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In two party elections with popular vote ratio p/q, ½_<p = 1 -  q, a theoretical model suggests 

replacing the so-called MacMahon cube law approximation (p/q)3, for the ratio P/Q of can- 

didates elected, by the ratio fk(P)/fk(q) of the two half sums in the binomial expansion of 
(p + q)Zk+l for some k. This ratio is nearly (p/q)3 when k = 6. The success probability gk(P)= 
pa/(pa+qa) for the power law (p/q)O_p/Q is shown to so closely approximate fk(p)= 
~ k  ~2k+ 1. 2k+l-rqr, 0 [ r JP if we choose a=ak = ( 2 k +  1)!/4kk!k!, that 1 <--fk(p)/gk(p) < -- 1.01884086 
for k_> 1 if ½_<p_< 1. Computationally, we avoid large binomial coefficients in computing fk (P) 

k s for k > 22 by expressing 2fk ( p ) -  1 as the sum ( p - q )  ~0 (4pq) as/(2s + 1), whose terms declease 

by the factors (4pq)(1 - 1/2s). Setting K = 4 k +  3, we compute a k for large k using a continued 
fraction naZ=K+ lz/(2K+32/(2K+52/(2K+ .-.)) derived from the ratio of n to the finite 

Wallis product approximation. 

1. Power laws 

Consider an election involving two parties, Party A and Party B, with Party A 
having a majori ty of  voters. Suppose that the voters are divided into districts and 
that  a party wins a district by obtaining a majori ty of  votes within that district. There 
is considerable interest among political scientists in the relationship between P, the 
propor t ion of districts won by Party A, and p, the proport ion of  votes for this party 
over all districts. With random districts of  size 2k + 1, the expectation of P is the 
sum fk (P) of  half the terms of  the binomial expansion of (p + q)2k+l. We find that 
fk(P) is closely approximated by a power law probabili ty gk(P)=pa/(pa+ qa) with 
exponent a = a k = (3/2)(5/4). . . (2k + 1)/2k; specifically, 1 <f~(P)/gk(P) -< 1.01884086 
for ½___p_< 1. 

James Parker Smith testified concerning the relationship of P and p before the 
Royal  Commission on Systems of Election in Great Britain on 19 May 1909. Having 
been elected four times to the House of  Commons  and having an interest in ques- 
tions related to proport ional  representation, his opinion was offered in favor of  
changing f rom single-member districts to a system with proportional  representation. 
One of  the reasons given was the fact that the system with single-member districts 
tended to exaggerate in House seats the proport ion carried nationwide by the ma- 
jority party.  

Smith presented the empirical evidence on the relationship of  P and p for the six 
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House of Commons  elections that  took place between 1895 and 1906. This evidence 
showed that P exceeded p in all but the one case where p was virtually ½. 

However,  Smith went beyond this. In an apparent effort  to bolster his case or to 
describe the phenomenon under consideration, he presented an analogy whereby the 
electorate is thought of  as a large box of  red and blue marbles 'all stirred up'  (Smith, 

1910, [5, Par. 1253]). Here a district is created by taking a shovelful of  marbles and 
is won by the color in the majori ty in the shovelful. A second district is created by 
taking a second shovelful, etc. After introducing this random partition model, 
Smith dropped the name of mathematician MacMahon,  with the implication that 
MacMahon had analyzed the model and had reached a conclusion. Smith stated 
' . . .  I have had the help in this of  my friend Major  MacMahon,  who is one of the 
leading mathematicians of  the day, and he gives me this as a formula: that if the 
electors are in ratio p to q, then the members will be at least in the ratio p3 to 
q3 . . . .  , 

The equality in the relationship p/Q>_(p/q)3 has become known as Mac- 
Mahon ' s  cube law for election results, although there may be no reference to it in 
MacMahon ' s  writings (Stanton, 1980, [6, p. 163]). The inadequacy of  this law both 
as a descriptor across elections in general, and in terms of its lack of theoretical 
underpinnings is well-documented by Tufte (1973). However,  there is still interest 
in the law and the mystery surrounding its original motivation as evidenced by a 
literature including Kendall and Stuart (1950), Gudgin and Taylor (1979), Stanton 
(1980) and Gilliland (1985). 

The box of  marbles analogy with marbles representing individual voters and ran- 
dom partitioning does not lead to the cube law (cf. Kendall and Stuart (1950)). For 
example, suppose p =  0.51 and that districts have about  10,000 voters. Normal  ap- 
proximation to the binomial leads to the result that the expected proport ion P of  
districts carried by the majori ty color (party) is approximately 0.98. 

