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Instead of attacking inductive inference problems in piecemeal fashion, 
one might hope to write a program that synthesizes successful inductive 
inference machines from input problem descriptions. Such synthesizers 
might be conceived as accepting information from the user about  the 
nature of the problem to be solved. The present paper examines alternative 
design specifications for synthesizers of this kind. The specifications vary in 
terms of 

- - t h e  nature of the objects to be inferred by synthesized machines, 
namely, arbitrary r.e. languages versus total recursive functions; 

- - t h e  quality of problem descriptions input to the synthesizer; 
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- - t h e  performance characteristics required of synthesized machines 
(speed, resistance to noisy data, memory limitations, etc.) 

For each design specification we ask whether automatic synthesizers of the 
desired kind exist in principle. 

1. PRELIMINARIES 

Insofar as possible, notation and terminology are drawn from Osherson, 
Stob, and Weinstein (1986; henceforth OSW). 

The set of natural numbers 0, l, 2 .... is denoted iV. We fix an acceptable 
indexing ~o, if1, ... of the partial recursive functions and of their respective 
domains Wo, W1 ..... The class { W~]i~ N} is denoted RE. Members of RE 
are referred to as "languages." We use "L" as a variable over languages. 
The set {~b~lieN} of all partial recursive functions is denoted: F r~¢. For 
i, j ~  N, "Wi j '  denotes the (finite) set of numbers appearing in the standard 
enumeration of W~ after j steps of computation. Similarly, ~ij(x) is the 
result of j steps in the computation of ~(x).  X~_ N is said to be an "index 
set" for { Wjl j e  X}. We let Do, Dl .... be the standard enumeration of the 
finite sets by canonical indices (Rogers, 1967, Section 5.6). 

Let L e RE be given. A text for L is an o9-sequence on L, that is, an 
infinite listing of all members of L, repetitions allowed, with no members of 
L" (the complement of L) in the list. We use "s" and "t" as variables over 
texts. The set of numbers appearing in text t is denoted: rng(t). 

We let "( . ,  • )" code pairs as single integers. The functions (., -, • ) etc. are 
defined from ( . , . )  in the usual fashion. L e RE is said to represent the set 
{(x, Y)I (x, y ) ~ L } .  The class ( L ~ R E L L  represents a total function} is 
denoted: REsv t. ("svt" stands for "single-valued, total.") Thus, REsvt 
represents the set of graphs o f  total recursive functions. Whereas it is usual 
to conceive of inductive inference machines as operating directly on such 
graphs, it shall here be assumed that graphs are first coded as sets of 
(single) natural numbers. This will allow uniform treatment of language- 
inference and function-inference. 

Let text t and n e N be given. The nth member of t (counting from 0) is 
denoted: t(n). (Thus, the 0th member t(0) of t = 3, 4, 5, 6 .... is 3.) The finite 
initial sequence of length n in t is denoted: tin]. The set { t im]  It is a text 
and m ~ N} of all finite sequences in any text is denoted: SEQ. We use "tr," 
"z," "6," as variables over SEQ. The length of tre SEQ is denoted: lh(a). 
For t r e  SEQ and m < lh(a), the symbols "rng(a)," "tr(m)," and " a i m ] "  are 
interpreted just as for texts. (Notice that tr(lh(a)) does not exist, whereas 
cr[lh(tr)] = tr.) Concatenation among sequences, numbers, and (the begin- 
nings of) texts is denoted ^ .  

643/77/2-4 
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We assume the existence of a fixed, recursive isomorphism between SEQ 
and N. Tacit application of this isomorphism allows partial recursive 
functions to be applied directly to sequences, yielding single natural num- 
bers as outputs. 

Let text t, j E N, and 0 ~ F rec be given. 0 is defined on t just in case for all 
m e N ,  O(t[m]) is defined. 0 converges on t to j just in case (a) 0 is defined 
on t, and (b) for all but finitely many m e N ,  O(t[m])=j. 0 identifies t just 
in case 0 converges on t to an index for rng(t). 0 identifies L E R E  just in 
case 0 identifies every text for L. 0 identifies L _~ RE just in case 0 identifies 
every L E L. If some 0 ~ F rcc identifies L ___ RE, then L is identifiable. Gold 
(1967) and Blum and Blum (1975) provide interesting examples of both 
identifiable and nonidentifiable subsets of RE and REsvt. Note that every 
0 ~ F rcc identifies the empty collection of languages. The foregoing concept 
of identification corresponds to "EX-identification" in Case and Smith 
(1983) and elsewhere. 

2. DESCRIPTIONS AND SYNTHESIZERS 

We now provide basic definitions for our study of synthesized inductive 
inference. 

DEFINITION 2A. A mapping D : N ~ P ( R E )  (the power-set of RE) is 
called a description function. 

Thus, a description function maps each natural number into a collection 
of languages (as a special case, into a subset of REs,~). In the context of 
such a function D, a natural number i may be conceived as describing an 
inductive inference problem, namely, the problem of designing a machine 
that identifies D(i). Intuitively, the quality of such a description depends 
upon the computational transparency of D. 

DEFINITION 2B. A partial computable function S : N x S E Q  ~ N  is 
called an (inductive expertise) synthesizer. 

A synthesizer may be conceived as a parameterized inductive inference 
machine. The parameter is a natural number that codes a collection of 
languages via a background description function. 

DEFINITION 2C. Let X ~  N, synthesizer S, and description function D 
be given. 

(i) Sperforms X on D just in case for all i eX ,  2a.S(i, a) identifies 
D(i). 

(ii) X is performable on D just in case some synthesizer performs X 
on D. 
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Thus, to perform X, S must convert any given problem description i ~ X 
into an inductive inference machine 2a.S(i ,  a) that identifies D(i). Of 
course, if i t  N is such that D(i) is not identifiable, then no X~_ N such that 
i 6 X is performable on D. 

We now introduce a fundamental description function. 

DEFINITION 2D. Let description function [.] be defined as follows. For 
all ieN, [i] = { WjIj~ Wi}. 

Thus, [.] interprets i as a description of the collection of r.e. sets indexed 
by Wi. Of course, only r.e. indexable subsets of RE have descriptions 
under [.]. 

Let n e N  be an index for N, and let io, il .... be indices for Do, D1 .... , 
respectively. Choose j ~ N  such that Wj= {n, io, il .... }. Then, by Gold's 
theorem (see OSW, Proposition 2.2A), [ j ]  is not identifiable. As a con- 
sequence, N is not performable on [.]. 

Is {i~Nl[i] is identifiable} performable on [.]? To answer this 
question it is tempting to try to specify total h ~ F rec such that for all i ~ N, 
~b~ does not identify Wh~i). Such an h would be a first step towards defeating 
any candidate synthesizer for the above set. However, no such function h 
exists! To see this, suppose otherwise and let total g ~ F r°c be such that for 
all i~N, ~g~)is the constant/-function. So, for all i~N, (~g~)identifies W~. 
By the recursion theorem, let j be a fixed point for hog. Then, ~bg~j) 
identifies Wj= Wh~g~m, contradiction. (Compare Case and Smith, 1983, 
Theorem 2.4.) The foregoing question is answered negatively in the next 
section as a corollary to a stronger result. 

