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Abstract

In this paper, we propose a generalization for the class of laura algebras, called almost laura. We show
that this new class of algebras retains most of the essential features of laura algebras, especially concerning
the important role played by the non-semiregular components in their Auslander–Reiten quivers. Also,
we study more intensively the left supported almost laura algebras, showing that these are characterized
by the presence of a generalized standard, convex and faithful component. Finally, we prove that almost
laura algebras behave well with respect to full subcategories, split-by-nilpotent extensions and skew group
algebras.
© 2007 Elsevier Inc. All rights reserved.
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In the representation theory of algebras, a prevalent technique consists of modifying certain
features of a well-known family of algebras in order to obtain one whose representation theory
is, to a large extent, predictable. For instance, in [22], Happel, Reiten and Smalø defined the
quasitilted algebras (that is the endomorphism algebras of tilting objects over a hereditary abelian
category), thus obtaining a common treatment of both the classes of tilted and canonical algebras.
To overcome some difficulties caused by the categorical language, they introduced the left and
the right parts of the module category of an algebra A, respectively denoted LA and RA. They
showed that an algebra A is quasitilted if and only if its global dimension is at most two and any
indecomposable A-module lies in LA ∪RA.
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Since then, many generalizations of quasitilted algebras, based on the behavior of LA and
RA have appeared, such as the shod, the weakly shod, the laura and the supported algebras (see
the survey [5]). Among them, laura algebras have been introduced independently by Assem and
Coelho [3] and Reiten and Skowroński [33] as a generalization of representation-finite algebras
and weakly shod algebras. Their nice properties have made them rather interesting and widely
investigated (see [4,7,20,25,39,40], for instance). The aim of this paper is to introduce a new
class of algebras, called almost laura, determined by the behavior of the infinite radical of modA

and generalizing laura algebras.
This paper is organized as follows. In Section 1, we fix the terminology and prove some

preliminary results. In Section 2, we give the definition of almost laura algebras and discuss
examples. In Section 3, we study the Auslander–Reiten quiver of an almost laura algebra and
we classify the almost laura algebras which are laura. Section 4 is devoted to the left (or right)
supported almost laura algebras (in the sense of [6]). Our main result (see (4.9)) is an analogue
of the result of [33, (3.1)] for laura algebras (see also [25, (4.2.5)]), and states that if A is left
(or right) supported, then A is almost laura if and only if its Auslander–Reiten quiver has a
generalized standard, convex and faithful component. Finally, in Section 5, we show that almost
laura algebras behave well with respect to some constructions preserving homological properties,
such as dealing with full subcategories, split-by-nilpotent extensions and skew group algebras.
The main result of this section states that if G is a finite group acting on an algebra A and whose
order is invertible in A, then A is almost laura if and only if so is the skew group algebra A[G]
(see (5.11)). As a consequence, we get that the infinite radical of A is nilpotent if and only if so
is the infinite radical of A[G], and in this case, they have the same index of nilpotency. We also
deduce that A is cycle-finite (in the sense of [9]) if and only if so is A[G] (see (5.12)).

1. Preliminaries

In this paper, all algebras are artin algebras over an artinian ring k (and, unless otherwise
specified, connected and basic). For an algebra A, we denote by modA its category of finitely
generated left modules and by indA a full subcategory of modA consisting of one representative
from each isomorphism class of indecomposable modules. For a subcategory C of modA, we
write M ∈ C to express that M is an object in C, and denote by addC the full subcategory of
modA having as objects the direct sums of indecomposable summands of objects in C. For an
A-module M , we denote by pdM its projective dimension and by idM its injective dimension.
We denote by Γ (modA) the Auslander–Reiten quiver (AR-quiver for short) of A and by τA the
usual AR-translation. By an AR-component Γ of Γ (modA), we mean a connected component
of Γ (modA). Then Γ is non-semiregular if it contains a projective module and an injective
module, and semiregular otherwise. Also, Γ is faithful if it contains a faithful module, that is
a module M which cogenerates A. Finally, an indecomposable module M ∈ Γ is left stable if
τnM �= 0 for each n � 0 and we define the left stable part of Γ to be the full subquiver of Γ

consisting of the left stable modules in Γ . We define dually the right stable modules and the
right stable part of Γ .

We call radical of modA and we denote by rad(modA) the ideal in modA generated by
all non-isomorphisms between indecomposable modules. The infinite radical rad∞(modA) of
modA is the intersection of all powers radn(modA), with n � 1, of rad(modA). A component Γ

of Γ (modA) is generalized standard [35] if rad∞(M,N) = 0 for each M,N ∈ Γ .
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A path of length t is a sequence δ: M = M0
f1

M1
f2 · · · ft

Mt = N (t � 0) where

Mi ∈ indA and fi is a non-zero morphism for each i. In this case, we write M
δ

N and we
say that M is a predecessor of N and N is a successor of M . Following [35], a path δ is infinite
if fi ∈ rad∞(modA) for some i, and finite otherwise. If each fi is irreducible, δ is a path of irre-
ducible morphisms and, in this case, δ is sectional if it contains no triple (Mi−1,Mi,Mi+1) such

that τAMi+1 = Mi−1. A refinement of δ is a path M = M ′
0

f ′
1

M ′
1

f ′
2 · · · f ′

s
M ′

s = N, with

s � t , with an injective order-preserving function σ : {1, . . . , t − 1} {1, . . . , s − 1} such that
Mi = M ′

σ(i) when 1 � i � t − 1. Finally, a path δ is a cycle if M = N and at least one fi is not
an isomorphism. An A-module M is directing if it does not lie on any cycle and a component
Γ of Γ (modA) is directed if it contains only directing modules. Also, Γ is almost directed
if it contains only finitely many non-directing modules, and quasi-directed if it is also general-
ized standard. Moreover, Γ is convex if any path from M to N , with M,N in Γ , contains only
modules from Γ .

Let A be an artin algebra. Following [22], we define the left part LA and the right part RA of
modA as follows:

LA = {M ∈ indA | pdA N � 1 for each predecessor N of M},
RA = {M ∈ indA | idA N � 1 for each successor N of M}.

The next result is helpful to detect the modules which lie in LA or in RA.

Lemma 1.1. (See [3, (1.6)].) Let A be an algebra.

(a) LA consists of the modules M ∈ indA such that, if there exists a path from an indecompos-
able injective module to M , then this path can be refined to a path of irreducible morphisms,
and any such refinement is sectional.

(b) RA consists of the modules N ∈ indA such that, if there exists a path from N to an indecom-
posable projective module, then this path can be refined to a path of irreducible morphisms,
and any such refinement is sectional.

We conclude this section with some preliminary results, needed later on.

Lemma 1.2. Let A be an algebra and Γ be a component of Γ (modA). Assume that
rad∞(M,N) �= 0 for some indecomposable modules M,N with N ∈ Γ . Then, for each L ∈ Γ ,
there exists N ′ ∈ Γ such that:

(a) There exists a path of irreducible morphisms from N ′ to N ;
(b) N ′ is a predecessor of L or is a predecessor of a projective module in Γ ;
(c) rad∞(M,N ′) �= 0.
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Proof. Let M and N be as in the statement. There exists a path of infinite length of irreducible
morphisms

· · · Nr

hr
Nr−1 · · · h2

N1
h1

N0 = N

in indA such that there exists ur ∈ rad∞(M,Nr) with h1h2 · · ·hrur �= 0 for each r � 1 (see [36,
(2.1)]). Let L ∈ Γ . We claim that there exists s � 1 such that Ns is a predecessor of L or is a
predecessor of a projective module in Γ . Indeed, if this is not the case, then Ni is not projective
for all i and it follows from [16, (1.1)] that there exists an integer r � 1 which is minimal for the
property that Ni is not a predecessor of τ rN for all i. By the choice of r , there exists Nj such that

Nj is a predecessor of τ r−1N . We claim that the path Nm

hm
Nm−1

hm−1 · · · hj+1
Nj is sectional

for each m > j . Indeed, if this is not the case, then there exists n with j � n � m − 2 such that
Nn+2 = τNn. This yields a path Nn+2 = τNn τNj τ rN, a contradiction to the choice
of r . In particular, Nm �= Nn whenever m �= n and m,n � j . Therefore, Hom(Nm, τNn) �= 0 for
some m,n � j by [37, (Lemma 2)]. Again, this yields a path from Nm to τ rN , a contradiction.
Thus there exists s � 1 such that Ns is a predecessor of L or is a predecessor of a projective
in Γ . �

As immediate consequences, we obtain the following corollary which generalizes results ob-
tained in [3, (1.4)] and [40, (1.4)].