Since P/Q>_(p/q)~ is equivalent to p>pa/(pa+qa), an investigation of the 
cube law and the box of marbles analogy can concern the relationship between the 
half-binomial probability P and p3/(p3+ q3). Stanton (1980) proposes a 'small 
shovelful theory ' .  This theory is supported by his demonstrat ion that the half- 
binomial probabili ty P is well-approximated by p3/(p3+q3) provided that the 
number  of  marbles per shovelful is about  13. A case for the applicability of  this fact 
to the election process is made by regarding districts as being made-up of 13 equal- 
size blocks of  voters, each block being made-up of  voters of  one party,  and by 
regarding a marble as a single block of voters. 

Stanton 's  small shovelful model stimulated the research reported in this paper. 
With n = 2 k +  1, we investigate the half-binomial probabilities, 

fx(P)=~r=0 (nr) pn-rqr" ½<_P<_l, k>_O, n=2k+l (1.1) 

and demonstrate that for each k_> 0 there exists an exponent a > 0 depending on k 
such that the power law 
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pa 
gk(P) = - -  ½_<p_< 1 (1.2) pa + qa" 

is an excellent approximation to the polynomial (1.1). (If n = 2 k  and a tie vote in 
a district is broken by a coin toss, then the probability that the majori ty party carries 
the district can be shown to be equal to fk-~(P)  so that we will consider only odd- 
size districts and n = 2 k + l .  Furthermore,  fk (q)=l- - fk (P)  and gk(q)=l--gk(P) 
and we consider only the domain ½__p_< 1.) Our results establish an entire family 
of  MacMahon type power laws including the cube law as a special case. 

t 1 Note that f k (p)=gk(p)=p at p = ½  and p =  1 for all k>_0. Since gk(7)=a ,  we 
take 

t 1 
a = a k =fk (7) (1.3) 

to make fk and gk nearly equal. From (1.1) we have 

f k (P)= ~ n p 2 k [ ( 2 k )  ( q ~ r - ~  2k \ p / /  \t'--l//\t-,/(q~r-l] = H ( 2 k ) ( p q ) k "  (1.4) 

Thus, f rom (1.3) and (1.4) we have a0 = 1 and 

1 (2k+l)!  iCi2s+l k > l .  (1.5) 
ak=fk(7)--' 4kk!k! -s=l 2s ' 

This also could be derived from the representation o f f k ( p )  as the incomplete Beta 
function 

( 2 k + l ) ' f l x k ( 1  fk(P) k!k! - x)~ dx (1.6) 

(cf. Feller [1, Chapter VI, (10.9)]). Thus, a k is seen to be the ratio of  the largest 
coefficient (f) in the half-binomial to the average coefficient 4k/(k + 1). Values for 
k < 7  are 

k a k k a k 
0 1 4 2.4609375 
1 1.5 5 2.70703135 
2 1.875 6 2.9326171875 
3 2.1875 7 3.14208984375 

(1.7) 

From the Wallis product nk = (4k + 2)/a 2 we shall derive in Section 3 the continued 
fraction representation 

92] K = 4 k + 3 .  (1.8) 

The first two approximants  yield inequalities 

1/ (8k+6.2)<naZ-(4k+ 3)<l / (8k+6) ,  k>_5 (1.9) 
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f rom which 3.1420891<a7<3.1420917, thus demonstrating that (l.9) yields six 
figure accuracy for k_>7. 

With the choice of  exponent a = ak in gk (P) we denote the relative error function 
by 

hk(P )=fk(p)_ 1, ½_<P_<l. (1.10) 
gk(P) 

Since ho(P)-O, we assume k_> 1 and seek first to find the extreme values of  hk(p) 
for each k. In Section 2 we find, for selected k<960 ,  that 

O<_hk(P)<_O.O1884086, ½<_p<l. (1.11) 

In fact, we prove that the lower bound holds for all k and give an analysis to suggest 
that the upper bound holds for all k as well. 