3. PERFORMABILITY IN RE 

Our study of synthesized inductive expertise is devoted principally to 
description functions that return subsets of REsv t. As a prelude, the present 
section considers a description function that sometimes returns languages 
in RE - REsv t. 

To appreciate the content of the following proposition, observe that for 
all L, L ' e R E ,  {L, L'} is identifiable (see OSW, Exercise 1.4.3C). Hence, 
for all i ~ N, if card(Wi) = 2, then I-i] is identifiable. 

PROPOSITION 3A. {i~ Nlcard(Wi)=2} is not performable on [.-I. 

Thus, no synthesizer can produce successful inductive inference machines 
from input pairs of arbitrary r.e. indices. 

Proof Let candidate synthesizer S be given. We specify total h e F rec 
such that for all i~N, card(Whti))=2 and 2tr.S(i, tr) does not identify 
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{ W j l j ~ W h ( i ) } = [ h ( i ) ] .  Let p be an index for N. Let t o be the text: 
0, 1,2 ..... Given i ~ N ,  we set W h ( i ) = { p , j } ,  where Wj is enumerated as 
follows. 

Stage O. Find m o ~ N such that rng(t°[m0]) c Ws~i.toE,,oj). If such an mo 
does not exist, then diverge; in this case Wj= ~ and 2tr. S(i, a) fails to 
identify the text t o for Wp = N. Otherwise, enumerate rng(t°[mo]) into Wj. 
Set t l = t ° [ m 0 ] ^ 0 ^ 0 ^  .... 

Stage 2n + 1. Find m2n+~ ~ N such that m2n+~ > m2~ and 
S(i, t 2"+l [m2 , ] )¢S ( i ,  t2"+l[m2n+l]).  If such an m2,+1 does not exist, 
then diverge; in this case t 2n÷~ is a text for the finite language Wj, and 
2a. S(i, tr) does not identify t 2n ÷ 1 (hence, does not identify Wj). Otherwise, 
set t 2n + 2 = t2n + 1 [m2, + 1] ^ t°. 

S t age2n+2 .  Find m2 ,+2~N such that m2n+2>m2~+l and 
r 2n+2 ng( t  [mzn + 2]) c Wsti, t:,+2Em:,+21). If such an m2, + 2 does not exist, then 
diverge; in this case 2a.S( i ,  a) fails to identify a text for W p = N .  
Otherwise, enumerate rng(t2"+Z[m2,+z]) into Wj. Set t2("+1)+~= 
t2"+2[m2,+2] A 0 A 0 A .... 

If some even stage of the foregoing construction diverges, then Wj is 
finite and 2a.  S(i, a) fails to identify some text for N. If some odd stage 
diverges, then Wj is finite and 2¢r. S(i, or) fails to identify some text for Wj. 
If every stage converges, then Wj = N and 2a- S(i, or) fails to converge on 
some text for Wj. Thus, in any case 2a-S(i ,  a) fails to identify { Wp, Wj} = 
[-h(i)]. 

By the recursion theorem, let k be a fixed point for h. Then, 2a- S(k, or) 
fails to identify [h(k)]  = { W i I j ~  Wh¢k)} = { Wj[ j~  Wk} = [k].  Moreover, 
card(Wk) = 2. II 

COROLLARY 3A. { i ~ N l [ i] is identifiable} is not performable on [.]. 

The proof of Proposition 3A suggests that the nonperformability of 
{ i ~ N [  ca rd (W/)=2}  on [.]  results from the potential equivalence of 
indices mentioned in a description. This speculation is confirmed by the 
next proposition. To formulate it, a definition will be helpful. 

DEFINITION 3A. E X T =  { iEN]  (Vj, k ~  W i ) ( j # k ~  W j ¢  Wk)}. 

PROPOSITION 3B. {i ~ EXT [ card(W~) finite } is performable on [.]. 

Proof  Let i, tr be given. To witness the proposition, S(i, tr) is defined as 
follows. Let s = lh(a). For  each pair j, k E W~,~, define 

xj, k,~ = l~x ~ ( Wj,~ -- Wk,~) w ( Wk,~ -- Wj.s) if such exists; 

= undefined, otherwise. 
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Now define S(i, a) to be the least j e  Wi,~ such that for all k e Wi, s, if Xj,k, s is 
defined, then xj, k,~ e rng(a) if and only if xj,~,s e Wj,~. (And define S(i, ~ ) =  0 
if no such j exists.) To see that S(i, ~) identifies [-i] if i e E X T  and Wi is 
finite, let so be such that Wi = W~,~ 0. Suppose also that for all s >~ so, each 
xj, k,~ is defined and xj.~.~ = px  ~ ( Wj - W~) w ( W k - Wj). Now let t be any 
text for Wj, j e W~. Let s~ >~ So be such that for all k e W~, Xj, k,~ e Wj implies 
Xj, k,~ e t[Sl]. Then for all s>~s~, S(i, a ) = j  and S(i, a) identifies t. | 

The finiteness qualification in the preceding proposition is essential. This 
is shown by the following result. 

PROPOSITION 3C. {i6EXT I [i] is identifiable} is not performable on 
[.]. 

Proposition 3C is proved in Section 4. 

4. PERFORMABILITY IN REsv t 

We now introduce a description function that returns subsets of RE~, t. 
Performability on this function will be our principal concern throughout 
the remainder of this paper. 

DEFINITION 4A. Let description function [']~vt be defined as follows. 
For all i ~ N ,  [i]svt = [i] ~RE~vt. 

Thus, for all i e N ,  [i]~vt = { W j ~ R E ~ t I j ¢  W~}. In the context of [']svt 
an index i may be conceived as an "impure" index set for some subset of 
REsvt--"impure" in the sense of possibly holding irrelevant indices for 
languages outside of RE~t. The presence of such irrelevant indices is cen- 
tral to performability on [']~vt, To see this, let n be an index for N. It 
follows from Proposition 4.2.1B of OSW (due to Gold, 1967) that [n]svt  

(=REs,,t) is not identifiable. In contrast, if indices for members of 
R E -  REs~ t are not present in descriptions, then performability on [']s~t is 
always possible. This is the content of the next proposition. A definition 
will aid its formulation. 

DEFINITION 4B. SVT= { ieNI  (Vje W,-) (WjeRE~t)}.  

PROPOSITION 4A. SVT is performable on [']svt. 

Proof  We exhibit synthesizer S that performs SVT on [']svt. Given 
i ~ N ,  ¢r~SEQ, define S ( i , a )  to be the first j to appear in the standard 
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enumeration of W~ such that rng(a) _~ Wj. It is clear that if every index in 
W~ is for a member of REset, then 2a.  S(i, cr) identifies [i]  = [i]~t.  II 

Proposition 4A leads us to ask whether all communication to 
synthesizers can be carried out under [']~vt through indices in SVT. Put 
differently, we ask whether every identifiable subset of REly t is included in 
some member of {[iJsvtliESVT}. The next proposition answers this 
question negatively. 