Corollary 1.3. Let A be an algebra, Γ be a component of Γ (modA) and assume that M is a
non-directing module in Γ .

(a) If Γ contains projective modules, then there exists a path from M to a projective module
in Γ .

(b) If Γ contains injective modules, then there exists a path from an injective module in Γ to M .

Proof. We only prove (a) since the proof of (b) is dual.

(a) Let M = M0
f1

M1
f2 · · · ft

Mt = M be a cycle in indA. If no fi belongs to
rad∞(modA), then this cycle can be refined to a cycle of irreducible morphisms in Γ , and the
result follows from [3, (1.4)]. Otherwise, we have fi ∈ rad∞(Mi−1,Mi) for some Mi ∈ Γ , and it
follows from (1.2) that there exists a projective module P in Γ and a path from Mi−1 to P . This
gives a path from M to P as required. �

We also deduce from (1.2) the following generalization of [6, (1.5)].

Corollary 1.4. Let A be an algebra and Γ be a component of Γ (modA).

(a) If Γ contains projectives, then RA ∩ Γ contains only directing modules.
(b) If Γ contains injectives, then LA ∩ Γ contains only directing modules.

Proof. We only prove (a) since the proof of (b) is dual.
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(a) Assume that M ∈ RA ∩ Γ and ω :M M is a cycle in indA. By (1.3), there exists a

path M
ω

M P where P is projective. By (1.1), this path can be refined to a sectional
path of irreducible morphisms. But this contradicts the non-sectionality of cycles [14,23]. �
2. Almost laura algebras: Definition and examples

We recall from [3] that an artin algebra A is called laura if the set indA \ (LA ∪ RA) is
finite. Since the left and the right part generally behave well, the spirit of laura algebras is to deal
with algebras having potentially only finitely many “unpredictable” modules. The idea behind
almost laura algebras is to accept infinitely many such modules but restrict their scope by adding
a condition on the morphisms between them.

Definition 2.1. An artin algebra is called almost laura if rad∞(M,N) vanishes for all M,N ∈
indA \ (LA ∪RA).

In the vein of [5], we also say that an almost laura algebra is strict if it is not quasitilted. The
following proposition provides many equivalent useful conditions for an algebra to be almost
laura.

Proposition 2.2. Let A be an algebra. The following are equivalent:

(a) A is almost laura.
(b) For all M ∈ indA \LA and N ∈ indA \RA, we have rad∞(M,N) = 0.
(c) There is no infinite path between modules in indA \ (LA ∪RA).
(d) There is no infinite path from a module not in LA to a module not in RA.
(e) There is no infinite path from an injective module to a projective module.
(f) There is no infinite path from a module M , with pdM � 2, to a module N , with idN � 2.

Proof. The equivalence of (a)–(d) follows from the fact that LA is closed under predecessors
and RA is closed under successors.

(e) implies (f). Let M
ω

N be a path in indA, with pdM � 2 and idN � 2. Since
pdM � 2, we have HomA(I, τM) �= 0 for some indecomposable injective I and so there exists
a path ω′ : I M in indA. Dually, there exists a path ω′′ :N P for some indecomposable

module P . This yields a path I
ω′

M
ω

N
ω′′

P, which is finite by assumption, whence so
is ω.

(f) implies (d). This clearly follows from the definitions of LA and RA, since any path from
a module not in LA to a module not in RA can be extended to a path from a module having
projective dimension at least two to a module having injective dimension at least two.

(d) implies (e). Let δ : I = M0
f1

M1
f2 · · · ft

Mt = P be a path in indA from an injec-
tive I to a projective P . Assume that fi ∈ rad∞(modA), for some 1 � i � t . For any n � 0, it
follows from [40, (1.1)] that δ may be refined to a path

δ′ : I = M0 Mi−1
h0

N0
h1

N1
h2 · · · hn

Nn

gn

Mi P
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where gn ∈ rad∞(modA) and Nk �= Nl whenever k �= l. Since there are only finitely many
modules in LA which are successors of an injective by [3, (1.5)] (see also [25, (3.2.6)]),
there exists n � 0 such that Nn /∈ LA. Applying the dual argument to gn yields an infinite
path δ′′ :Nn M, with M /∈ RA, a contradiction to the hypothesis. �

We get the following corollary as an immediate consequence of (2.2)(e).

Corollary 2.3. If A is an almost laura algebra, then rad∞(I,P ) = 0 for any injective A-module
I and projective A-module P .

Remark 2.4. We stress that the converse of the above corollary is false, as can be easily verified
with the radical square zero algebra A given by the quiver 1 2 3 4.

We now gives few examples of almost laura algebras.

Example 2.5.

(a) By [3, (3.3)], any laura algebra is almost laura. In particular, so is any representation-finite
or quasitilted algebra.

(b) Let A be the algebra given by the quiver

1
β1

β2

2 α

5

3
δ1

δ2

4 γ

bound by αβ2 = γ δ1 = γ δ2 = 0. Then Γ (modA) has the shape presented in Fig. 1 (where
indecomposable modules are represented by their Loewy series), where we identify both
copies of the module 2

1
along the vertical dashed line, and both copies of the module 2 along

the horizontal dashed line. The horizontal dotted lines represent the AR-translations. One
can verify that A is an almost laura algebra, but not a laura algebra.

Fig. 1. Γ (modA).
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In this latter example, the algebra has been obtained by performing a one-point extension in
a chosen homogeneous tube of the Kronecker algebra formed by the vertices 1 and 2, and by
“gluing” another Kronecker algebra to the resulting ray tube. Repeating the same procedure in
another tube would result in an almost laura algebra having two non-semiregular components.
Since there are infinitely many such tubes, this shows that one can construct almost laura algebras
having arbitrarily many non-semiregular components.

We would like to propose the following problem, which is an analogue to Skowroński’s con-
jecture for laura algebras [39].

Problem 1. Let A be an algebra. Are the following conditions equivalent?

(a) A is almost laura.
(b) rad∞(M,N) = 0 for all M,N ∈ indA, with pdM � 2 and idN � 2.
(c) There is no infinite path between modules having both projective and injective dimensions

at least 2.

3. Those almost laura algebras which are laura

The definition of almost laura algebras is closely related to that of laura algebras. In this
section, we are interested in determining when an almost laura algebra is laura. We recall that
strict laura algebras are characterized by the existence of a unique non-semiregular component
in their AR-quiver, which is moreover quasi-directed and faithful (see [3,33]). Our approach
consists in studying the behavior of the non-semiregular components in the AR-quiver of almost
laura algebras. As we shall see, those components behave similarly as for laura algebras. We
infer some characterizations of almost laura algebras which are laura. Our results on the non-
semiregular components will also play a major role in Section 4.

3.1. Non-semiregular components and almost laura algebras

We begin our investigation of non-semiregular components over almost laura algebras with
the following key lemma, whose proof is a routine application of (2.2) and (1.2). We leave the
verification to the reader.

Lemma 3.1. An algebra is almost laura if and only if there is no infinite path from a module M

lying in a component containing injectives to a module N lying in a component containing pro-
jectives.

As a first application, we get the following corollary.

Corollary 3.2. Let A be an almost laura algebra. If M ∈ indA \ (LA ∪RA), then M belongs to
a non-semiregular component of Γ (modA).

Proof. Let M /∈ LA ∪RA. Then there exists a path I M P for some injective module I

and some projective module P . Since A is almost laura, this path is finite and so I and P belong
to the same component as M . �

We recall from [18] that the AR-quiver Γ (modA) of a quasitilted algebra A generally does
not contain non-semiregular components, but if it does, then it contains a unique non-semiregular
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component Γ . Moreover, the algebra A is then tilted and Γ is the unique connecting component
of Γ (modA). It is well known that a tilted algebra always admits exactly one or two connecting
components. On the other hand, any strict laura algebra admits non-semiregular components
(see [3]). The following proposition states that the same is true for strict almost laura algebras.

