ = ε ⊗ ζ−, ε2̌ = C−1
3 ε∗ ⊗ ζ+; εα̌ = γ 5εα̇

so that they obey

iγ 45εα̌ = − (τ3)
α̌
β̌
εβ̌ .

Since the two-dimensional spinors ζ± are linearly independent, these supersymmetry param-
eters εα̇ , εα̌ form the basis of the four-dimensional linear space of five-dimensional spinors.

The covariant derivative Dμεα̌ is defined by

Dμεα̌ = ∂μεα̌ + 1

4
ωμ

bcγbc ε
α̌ − 1

4
Ǎμ

ij
(
σ̄ij
)
α̌
β̌
εβ̌ ,

where we assume that the gauge field Ǎμij takes the same as Aμij : Ǎμij =Aμij .

Appendix H. Dictionary among notations

In this paper, we follow the same procedure as in [24] to obtain five-dimensional N = 2 su-
persymmetric Yang–Mills theory in the supergravity background, but our notations are different 
from the ones in [24]. The procedure is based on the dimensional reduction of the off-shell su-
pergravity in [25], where different notations from [24] and ours however, are used. Therefore, 
the list of the different notations among [25,24] and ours may be convenient for the readers.

We use the common Lorentz metric with the signature (−, +, · · · , +). However, the indices 
of Lorentz vectors are different; for a Lorentz vector V a in our notations, it is V a in [25] and 
V a in [24]. Note here that the underline indicates that it is a six-dimensional one in our 
paper. That’s why the above V carries the underline V in ours, but not in [25,24]. However, the 
underline carried by the Lorentz indices or the coordinate frame indices means that they are 
six-dimensional in [24] and ours, but not in [25].

We use the common algebra of the gamma matrices of the Lorentz group, but the different 
notations of the gamma matrices are used, as listed in Table 6. The properties (90) of our charge 
conjugation matrix C are also enjoyed by C in [25] and C in [24]. However, since our definition 
of the conjugate ψ̄

α
of spinors is different from the ones in [25,24] by i = √−1; ψ̄ i → iψ̄

α
, as 

is seen in Table 6, our charge conjugation matrix C multiplied by i is equal to the ones in [25,24].
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Table 6
Dictionary of notations in [25,24] and ours.

Bergshoeff et al. [25] Cordova–Jafferis [24] Ours

The Lorentz vector indices
a, b a, b a, b

The Spin(5)R � USp(4)� sp(4)R spinor indices
i, j m,n α,β

The Spin(5)R � USp(4)� sp(4)R vector indices

I, J

The Spin(5)R charge conjugation matrix ⇔ the USp(4)� sp(4)R invariant metric

	ij 	mn 	αβ

The gamma matrices of the Lorentz group

γ a �a �a

The charge conjugation matrix of the Lorentz group

C C iC

The spinor indices of Spin(5)R
ψi =	ijψj , ψm =	mnψn, ψα =	αβψβ ,

ψi =ψj	ji ψm =ψn	nm ψα =ψβ	βα
The conjugate of a spinor ψα

ψ̄i = i (ψi)† γ 0 =
(
ψi
)T
C ψ̄m = i (ψm)† �0 = (ψm)T C ψ̄α =

(
ψα
)†
�0 =
(
ψβ
)T
C	βα

The local Lorentz (dependent) gauge field 	μab

ωμ
ab ωμ

ab 	μ
ab

The Spin(5)R gauge field V μIJ

Vμ
ij = Vμji Vμ

mn = Vμnm V μ
α
β = (1/2)V μIJ

(
ρIJ
)
α
β ,

V μ
IJ = −V μJI

The auxiliary fieldMαβγ δ
Dij kl Dmnrs Mαβγ δ

The scalar field φαβ of the tensor multiplet

φij �mn φαβ

The scalar spinor χα of the tensor multiplet

ψi "m χα

The spinor indices α, β of the Spin(5)R symmetry in our paper are i, j in [25] and m, n in 
[24], and they run from 1 to 4. Only in our paper, the vector indices I, J of the Spin(5)R are 
introduced. Since there is the equivalence Spin(5) � USp(4), the Spin(5)R group is referred to 
as USp(4) in [25], and its Lie algebra as sp(4)R in [24]. The invariant metric 	ij of USp(4) in 
[25] is 	mn in [24] and is the charge conjugation matrix 	αβ of Spin(5)R in ours.