DEFINITION 4C. 0 ~ F ~¢¢ is self-indexing just in case the least x E N such 
that O(x)= 1 is an index for 0. The collection {LE REsv t lL  represents a 
self-indexing function } is denoted: REst. 

PROPOSITION 4B. REsi /s identifiable and for every iESVT, 
REsi qt [iJsvt" 

Proof. The fact that REsi is identifiable is due to Blum and Blum 
(1975). (The obvious method works.) To show that for all iESVT, 
REsi ~ [-i]svt, let total recursive functions p and q be such that: 

(a) for all kEN, Wq(~) represents ~bg; and 

(b) for all kEN, if WkEREsvt, then Wk represents ~bp(k). 

Let i be given. If Wi= ~ ,  then REsi ¢: [i]svt (it will be seen below that 
REsi # ~ ) .  Assume that Wt # ~ .  We specify total recursive function h such 
that for all x E N: 

(i) ~bh(~)(y) = 0 for all y < x; 

(ii) q~h(~,)(X)= 1; 
(iii) ~bh(~) is total; and 

(iv) mq(h(x)) ¢ [i]~vt. 

Application of the recursion theorem then yields k E N such that ~bh(k) = ~bk, 
SO: 

(i') 

(ii') 

(iii') 

(iv') 

~b~(y) = 0 for all y < k; 

Ck(k)  = 1; 

¢k is total; and 

Wq(k) ~ [i]svt" 

Hence, ~b~ is self-indexing and total, and Wq(~) witnesses that REsi ~ [i]svt. 
It remains to specify h. Let total recursive g be such that range(g)= 

{p(j)ljE Wi}. Then ~bg(.) is total for all zEN. Given xEN, let h(x) be a 
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uniformly effectively constructed index for the function 0 such that for all 
y e N ,  

0 ( y ) = 0  i f  y < x ;  

= 1 i f  y =  x;  

= q~g(y_(x+ I l l (y)  + 1 if y > x .  

It is easy to verify that for all x e N ,  fbhtxj meets conditions (i)-(iv). | 

On the other hand, [']~vt does suffice to communicate every identifiable 
subset of REs~, in some cases via "impure" descriptions. This is the content 
of the next proposition. 

PROPOSITION 4C. I l L  ~_ REsv t is identifiable, then there is i 6 N such that 
L _  [ i ]~t  and [i]~vt is identifiable. 

Proof. The proposition is a corollary of OSW, Lemma 4.3.4B (due to 
Mark Fulk). II 

Remaining with the general case (in which i¢ SVT is possible), we now 
consider whether performability is assured by limiting attention to indices i 
such that [ i ]~t  is identifiable. The next proposition provides a negative 
answer to this question. 

PROPOSITION 4D. {i e N[ [i]svt is identifiable} is not performable on 
[.]sv,. 

Proof Let candidate synthesizer S be given. We exhibit total h e F rec 
such that for all i e  N, 2tr. S(i, tr) does not identify { W~e REsvtlJe Wh(~)} = 
[h(i)]svt. Moreover, for all ieN,  [h(i)]svt will be seen to be identifiable. 
The recursion theorem then yields k e N such that 2a. S(k, a) does not 
identify [h(k)]svt = [k]s~t and I-k]~t is identifiable. 

Given i~ N, W~ul is enumerated in stages. Let t o be the text: (0, 0 ) ,  
(1, 0 ) ,  (2, 0 ) ,  .... Let Po be an index for rng(t °) and enumerate Po into 
Wh(i)" 

StageO. Find mo, qoeN such that q o > m o  and (qo, O)eWstc,t,,oj~. 
If no such mo, qo exist, then 2a.S(i, tr) fails to identify a 
text for W,0. Otherwise, set t ~ = t°[mo] ^ (mo, 1 ) ^ (too + 1, 1 ) ^ .... Let 
Pl be an index for rng(tl), and enumerate Pl into Whti~. 

Stage2n+l.  Find m2~+1>m2~ such that S(i, tz~+~[m2~+~])# 
S(i, t2"[m2~]). If no such m2,+~ exists, then 2tr. S(i, a) fails to identify a text 
for W,~+,. Otherwise, set t2n+2 =t2n+l[m2n+l] ^ (m2~+l,O) ^ 
(m2~+~ + 1, 0 )  A .... Let Pz~÷2 be an index for rng(t 2~+2) and enumerate 
P2~ + 2 into Wh<~). 
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Stage2n+2. Find m:n+2, q2n+2eN such that q2n+2>m2,+2 and 
(q2,+:,O)eWs(~.,2.+2Em2.+21). If no such m2,+2, qz,+2 exist, then 
2a.S(i, a) fails to identify a text for Wp2.+ 2. Otherwise, set t2("+1)+1= 
t2n+2[m2n+2] A (m2n+2 , 1) ^ ( m z n + 2 +  1, 1 )  A .... Let Pz(,+l)+l be an 
index for rng(t 2(" + 1) + 1) and enumerate P2(, + 1) + ~ into Wh(i). 

Finally, we define a "diagonal" language L ~ RE as follows. For all n ~ N, 
if stage n in the foregoing construction terminates, enumerate rng(t"[m,])  
into L. Let d be an index for L and enumerate d into Wh(i). (Since the 
construction is effective, d can be enumerated into Whu)just after P0.) 

If some stage n in the foregoing construction diverges, then 2a.  S(i, 0-) 
converges to an incorrect index on some text for Wp. ~ RE~t. In this case 
We is finite (and hence not a member of RE~t). On the other hand, if 
all stages in the construction terminate, then Wa~RE~ and 20-.S(i, 0-) 
fails to converge on some text for We (namely, the text obtained from the 
sequences t " [m,]  in the obvious way). Thus, in either case, 2a.  S(i, a) fails 
to identify [h(i)] c~ RE~t = [h(i)]~t. Moreover, it is easy to verify that for 
all i~N, [h(i)]~v, is identifiable. | 

The preceding construction is easily adapted for the proof of 
Proposition 3C. 

Proof of Proposition 3C. Let h be as defined in the proof of 
Proposition 4D, and let i~N be given. Since 20- .S(i, 0-) does not identify 
[h(i)]~t,  20"-S(i, 0-) does not identify [h(i)]. It thus suffices to observe that 
[h(i)] is identifiable and h(i)~ EXT. | 

In contrast to Proposition 4D, the next result shows that the set of 
indices for finite sets can be performed on [ ' ]~t .  (Compare Case and 
Smith, 1983, Theorem 2.9.) 

PROPOSITION 4E. { ieNI  card(W/)finite} is performable on [ ' ]svt .  

Proof We say that D, E ~ N conflict just in case there is n ~ N such that 
for some x ,y~N,  x ¢ y ,  ( n , x ) e D ,  and ( n , y ) ~ E .  By Rogers (1967, 
Theorem XVI, Chapt. 5) there is a recursive function f such that Wju ) is 
single-valued and if IV,. is single-valued then Wf(i)= W i. 