Proposition 3.3. Let A be an almost laura algebra.

(a) If Γ is a non-semiregular component in Γ (modA), then Γ is generalized standard and
convex.

(b) If A is a strict almost laura algebra, then Γ (modA) contains non-semiregular components.

Proof. (a) This directly follows from the lemma.
(b) Since A is not quasitilted, it follows from [22, (II.1.14)] that there exists an indecompos-

able projective module P not lying in LA. So, there is a path from an injective module I to P in
indA. Since A is almost laura, the modules P and I belong to the same component of Γ (modA),
which is thus non-semiregular. �
Remark 3.4. The above result has a direct nice consequence. In fact, a well-known conjecture in
representation theory of algebras states that if an algebra A has a connected AR-quiver, then A is
representation-finite. Since the AR-quiver then consists of a unique non-semiregular component,
and A is representation-finite if and only if rad∞(modA) = 0 by Auslander’s theorem (see [12,
(V.7.7)]), it follows from the above proposition that the conjecture has a positive answer for
almost laura algebras. In other words, if A is an almost laura algebra such that Γ (modA) is
connected, then A is representation-finite.

For the remaining part of this section, we let A be an almost laura algebra and Γ be a non-
semiregular component of Γ (modA). Here and in the sequel, we also use the following notation:
if A and B are two classes of A-modules, then we write HomA(A,B) �= 0 to express that there
exists a non-zero morphism from a module in A to a module in B.

The following are generalizations of [3, (4.1)] and [3, (4.2)]. The proof of the lemma follows
directly from (3.1) and it is omitted.

Lemma 3.5. Let A and Γ be as above.

(a) Assume that I is an indecomposable injective module such that there exists a path
I M with M ∈ Γ , then I belongs to Γ .

(b) Assume that P is an indecomposable projective module such that there exists a path
M P with M ∈ Γ , then P belongs to Γ .

Proposition 3.6. Let A and Γ be as above, and let Γ ′ be a component of Γ (modA) distinct
from Γ .

(a) If HomA(Γ ′,Γ ) �= 0, then Γ ′ ⊆ LA \RA.
(b) If HomA(Γ,Γ ′) �= 0, then Γ ′ ⊆ RA \LA.
(c) Either HomA(Γ ′,Γ ) = 0, or HomA(Γ,Γ ′) = 0.
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Proof. (a) Let M,M ′ ∈ Γ ′, N ∈ Γ and assume that 0 �= f ∈ HomA(M,N). We need to show
that M ′ ∈ LA\RA. Clearly f ∈ rad∞(modA). By (1.2), there exists N ′ ∈ Γ such that N ′ is a pre-
decessor of a projective P in Γ and rad∞(M,N ′) �= 0. Dually, there exists M ′′ ∈ Γ ′ such that M ′′
is a successor of M ′ or a successor of an injective module in Γ ′ and rad∞(M ′′,N ′) �= 0. By (3.1),

M ′′ is not a successor of an injective. So there exists a path M ′ M ′′ g

N ′ P where g

is a non-zero morphism in rad∞(M ′′,N ′). Then M ′ ∈ LA \RA by (1.1). So Γ ′ ⊆ LA \RA.
(b) The proof is dual to that of (a).
(c) This follows directly from (a) and (b). �
We prove in (4.7) below a stronger version of this result when A is left (or right) supported.

We conclude with an observation on semiregular components.

Proposition 3.7. Let A be an almost laura algebra and Γ ′ be a semiregular component of
Γ (modA).

(a) Γ ′ ⊆ LA ∪RA.
(b) If Γ ′ contains injectives but no projectives, then Γ ′ ⊆ RA.
(c) If Γ ′ contains projectives but no injectives, then Γ ′ ⊆ LA.
(d) If Γ ′ is regular, that is it contains neither injectives nor projectives, then Γ ′ lies in LA \RA,

RA \LA or LA ∩RA.

Proof. (a) This directly follows from (3.2).
(b) Assume that M is a module in Γ ′ which does belong to RA. By (1.1) there exists a path δ

from M to a projective module P . Since P /∈ Γ ′ by assumption, this path is infinite. By the dual
of (1.2), there exists an infinite path from an injective module in Γ ′ to P , which contradicts the
fact that A is almost laura by (2.2).

(c) The proof is dual to that of (b).
(d) In view of (a), it suffices to show that if Γ ′ ∩ LA �= ∅ (or Γ ′ ∩ RA �= ∅), then Γ ′ ⊆ LA

(or Γ ′ ⊆ RA, respectively). Assume that Γ ′ ∩ LA �= ∅ and let M,N ∈ Γ ′ with M ∈ LA. If
N /∈ LA, then there exists by (1.1) a path δ from N to an injective module I . But then, since
I /∈ Γ ′, this path is infinite and it follows from (1.2) that there exists an infinite path from M to I ,
contradicting the fact that M ∈ LA. So Γ ′ ⊆ LA. Similarly Γ ′ ∩RA �= ∅ implies Γ ′ ⊆ RA. �
3.2. On almost laura algebras which are laura

In this section, we provide necessary and sufficient conditions for an almost laura algebra to
be laura and also deduce new characterizations of laura and weakly shod algebras. We begin with
the following key lemma.

Lemma 3.8. Let A be an algebra and Γ be a generalized standard and convex component
of Γ (modA). For all L,N ∈ Γ , there are only finitely many directing modules M lying on a
path L M N.

Proof. Let L,N ∈ Γ and assume to the contrary that there exists an infinite set of in-
decomposable directing modules M = {Mλ}λ∈Λ such that, for each λ ∈ Λ, there is a
path L Mλ N in indA. Since M is infinite and Γ has only finitely many non-periodic
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τ -orbits by [35, (2.3)], there exists an orbit O of Γ with |O ∩M| = ∞. Let M ∈ O and assume
without loss of generality that τmM ∈ M for infinitely many m � 0. Then, M is left stable. Let
lΓ be the connected component of the left stable part of Γ containing M . It then easily follows
from [18, (1.4)] that lΓ contains no cycle and lΓ has only finitely many τ -orbits. Then, lΓ

admits a section Δ such that lΓ is isomorphic to a full subquiver of ZΔ, and is closed under
predecessors by paths of irreducible morphisms (see [26, (3.4)]). Moreover, for any predecessors
Q,Q′ of Δ, there exist at most finitely many integers n � 0 such that Q is a predecessor of τnQ′.
However, since there exists s � 0 such that τmM is a predecessor of Δ for all m � s, and since
Γ is generalized standard and convex, L and τ sM are two predecessors of Δ such that L is a
predecessor of infinitely many τmM , with m � s, a contradiction. �
Proposition 3.9. Let A be an almost laura algebra. Then A satisfies the following equivalent
conditions:

(a) indA \ (LA ∪RA) contains only finitely many directing A-modules.
(b) There are only finitely many indecomposable directing A-modules M with a path

I M P in indA where I is an injective module and P a projective module.
(c) There are only finitely many indecomposable directing A-modules M with a path

L M N in indA where L /∈ LA and N /∈RA.

Proof. We first show the equivalence of statements (a)–(c).
(a) implies (b). This follows from the fact that any injective module (or projective module)

has only finitely many successors (or predecessors) lying in LA (or in RA, respectively) by [3,
(1.5)] (see also [25, (3.2.6)]).

(b) implies (c). This follows from (1.1).
(c) implies (a). Assume that indA \ (LA ∪RA) contains an infinite set (Mλ)λ∈Λ of directing

modules. The set of trivial paths Mλ
id

Mλ
id

Mλ contradicts (c).
Now, assume that A is an almost laura algebra not satisfying the condition (b). Then,

there exist an injective I , a projective P and infinitely many directing modules M lying on
a path I M P. By (2.2) and (3.1), all these modules, including I and P , belong to a
unique component Γ of Γ (modA). By (3.3), Γ is generalized standard and convex. This con-
tradicts (3.8). �

As a consequence, we get the following theorem.

Theorem 3.10. The following are equivalent for an almost laura algebra A.