As shown in Table 6, the gauge field 	μab of the local Lorentz symmetry is referred to as 
ωμ

ab in [25] and ωμab in [24]. The curvature tensor of the gauge field ωμab is defined in [25]
by
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Rμν
ab(M)= ∂μωνab − ∂νωμab +ωμacωνcb −ωνacωμcb

− 2
(
fμ
aeν

b − fμbeνa − fνaeμb + fνbeμa
)

+ · · · ,
with the ellipses · · · denoting the contribution from the fermionic fields, following the usual con-
struction of the curvature tensors in the conformal tensor calculus [26]. Upon the deformation of 
the superconformal algebra, the gauge field fμa becomes dependent [25]:

fμ
a = −1

8
R′
μ
a(M)+ 1

80
eμ
aR′(M)+ 1

32
T ij μcdTij

acd ,

in their notations, where the curvature R′
μν
ab(M) is Rμνab(M) with the underlined terms 

omitted in the above. The Ricci curvature R′
μ
a(M) = eνbR′

μν
ba(M) and the scalar curvature 

R′(M) = eμaR′
μ
a(M) are also defined in [25].

In the notation of [24], R is the scalar curvature of ωμab and is equal to R′(M) with the 
fermionic contributions omitted.

The curvature tensor Rμνab(	) of 	μab in our conventions is the same as the bosonic contri-

bution of R′
μν
ab(M) in [25]; Rμνab(	) =R′

μν
ab(M)

∣∣, with 
∣∣ denoting the omission of the terms 

including fermionic fields. Our convention of the Ricci curvature is Rμa(	) =�νbRνμba(	) =
−R′

μ
a(M)
∣∣, and R(	) = −R′(M)

∣∣ in [25] and R(	) = −R in [24].

H.1. Difference in notations between the previous paper and this paper

Before estimating the partition function, we don’t need to use the complex conjugate of the 
scalar fields φI and the hermitian conjugate of the spinor χα to obtain the supersymmetry trans-
formations, the supersymmetry algebra, and the supersymmetric action. However, the scalar 
fields φI have the negative signature in the kinetic terms, and therefore, it is necessary to perform 
the “Wick’s rotation” of the scalar fields φI to define the partition function. We will regard them 
as pure imaginary.

However, the four scalars φi (i = 1, · · · , 4) in the previous paper have the positive signature, 
and we can regard them as real scalars. See Table 7 for the notations in the previous paper [1]. 
Thus, they form the complex scalars Hα̇ , H̄α̇ , and the scalars Hα̇ , H̄α̇ in the previous paper can 
be identified as

Hα̇ = ± i√
2
(σi)

1
α̇φ
i, H̄ α̇ = (Hα̇)∗ = ± i√

2
(σ̄i)

α̇
1φ
i,

in terms of φi (i = 1, · · · , 4) in this paper.

∓ i√
2
(σi)

2
α̇φ
i = εα̇β̇ H̄ β̇ , ∓ i√

2
(σ̄i)

α̇
2φ
i = εα̇β̇Hβ̇,

φi = ∓ i√
2

[(
σ̄ i
)
α̇

1Hα̇ +
(
σ i
)

1
α̇H̄

α̇
]
, φ1 = ± 1√

2

(
H2 − H̄ 2

)
,

φ2 = ± i√
2

(
H2 + H̄ 2

)
, φ3 = ± 1√

2

(
H1 − H̄ 1

)
, φ4 = ∓ i√

2

(
H1 + H̄ 1

)
.

In order for the supersymmetry transformation and the action in the previous paper to be 
consistent with the ones in this paper, we need to identify

#= ∓ i ψα̃=1, #† = ± i
(
ψα̃=2
)T
C.
2 2
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Table 7
Difference of notations between [1] and this paper.