The following synthesizer S witnesses the proposition. Given i~N, 
a e SEQ, S computes D = { j e  Wi, lh(~r) [ Wj, lh(o. ) and rng(a) do not conflict}. 
S then computes an index k for U{ WjljsD} and emits f(k). | 

The next six sections are devoted to special properties that one might 
wish to design into synthesizers. 
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5. DIRECT SYNTHESIS 

Let i e N  be given. Then, for every L e  [ i]~t  there is j e  Wi such that 
L = Wj. This suggests that synthesizers working under [']svt be designed to 
limit their conjectures to indices in Wi when parameterized by i. Would 
such a design affect performability? 

DI~FINITION 5A. Let i s N, 0 e Frec, and description function D be given. 

(i) 0 identifies D(i ) f rom / jus t  in case (a) 0 identifies D(i), and (b) 
for all a e SEQ, O(tr) ~ Wi. 

(ii) D(i) is identifiable f r o m / j u s t  in case some O s F  rec identifies D(i) 
from i. 

Evidently, D(i) is identifiable from i only if D(i) is included in I-i]. 
Observe as well that if 0 identifies D(i)% ~ from i, then 0 is total. We 
illustrate the definition with the following result. 

PROPOSITION 5A. For all i ~ SVT, Ci]svt is identifiable from i. 

Proof 0 E F  rec may identify Ci]svt in "induction-by-enumeration" 
fashion, as in the proof of Proposition 4A. | 

DEFINITION 5B. Let X ~  N, synthesizer S, and description function D 
be given. 

(i) S performs X on D directly just in case for all i ~ X ,  2~r.S(i, tr) 
identifies D(i) from i. 

(ii) X is performable on D directly just in case some synthesizer 
performs X on D directly. 

PROPOSITION 5B. SVT is performable on [']svt directly. 

Proof. The synthesizer S in the proof of Proposition 4A witnesses the 
proposition. I 

We now consider direct performability outside of SVT. The following 
proposition shows that the directness requirement can obstruct perfor- 
mability on [']svt, even if attention is limited to indices j that (taken 
individually) permit identification of [J]svt from j. 

PROPOSITION 5C. There is a set X ~ N such that 

(i) X is performable on [']~vt; 

(ii) for all j ~  X, [J]svt is identifiable from j; but 

(iii) X is not performable on [']~vt directly. 
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Proof Let total h e F rec be such that for all i e N, Wh(o contains all 
numbers of either of the following forms: 

(a) <x,O>, where Wi, xcWi,x+l;  
(b) <x, 1),  where Wi..~ = Wi.x+l but for some k e N ,  W~.xc W~,x+k. 

Observe that for all i ~ N, Wh(o 6 REsvt iff W i is infinite. 
For  i eN,  let text ti=(O, no), (1, n l )  .... , where for all x~N,  n x = 0  if 

Wz,x ~ Wi.x + 1 and nx = 1 otherwise. Observe that for all i 6 N: 

(a) rng(t ~) ~ REs~ t; and 

(b) rng(t~) = Wh(~ iff W~ is infinite (otherwise, rng(t i) properly 
includes Whci~). 

Recall that D o, 3 1  . . . .  is the standard enumeration of the finite sets. Let 
total g e F ~*~ be such that for all m ~ N, 

WgI,,) = {(x,  nx> I n x = 0  if xeDm and nx= 1 otherwise}. 

Observe that for all i e N, if W~ is infinite then rng(t ~) # Wglm ) for all m e N; 
whereas if/4I,, is finite, then rng(t ~) = Wg(m) for some m ~ N. 

Let total, one-one d e F  ~ be such that for all ieN,  Wd(o= {h(i)} u 
{ g(m)fm e N}. (d can be chosen to be one-one by appropriate "padding.") 
The set X of the proposition is taken to be {d(i)li6 N}. 

To verify clause (i) of the proposition, let synthesizer S operate as 
follows. On input (j, a) e N x  SEQ, S relies on the one-one nature of d to 
find i s N  such that j=d( i )  (if no such i is found, S(j, a) diverges). S then 
computes an index z for rng(t~). (Of course, z need not be a member of 
Wd(o. ) Next, S conjectures the first index u in the list z, g(0), g(1), ... such 
that rng(a)__ W,. Since the list holds only indices for languages in RE~t, 
2a.S(d(i), a) identifies {W~} u {Wg(m)lm~m}. In particular, if IV,. is 
infinite, then 2~r.S(d(i), a) identifies Wh(g)= W.. If W~ is finite, then 
Wh(o ¢ RE~v~ so it need not be identified. It is thus clear that S performs X. 

To verify clause (ii) of the proposition, let i e N  be given. Let 0 1 e F  r¢~ 
operate as follows. Given ~ e SEQ, 0, conjectures the first index u in the list 
h(i), g(O), g(1) .... such that rng(~)___ W,. It is easy to see that if W~ is 
infinite, then 01 identifies [d(i)]~t  from d(i). On the other hand, let 
02 e F ~ operate as follows. Given ~ e SEQ, 02 conjectures the first index u 
in the list g(0), g(1), ... such that rng0r)_c W,. It is easy to see that if W~ is 
finite, then Oz identifies [d(i)]~t  from d(i). So, one of 0a, 02 witnesses the 
identifiability of [d(i)]~t  from d(i). 

Finally, to verify clause (iii) of the proposition, suppose that synthesizer 
S performs X on [']~vt directly. Then, for all ieN,  2~r. S(d(i), ~r) is total. If 
141,. is infinite, then t ~ is a text for Wh(o. So 2~ "S(d(i), ~) identifies t ~. 
Moreover, for all k ~ Wd(o, Wk = Wh,) iff k = h(i), as easily seen. Therefore, 
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by the directness of S, 2a. S(d(i), a) converges on t ¢ to h(i). In summary, 
for all i~ N, if W~ is infinite then: 

(3r e N)(Vu e N)(u > r ~ S( d( i), ti[ u ] ) = h( i) ), (1) 

where t~[u] can be recovered effectively from i, u and where h, d, and 
2a.  S(d(i), a) are total recursive. 

If W~ is finite then there is m e N  such that t i is a text for Wg~,,,~. 
Moreover, for all k e Wd~), Wk = We~m ) iff k =  g(m). Therefore, by the 
directness of S, for some m e N ,  2 a . S ( d ( i ) , a )  converges on t i to 
g(m) ~ h(i). In summary, for all i e N, if W~ is finite then: 

(Vr e N) (3u e N) (u > r and S(d(i), t~[u]) ~ h(i)). (2) 

Since (2) is the negation of (1), the set {i[ Wi infinite} is thus exhibited 
as 2"2, contradicting its 172 completeness (see Rogers, 1967, Sec- 
tion 14.8). I 

As a corollary to the proof, note that the set X of the proposition may be 
chosen to be r.e. Of independent interest is the following result, which will 
be proved by modifying the foregoing proof (compare Proposition 5A). 

PROPOSITION 5D. There is j e N such that [J]svt is identifiable, but [J]s~t 
is not identifiable from j. 

Proof  Let total h e F rec be such that for all i e N, Wht~ contains all 
numbers of either of the following forms: 

(a) (x, (0, i ) ) ,  where Wi.xc Wi.x+l; 

(b) (x, (1, i ) ) ,  where W~.x= W~.~+~ but for some k e N ,  
Wi, x c Wi. x + k. 