(a) A is laura.
(b) indA \ (LA ∪RA) contains only finitely many non-directing modules.
(c) Any non-semiregular component of Γ (modA) is almost directed.
(d) Any non-semiregular component of Γ (modA) is quasi-directed.

Proof. (a) implies (b). This is obvious.
(b) implies (d). Assume that Γ is a non-semiregular component of Γ (modA) and M is a

non-directing module in Γ . By (1.4), M ∈ indA \ (LA ∪ RA) and the claim follows from the
assumption and (3.3).
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(d) implies (c). This is obvious.
(c) implies (a). Assume that A is not laura. So indA\ (LA ∪RA) is infinite and, by (1.1), there

exist an injective module I , a projective module P and infinitely many modules M lying on a
path I M P. By assumption, we may assume that these modules are directing. Since A

is almost laura, it follows from (2.2) and (3.1) that all these modules, including I and P , belong
to the same component Γ of Γ (modA). By (3.3), Γ is generalized standard and convex, which
contradicts (3.8). �

We get a similar characterization of almost laura algebras which are weakly shod. Recall
from [16] that an algebra A is weakly shod if and only if it is laura and none of the non-
semiregular components of Γ (modA) contains cycles. Moreover, a non-semiregular component
Γ is pip-bounded if there exists an n0 such that any path of non-isomorphisms in indA from an
injective module in Γ to a projective module in Γ has length at most n0.

Proposition 3.11. The following are equivalent for an almost laura algebra A.

(a) A is weakly shod.
(b) indA \ (LA ∪RA) contains only directing modules.
(c) Any non-semiregular component of Γ (modA) is directed.
(d) Any non-semiregular component of Γ (modA) is pip-bounded.

Proof. (a) implies (c). This follows from the above discussion.
(c) implies (d). This follows from (3.3) and [25, (4.2.6)] (see also [40, (3.12)]).
(d) implies (b). Assume that M is a non-directing module in indA\(LA ∪RA). By (1.1), there

exists a path I M P in indA for some injective module I and projective module P .
Since A is almost laura, the modules I,M and P belong to the same component Γ of Γ (modA),
which is therefore non-semiregular. Obviously, Γ is not pip-bounded, a contradiction.

(b) implies (a). By (3.10), A is laura. Now, assume that Γ is a non-semiregular component
of Γ (modA) containing a non-directing module M . By (1.3), there exist an indecomposable
injective I , a projective module P and a path I M P. By non-sectionality of cycles
[14,23] and (1.1), we get M ∈ indA \ (LA ∪RA), a contradiction. So A is weakly shod. �

The preceding results provide new characterizations for laura and weakly shod algebras. We
need one further lemma.

Lemma 3.12. Let A be an algebra such that indA \ (LA ∪ RA) contains only finitely many
non-directing modules. Then A is almost laura.

Proof. Assume that A is not almost laura. Then, there exist L,N /∈ LA ∪ RA such that
rad∞(L,N) �= 0. Invoking [25, (4.2.2)], there exist infinitely many non-directing modules Mλ

lying on a path from L to N . Since LA is closed under predecessors and RA is closed under suc-
cessors, we have Mλ /∈ LA ∪RA for any λ. This contradicts our assumption, and so A is almost
laura. �

We get the following result whose proof follows from (3.10)–(3.12).
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Corollary 3.13. Let A be an algebra.

(a) A is laura if and only if indA\(LA ∪RA) contains only finitely many non-directing modules.
(b) A is weakly shod if and only if indA \ (LA ∪RA) contains only directing modules.

3.3. Left glued algebras revisited

A particular class of laura algebras is given by the so-called left (or right) glued algebras.
Recall from [2,3] that an algebra A is called left glued if the set indA \ RA is finite. The right
glued algebras are defined dually. The origin of their names comes from the fact that, roughly
speaking, the AR-quiver of any left glued algebra is obtained by “gluing,” on the left-hand side
of the AR-quiver of a representation-finite algebra, some AR-components (without injectives)
arising from tilted algebras (see [2] for details).

It is well known that left (or right) glued algebras are characterized by the existence, in their
AR-quiver, of a faithful π -component (or ι-component respectively). Recall from [15] that an
AR-component Γ is called a π -component (or a ι-component) provided all but finitely many
modules in Γ are directing and lie in the τ -orbit of a projective (or an injective, respectively).
We refer to [5,27] for more details concerning left (or right) glued algebras.

The aim of this section is to show that, although laura and almost laura algebras differ from
many points of view, the “left glued” and “right glued” versions for almost laura algebras coin-
cide with the usual left and right glued algebras arising from laura algebras.

Theorem 3.14. Let A be an algebra.

(a) A is left glued if and only if rad∞(M,N) = 0 for all M,N ∈ indA \RA.
(b) A is right glued if and only if rad∞(M,N) = 0 for all M,N ∈ indA \LA.

Proof. We only prove (a) since the proof of (b) is dual.
(a) The necessity clearly follows from the definition of left glued algebras and [40, (1.1)], for

instance. Conversely, assume that rad∞(M,N) = 0 for all M,N ∈ indA \ RA. If indA = RA,
then there is nothing to prove. Otherwise, let M ∈ indA \RA and Γ be the AR-component con-
taining M . We show that Γ is a faithful π -component. Let P be an indecomposable projective
module such that Hom(P,M) �= 0. Since M /∈ RA, we have P /∈ RA. It then follows from our
hypothesis that rad∞(P,M) = 0, and so P lies in Γ . So Γ contains projective modules. We
claim that Γ contains all projective modules. Indeed, if this is not that case, then there exist a
projective module P in Γ and a projective module P ′ not in Γ such that rad∞(P,P ′) �= 0 or
rad∞(P ′,P ) �= 0. Assume that rad∞(P,P ′) �= 0. Then, since there are only finitely many prede-
cessors of P ′ lying in RA by [3, (1.5)] and [25, (3.2.6)], it follows from [40, (1.1)], for instance,
that there exists a predecessor N of P ′ such that N /∈RA but rad∞(P,N) �= 0, which contradicts
our hypothesis. The same argument shows that rad∞(P ′,P ) �= 0. So Γ contains all indecompos-
able projective modules. In particular, Γ is faithful. Moreover, we have rad∞(−,Γ ) = 0. Indeed,
assume that rad∞(M ′,N ′) �= 0 for some indecomposables M ′,N ′ with N ′ ∈ Γ . Then, invok-
ing (1.2), and recalling that there exist only finitely many predecessors of a projective module
in RA, there exists a projective module P ′′ in Γ and an indecomposable module M ′′ /∈RA such
that rad∞(M ′′,P ′′) �= 0. This contradicts our assumption. Hence rad∞(−,Γ ) = 0, and Γ is a
π -component by [27, (2.1)–(2.3)]. Since Γ is also faithful, then A is left glued. �
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4. Supported almost laura algebras

As pointed out in the discussion following (2.5), the AR-quivers of almost laura algebras
usually have many non-semiregular components. It is also easy to construct examples of almost
laura algebras having multicoils (in the sense of [10]). With this in mind, it seems that the general
shape of the AR-quiver of an almost laura algebra is not easy to describe. In this section, we
propose to study the AR-quiver of left (or right) supported almost laura algebras [6].

Informally, left (or right) supported algebras A are those whose left (or right) part “behaves
well.” For instance, any strict laura algebra is left and right supported by [6, (4.4)]. This is how-
ever not true for almost laura algebras, as we will see, and this additional assumption will be very
useful in our attempt to describe their AR-quivers. The main result of this section is an analogue
to the results of [33, (3.1)] and [25, (4.2.5)] for laura algebras and states that if A is left (or right)
supported, then A is almost laura if and only if its AR-quiver has a generalized standard, convex
and faithful component (see (4.9)).

Here, we recall basic features needed in the subsequent developments. For a full ac-
count, we refer to [5,6]. By [13], a full subcategory C of modA is contravariantly finite
if for any N ∈ modA, there exists a morphism fC :MC N, with MC ∈ C, such that any

morphism f :M N, with M ∈ C, factors through fC . The dual notion is that of a covari-
antly finite subcategory. Following [6], an artin algebra A is called left supported in case addLA

is contravariantly finite in modA. We define dually the right supported algebras. In what fol-
lows, the dual statements for right supported algebras hold as well. We refrain from stating them.
In order to have a better description of left supported algebras, we define, following [6], two
subclasses of LA:

E1 = {M ∈ LA | there exists an injective I and a path of irreducible

morphisms I M}, and

E2 = {
M ∈ LA \ E1 | there exists a projective P /∈ LA and a path of

irreducible morphisms P τ−1M
}
.