It is easy to verify limk~hk(p)=O, ½<_p<_l. However, the pointwise con- 
vergence is not uniform in p. Consider for fixed c, 0 _ c _  1, random variables X x 
distributed binomial with n = 2 k +  1 trials and chance of  success parameter  pk = 
½ + c/ak, and let 

Yk Xk--npk k> 3. (1.12) 

By Stirling's formula (or (1.9)), a2-4k/;,r, and it follows that the sequence of ran- 
dom variables Yk converges in distribution to the standard normal distribution, 
f rom which 

1 t" cV~ 
l imfk(p  k )=  21 ~ , ~  ~ e x p ( - ½ t  2) dt.  (1.13) 

It is easy to verify 

lim gk (Pk) = eZc/(e2C + e-  2c). (1.14) 
k 

The maximum difference RHS ( 1 . 1 3 ) - R H S  (1.14) is attained at a c-value approx- 
imately equal to 0.69 at which the difference is approximately 0 .95815-  0.94048 = 
0.01767. It follows f rom (1.10) that 

lim hk(Pk ) --0.95815/0.94048 -- 1 = 0.0188. (1.15) 
k 

From (1.11) we see that the maximum value of  hk(p), ½_<p_< 1, is nearly attained 

at Pk. 

2. B o u n d s  on the relative error 

Extreme values of  the relative error function hk(p) in (1.10) occur at the end 
points of  the interval ½ < p <  1 under consideration, where hk(P)=0, and at any in- 



Votes and a half-binomial 35 

terior points where h'k(p)=0. It is convenient to introduce the following notation: 

x = p / q = e  2u, y=4pq=sech2u, o=aku, w=xak=e 2°, (2.1) 

Gk(P)= 1/gk(p)= 1 +(q/p)ak= 1 +e-2O= 1 + w -1. (2.2) 

Theorem 2.1. The relative error function hk(P), ½<P<<-1, achieves its minimum 
value 0 at p =½ and p = 1, is positive on ½ < p <  1 with a unique maximum occurring 
at some point Pk. 

Proof. Since 

(q)ak- '  d(q/p) _ a k ( q ~  ak -- 4a k 
G'k(p) =ak -~p -- pq k p /  yw" 

and, since f~(p) = akY k by (1.4) and dfk/dO = ½yk+ l, we have 

h'k (p) = agy kG k (p) -- 4 f k (p) ak /yw = H k (o)a k/yw 

where 

and 

nk(v  ) =yk+ l(w + 1) -- 4fk (P) 
= [sech2k+2(o/ak)l(e2° + 1) - 4fk(p ) 

(2.3) 

(2.4) 

(2.5) 

=2yk+l(w+l) t a n h o -  a2 aktanh . (2.6) 

At p=½ ,  we have u = u = 0 ,  x = y = w = l  so that Hk=H'k=O. 
For k_> 1, the function tanh o/(ak tanh(o/ak)) decreases monotonically in o > 0  

from 1 to l/ae<_2/3 and passes once through the value (k+  1)/a 2, which is be- 
tween n /4  and 8/9, when o = Ok, say. For large k, off is near the root o* = 0.9305436 
of  tanh u*= no*/4. For smaller k_> 1, we have H ~ ( u f ) = 0  if 

o f - 0 . 9 3 0 5 4 -  1/(18.72k+ 15)>0.901. (2.7) 

Thus, H'k(o) is positive for 0<  o < of  and negative for u > of  where 0.901 < of  < 
0.931. Hence, Hk(u)=O has at most one positive root. Since Hk(u) is negative 
(near - 4 )  for large o, it follows that Hk(u ) = 0 does have a (unique) positive root 
ok>0.901. The corresponding unique root Pk of  h~(p)=0,  ½ < p <  1, is 

Pk=½(l+tanhUk), Uk=Ok/ak=½1nx k. [] (2.8) 

The value of  hk(P) at its maximum point for fixed k is Mk_ 1 where 
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Mk =fk(Pk)Gk(Pk) 

= y 2 +  I(W k + 1)(W~ I + 1)/4 

= sechZk + 2 ( 0  k/a k) cosh 2 Ok (2.9) 

where fk(Pk) was found by setting Hk(Vk)= 0 in (2.5). 
Numerical  work  was done to determine M k values. For  each k we estimate the 

root  Vk of  Hk(v)=O , or the corresponding wk=e2°q solve for  Pk, Xk, Yk, uk, 
evaluate H k, and correct by Newton ' s  method.  