For i e N, let text t i= ( 0 ,  n o )  , ( 1 ,  n 1 ) . . . . .  where for all x e N, n x = (0, i )  if 
W~,~ c Wi, x+ ~ and nx = (1, i) ,  otherwise. Let total g e F ~"~ be such that for 
all i, m e N ,  

Wg((i,m)) = { ( X, nx )  Inx= (0,  i )  if x e O m 

and n~ = (1, i )  otherwise }. 

Let total f e F  rec be such that for all i e N ,  W A i ) = { h ( i ) } u  
{ g( (i, m ) I m e N }. Finally, choose j e N such that Wj = I,) ~ ~ N Wlt~). 

From this point the proof of Proposition 5D parallels that given for 
clauses (i) and (iii) of Proposition 5C. I 
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6. TExT-EFFICIENT SYNTHESIS 

We would like synthesized inductive inference machines to arrive at 
correct hypotheses as fast as possible. In particular, such machines should 
examine a minimum number of data before beginning to converge. The 
present section considers the prospects for synthesizing text-efficient 
inductive inference machines. Some preliminary definitions are necessary. 
Let T be the class of texts for languages in RE. In what follows, "IP" may 
be read as "identification point." 

DEFINITION 6A. Total function IP:  F ~°~ -+ N u  {to } is 
follows. For  all 0 ~ F ~c, t e T: 

IP(0, t) = to, if 0 does not identify t; 

= #n[O( t[n])  = O(t[n + k] )  for all k ~ N],  

otherwise. 

defined as 

The next definition construes text-efficiency in terms of identification 
points. 

DEFINITION 6B (Gold, 1967). Let 0, 0 '6  F rec and L_c RE be given. 

(i) 0 identifies L strictly faster than O' just in case (a) IP(0, t)~< 
IP(0', t) for all texts t for all L ~ L, and (b) IP(0, s) < IP(0', s) for some text 
s for some L ~ L. 

(ii) 0 identifies L text-efficiently just in case (a) 0 identifies L, and (b) 
no 0' e F rec identifies L strictly faster than 0. 

(iii) L is identifiable text-efficiently just in case some O e F  ~ iden- 
tifies L text-efficiently. 

We illustrate the definition with the following result. 

PROPOSITION 6A. (i) For all i e SVT, [iqsvt is identifiable text-efficiently. 

(ii) There is i ~ N such that [i]svt is not identifiable text-efficiently. 

Proof. (i) is an immediate consequence of Proposition 8.2.4B of OSW. 
(ii) may be derived by an adaptation of the proof  of Proposition 6C, below, 
in analogous fashion to the proof of Proposition 5D. We omit the 
details. II 

Text-efficient synthesizers may now be defined on the basis of 
Definition 6B. 
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DEFINITION 6C. Let X~_ N, synthesizer S, and description function D 
be given. 

(i) S performs X on D text-efficiently just in case for all i~X,  
2~. S(i, a) identifies D(i) text-efficiently. 

(ii) X is performable on D text-efficiently just in case some syn- 
thesizer performs X on D text-efficiently. 

PROPOSITION 6B. SVT is performable o n  [ ' ]svt  text-efficiently. 

Proof Let synthesizer S be as defined in the proof of Proposition 4A. 
Proposition 8.2.4A(ii) of OSW (due to Gold, 1967) implies that for all 
i t  N, 2tr. S(i, tr) identifies [ i ]~t  text-efficiently. | 

We now consider text-efficient performability in the more general context 
(not restricted to SVT). The next proposition shows that the requirement 
of text-efficiency can obstruct performability on [ ' ]~t ,  even if attention is 
limited to indices j that (taken individually) permit identification of [ J ]~ t  
text-efficiently. 

PROPOSITION 6C. 

(i) 
(ii) 

(iii) 

Proof 

(a) 
(b) 

Let total 

(a) 

(b) 

There is a set X ~_ N such that 

X is performable on [']~vt; 

for all j e  X, [J]~vt is identifiable text-efficiently; but 

X is not performable on [ ' ]~t  text-efficiently. 

Let total h ~ F rec be such that for all i e N: 

{(0, 0), (1, 8 ) }_  Wh~0; and 

Wh~i) ~ RE~vt iff Wi = (,~. 

g ~ F r~c be such that for all i e N: 

{(0, 0 ) ,  ( 1 , 9 ) }  ~_ Wg~i); and 

Wg(i ) {~ RE~ tiff Wi ~ ~ .  

We leave it to the reader to verify that such h, g exist. Let total, one-one 
d e F  rec be such that for all i e N ,  Wd(i)= {h(i), g(i)}. We choose X of the 
proposition to be {d(i)]ie N}. 

Clause (i) follows from Proposition 3B, and (ii) is easy to verify. As for 
(iii), suppose that synthesizer S performs X text-efficiently. Then, for all 
i e N ,  S(d(i), ( 0 , 0 ) )  is defined. Let i E N  be such that W i = ~ .  Then 
Wh(i)EREsvt and Wg(i)~REsv t. So, S(d(i), ( 0 , 0 ) )  is an index for Whto. 
For otherwise it is easy to specify 0 ~ F  rec that is strictly faster than 
2tr. S(i, a) on l-d(i)]~vt. Such a 0 need merely converge immediately to h(i) 
on every text. Similarly, if W ; : ~ ,  then S(d(i), ( 0 , 0 ) )  is an index for 
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Wg(i ). It follows that W ~ = ~  if and only if (1, 8 ) 6  Ws(d(i),(O,O)), where 
2i.S(d(i), ( 0 , 0 ) ) i s  total. This contradicts the fact that { i 1 W e = ~ }  is 
not r.e. II 

As a corollary to the foregoing proof, note that the set X of 
Proposition6C can be chosen so that X is r.e. and for all j ~ X ,  
card(Wj) = 2. 

7. CONSISTENCY 

Consistent synthesizers produce inductive inference machines whose 
conjectures "cover" the data that provoke them. This is made precise as 
follows. 

DEFINITION 7A (Angluin, 1980). (i) O~F r~c is consistent just in case for 
all a6SEQ,  rng(a)_a Wo~). 

(ii) L _ R E  is identifiable consistently just in case some consistent 
0 e F r~c identifies L. 

Note that consistent functions are total. 

DEFINITION 7B. Let X~_N, synthesizer S, and description function D 
be given. 

(i) S performs X on D consistently just in case for all i eX,  
2~. S(i, a) identifies D(i) and 2~. S(i, ~) is consistent. 

(ii) X is performable on D consistently just in case some synthesizer 
performs X on D consistently. 

PROPOSITION 7A. SVT is performable on [']svt consistently. 