Moreover, we set E = E1 ∪ E2. We also denote by E the direct sum of all indecomposable A-
modules lying in E and by F the direct sum of a full set of representatives of the isomorphism
classes of indecomposable projective A-modules not lying in LA. Finally, we set T = E⊕F . The
following summarizes some characterizations of left supported algebras, as stated and proved
in [6, (Theorem A)] and [1, (Section 8)].

Theorem 4.1. Let A be an algebra. The following are equivalent:

(a) A is left supported.
(b) addLA coincides with the set CogenE of A-modules cogenerated by E.
(c) T = E ⊕ F is a tilting A-module.
(d) Every morphism f :M N in indA, with M ∈ LA and N /∈ LA factors through addE.

Remark 4.2. Strict almost laura algebras are not left supported in general. Indeed, for the almost

laura algebra of (2.5)(b), it is easily verified that T = 44
3 ⊕ 4 ⊕ 5

24. Since T admits less indecom-

1
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posable direct summands than the number of non-isomorphic simple modules, T is not a tilting
module. So A is not left supported by the above theorem.

We begin the study of left supported almost laura algebras with the following lemma. In the
sequel, we write M ∈� N to express that an A-module M is a direct summand of an A-module N .

Lemma 4.3. Let A be an almost laura algebra. If M ∈� T , then the component containing M also
contains injective modules.

Proof. If M ∈ E1, this is clear. If M ∈ E2, then there is a projective module P /∈ LA and a
path of irreducible morphism P τ−1M. Since P /∈ LA, it follows from (1.1) that there is an

injective module I and a path I P . Since A is almost laura, I,P and M belong to the same
component of Γ (modA) by (2.2). Finally, if M ∈� F , then M is a projective module not in LA.
A repetition of the above argument leads to the result. �

As a consequence, we obtain the following very useful result.

Proposition 4.4. Let A be a left supported almost laura algebra.

(a) If A is quasitilted, then A is tilted and there exists a connecting component Γ of Γ (modA)

containing every indecomposable direct summand of T . In particular, Γ is faithful.
(b) If A is not quasitilted, then Γ (modA) has a unique non-semiregular component Γ . More-

over, Γ contains every indecomposable direct summand of T and is faithful.

Proof. (a) If A is quasitilted, then A is tilted having E as complete slice by [40, (3.8)]. Since
F = 0 in this case, the result follows at once.

(b) If A is not quasitilted, let Γ be a non-semiregular component (see (3.3)(b)). Then, T ad-
mits an indecomposable direct summand in Γ . Indeed, let P be a projective module in Γ . If
P /∈ LA, then P ∈� F , and we are done. Otherwise, P ∈ LA, and since Γ contains injective
modules, we have Γ ∩ E �= ∅ by [6, (3.5)]. We now show that Γ contains all indecomposable
direct summands of T . Indeed, if this is not the case, then there exists such a summand T ′ of
T with rad∞(Γ,T ′) �= 0 or rad∞(T ′,Γ ) �= 0 (since EndA T is connected). Since the compo-
nent containing T ′ contains injective modules by (4.3), we have rad∞(T ′,Γ ) = 0 by (3.1). So
rad∞(Γ,T ′) �= 0. Applying (3.6), we get T ′ ∈ RA \LA, and so T ′ ∈� F . But then T ′ is projective
and we get a contradiction to (3.1). This proves our claim. Finally, Γ is faithful since so is T . �
Corollary 4.5. Let A be a left supported almost laura algebra. Assume that Γ is a non-
semiregular component of Γ (modA) and M ∈ indA.

(a) LA ∩RA is finite and lies in Γ .
(b) If M /∈ LA ∪RA, then M ∈ Γ .
(c) If M /∈ Γ , then M ∈ LA \RA or M ∈ RA \LA.

Proof. (a) Let M ∈ LA ∩RA, and assume that M /∈ Γ . Since M ∈ CogenE and E ⊆ Γ , we have
HomA(M,Γ ) �= 0. By (3.6), we obtain M /∈ RA, a contradiction. Now, assume to the contrary
that LA ∩ RA is infinite. Since Γ has only finitely many non-periodic τ -orbits by [35, (2.3)],
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there exists a τ -orbit O of Γ such that |O ∩ (LA ∩RA)| = ∞. Let M ∈ O and assume, without
loss of generality, that τmM ∈ LA ∩ RA for infinitely many m � 0. Then, M is right stable and
it follows from [16, (1.1)] that there exists n � 0 such that τnM is a successor of an injective
module in Γ . By (1.1), we have τn−1M /∈ LA. But this contradicts our assumption on M . So
LA ∩RA is finite.

(b) This follows from (3.7)(a).
(c) This follows from (a) and (b). �
This yields the following structure results.

Lemma 4.6. Let A be a left supported almost laura algebra. Assume that Γ is a non-semiregular
component of Γ (modA). Let M ∈ indA. If M /∈ Γ , then

(a) HomA(M,Γ ) �= 0 if and only if M ∈ LA \RA.
(b) HomA(Γ,M) �= 0 if and only if M ∈RA \LA.
(c) Either HomA(M,Γ ) �= 0 and HomA(Γ,M) = 0, or HomA(M,Γ ) = 0 and

HomA(Γ,M) �= 0.

Proof. (a) Since the necessity follows from (3.6), assume that M ∈ LA \RA. Since M ∈ LA ⊆
CogenE and E ⊆ Γ , we have HomA(M,Γ ) �= 0.

(b) Since the necessity follows from (3.6), assume that M ∈ RA \LA. Let P be an indecom-
posable projective module such that there exists a non-zero morphism π :P M . If P ∈ LA,
then π factors through addE by (4.1) and so HomA(Γ,M) �= 0 since E ⊆ Γ by (4.4). Otherwise,
P ∈� F , and so P ∈ Γ . Consequently, HomA(Γ,M) �= 0.

(c) By (4.5), we have M ∈ LA \ RA or M ∈ RA \ LA. The result then follows from (a)
and (b). �
Theorem 4.7. Let A be a left supported almost laura algebra. Assume that Γ is a non-
semiregular component of Γ (modA). Let Γ ′ �= Γ be a component of Γ (modA).

(a) HomA(Γ ′,Γ ) �= 0 if and only if Γ ′ ⊆ LA \RA.
(b) HomA(Γ,Γ ′) �= 0 if and only if Γ ′ ⊆ RA \LA.
(c) Either HomA(Γ ′,Γ ) �= 0 and HomA(Γ,Γ ′) = 0, or HomA(Γ ′,Γ ) = 0 and

HomA(Γ,Γ ′) �= 0.

In particular, Γ is the unique faithful component of Γ (modA).

Proof. (a) Since the necessity follows from (3.6), assume that Γ ′ ⊆ LA \ RA. Let M ∈ Γ ′.
By (4.6), we have HomA(M,Γ ) �= 0 and so HomA(Γ ′,Γ ) �= 0.

(b) The proof is similar to that of (a).
(c) Let M ∈ Γ ′. By (4.6), we have HomA(Γ ′,Γ ) �= 0 or HomA(Γ,Γ ′) �= 0. The result then

follows from (a) and (b).
Finally, observe that Γ is faithful by (4.4) and that if Γ ′ was another faithful component, then

we would have HomA(Γ,Γ ′) �= 0 and HomA(Γ ′,Γ ) �= 0. �
Remark 4.8. Under the assumptions of (4.7) the component Γ induces a trisection in the fam-
ily of AR-components (in the sense of [31]): there are the components lying in LA \ RA, those
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lying in RA \ LA and Γ . Also, any component Γ ′ in LA \ RA maps non-trivially to Γ , which
maps non-trivially to any component Γ ′′ in RA \ LA. In addition, with these notations, it fol-
lows from (4.1)(d) and (4.4) that any morphism from Γ ′ to Γ ′′ factors through Γ . Moreover,
by [6, (5.5)], any component lying in LA \ RA has no injectives and is either a postprojective
component, a semiregular tube, a component of the form ZA∞ or a ray extension of ZA∞.
Numerous important families of algebras accept a trisection of its module category, notably the
tilted algebras, the quasitilted algebras, the weakly shod algebras and the laura algebras.