For  k >  22, some binomial  coefficients in (1.1) have more  than 13 digits and direct 

compu ta t i on  may involve multiple precision. In order  to accurately compute  fk(P), 
we use a series representat ion in powers o f  y = 4pq where all coefficients are less 

than 1. This representat ion follows by noting that  

fs(p)--fs_l(p)= ~ [(2SF1)-}-2(2S--1~ ,=0 \ r - I  ]+(2 ;21 ) lp2S+l - rqr  

-~2 (2Sr l ) (pZ+2pq+q2)pZS  ' rq r 

 sl, 

C:) (;) = ½ ( p _ q )  (pq)S=ltanh u 7 (_y)S. (2.10) 

We sum the differences and use the fact that  2 f 0 ( p ) =  2p to obtain 

Theorem 2.2. The half-binomial probability fk(P) satisfies 

k 
2 f k ( p ) - l = ( p - q )  ~ c s whereco=l, cs=c~ ly(2s-1)/2s.  (2.11) 

S=0 

Since y = l - ( p - q )  2, we see that  2 f k ( p ) - I  is the t runcated expansion o f  
( p - q ) ( 1  _y)-l/2 which increases with k f rom 0 to 1. 

To solve H x ( o ) = 0  for its positive root  ox and obtain the related quantities w k, 
xk, Yk, uk, Pk we need a good  initial estimate o f  o k and an approximate  value o f  
H~ to use in applying Newton ' s  method to correct  the estimate. To avoid the factor  
yk+ l  in dHx/dv in (2.6), which tends to 0 for  large k, we find instead the root  o f  
Hk/yk+l= Zx(w ) whose derivative changes very slowly with k. We set 

Zx(w ) = H x / y k  + 1 = w +  1 - 4 f k / y  k+ 1. (2.12) 

Not ing that dfk /dw= --yk+l/4w we find 

Z~ (wk) = 1 - w~- 1 _ (4 fk /y  k + 1 )(k + 1) tanh u k/(ak wk) 

= (1 + w~ l)[tanh ok - (k + 1)(tanh (ok/ak)) /ak ]. (2.13) 
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Starting with the exact root  x l  = p l / q l  =(x/2+ 1) 2 we find w I =x{ ~' =(x /2+ 1)3= 

14.07107. Calculat ions show that  w k increases very slowly with increasing k and 

that  good  first approximat ions  for w k and v k = a k u  k are 

w k -  14.375 - 0.35/k,  Vk= ~ In w k -  1.33275 - 0 .0122/k.  (2.14a) 

The funct ion Z ' ( W k )  changes very little with k and can be approximated  in (2.13) 

by Z ' k ( W k ) =  - 0 . 1 9 + ( k +  1)/4. We correct w k by adding A w =  - Z k / Z '  x.  

To obtain more  accurate values o f  w k for k > 1 2 0 ,  we set k = 9 6 0 / z  for  

z = 6, 5, 4, 3, 2, 1 and used a compute r  displaying 16 figure accuracy to obtain improv-  
ed approximat ions  o f  a first estimate for w k.  We found  

w k -  14.3752461 - 0 .3454/(k  - 0.7), (2.14b) 

which for k >  120 requires a first correct ion A w  with law]  <_ 10 -5. An  improved 

estimate for A w was found to be 

A w -  - Z k ( W ) / Z ' k ( W )  -- (5.28759 + 6 . 9 2 / k ) Z  k (w). (2.15) 

A compar i son  of  initial estimates using (2.14a) and (2.14b) with final computed  
values are shown in the following table. 

k 0.375-0.35/k w k - 14 k 0.52461-34.54/(k-0.7) 100w-1437 

20 0.35750 0.35737 31 160 0.30778 64 0.30767 4234 

24 0.36042 0.36042 28 192 0.34405 59 0.34398 3264 

30 0.36333 0.36344 82 240 0.38027 72 0.38023 2312 

40 0.36625 0.36674 64 320 0.41643 59 0.41642 0663 

60 0.36917 0.36941 44 480 0.45254 66 0.45254 7590 

120 0.37208 0.37234 88 960 0.48860 46 0.48861 2367 

(2.16) 

After  comput ing  the values W96o/z for  z = 1 . . . . .  6 we fit a polynomial  o f  degree 5 
to these values and setting z = 0 were led to the following estimates for  the limits o f  

w k and ok: 

W =  lim k w k -  14.3752461427 
(2.17) 

V=½ In W -  1.33275385475. 

The extreme values M k are given by (2.9) and they increase with k. By (2.9), 

In M k = 2 In cosh Ok-- (2k + 2) In cosh ( V k / a k )  

so that  

In M =  lim k In M k = 2 In cosh V -  limk(k + 1) V 2 / a  2 

= 2 In cosh V -  ~ V 2 / 4  

where use is made  of  (1.9). Hence 

M =  cosh 2 Ve (- ~v2)/4 = 1.01884085746. 