Proof The following synthesizer S witnesses the proposition. Given 
( i , a ) ~ N x S E Q ,  S enumerates Wi, lh(,)- If no jeWe, lh(~) is such that 
rng (a )_  Wj, then S conjectures an index for rng(a); otherwise, S conjec- 
tures the least j ~  Wi, lh(a ) with this property. If ie  SVT, then 2a-S(i,  ~) is 
consistent since in this case every j ~  We is such that rng(o-) _~ Wj is confir- 
med or disconfirmed after a finite computation. On the other hand, if 
i¢SVT, then 2cr-S(i, ~) is not required to be consistent or even total. 
Finally, it is clear that 2a.  S(i, ~) identifies [']svt for every ie  SVT. | 

Returning to the more general context, we now show that the con- 
sistency requirement can obstruct performability on [']svt even if attention 
is limited to indices j that (taken individually) permit identification of 
[J]~t  consistently. 
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PROPOSITION 7B. There is a set X ~_ N such that 

(i) X is performable on [']svt; 

(ii) for all j e  X, [J ]~t  is identifiable consistently; but 

(iii) X is not performable on [']~vt consistently. 

We rely upon the following lemma, given as Proposition 2.1A in OSW. 

LEMMA 7A (Blum and Blum, 1975). Let OeF r~c identify L ~ R E .  Then 
there is tre SEQ such that (a) rng(a)~_ L, (b) Wot,)= L, and ( c ) f o r  all 
t e S E Q ,  ifrng(z)__ L, then O(tr ̂  t)  =0(tr). 

Proof of Proposition 7B. Let total h e F rec be such that for all i e N, 
WhU)= {(X, y)I~bi(x)= y}. Let total, one-one d e F  rec be such that for all 
i eN,  WdUI= {h(i)}, Then, for all i eN ,  [d(i)]svt= {Whu)}, if ~bi is total, 
and is empty otherwise. Let X of the proposition be {d(i)[ie N}. 

Clause (i) of the proposition follows from Proposition 3B, and (ii) is 
easy to verify. For a contradiction, suppose that synthesizer S performs X 
consistently. Then: 

(1) For all ie  N, 2or. S(d(i), tr) is constent (and hence total). 

(2) For all i~N, if ~bi is total, then 2a.S(d( i ) ,a)  identifies 
{(x,  y)l(bi(x)= y}. 

From (2) and Lemma 7A: 

(3) For all i~N, if ~bi is total, then there is a e S E Q  such that for all 
x, y e N ,  if ~b~(x) = y then S(d(i), a)=S(d(i) ,  tx ^ ( x , y )  ). 

By (3) and (1): 

(4) For all i eN ,  ifq~ is total, then there is creSEQ such that for all 
x, y e N ,  ~bi(x)= y iff S(d(i), a)=S(d(i) ,  tr ^ (x,  y ) ) ,  where for all j e N ,  
2a . S(d(j), ~) is total. 

However, (4) is impossible, as revealed by the following diagonalization. 
Let SEQ be indexed as a °, tr 1 ..... Define total f e F  r~c as follows. For all 
x, y e N ,  

f ( ( x , y ) ) = O  if S(d(x), t~Y)~S(d(x),aY ^ ( ( x , y ) , O ) )  

= 1 otherwise. 

Let z be an index for f Then, if aw has the properties given in (4), we have 
S(d(z), gw):AS(d(z), ¢r w ̂  ( ( z ,  w),  0 ) )  iff f ( ( z ,  w ) ) = 0  iff S(d(z), trY)= 
S(d(z), ~w ^ ( (z ,  w), 0). I 

As a corollary to the foregoing proof, note that the set X of 
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Proposition7B can be chosen so that X is r.e. and 
card(Wj) = 1. 

for all j eX ,  

8. RELIABILITY 

Inductive inference machines that invariably signal the incorrectness of 
prior, false conjectures are called "reliable." We would like our synthesizers 
to produce reliable machines. 

DZFINITION 8A (Minicozzi, cited in Blum and Blum, 1975). (i) 0 E F ree 
is reliable just in case (a) 0 is total, and (b) for all texts t for any L ~ RE~v t, 
if 0 converges on t then 0 identifies t. 

(ii) L ~ REly t is identifiable reliably just in case some reliable 0 ~ F ree 
identifies L. 

Thus, reliable machines never converge to an incorrect index on any text 
for a language in REsv t. 

DEFINITION 8B. Let X_~ N, synthesizer S, and description function D 
be given. 

(i) S performs X on D reliably just in case for all i 6X ,  2o.S( i ,  tr) 
identifies D(i) and 2a.  S(i, a) is reliable. 

(ii) X is performable on D reliably just in case some synthesizer 
performs X on D reliably. 

PROPOSITION 8A. SVT is performable on [']~vt reliably. 

Proof  With a slight modification, the synthesizer S described in the 
proof of Proposition 7A witnesses the present proposition. The 
modification is that S must conjecture lh(a) in case no j ~  W~.,ht~) is such 
that rng(~r)~ Wj. | 

Returning to the general context, the next proposition shows that the 
reliability requirement can obstruct performability on [ ' ]~t  even if 
attention is limited to indices j that (taken individually) permit reliable 
identification of [J]svt. 

PROPOSITION 8B. There is a set X~_ N such that 

(i) X is performable on [']svt; 

(ii) for  all j e  X, [J]svt is indentifiable reliably; but 

(iii) X is not performable on I-']svt reliably. 
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Proof. Recall the collection RE~i, introduced in Definition 4C. 
We define total h e F ~*~ such that for all i~ N, h(i) is an index for the 

language that represents the function 0 operating as follows. Given j e N, 0 
computes ~b~(0), ~bi(1) .... until the smallest x o e N  is found such that 
(~i(Xo) = 1. If there is no such x 0, or if q~i(m) diverges for some m < x o, then 
O(j) is undefined. If such an Xo is found, then 

O(j) = ~be(j), if ~b~(j)= ~bx0(j) and both computations converge; 

= undefined, otherwise. 

Observe that for all i e N, if Wi 6 REsi, then Wi = WhU)e REsv t ; whereas if 
Wi ~ REsi, then Wh(i) • REsv t. 

Let total, one-one d e  F r*c be such that for all ie N, WdU ) = {h(i)}. Thus, 
for all i eN,  [d(i)]svt={Wi} if WiffREsi;= ~ otherwise. Let X of the 
proposition be {d(i)l i e N}. 

Clause (i) follows from Proposition 3B, and (ii) is easy to verify. Suppose 
for a contradiction that synthesizer S performs X on [']s~t reliably. Then, 
for all i~N, 2tr. S(d(i), tr) is reliable and identifies W~ if Wi~RE~i. Let 
0 e F ~ be defined as follows. Given tre SEQ, 0 puts out lh(tr) if there is no 
i e N  such that (i, 1 ) e r n g ( a ) .  Otherwise, 0 finds the least i with this 
property, and puts out S(d(i), ~r). It may be seen that 0 is reliable and iden- 
tifies RE~i. However, this contradicts Corollary 4.6.1B of OSW, due to 
Blum and Blum (1975). | 

As a corollary to the foregoing proof, note that the set X of 
Proposi t ion8B can be chosen so that X is r.e. and for all j eX,  
card(Wj) = 1. 

9. MEMORY LIMITATION 

Inductive inference machines that do not store the data fed to them 
may be considered to have limited memory, and thus to conserve spatial 
resources in at least one sense. 