We can now prove the main result of this section, which is a characterization of left supported
almost laura algebras.

Theorem 4.9. Let A be a left supported algebra. Then A is almost laura if and only if Γ (modA)

has a generalized standard, convex and faithful component.

Proof. The necessity follows from (4.4), (3.3) and the fact that any connecting component is
generalized standard and convex. Conversely, assume that Γ is a generalized standard, con-
vex and faithful component in Γ (modA). In addition, assume that I P is a path in indA,
with I injective and P projective. Since Γ is faithful, there exist M,N ∈ Γ and a path of the
form M I P N. Since Γ is convex, then every module on this path belongs to Γ .
Now, Γ being generalized standard, this path is finite. So A is almost laura by (2.2). �

At this point, we stress that the assumption of being left supported was unnecessary to prove
the sufficiency. We then deduce the following corollary.

Corollary 4.10. Let A be an algebra and assume that Γ is a generalized standard and convex
component of Γ (modA). The algebra B = A/ annΓ is almost laura, where annΓ = {a ∈ A |
aM = 0 for each M ∈ Γ }.

Proof. Clearly Γ is a faithful component of Γ (modB). In addition, since modB is a full sub-
category of modA, then Γ is generalized standard and convex as a component of Γ (modB).
The result then follows from (4.9). �

The above corollary shows the importance of identifying the generalized standard and convex
components. In the vein of [25,40], we then state the following result whose proof, left to the
reader, easily follows using (1.2).

Proposition 4.11. Let A be an algebra and Γ be a component in Γ (modA). Then Γ is gen-
eralized standard and convex if and only if any path connecting two modules in Γ is finite. In
addition,

(a) if Γ is non-semiregular, then this is the case if and only if any path from an injective in Γ to
a projective in Γ is finite;

(b) if Γ is semiregular, then this is the case if and only if any cycle M M, with M ∈ Γ , is
finite. Moreover,
(i) if Γ contains injectives but no projectives, then this occurs if and only if any path from

an injective in Γ to a module in Γ is finite;
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(ii) if Γ contains projectives but no injectives, then this occurs if and only if any path from
a module in Γ to a projective in Γ is finite.

If A is strict almost laura, then the generalized standard, convex and faithful component
of (4.9) is non-semiregular. Since, by [33, (3.1)], an algebra A which is not quasitilted is laura
if and only if Γ (modA) has a non-semiregular faithful and quasi-directed component, this moti-
vates the following problem.

Problem 2. Let A be a left supported strict almost laura algebra and Γ be the unique non-
semiregular component of Γ (modA). Is Γ almost directed?

Since strict laura algebras are left and right supported, a positive answer would show that, for
a strict almost laura algebra A, the following are equivalent:

(a) A is left supported.
(b) A is right supported.
(c) A is laura.

We end this section with a discussion of the case where LA is finite, that is contains only
finitely many objects.

Proposition 4.12. Let A be an almost laura algebra such that LA is finite. Then Γ (modA)

admits a faithful non-semiregular π -component Γ . In particular, rad∞(−,Γ ) = 0 and A is left
glued.

Proof. We can clearly assume that A is representation-infinite. Moreover, observe that A is left
supported since LA is finite, and let Γ be the (faithful) component of (4.4). Since LA is finite and
Γ is generalized standard, we have rad∞(−,Γ ) = 0 by (4.7). In particular, Γ contains projective
modules, and so Γ is non-semiregular by (3.7). Then Γ is a π -component by [27, (2.1)–(2.3)].
Hence A is left glued. �
Proposition 4.13. Let A be an almost laura algebra. Then LA and RA are finite if and only if A

is representation-finite.

Proof. It clearly suffices to prove the necessity. If A is quasitilted, then there is nothing to show
since indA = LA ∪ RA by [22, (II.1.13)]. So, let A be a strict almost laura algebra and Γ be a
non-semiregular component as in (3.3)(b). By (4.12) and its dual, we have rad∞(−,Γ ) = 0 =
rad∞(Γ,−). So rad∞(modA) = 0 and A is representation-finite by [12, (V.7.7)]. �
5. Full subcategories, split-by-nilpotent extensions and skew group algebras

Starting with an algebra A, it is frequent in the representation theory of artin algebras to
consider natural constructions giving rise to a new algebra B . It is then legitimate to ask which
properties of modA carry over modB and conversely. In this final section, we consider three
different such situations and show that almost laura algebras behave well with respect to those.
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5.1. Full subcategories

We consider the following problem. Let A, B be artin algebras such that B is a connected
full subcategory of A. We choose an idempotent e ∈ A so that B = eAe. Let P = Ae be
the corresponding projective A-module. We denote by presP the full subcategory of modA

formed by the P -presented modules, that is the A-modules M for which there exists an ex-
act sequence of the form P1 P0 M 0, with P0,P1 in addP . By [12, (II.2.5)], the

functor HomA(P,−) : modA modB induces an equivalence presP ∼= modB , under which
direct summands of P correspond to the projective B-modules. In addition, by [4, (2.1)], its left
inverse is P ⊗B − : modB presP ⊆ modA, that is if X is a B-module, then the A-module
P ⊗B X is P -presented and HomA(P,P ⊗B X) ∼= X, functorially.

It is shown in [4] that B is laura (or weakly shod, or left glued) whenever so is A. The
following enlarges this result to almost laura algebras.

Proposition 5.1. Let A be an algebra and e be an idempotent in A such that B = eAe is con-
nected. If A is almost laura, then so is B .

Proof. Assume that f :X Y is a non-zero morphism in indB , with X,Y /∈ LB ∪ RB . The

functor P ⊗B − gives a non-zero morphism P ⊗B f :P ⊗B X P ⊗B Y, where P ⊗B X

and P ⊗B Y do not lie in LA ∪ RA. Indeed, if, for instance, P ⊗B X ∈ LA ∪ RA, then
X ∼= HomA(P,P ⊗B X) ∈ LB ∪ RB by [4, (2.3)], a contradiction. Now, since A is almost
laura, we have P ⊗B f /∈ rad∞(modA), and then f /∈ rad∞(modB) since HomA(P,−) :
presP modB is an equivalence. So B is almost laura. �
Remark 5.2. We may ask whether an artin algebra A is almost laura provided eAe is almost
laura for any idempotent e �= 1 of A. The answer is negative, and can be easily verified on the
algebra of (2.4).

5.2. Split-by-nilpotent extensions

We now consider another construction. Informally, if one can roughly think of taking full
subcategories as “deleting points,” the construction we now outline can be thought of as “deleting
arrows.”

Let A and B be artin algebras and let Q be a nilpotent ideal of A (that is, Q ⊆ radA). Fol-
lowing [8], we say that A is a split-by-nilpotent extension of B by Q if there exists a split
surjective algebra morphism A B with kernel Q. For instance, if Q2 = 0, then the above
definition coincides with that of the trivial extension of B by Q. Another example is that of
one-point extension. For further examples, we refer the reader to [11].

We consider the change of rings functors A ⊗B − : modB modA and B ⊗A − :

modA modB. The image of the functor A⊗B − in modA is called the category of induced
modules. We have the obvious natural isomorphism B ⊗A A ⊗B − ∼= 1modB .

In is shown in [11] that if A is laura (or weakly shod, or left glued), then so is B . The same
result holds for almost laura algebras.

Proposition 5.3. Let A be a split-by-nilpotent extension of B by Q. If A is almost laura, then so
is B .
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Proof. Assume that f :X Y is a non-zero morphism in indB , with X,Y /∈ LB ∪ RB .
The functor A ⊗B − gives a non-zero morphism of induced indecomposable A-modules
A ⊗B f :A ⊗B X A ⊗B Y. Moreover, A ⊗B X and A ⊗B Y do not lie in LA ∪ RA by
[11, (2.3)]. Since A is almost laura, we have A⊗B f /∈ rad∞(modA), and then f /∈ rad∞(modB)

since B ⊗A − induces an equivalence between modB and the induced modules in modA. Thus
B is almost laura. �
5.3. Skew group algebras

The final construction we consider is that of skew group algebras. We are mainly motivated
by the fact that skew group algebras generally retain most features from the algebras they arise,
especially concerning homological properties. The study of the representation theory of skew
group algebras was started in [30,32], and more recently pursued in [7,19,21]. We recall the
relevant definitions and refer the reader to [7,12,32] for details.