The previous paper [1] This paper

The gamma matrices of the Lorentz group
�M , C5 (M = 1, · · · ,5) γμ, C, (μ= 1, · · · ,5)

The supersymmetry parameter εα̇

�α̇ εα̇/
√

2

The non-abelian gauge field Aμ
vM Aμ

The gaugino field λα̇

 α̇ λα̇/(2
√

2)

The scalar field σ
σ −σ
The scalar fields φi (i = 1, · · · ,4)
Hα̇ ±i(σi )1α̇ φi/

√
2

H̄ α̇ = (Hα̇)∗ ±i(σ̄i )α̇1 φ
i/

√
2

The spinor field ψα̃ (i = 1, · · · ,4)
# ∓(i/2)ψα̃=1

#† ±(i/2)
(
ψα̃=2
)T
C

The auxiliary SU(2) indices (α̌ = 1,2)
α,β α̌, β̌
FHα Fα̌

But, the symplectic Majorana condition of ψα̃ is inconsistent with the hermitian conjugation 
of #. Since we don’t use the symplectic Majorana condition of ψα̃ to ensure the supersymmetry 
transformation, the supersymmetry algebra, and the supersymmetric action, this identification 
never causes any troubles.

Through the dictionary, the on-shell supersymmetry transformation (19) may be rewritten in 
terms of the notations in the previous paper as

δvM = −i�̄α̇�M α̇, δσ = i�̄α̇ α̇, δHα̇ = −i�̄α̇# (δH̄ α̇ = i#̄�α̇),
δ α̇ = −1

2

[
1

2
FMN�

MN + �MDMσ − 1

2α
GMN�

MNσ

]
�α̇

−1

2
Sij σ
(
σ̄ ij
)
α̇
β̇�

β̇ − ig
([
H̄ α̇, Hβ̇

]
− 1

2
δα̇β̇

[
H̄ γ̇ , Hγ̇

])
�β̇,

δ#=
[
�MDMHα̇ + ig [σ, Hα̇] − 1

2α
GMN�

MNHα̇ − tMN�MNHα̇

− 1

2

(
Sij + εijklSkl

)[(
σ̄j
)β̇

1Hβ̇ + (σj )1 β̇ H̄ β̇] (σi)1 α̇
]
�α̇,

and the equations of motion (20) of λα̇ , ψα̃ as

�MDM α̇ + ig
[
σ,  α̇
]
+ ig
[
H̄ α̇, #

]
− igεα̇β̇

[
Hβ̇, C

−1#∗]
= 1

GMN�
MN α̇ + 1

Sij

(
σ̄ ij
)α̇

β̇ 
β̇ + 1

tMN�
MN α̇,
8α 4 2



T. Kawano, N. Matsumiya / Nuclear Physics B 898 (2015) 456–562 559
�MDM#− ig [σ, #] − 2ig
[
Hα̇,  

α̇
]

= 1

8α
GMN�

MN#+ 1

4
Sij

((
σ ij
)1

1#+
(
σ ij
)2

2C
−1#∗
)

− 1

2
tMN�

MN#.

The Killing spinor equation (7) in the old notations becomes

DM�α̇ = 1

4
Sij

(
σ̄ ij
)
α̇
β̇�M�

β̇ − 1

2α
GMN�

N�α̇

− 1

8α
GKL�M

KL�α̇ − 1

2
tKL�M

KL�α̇,

with the covariant derivative

DM�α̇ ≡ ∂M�α̇ + 1

2
bM�

α̇ + 1

4
	M

KL�KL�
α̇ − 1

4
AM

ij
(
σ̄ij
)α̇
β̇�M�

β̇.

Under the background

α = 1 (bM = 0),
1

α
G45 = −1, S12 = S34 = 1

2
,

t45 = 1

4
, A12 =A34 = −1

2
ω45,

the Killing spinor equation is reduced to the one in the previous paper

∇M�α̇ = −1

2
�M

45�α̇.

The Killing spinor in the previous paper has the additional property

�45�α̇ = −i (τ3)
α̇
β̇�

β̇

(�4�α̇ = i (τ3)
α̇
β̇�

5�β̇, �5�α̇ = −i (τ3)
α̇
β̇�

4�β̇).

The equations of motion are also reduced to the ones in the previous paper.
In order to lift the on-shell supersymmetry transformation to the off-shell one, introducing the 

auxiliary field Dα̇β̇ to replace

Dα̇β̇ = iσ (τ3)
α̇
β̇ + 2ig

([
H̄ α̇, Hβ̇

]
− 1

2
δα̇β̇

[
H̄ γ̇ , Hγ̇

])
,

and using the equations of motion of the spinors with the background, the supersymmetry trans-
formation of Dα̇β̇ reproduces the previous one

δDα̇β̇ = i�̄(α̇
(
�MDM β̇) + ig

[
σ,  β̇)

])
.