(2.18) 

(2.19) 
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Allowing for uncertainty in the tenth significant figure for W and V, we can assert 

O<hx(p)<O.O1884086, ½_<p<l,  k_>l. (2.20) 

The numerical evaluations establish the upperbound for the range k < 9 6 0  and the 
analysis suggests the result for all k. 

Our first look at power laws resulted in a positive lower bound estimate for 
hk(p). This proof  is too lengthy to present here and is based on a representation: 

e ~" coshnu hk (P) = E s inh[2u(X-  EX)]. (2.21) 

Here X is a random variable with truncated binomial distribution p(x)=4-k(~), 
x = k +  l , . . . ,n.  One can show that the central moments satisfy E ( X - E X ) J > o ,  
j_> 2, which together with the series representation of  the sinh function and (2.21) 
establishes the lower bound in (2.20). The results on the central moments are new 
and of  some independent interest. We do conjecture the non-negativity of  all central 
moments for any discrete distribution on a lattice with monotone decreasing prob- 
abilities. 

Of  course, by choice of  an exponent a in (1.2) which is somewhat larger than ag, 
max{lhk(P)l: ½_<p_l} can be reduced below that value resulting from the expo- 
nent a k. We have not explored methods leading to such choices. 

3. Wallis product correction 

Consider the Wallis product 

2 2 4 4 2k 2k 4 k + 2  
n k = 2 " 1 " 3 " 3  5 2 k - 1  2 k + l  a 2 k _ l  (3.1) 

which converges to n as k--' oo. We use this to compute ak. 

Theorem 3.1. The Wallis product correction factor is the ratio 

n f i  4 j  2 n'a~ k >  1 (3.2) 
7[k--j=k+i 4j 2 -  1 - 4 k + 2 '  

and it is expressible by the following continued fraction where K= 4k + 3: 

n 1 ( K +  2[~K 2[~K 22[~K 42~-JK 82~K 1211 ) 
nk--K--  1 + + + + + I 2 K  +. . .  " 

K = 4 k +  3. (3.3) 

Proof. Expressing the logarithm as an integral by writing 

Si s.' S I) -s' fo l n r =  d s =  d s d t =  ( e - t - e -n )d t / t ,  
o 

(3.4) 
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we have 
( 4J 2 \ l n \ ~ ) =  l f  (e-(ZJ-1)t-2e-2jt +e (2J+l)t)dt/t 

= tanh(t /2)(e-~2j-  l)t _ e-(2j+ l)t)dt/t. (3.5) 
~ 0  

Summing f rom j = k +  1 to c~, and setting t=2u yields 

In 0t/zrk) = tanh t t e  - ( K -  1)Udu/u. (3.6) 
0 

Noting that  tanh u = 1 -  e U sech u we have 

l;,e In ((K- 1)/K) = e -(/~- l)U)du/u, 

l n ( ~  K - l ) i  '~ = e-/ru(1 - sech u)du/u. (3.7) 
K ,0 

Expanding 1 - sech u in terms o f  the Euler  numbers  

Ej = 1, 5, 61, 1385, 50521, 2702765, ... 

we express (3.7) by the asymptot ic  series 

~ .  K-____~I = ex p (_l)J - I E j  
7r k K 1 

-- 1 + 1 /2K 2 - 9 / 8 K  4 + 153/16K 6 - 21429/27K s + 

+ 1268343/2SK l° . . . .  (3.8) 

Surprisingly, this series yields a cont inued fract ion having simple predictable 
numera tors  

7r K - 1  
- - .  z 

7rk K 

1/2K2] 9/4K2[  25/4K21 49/4K2] 81/4K2] (3.9) 
=1+1 1 +[ 1 +] 1 +1 1 +[ 1 +- . -  

f rom which (3.3) follows. [] 

To  illustrate the rapid rate of  convergence o f  (3.3) take k = 3  so that  ~z 3 = 
512/175 =2.925714 . . . .  K =  15. The sixth convergent  correct ion in (3.3) yields 

256 ( 1 5 +  3 ~  0 3~0 223~0 4~-J0 8~0 12r~-j ~ 
rr-- 1225 + + + + +1 30 // 

= 3. 14159265349... (3.10) 

which is in error  by less than 10 -l°.  
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