Let A be an artin k-algebra and G be a group with identity e. We say that G acts on A if there
is a function G × A A, (σ, a) σ (a), such that:

(a) For each σ in G, the morphism σ :A A is an algebra automorphism;
(b) (σ1σ2)(a) = σ1(σ2(a)) for all σ1, σ2 ∈ G and a ∈ A;
(c) e(a) = a for all a ∈ A.

Such an action induces an action of G on modA as follows: for any M ∈ modA and σ ∈ G,
let σM be the A-module with the additive structure of M and with the multiplication a · m =
σ−1(a)m, for a ∈ A and m ∈ M . This allows to define an automorphism σ (−) : modA modA

for each σ ∈ G, where σ f : σ M σ N is defined by m f (m) for f ∈ HomA(M,N) and
m ∈ M (see [7, (4.1)]).

Suppose that G acts on A. The skew group algebra A[G] has as underlying A-module
structure the free left A-module having as basis all elements in G, and is endowed by the multi-
plication (aσ )(bς) = aσ(b)σς for all a, b ∈ A and σ,ς ∈ G. Observe that A[G] is generally not
connected and basic, but this will not play any role in the sequel. The main aim of this section
is to show that if A is an algebra and G is a finite group acting on A and such that its order is
invertible in A, then A is almost laura if and only if so is A[G] (see (5.11)). It is well known
that similar results hold for tilted, quasitilted, weakly shod and laura algebras (see [7, (1.2)]). As
we shall see, the techniques used in the proof will also result in analogue statements for algebras
having nilpotent infinite radical and cycle-finite algebras (see (5.12)).

Throughout this section, we assume that G is a finite group acting on A and
whose order is invertible in A. Then, the natural inclusion of A in A[G] induces the change
of rings functors F := A[G] ⊗A − : modA modA[G] and H := HomA[G](A[G],−) :

modA[G] modA. We recall the following useful result from [32, (1.1)].

Theorem 5.4. Let A and G be as above. Then

(a) (F,H) and (H,F ) are two adjoint pairs of functors.
(b) (i) The unit ε : idmodA HF of the adjoint pair (F,H) is a section of functors.

(ii) The counit η :FH idmodA[G] of the adjoint pair (F,H) is a retraction of functors.
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We refer to [32, (1.1)] for the details. Moreover, in the sequel, we shall use the following
notations. We denote by φ : HomA[G](F (−), ?) HomA(−,H(?)) the natural equivalence
associated to the adjoint pair (F,H). On the other hand, we denote by
ψ : HomA(H(?),−) HomA[G](?,F (−)) the natural equivalence associated to the adjoint
pair (H,F ). Finally, we let μ and ρ be the unit and counit of this adjoint pair. With these nota-
tions, we have (see [28, (p. 118)], for instance) the following useful lemma.

Lemma 5.5. Let M be an A-module and X be an A[G]-module.

(a) If f ∈ HomA[G](F (M),X), then φ(f ) = H(f ) ◦ εM .
(b) If f ∈ HomA(M,H(X)), then φ−1(f ) = ηX ◦ F(f ).
(c) If f ∈ HomA(H(X),M), then ψ(f ) = F(f ) ◦ μX .
(d) If f ∈ HomA[G](X,F (M)), then ψ−1(f ) = ρM ◦ H(f ).

We recall that given two categories C and D, a functor F :C D is called a radical functor
if, for any objects M,N in C, we have F(radC(M,N)) ⊆ radD(F(M),F(N)). For instance, any
full functor is radical.

Proposition 5.6. The functors F and H are radical functors.

Proof. We first show that F is a radical functor. Let M,N be indecomposable A-modules
and let f ∈ radA(M,N). Now, assume to the contrary that F(f ) /∈ radA[G](F (M),F (N)). So,
there exist an indecomposable A[G]-module X together with a section ι :X F(M) and a

retraction π :F(N) X such that the composition π ◦ F(f ) ◦ ι is an isomorphism. Denote
by ω the left inverse of ι. Applying H gives a commutative diagram:

H(X)
H(ι)

H(F (M))
H(ω)

H(F(f ))
H(F (N))

H(π)
H(X)

M

φ(ω)
εM

f

N

εN

φ(π)

where the first row is an isomorphism, H(ω) ◦ εM = φ(ω) and H(π) ◦ εN = φ(π) by (5.5)(a)
and εN ◦ f = H(F(f )) ◦ εN by (5.4)(b). Since φ is a bijection and ω �= 0, we have φ(ω) �= 0. It
then follows from the indecomposability of M that H(ι) ◦ φ(ω) = εM and so φ(ω) is a section.
Therefore, we have

φ(π) ◦ f = H(π) ◦ εN ◦ f = H(π) ◦ H
(
F(f )

) ◦ εM = H(π) ◦ H
(
F(f )

) ◦ H(ι) ◦ φ(ω).

Since H(π) ◦ H(F(f )) ◦ H(ι) is an isomorphism and φ(ω) is a section, then φ(π) ◦ f is a
section. In particular, f is a section, a contradiction since N is indecomposable. So F(f ) ∈
radA[G](F (M),F (N)) and F is a radical functor. Using (5.5)(b) and the fact that η is a retraction
of functors, one can show in a similar way that H is also a radical functor. �

Since almost laura algebras are defined in terms of the behavior of their infinite radicals,
the knowledge of each power of the radical is rather important. As a consequence of the above
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proposition, we now show that the maps φ and ψ can be used to relate the different powers of
the radicals of modA and modA[G].

Proposition 5.7. Let A and G be as above. Let n � 1, M be an A-module and X be an A[G]-
module. Then,

(a) φ(radn
A[G](F (M),X)) = radn

A(M,H(X));

(b) ψ(radn
A(H(X),M)) = radn

A[G](X,F (M)).

Proof. We only prove (a) since the proof of (b) is similar.
(a) Assume that f ∈ radn

A[G](F (M),X), and let F(M) = Y0, Y1, . . . , Yn = X and fi ∈
radA[G](Yi−1, Yi), with 1 � i � n − 1, be such that f = fnfn−1 · · ·f1. Then, by (5.5)(a), we
have

φ(f ) = H(f ) ◦ εM = H(fn) ◦ · · · ◦ H(f1) ◦ εM.

Since H is a radical functor by (5.6), we have H(fi) ∈ radA(H(Yi−1),H(Yi)) for each i. So
φ(f ) ∈ radn

A(M,H(X)). Similarly, if h ∈ radn
A(M,H(X)), then φ−1(h) ∈ radn

A[G](F (M),X).
The result follows. �

The following two corollaries are generalizations of [7, (4.4)] and [7, (4.6)] respectively. But
first, we need to recall from [7, (4.3)] that if X is an indecomposable A[G]-module, then there
exists an indecomposable A-module M such that M ∈� H(X) and X ∈� F(M).

Corollary 5.8. Let n � 1 and M,N be indecomposable A-modules such that radn
A(M,N) �= 0.

(a) For any direct summand X of F(M), we have radn
A[G](X,F (N)) �= 0;

(b) For any direct summand Y of F(N), we have radn
A[G](F (M),Y ) �= 0.

Proof. We only prove (a) since the proof of (b) is similar.
(a) By [32, (1.8)], we have an indecomposable decomposition F(M) ∼= ⊕m

i=1 Xi in modA[G]
such that H(Xi) ∼= ⊕

σ∈Gi

σ M for some Gi ⊆ G. In addition, for each i, and each γ ∈ G, there
exists σ ∈ Gi with γ M ∼= σ M . In particular, we can assume that M ∈� H(Xi) for each i. We
need to show that radn

A(Xi,F (N)) �= 0 for each i and, by (5.7)(b), it is sufficient to show that
radn

A(H(Xi),N) �= 0. Since M is a direct summand of H(Xi) for each i, this is clearly the
case. �
Corollary 5.9. Let n � 1 and X,Y be indecomposable A[G]-modules such that
radn

A[G](X,Y ) �= 0. Then, for all indecomposable A-modules M,N such that X ∈� F(M) and
Y ∈� F(N), there exists σ ∈ G such that radn

A(M, σ N) �= 0.