DEFINITION 9A (Wexler and Culicover, 1980). (i) 0 E F  rec is memory- 
limited just in case for all tr, z e S E Q ,  if t r ( l h ( a ) - l ) = z ( l h ( z ) - l )  and 
0(a[ lh(a)  - 1 ] ) =  0 ( z [ l h ( z ) -  1]), then 0(tr) = 0(z). 

(ii) L _ R E  is identifiable with limited memory just in case some 
memory-limited 0 e F r*c identifies L. 

In other words, 0 is memory-limited just in case for all a ~ SEQ, O(a) 
depends on no more than the last member of tr and O's previous conjecture. 

643/77/2-5 
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DEFINITION 9B. Let X_~ N, synthesizer S, and description function D 
be given. 

(i) S performs X on D with limited memory just in case for all i e X, 
2a. S(i, a) identifies D(i) and 2tr. S(i, tr) is memory-limited. 

(ii) X is performable on D with limited memory just in case some 
synthesizer performs X on D with limited memory. 

We now show that the requirement of limited memory can obstruct 
performability on [']~v~ even if attention is limited to indices j that (taken 
individually) permit identification of [J]~vt with limited memory. 

PROPOSITION 9A. There is a set X~_ N such that 

(i) X is performable on [']s,,t; 

(ii) for all j e  X, [-J]svt is identifiable with limited memory; but 

(iii) X is not performable on [']svt with limited memory. 

The following variant of Lemma 7A will be helpful. 

LEMMA 9A. Let 0 e F r~c identify L e RE, and let tre SEQ be such 
that rng(a)___L. Then there is t e S E Q  such that (a) rng(t)_~L, (b) 
Wo( ~ ̂  ~)=L, and (c) for all 5 e S E Q ,  /f  rng(6)~_L then O(tr A t A 6 )=  
0(~ A t). 

Proof This is Corollary 2.1A of OSW. | 

Proof of  Proposition 9A. Given S ~ N, the set { (x,  nx ) I n~ = 0 if x e S, 
and nx = 1 otherwise} is denoted Cs. We now demonstrate the existence of 
total d e F  r~c such that for all i e N :  

(1) if IV,. is finite, then [d(i)]sv t = {CE[E~_N finite}; whereas, 

(2) if IV,. is infinite, then [d(i)]sv t = {CN}. 

To show the existence of such a d, let total f e F  r°c be such that for all 
i , p , y ~ N ,  

Wf((i ,p,y))  = Coy if Wi, p = W;;  

= Coyw {(0, 0) ,  (0, 1)} otherwise. 

(Recall that D e is the yth finite set.) Observe that for all i ,p,  y e N ,  
Wf((i ,p,y)) e REsv tiff  Wi, p -~- W i. 

Let total g e F  re~ be such that for all i eN ,  Wg(o={(x ,  0 ) [  
card(W;) ~>x}. Observe that for all i eN ,  Wg(~)= C~v iff We is infinite; 
otherwise, Wgu~ ¢ RE~t. 
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Let total d e F  rec be such that for all i e N ,  Wd(i)={g( i )}w 
{ f ( ( i ,  p, y ) ) [ p ,  y e N } .  If W~ is finite, then Wi= W~.p for some p e N ;  so, 
{ f ( ( i , p , y ) ) [ y e N }  is an index set for {CeIE~_N finite} and 
Wg(o ¢ REsvt. Thus, if W~ is finite, [d(i)]svt = {Cel E~_ N finite}, verifying 
(1). If W~ is infinite, then W~ ~ W~.p for all p e N. In this case, it is easy to 
see that [d(i)]~t  = {CN}, verifying (2)• 

Let X of the proposition be {d(i) l ie  N}. Clauses (i) and (ii) are easy to 
verify. For  a contradiction, let synthesizer S perform X on [ ' ]~ t  with 
limited memory• We say that a is N-like if rng(a) ___ CN. We say that q e N 
is out o f a e  SEQ just in case for all h e N ,  (q, n )  ¢ rng(a). Let us show that 
for all i e N, if Wi is finite, then: 

( V a e S E Q )  ( 3 q e N )  (a is N-like ~ .  q is out of a 

and S(d(i), a) ~ S(d(i), a ^ (q, 0))) .  (3) 

For suppose otherwise, and let iE N be such that Wi is finite• Let a ~ SEQ 
be such that a is N-like and for all q e N, if q is out of a then S(d(i), a) = 
S(d(i), a A (q, 0) ) .  Let A = { x e N I  (x ,  O) e rng(a)}. By (1), 2z .S(d(i), T) 
identifies CA. By Lemma9A let T e S E Q  be such that rng (z )_CA,  
WS(dU) . . . .  ) = CA, and for all 6 e SEQ, if rng(6) ___ CA then 
S ( d ( i ) , a A Z A 6 ) = S ( d ( i ) , a ^ z ) .  Let q be out of r n g ( a ^ 3 ) .  Then, 
S(d(i), a)= S(d(i), a ^ (q, 0)) .  So, by the memory-limitedness of 
2a. S(d(i), a), S(d(i), a A (q, O) A z A 6) = S(d(i), tr A Z A 6) for all 
6 e S E Q .  Now let t be a text for C A - { ( q ,  1)},  and let s be the text 
a ^ (q, 0 )  ^ z A t. It may be seen that s is a text for CA~,Iq}~CA, and 
that 2tr. S(d(i), a) converges on s to S(d(i), tr ^ z), i.e., to an index for 
CA ¢ rng(s) = CA. {q}. Thus, ha.  S(d(i), a) does not identify CA ~, {q}, con- 
tradicting (1) and the assumption that S performs X. This establishes (3). 

On the other hand, for all i e N, if W~ is infinite, then: 

( 3 a e  SEQ) (VqeN)  (a is N-like and q is out of a 

• ~ S(d(i), a) = S(d(i), tr ^ (q, 0))). (4) 

This claim follows directly from Lemma 7A along with the observation that 
if Wi is infinite, then 2a.  S(d(i), a) identifies CN. 

NOW observe that for all i, q e N, a e SEQ, if a is N-like then both 
S(d(i). a) and S(d(i), a ^ (q, 0 ) )  are defined. For  otherwise, 2T. S(d(i), 3) 
fails to identify some L~[d(i)Jsv t. As a consequence, the matrix 
expressions in (3) and (4) represent decidable relations• Hence (3) and (4) 
exhibit { i eN[  W~ finite} as /12, contradicting its Z'2-completeness (see 
Rogers, 1967, Section 14.8)• | 
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10. INCOMPLETE TEXT 

Useful inductive inference machines should tolerate small deformations 
of the data they examine. In the present section we consider the synthesis of 
machines that succeed on texts with very small alterations, namely, the 
introduction of a single "gap." 

DEFINITION 10A. Let L 6 REsv t and text t be given, t is an incomplete 
text for L just in case rng ( t )=  L -  { (n, m ) }  for some n, m 6 N. 

Since (n, m ) e L  is possible, we see that every text for L 6  REsvt counts 
as an incomplete text for L. An incomplete text for L eREsvt may be 
conceived as the result of removing every occurrence of at most one 
number (n, m )  from some text for L. 