It yields the off-shell supersymmetry of the vector multiplet (vM, λα̇, σ, Dα̇β̇ ) in the previous 
paper.

For the self-dual Sij ; εij klSkl = 2Sij , the term in δ#,

−1

2

(
Sij + εijklSkl

)[(
σ̄j
)β̇

1Hβ̇ + (σj )1 β̇ H̄ β̇] (σi)1 α̇�α̇
= ∓ i√

(
Sij + εijklSkl

)
φj (σi)

1
β̇�

β̇ ,

2
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can be rewritten by using the formulas

σkσ̄ij = δk [iσj ] + εij klσl, σij σ
k = δk [iσj ] − εij klσl,

as

± i√
2

· 3

4
Sij

(
σk
)1
α̇φk

(
σ̄ ij
)α̇

β̇�
β̇ = 3

4
Sij

(
σ̄ ij
)α̇

β̇Hα̇�
β̇ .

It facilitates the computation to verify that the off-shell supersymmetry transformation of the 
hypermultiplet (Hα̇, #, FHα) with the auxiliary field FHα gives rise to the one in the previous 
paper. In fact, by modifying the on-shell supersymmetry transformation as

δ# → δ#+ FHα�̌α, δFHα = i ¯̌�α(the e.o.m. of #),

one can lift it to the off-shell supersymmetry transformation.
In the previous paper, we have given the action27

L =
∫ √

g d5x tr

[
− 1

4
vMNv

MN + 1

2
DMσD

Mσ − 1

4
Dα̇β̇D

β̇
α̇ −DMH̄ α̇DMHα̇

+ F̄H αFHα + 1

2
ωc.s. + σ 2 −

(
1 + 1

4
R(�)

)
H̄ α̇Hα̇ +

(
i

2
(τ3)

α̇
β̇D

β̇
α̇ − v45

)
σ

+ i ̄α̇�MDM α̇ − i#̄�MDM#+ 1

2
(τ3)

α̇
β̇  ̄α̇ 

β̇ − i

2
#̄�45#

+ g2
[
σ, H̄ α̇

]
[σ, Hα̇] + igDα̇β̇

[
H̄ β̇ , Hα̇

]
− g ̄α̇

[
σ,  α̇
]
− g#̄ [σ, #] − 2g#̄

[
Hα̇,  

α̇
]
+ 2g
[
H̄ α̇,  ̄α̇

]
#

]
,

where the term ωc.s. denotes∫ √
g d5x tr

[
εmnkvm

(
∂nvk + i

3
g [vn, vk]

)]
=
∫
v ∧
(
dv+ 2

3
(ig)v ∧ v

)
∧ vol(�)

=
∫ √

g d5x tr[ωc.s.],
with vol(�) the volume form of the Riemann surface �.

Integrating out the auxiliary fields Dα̇β̇ , FHα in the action, one obtains

L
∣∣= ∫ √

g d5x tr

[
− 1

4
vMNv

MN − v45σ + 1

2
DMσD

Mσ −DMH̄ α̇DMHα̇

+ 1

2
ωc.s. + 1

2
σ 2 −
(

1 + 1

4
R(�)

)
H̄ α̇Hα̇ − g(τ3)

α̇
β̇σ
[
H̄ β̇ , Hα̇

]

+ g2
[
σ, H̄ α̇

]
[σ, Hα̇] − g2

[
H̄ α̇, Hβ̇

][
H̄ β̇ , Hα̇

]
+ 1

2
g2
[
H̄ α̇, Hα̇

] [
H̄ β̇ , Hβ̇

]
+ i ̄α̇�MDM α̇ − i#̄�MDM#+ 1

2
(τ3)

α̇
β̇  ̄α̇ 

β̇ − i

2
#̄�45#

− g ̄α̇
[
σ,  α̇
]
− g#̄ [σ, #] − 2g#̄

[
Hα̇,  

α̇
]
+ 2g
[
H̄ α̇,  ̄α̇

]
#

]
.

27 The mass term of Hα̇ in the action L didn’t include the curvature term R(�)H̄ α̇Hα̇ in the previous paper [1].
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It enables us to compare it easily with the action S in (22)–(25), and one can see that the sub-
stitution of the background on the round 3-sphere in Subsection 5.1 into the action S exactly 
reproduces the above action.
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