Proof. Let M and N be as in the statement. Then, by hypothesis, we have radn
A[G](F (M),

F (N)) �= 0, and thus radn
A(M,H(F(N))) �= 0 by (5.7). Since on the other hand we have

H(F(N)) ∼= ⊕
σ∈G

σ N by [32, (1.8)], there exists σ ∈ G with radn
A(M, σ N) �= 0. �

We also get the following corollary, which complements [7, (4.5)(4.7)].
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Corollary 5.10.

(a) Let M0
f1

M1
f2 · · · ft

Mt be a path in indA, with fi ∈ radni

A (Mi−1,Mi) for each i.

For any indecomposable X0 ∈� F(M0), there exists a path X0
g1

X1
g2 · · · gt

Xt in

indA[G] with Xi ∈� F(Mi), Mi ∈� H(Xi) and gi ∈ radni

A[G](Xi−1,Xi) for each i.

(b) Let X0
g1

X1
g2 · · · gt

Xt be a path in indA[G], with gi ∈ radni

A[G](Xi−1,Xi) for
each i. For any indecomposable M0 such that X0 ∈� F(M0), there exist σ1, σ2, . . . , σt ∈ G

and a path M0
f1 σ1M1

f2 · · · ft σt Mt in indA with Mi ∈� H(Xi), Xi ∈� F(Mi) and

fi ∈ radni

A ( σi−1Mi−1,
σi Mi) for each i.

Proof. (a) Since X0 ∈� F(M0) and radn1
A (M0,M1) �= 0, it follows from (5.8) that radn1

A (X0,

F (M1)) �= 0. Hence there exists an indecomposable X1 ∈� F(M1) with radn1
A (X0,X1) �= 0. The

result follows from an obvious induction. Observe that Mi ∈� H(Xi) for each i by the proof
of (5.8).

(b) Let M0,M1 be indecomposable A-modules such that Xi ∈� F(Mi), for i = 1,2. By (5.9),
there exists σ1 ∈ G such that radn1

A (M0,
σ1M1) �= 0. Similarly, there exists an indecomposable

M2 such that X2 ∈� F(M2) together with an element σ ′
2 ∈ G such that radn2

A (M1,
σ ′

2M2) �= 0. Ap-

plying the automorphism σ1(−) : modA modA we obtain radn2
A (σ1M1,

σ2M2) �= 0, where
σ2 = σ1σ

′
2. The result now follows from an obvious induction. Observe that Mi ∈� H(Xi) for

each i by the proof of (5.8). �
We are now ready to prove the main result of this section.

Theorem 5.11. Let A be an algebra and G be a finite group acting on A and whose order is
invertible in A.

(a) A is almost laura if and only if so is A[G].
(b) A is strict almost laura if and only if so is A[G].

Proof. (a) Assume that A is almost laura and let X
g

Y be a non-zero morphism in indA[G],
with X,Y /∈ LA[G] ∪ RA[G] and g ∈ radn

A[G](X,Y ). By (5.10)(b), there exist σ ∈ G and a non-

zero morphism M
f

σ N in indA with f ∈ radn
A(M, σN). In addition, by [7, (5.1)(5.3)], we

have M,σN /∈ LA ∪ RA. Since A is almost laura, f does not belong to rad∞(modA), and so g

does not belong to rad∞(modA[G]). Hence A[G] is almost laura. The converse is proven in the
same way, using (5.10)(a) instead of (5.10)(b).

(b) This follows from (a) and [22, (III.1.6)]. �
Our work on the infinite radical carries consequences on other classes of algebras, for instance

on cycle-finite algebras and algebras having nilpotent infinite radical. Recall from [9] that an
algebra A is cycle-finite if no cycle in indA contains morphisms in rad∞(modA). Examples
of cycle-finite algebras are all representation-finite algebras, tame tilted algebras [34], tubular
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algebras [34], iterated tubular algebras [29], and multicoil algebras [10]. It is known (see [9])
that every cycle-finite algebra is of tame representation type.

On the other hand, given an algebra A, it is important to study the nilpotency of the infinite
radical of modA in order to understand the complexity of modA. This has been considered, for
instance, in [3,17,24]. More precisely, we say that rad∞(modA) is nilpotent if there exists an
integer n � 1 such that (rad∞(modA))n = 0. Such a minimal integer n is then called the index
of nilpotency of rad∞(modA).

We have the following result.

Proposition 5.12. Let A be an algebra and G be a finite group acting on A and whose order is
invertible in A.

(a) The infinite radical of modA is nilpotent if and only if so is the infinite radical of modA[G]
and, in this case, they have the same index of nilpotency.

(b) A is cycle-finite if and only if so is A[G].
Moreover, in this case, A is domestic if and only if so is A[G].

Proof. (a) Assume that there exists an integer n � 1 such that (rad∞(modA))n = 0 but

(rad∞(modA[G]))n �= 0. Thus, there exists a path X0
g1

X1
g2 · · · gn

Xn in indA[G] such
that gi ∈ rad∞

A[G](modA[G]) for each i and g = gn · · ·g2g1 �= 0. Now, since H is faithful
by (5.4)(b)(ii) and a radical functor by (5.6), we have 0 �= H(g) ∈ (rad∞

A (modA))n, a contra-
diction. So (rad∞

A[G](modA[G]))n = 0. The converse is proven in the same way, using F and
invoking (5.4)(b)(i) instead of (5.4)(b)(ii).

(b) Assume that A is cycle-finite and let X = X0
g1

X1
g2 · · · gt

Xt = X be a

cycle in indA[G], with gi ∈ radni

A[G](Xi−1,Xi) for each i. By (5.10)(b), there exist

σ1, σ2, . . . , σt ∈ G and a path of the form δ :M0
f1 σ1M1

f2 · · · ft σt Mt , in indA, with

fi ∈ radni

A[G](σi−1Mi−1,
σi Mi) for each i. Moreover, by [32, (1.8)], we have σ M0 ∼= Mt for some

σ ∈ G and thus σσt M0 ∼= σt Mt . Let τ = σσt and m be the order of τ in G. Applying repeatedly
the functor τ (−) : modA modA on δ yields a cycle

M0
δ τM0

τ δ τ 2
M0

τ2
δ · · ·

τm
δ τm

M0 = M0.

Since A is cycle-finite, no morphism in δ belongs to rad∞(modA), and so no gi belongs to
rad∞(modA[G]). Hence A[G] is cycle-finite.

On the other hand, assume that A[G] is cycle-finite and let

M = M0
g1

M1
g2 · · · gt

Mt = M

be a cycle in indA, with gi ∈ radni

A (Mi−1,Mi) for each i. Let F(M) = ⊕m
j=1 Xj be an in-

decomposable decomposition in modA[G]. Then, for each j , there exists by (5.10)(a) a path

in indA[G] of the form δj :Xj Xsj with 1 � sj � m containing at least one morphism in

radni (modA[G]) for each 1 � i � t . Lets : {1,2, . . . ,m} {1,2, . . . ,m}be the application
A[G]
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defined by s(j) = sj . Then, there exist j and q such that j = sq(j). Consequently, there is a
cycle

Xj

δj

Xs(j)

δs(j)
Xs2(j)

δ
s2(j) · · ·

δsq (j)

Xsq(j) = Xj

containing morphisms in radni

A[G](modA[G]) for each 1 � i � t . Since A[G] is cycle-finite, no
morphism in this path belongs to the infinite radical, and so A is cycle-finite. The latter part
directly follows from (a) and [38, (5.1)]. �
Remark 5.13. Recall from [24] that rad∞(modA) is called left (or right) T-nilpotent if for each
sequence (fi)i∈N in rad∞(modA), there exists a natural number m such that fm · · ·f1 = 0 (or
f1 · · ·fm = 0, respectively). It is easily seen that the proof of (5.12)(a) can be adapted to show
that rad∞(modA) is left (or right) T -nilpotent if and only if so is rad∞(modA[G]).
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