DEFINITION 10B. Let 0 ~ F ~ec and L ~ REsvt be given. 

(i) 0 identifies L with incomplete text just in case for every incomplete 
text t for L, 0 converges on t to an index for L. 

(ii) L _~ REsvt is identifiable with incomplete text just in case there is 
0 ~ F rec such that for every L 6 L, 0 identifies L with incomplete text. 

It follows from the definition that if 0 6 F ~e~ identifies L _  RE~vt with 
incomplete text, then 0 identifies L. Let L, L '6REsv t be such that 
c a r d ( L - L ' )  = 1. Then {L, L'} is not identifiable with incomplete text. 

DEFINITION IOC. Let X_~ N, synthesizer S, and description function D 
be given. 

(i) S performs X on D with incomplete text just in case for all i~X, 
2rr. S(i, a) identifies D(i) with incomplete text. 

(ii) X is performable on D with incomplete text just in case some 
synthesizer S performs X on D with incomplete text. 

The following proposition shows that in the context of SVT, incom- 
pletion has no genuine impact on performability. 

DEFINITION |0D. (i) i e N is varied just in case for all j, k e W~, if j ~ k 
then card( Wj - Wk) v a 1. 

(ii) V A R =  { i ~ N l i i s  varied}. 

PROPOSITION 10A. S V T n  VAR /s performable o n  ["]svt with incomplete 
text. 

Proof This is an easy variant of the proof of Proposition 4A. | 
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In the more general context, the next result shows that the requirement 
embodied in Definition 10C can obstruct performability on [']~vt, even if 
attention is limited to indices j that (taken individually) permit iden- 
tification of [ j ] ~  with incomplete text. 

PROPOSITION 10B. There is a set X~_ N such that 

(i) X is performable on [']~vt; 

(ii) for all j e  X, [J]~t  is identifiable with incomplete text; but 

(iii) X is not performable on [ ' ]~t  with incomplete text. 

A lemma will be helpful. A synthesizer S is called total just in case S is 
defined on all of N x SEQ. 

LEMMA 10A. Let X ~ N  and description function D be given, Suppose 
that X is performable on D with incomplete text. Then there is a total 
synthesizer S that performs X on D with incomplete text. 

Proof The lemma is an elementary adaptation of Lemma 4.2.2B of 
o s w .  I 

Proof o f  Proposition 10B. Let total h e F  tee be such that for all i~ N, 
Whti) is enumerated as follows: 

Stage O. Enumerate (0, 8)  into Wh, ). 

S t a g e x + l .  Enumerate ( x + l , 0 )  into Whti) iff card(W~)~>x+l;  
diverge if card(Wi) < x + 1. 

Thus, Wht~) e REsv t i ff  Wi is infinite. 
Let total g e F re~ be such that for all i, m ~ N, Wgt<~,m>~ is enumerated as 

follows: 

StageO. Enumerate (0, 9 )  into Wgc<i,m>). Then find the smallest 
p e N such that card( Wi, p) = m; diverge if no such p is found, 

Stage x + l .  Enumerate ( x + l , 0 )  into Wg<i,m> iff Wi, p=W~,p+x+l.  
Diverge if W i ,  p c W i ,  p + x + 1" 

Thus, Wgt<i,m> ) ~ REsvt iff card(Wi) = m. 
Let total d e F  ~ be such that for all i e N ,  W a , ) = { h ( i ) } u  

{ g ( ( i , m ) ) l m e N } .  Observe that for all i~N ,  Wdt~)contains indices for 
exactly one L ~ REsvt. Let X of the proposition be {d(i)[i~ N}. Clauses (i) 
and (ii) are easy to verify. 

For a contradiction, suppose that X is performable on [']svt with incom- 
plete text. By Lemma 10A let total synthesizer S perform X on [']s~t with 
incomplete text. Let i ~ N  be given, and let text t = ( 1 , 0 ) ,  ( 2 , 0 ) ,  
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(3, 0 )  ..... Observe that t is an incomplete text for Wh(,-I iff IV,- is infinite, 
and that t is an incomplete text for Wg(<i.,,>~ iff card(Wi)=m. 

Now suppose that W~ infinite. Then 2a.  S(d(i), a) identifies Wh~i) ~ REsvt 
with incomplete text. So, 2~r. S(d(i), G) converges on t to an index for 
Wh(g). This shows for all iEN, if W~ is infinite then: 

(~n, x~N)  (Vj~N)  (<0, 8> ~ Ws(a.),tM),~ 
and S(d(i), t i n ] ) =  S(d(i), tin + j])) .  (5) 

On the other hand, suppose that card(W~)=m. Then 2tr.S(d(i), tr) 
identifies Wg(<;,,n>) with incomplete text. So, 2~r. S(d(i), tr) converges on t to 
an index for Wgt<i,,,>). Since (0, 8 ) ¢  Wgt<,-m>), this shows for all i~N, if 
Wi is finite then: 

(Vn, x ~ N)(3 jE N)( (O, 8) ~ Ws(a(i),t[.]),x 
--* S(d(i), t i n ] )  # S(d(i), tin + j])).  (6) 

Since S is total, (5) and (6) exhibit {i~NI W~ infinite} as S2, whereas it 
is//z-complete. | 

11. CONCLUDING REMARKS 

One extension of the foregoing study would be to taxonomize descrip- 
tion functions according to their computational or informational trans- 
parency, i.e., in terms of their aptness for communicating with synthesizers. 
Two concepts that suggest themselves for further study in this regard may 
be defined as follows. 

DEFINITION llA. Let description function D and X~_N be given. 

(i) D is normal on X just in case for all i~X, D(i)_G [i]. 

(ii) D is well behaved on X just in case there is a total recursive g 
such that for all i~X, D(i )=  [g(i)] .  

It may be seen that [.] is both normal and well behaved on N whereas 
[']svt is normal on N but not well behaved on N. Indeed, it is easy to show 
that [']svt is not even well behaved on {ilcard(Wi)=l }. On the other 
hand, [']svt is well behaved on SVT and Proposition 4A can be generalized 
to say that X is performable on [']~vt whenever [']~vt is well behaved on X. 
It may also be remarked that the rather natural description function 
D(i)={Wjrj~Di}  is well behaved on N but not normal on N. 
Propositions 3B and 4E provide information about performability on 
this D. 
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The informational and computational opacity of description functions 
which fail to be either normal or well behaved is illustrated by the 
following proposition, the proof of which is omitted. 

DEFINITION 1 lB. (i) Let description function [ ' I t  be defined as follows: 
For  all i eN,  [ i ] c =  { WjI j~ W~}. 

(ii) EXTc= {i~NI(V/j, kE W~) (jv~k--,  WjV~ Wk)}. 

PROPOSITION l lA.  {i~EXTclcard(W~)~<2} is not performable on [.]c. 

This result should be compared to Proposit ion 3B. 
Another area for further study concerns the nature of those design 

specifications for which results of the kind given in Sections 5-9 hold. The 
main propositions of these sections have a similar form, and it would be 
useful to extract a property shared by the five design specifications there 
treated from which the results of Sections 5-9 might be uniformly derived. 
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